
TLP 10 (4–6): 659–674, 2010. C© Cambridge University Press 2010

doi:10.1017/S1471068410000347

659

Test case generation for object-oriented
imperative languages in CLP�

MIGUEL GÓMEZ-ZAMALLOA, ELVIRA ALBERT

DSIC, Complutense University of Madrid (UCM), E-28040 Madrid, Spain

and GERMÁN PUEBLA

DLSIIS, Technical University of Madrid (UPM), E-28660 Boadilla del Monte, Madrid, Spain

submitted 8 February 2010; revised 11 April 2010; accepted 21 May 2010

Abstract

Testing is a vital part of the software development process. Test Case Generation (TCG) is the

process of automatically generating a collection of test-cases which are applied to a system

under test. White-box TCG is usually performed by means of symbolic execution, i.e., instead of

executing the program on normal values (e.g., numbers), the program is executed on symbolic

values representing arbitrary values. When dealing with an object-oriented (OO) imperative

language, symbolic execution becomes challenging as, among other things, it must be able to

backtrack, complex heap-allocated data structures should be created during the TCG process

and features like inheritance, virtual invocations and exceptions have to be taken into account.

Due to its inherent symbolic execution mechanism, we pursue in this paper that Constraint

Logic Programming (CLP) has a promising application field in TCG. We will support our

claim by developing a fully CLP-based framework to TCG of an OO imperative language,

and by assessing it on a corresponding implementation on a set of challenging Java programs.

KEYWORDS: test case generation, symbolic execution, constraint logic programming

1 Introduction

Test Case Generation (TCG) is the process of automatically generating a collection

of test-cases which are applied to a system under test. The generated cases must

ensure a certain coverage criterion (see e.g., Zhu et al. 1997 for a survey) which are

heuristics that estimates how well the program is exercised by a test suite. Examples

of coverage criteria are statement coverage, which requires that each line of the

code is executed, path coverage which requires that every possible trace through a

given part of the code is executed, loop-k (resp. block-k) which limits to a threshold

k the number of times we iterate on loops (resp. visit blocks in the control flow

graph; Albert et al. 2009). Among all possible forms of TCG, we focus on static

(i.e., no knowledge about the input data is assumed) and white-box TCG (i.e., the

program is used for guiding the TCG process). The standard way of performing

� This work was funded in part by the Information & Communication Technologies program of the
European Commission, Future and Emerging Technologies (FET), under the ICT-231620 HATS project,
by the Spanish Ministry of Science and Innovation (MICINN) under the TIN-2008-05624 DOVES
project, the TIN2008-04473-E (Acción Especial) project, the HI2008-0153 (Acción Integrada) project,
the UCM-BSCH-GR58/08-910502 Research Group and by the Madrid Regional Government under
the S2009TIC-1465 PROMETIDOS project.

https://doi.org/10.1017/S1471068410000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000347

660 M. Gómez-Zamalloa et al.

Fig. 1. Working example: Java source code.

static white-box TCG is program symbolic execution (SymEx) (King 1976; Gotlieb

et al. 2000; Meudec 2001; Müller et al. 2004; Tillmann and de Halleux 2008),

whereby instead of on actual values, programs are executed on symbolic values,

sometimes represented as constraint variables. Such constraints are accumulated into

path constraints as each path of the execution tree is expanded. The path constraints

in feasible paths provide pre-conditions on the input data which guarantee that the

corresponding path will be executed at run-time.

In this paper, we pursue that Constraint Logic Programming (CLP) has a promising

application field in TCG, since it inherently combines the use of constraint solvers

into its SymEx mechanism. Our main goal is to formalize a whole TCG framework

for a realistic object-oriented (OO) imperative language by means of CLP. Our

approach consists of two basic parts: first, the imperative program is compiled into

an equivalent CLP program and, second, TCG is performed on the CLP program by

relying only on CLP’s evaluation mechanisms. The main challenges in TCG when

dealing with an OO imperative language are related to the creation of complex heap-

allocated data structures during the TCG process, and to handling OO features like

inheritance and virtual invocations, and exceptions. Besides, when dealing with

objects, one needs to take into account all possible aliasing among them, since this

might affect directly the coverage of the test-cases. Previous approaches strive to

define novel specific constraint operators to carry out these tasks (see e.g. Charreteur

et al. 2009; Schrijvers et al. 2009). Instead, in our approach, the whole TCG process

is formulated using CLP only, and without the need of defining specific operators to

handle the different features. This, on one hand, has the advantage of providing a

clean and uniform formalization. And, more importantly, since SymEx is performed

on an equivalent CLP program, we can often obtain the desired degree of coverage

by using existing evaluation strategies on the CLP side. This gives us flexibility and

parametricity w.r.t. the adequacy criteria.

Our approach has been integrated in PET (Albert et al. 2010), a Partial-Evaluation

based TCG tool, extending its applicability towards real-life OO applications.

2 A CLP-executable object-oriented imperative language

In this section, we define the (CLP) syntax and semantics of the OO imperative

language on which our TCG approach is developed, which we call CLP-decompiled

https://doi.org/10.1017/S1471068410000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000347

Test case generation for object-oriented imperative languages in CLP 661

language. Its main characteristic is that it keeps all features of the original OO

language but it is CLP-executable, i.e., it can be executed using the evaluation

mechanism of CLP languages. When the source imperative language is low-level

as bytecode, we use the term CLP-decompiled language. In previous work, it has

been shown that Java bytecode (and hence Java) can be decompiled into a similar

language (Gómez-Zamalloa et al. 2009) by relying on the interpretive approach

(Futamura 1971) to compilation, proposed in the first Futamura projection. In this

approach, the CLP-(de)compilation is obtained by partially evaluating an interpreter

for the OO language written in CLP.

Example 1

Figure 1 shows the source code of our running example which implements a merge

algorithm on sorted singly-linked lists. Figure 2 shows the CLP-decompiled program

automatically generated by our system from the bytecode obtained by compiling the

Java program, with some simplifications to improve readability. The correspondence

between blocks of the original program and clauses in the decompiled one is shown

in comments in the Java code. The main features that can be observed from the

decompilation are: (1) All clauses contain input and output arguments and heaps,

and an exceptional flag. As in the bytecode, input arguments of non-static methods

include the reference this (named r(Th)). Reference variables are of the form r(V)

and we use the same variable name V as in the program. (2) Java exceptions are

made explicit in the decompiled program. Observe predicates nullcheckx, which

capture the exceptions that can be thrown at program points annotated as x©. (3)

Conditional statements in the source program are transformed to guarded rules

in the CLP one (e.g., if1). (4) Iteration in the source program is transformed into

recursion in the CLP program. E.g, the while loop corresponds to the recursive

predicate loop.

2.1 Syntax of CLP-decompiled object-oriented imperative programs

As illustrated in Figure 2, a CLP-decompiled program consists of a set of predicates.

A predicate p is defined by one or more clauses which are mutually exclusive. This

is ensured, either by means of mutually exclusive guards, or by information made

explicit on the clause heads (as usual in CLP). Each clause p receives as input

a (possibly empty) list of arguments Argsin and an input heap Hin, and returns

the (possibly empty) output Argsout, a possibly modified output heap Hout, and an

exception flag. This flag indicates whether the execution ends normally or with an

uncaught exception. Clauses adhere to the following grammar. As usual, terminals

start by lowercase (or special symbols) and non-terminals by uppercase. Subscripts

are provided just for clarity.

Clause ::= Pred (Argsin,Argsout,Hin,Hout,ExFlag) :- [G,]B1,B2,. . . ,Bn.

G ::= Num* ROp Num* | Ref∗
1 \== Ref∗

2 | type(H,Ref∗,T)

B ::= Var #= Num* AOp Num* | Pred (Argsin,Argsout,Hin,Hout,ExFlag) |
new object(H,C∗,Ref∗,H) | new array(H,T,Num∗,Ref∗,H) | length(H,Ref∗,Var) |
get field(H,Ref∗,FSig,Var) | set field(H,Ref∗,FSig,Data∗,H) |
get array(H,Ref∗,Num∗,Var) | set array(H,Ref∗,Num∗,Data∗,H)

https://doi.org/10.1017/S1471068410000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000347

662 M. Gómez-Zamalloa et al.

Fig. 2. Working example: CLP-decompiled code.

Pred ::= Block | MSig

Args ::= [] | [Data∗|Args]

Data ::= Num | Ref

Ref ::= null | r(Var)

ExFlag ::= ok | exc(Var)

ROp ::= #> | #< | #>= | #=< | #= | #\=

AOp ::= + | - | ∗ | / | mod

T ::= bool | int | C | array(T)

FSig ::= C:FN

H ::= Var

Non-terminals Block, Num, Var, FN, MSig and C denote, resp., the set of predicate

names, numbers, variables, field names, method signatures and class names. Observe

that clauses can define both methods which appear in the original source program

(MSig), or additional predicates which correspond to intermediate blocks in the

https://doi.org/10.1017/S1471068410000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000347

Test case generation for object-oriented imperative languages in CLP 663

program (Block). An asterisk on a non-terminal denotes that it can be either as

defined by the grammar or a (possibly constraint) variable. Guards might contain:

comparisons between numeric data or references and calls to the type predicate,

which checks the type of a reference variable (by consulting the heap). Virtual

method invocations in the OO language are resolved at compile-time by looking

up all possible runtime instances of the method. In the decompiled program, they

are translated into a choice of type instructions which check the actual object

type, followed by the corresponding method invocation for each runtime instance.

Instructions in the body of clauses include: (first row) arithmetic operations, calls

to other predicates, (second row) instructions to create objects and arrays, and to

consult the array length, (third row) read and write access to object fields, and, (fourth

row) read and write access to an array position. As regards exceptions, they can be

handled by treating them as additional nodes and arcs in the control flow graph of

the program. In our framework, such flows are represented in the CLP-decompiled

program with explicit calls to the corresponding exception handlers.

For simplicity, the language does not include features of OO imperative languages

like bitwise operations, static fields, access control (e.g., the use of public, protected

and private modifiers) and primitive types besides integers and booleans. Most

of these features can be easily handled in this framework, as shown by the

implementation based on actual Java bytecode.

2.2 Semantics of CLP-Decompiled Programs with Heap

When considering a simple imperative language without heap-allocated data struc-

tures, like in (Albert et al. 2009), CLP-decompiled programs can be executed by

using the standard execution mechanism of CLP. In order to extend this approach

to a realistic language with dynamic memory, as our first contribution, we provide

a suitable representation for the heap and define the heap related operations. Note

that, in CLP-decompiled programs the heap is treated as a black-box through its

associated operations, therefore it is always a variable. At run-time, the heap is

represented as a list of locations which are pairs made up of a unique reference and

a cell, which in turn can be an object or an array. An object contains its type and

its list of fields, each of them contains its signature and data contents. An array

contains its type, its length and the list of its elements. Observe that arrays are stored

in the heap together with objects (as it happens e.g. in Java bytecode). Formally, the

syntax of the heap at run-time is as follows. The asterisks will be explained later:

Heap ::= [] | [Loc|Heap] Cell ::= object(C∗,Fields∗) | array(T∗,Num∗,Args∗)

Loc ::= (Num∗,Cell) Fields ::= [] | [field(FN,Data∗)|Fields∗]

In the upper side of the figure, we present the CLP-implementation of the

operations to create heap-allocated data structures (like new object and new array)

and to read and modify them (like set field, etc.), and, at the bottom appear

some auxiliary predicates. To simplify the presentation some predicates are omitted,

namely: build object/2 resp. build array/3, which create an object, resp. an array

term, new ref/1 which produces a fresh numeric reference, and subclass/2 which im-

plements the transitive and reflexive subclass relation on two classes. member det/2

https://doi.org/10.1017/S1471068410000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000347

664 M. Gómez-Zamalloa et al.

Fig. 3. Heap operations for ground execution.

resp. replace det/4 implements the usual deterministic member, resp. replace, on

lists, while nth0/3 resp. replace nth0/3 implements the access to, resp. replacement

of, the ith element of a list using constraints (multi-moded versions).

We now focus on the ground execution of CLP-decompiled programs in which

we assume that all input parameters of the predicate to be executed (i.e., Argsin
and Hin) are fully instantiated. The instantiations are provided as constraints in the

input state. We assume familiarity with the basic notions of CLP. Very briefly, let us

recall that the operational semantics of a CLP program P can be defined in terms of

derivations, which are sequences of reductions between states S0 →P S1 →P ... →P Sn,

also denoted S0 →∗
P Sn, where a state 〈G θ〉 consists of a goal G and a constraint

store θ. If the derivation successfully terminates, then Sn = 〈ε θ′〉 and θ′ is called

the output state.

Definition 1 (ground execution)

Let M be a method, m be the corresponding predicate from its associated CLP-

decompiled program P , and P ′ be the union of P and the clauses in Figure 3.

The ground execution of m with input θ is the derivation S0 →∗
P ′ Sn, where S0 =

〈m(Argsin ,Argsout ,Hin ,Hout , ExFlag) θ〉 and θ initializes Argsin and Hin to be fully

ground. If the derivation successfully terminates, then Sn = 〈ε θ′〉 and θ′ is the

output state (ε denotes the empty goal).

Every CLP-decompilation must ensure that CLP programs capture the same se-

mantics of the original imperative ones. This is to say that, given a correct

input state, the CLP-execution yields an equivalent output state. By correct input

state, we mean that all input arguments have the correct types and that the

heap has the required contents. For instance, θ = {Argsin = [r(1),null] ∧ Hin =

[(1,object(’SL’,[field(’SL’:first,null)]))]} is a correct input state for predicate merge/5,

https://doi.org/10.1017/S1471068410000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000347

Test case generation for object-oriented imperative languages in CLP 665

whereas θ = {Argsin = [r(1),r(2)] ∧ Hin = []} is not correct since the heap does not

include the required objects.

Definition 2 (correct decompilation)

Consider a method M and a correct input state I . Let m be the CLP-decompiled

predicate obtained from M and θ be the input state equivalent to I . If the CLP-

decompilation is correct then it must hold that, the execution in the OO language

of M returns as output state O if and only if the ground execution of m with θ is

deterministic and returns an output state θ′ equivalent to O.

Correctness must be proven for the particular techniques used to carry out the

decompilation. In the interpretive approach, for a simpler bytecode language without

heap, Gómez-Zamalloa et al. (2009) prove that the execution of the decompiled

programs produces the same output state than the execution of the bytecode program

in the CLP interpreter. A full proof would require to prove that the CLP interpreter

is correct and complete w.r.t the corresponding imperative language semantics. Since

our approach is not tied to a particular decompilation technique, in the rest of the

paper, for the correctness of our TDG approach, we just require that decompiled

programs are correct as stated in Definition 2.

Finally, in the above definition, it can be observed that, since CLP-decompiled

programs originate from imperative bytecode, their ground execution is deterministic.

The aim of the next section is to be able to execute CLP-decompiled programs

symbolically with the input arguments being free variables.

3 Symbolic execution of OO imperative programs

Interestingly, our CLP-decompiled programs can in principle be used, not only to

perform ground execution, but also symbolic execution (SymEx). Indeed, when the

imperative language does not use dynamic memory nor OO features, we can simply

run the CLP-decompiled programs by using the standard CLP execution mechanism

with all arguments being distinct free variables. For simple imperative languages,

this approach was first proposed by Meudec (2001) and developed for a simple

bytecode language in Albert et al. (2009). However, dealing with dynamic memory

and OO features entails further complications, as we show in this section.

3.1 Handling heap-allocation in symbolic execution

In principle, SymEx starts with a fully unknown input state, including a fully

unknown heap. Thus, one has to provide some method which builds a heap

associated with a given path by using only the constraints induced by the visited

code. In the case of TCG, it is required that the ground execution with that heap (and

the corresponding input arguments) traverses exactly such path. Existing approaches

define novel specific operators to carry out this task. For instance, Charreteur et al.

(2009) add new constraint models for the heap that extend the basic constraint-based

approach without heap. Similarly, Schrijvers et al. (2009) provide specific constraints

for heap-allocated lists, but needs to adjust the solver to handle other data structures.

https://doi.org/10.1017/S1471068410000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000347

666 M. Gómez-Zamalloa et al.

In our approach, thanks to the explicit representation of the heap, we are able to

provide a general solution for the SymEx of programs with arbitrary heap-allocated

data structures.

The main point is that in a ground execution, the heap is totally instantiated

and, when we execute get cell/3 (see Figure 3), the reference we are searching for

must be a number (not a variable) existing in the heap. In contrast, SymEx deals

with partially unknown heaps. Our solution consists in generalizing the definition

of get cell/3 by adding an additional clause (the first one) as follows:

get cell(H,Ref,Cell) :- var(H), !, H = [(Ref,Cell)|].

get cell([(Ref’,Cell’)|],Ref,Cell) :- Ref == Ref’, !, Cell = Cell’.

get cell([|RH],Ref,Cell) :- get cell(RH,Ref,Cell).

Intuitively, the heap during SymEx contains two parts: the known part, with the

cells that have been explicitly created during SymEx which appear at the beginning

of the list, and the unknown part, which is a logic variable (tail of the list) in which

new data can be added. Observe the syntax of the heap in Section 2.2 where the

*’s indicate where partial information can occur in the heaps during SymEx. Such

syntax is hence valid for all heaps appearing at SymEx time. The definition of

get cell/3 now distinguishes two situations when searching for a reference: (i) It

finds it in the known part (second clause). Note the use of syntactic equality rather

than unification since references at SymEx time can be variables or numbers. (ii)

Otherwise, it reaches the unknown part of the heap (a logic variable), and it allocates

the reference (in this case a variable) there (first clause).

Example 2

Let us use our SymEx framework for the purpose of TCG on our working example.

As will be further explained, for this it is required to: (i) impose a termination

criterion on SymEx, and (ii) have a mechanism to produce actual values from the

obtained path constraints. For (i) let us use block-k with K = 2. Regarding (ii), we

just rely on the labeling mechanism of standard clpfd domains, since we only get

arithmetic path constraints. The rest of the constraints are handled as explained with

standard unification through the defined heap operations. Table 1 depicts a graphical

representation of the obtained set of test-cases.The table shows, for each test-case, an

identifier, a graphical representation of its input and output, and the exception flag.

Due to space limitations, we do not show the full input and output heaps, but instead

we use the customary graphical representation for the linked lists of integers that

they contain (see the example below to understand the correspondence). Let us focus

on the first test-case. It corresponds to the following (simplified) sequence of reduc-

tion steps merge→ nullcheck1 → nullcheck2 → nullcheck3 → if11 → preloop→loop→
loopcond12→ → loopcond21→ if31. Its associated answer is θ = {Argsin = [r(Th),r(L)] ∧ Hin =

[(Th, object(’SL’,[field(first,A)])), (L,object(’SL’,[field(first,B)])),(A,object(’SLNode’,[field(data,1)])), (B,

object(’SLNode’,[field(data,0),field(next,null)]))] ∧ . . .}, indicating that merging a list with head

“1” and any possible continuation (denoted “C”), and a null-terminated list with

head “0”, produces an output list with head “0”, followed by “1” and followed by

the continuation “C”.The last three test-cases show that, either if l is null, or the

https://doi.org/10.1017/S1471068410000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000347

Test case generation for object-oriented imperative languages in CLP 667

Table 1. Obtained test-cases for working example

N Input Output EF

1 this.first ���������	1 �� C l.first ���������	0 �� null this.first ���������	0 ���������	1 �� C ok

2 this.first ���������	1 �� C this.first ���������	0 ���������	0 ���������	1 �� C ok

l.first ���������	0 ���������	0 �� null

3 this.first ���������	1 �� null this.first ���������	0 ���������	1 ���������	1 �� C ok

l.first ���������	0 ���������	1 �� C
4 this.first ���������	0 �� null l.first ���������	0 �� C this.first ���������	0 ���������	0 �� C ok

5 this.first ���������	0 ���������	1 �� C this.first ���������	0 ���������	0 ���������	1 �� C ok

l.first ���������	0 �� null

6 this.first ���������	0 ���������	0 �� null this.first ���������	0 ���������	0 ���������	0 �� C ok

l.first ���������	0 �� C
7 this.first ���������	0 �� C l.first = null - exc

8 this.first �� null l.first �� C - exc
9 this.first �� C l �� null - exc

first field of any of the lists is null, the method throws an exception. This is indeed

spotting a bug in the program (assuming it is not the intended behavior).

3.2 Handling pointer aliasing in symbolic execution

A challenge in SymEx of realistic languages is to consider pointer-aliasing during

the generation of heap-allocated data structures, i.e., the fact that the same memory

location can be accessed through several references (called aliases). In the case of

TCG, ignoring aliasing can lead to a loss of coverage. Again, our solution consists

in further generalizing the definition of get cell/3 by adding an additional clause

(the third one), thus illustrating again the flexibility of our approach:

get cell(H,Ref,Cell) :- var(H), !, H = [(Ref,Cell)|].

get cell([(Ref’,Cell’)|],Ref,Cell) :- Ref == Ref’, !, Cell = Cell’.

get cell([(Ref’,Cell’)|],Ref,Cell) :- var(Ref), var(Ref’), Ref = Ref’, Cell = Cell’.

get cell([|RH],Ref,Cell) :- get cell(RH,Ref,Cell).

Essentially, two cases are distinguished: (a) The reference we are searching for is a

number, in that case it must exist in the heap and the 2nd clause will eventually

succeed. (b) If Ref is a variable: (b.1) Ref exists in the heap, and the 2nd clause

eventually succeeds. Here, Ref must have been already processed (and possible

aliases for it might have been created. (b.2) The interesting case is when Ref is a free

variable which was not in the heap. In this case, the 2nd clause will never succeed

and the 3rd one will unify Ref with all matching references in the heap.

Example 3

Let us consider again the TCG for our working example as in Example 2. Table 2

shows seven additional test-cases obtained using the new definition of get cell/3.

Test-cases 10-12 represent executions in which the two lists to be merged are aliases.

The remaining test-cases show other shapes of lists with aliasing among their nodes.

In most cases, the result is a cyclic list. This clearly reveals a dangerous behavior of

the method which should be controlled by the programmer. Altogether, our set of

test-cases provides full coverage w.r.t. the shape of data structures.

https://doi.org/10.1017/S1471068410000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000347

668 M. Gómez-Zamalloa et al.

Table 2. Additional test-cases when considering pointer-aliasing

N Input Output EF

10 this.first ���������	0 �� null l = this this.first ���������	0�� ok

11 this.first ���������	0 ���������	0 �� null l = this this.first ���������	0 ���������	0�� ok

12 this.first �� null l = this - exc

13 this.first ���������	0 �� null

l.first

������
this.first ���������	0�� ok

14 this.first ���������	0 ���������	0 �� null

l.first

������
this.first ���������	0 ���������	0�� ok

15 this.first ���������	1 �� null

l.first ���������	0

�� this.first ���������	0 ���������	1�� ok

16 this.first ���������	0
��l.first ���������	0 �� null

this.first ���������	0 ���������	0�� ok

3.3 Inheritance and virtual invocations in symbolic execution

Inheritance and virtual method invocations pose further challenges in SymEx of

realistic OO programming languages. From the side of data structure shape coverage,

we should create aliasing among objects that possibly have different class types but,

due to their inheritance relation, might be aliased at runtime. From the side of path

coverage, virtual invocations pose further complications when the object on which

the virtual invocation is performed has not been created during SymEx, but is rather

accessed from the input arguments. In this case, only the declaration type of the

object is known. To achieve path coverage, all implementations of the method that

might be invoked at runtime (but not more), should be exercised. Interestingly, our

solution solves these issues for free. Let us consider a scenario where we have three

classes A, B and C , such that C is a subclass of B, and B a subclass of A; and the

following method m(A a, B b){a.f; b.g; a.p();}. Let us also assume that both

B and C redefine method p. The corresponding CLP-decompiled code contains two

calls to get field/4, resp. with ’A’:f and ’B’:g. During SymEx, the first one will

call subclass(X,’A’), which produces three alternatives (X=’A’, X=’B’ and X=’C’).

The second call to get field will then succeed with cases X=’B’ and X=’C’, but fail

with X=’A’. Thus, the case where a and b are aliased is properly handled, and the

calls B.p() and C.p() (and not A.p()) will be exercised.

Definition 3 (symbolic execution)

Let M be a method, m be the corresponding predicate from its associated CLP-

decompiled program P , and P ′ be the union of P and the clauses in Figure 3 with

the described extensions. The symbolic execution of m is the derivation tree with root

S0 = 〈m(Argsin,Argsout,Hin,Hout,ExFlag) θ〉 and θ = {} obtained using P ′.

The following theorem establishes the correctness of our symbolic execution mech-

anism. Intuitively, it says that each successful derivation in the symbolic execution

produces an output state which is correct, i.e., for any ground instantiation of such

derivation we obtain an output state which is an instantiation of the one obtained in

the symbolic execution. For simplicity, throughout the paper, we have included in an

output state θ two ingredients: the computed answer substitution σ and the actual

constraints γ. Given a constraint store θ, we say that σ′ is an instantiation of θ if

https://doi.org/10.1017/S1471068410000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000347

Test case generation for object-oriented imperative languages in CLP 669

σ′ � σ and γσ′ is satisfiable. Also, we say that an output state θ′ is an instantiation

of θ, written θ′ � θ, when both the corresponding stores and the substitutions hold

the � relation.

Theorem 1 (correctness)

Consider a successful derivation of the form: S0 → S1 → ... → 〈ε θ〉 which

is a branch of the tree with root S0 = 〈m(Argsin,Argsout,Hin,Hout,ExFlag) {}〉
obtained in the symbolic execution of m. Then, for any instantiation σ′ of θ which

initializes Argsin and Hin to be fully ground, it holds that the ground execution of

S ′
0 = 〈m(Argsin,Argsout,Hin,Hout,ExFlag)σ′ {}〉 results in 〈ε θ′〉 with θ′ � θ.

4 (Conditional) TCG of OO imperative programs

An important problem with SymEx, regardless of whether it is performed using CLP

or a dedicated execution engine, is that the execution tree to be traversed is in general

infinite. In the context of TCG, it is therefore essential to establish a termination

criterion, which guarantees that the number of paths traversed remains finite, while

at the same time an interesting set of test-cases is generated. In addition to this,

some approaches perform conditional TCG in which, besides selecting a criterion,

the user establishes a precondition which further prunes the evaluation tree. In the

remaining of this section, we describe how these issues are handled in our approach.

4.1 Implementing coverage criteria by means of unfolding strategies

A large series of coverage criteria (CCs) have been developed over the years which

aim at guaranteeing that the program is exercised on interesting control and/or

data flows. Applying the coverage criteria on the CLP-decompiled program should

achieve the desired coverage on the original bytecode.

Implementing a CC in our approach consists in building a finite (possibly

unfinished) evaluation tree by using a non-standard evaluation strategy. In Albert

et al. (2009), we observed that this is exactly the problem that unfolding rules used in

partial evaluators of (C)LP solve, and we proposed block-k, a new CC for bytecode

which was implemented with the corresponding unfolding rule. In this section, we

go further and show that the most common CCs can be integrated in our system

using unfolding rules. The following predicate defines a generic unfolding rule for

depth-first evaluation strategies which is parametric w.r.t. the CC:

unfold(Root,Goal,CCAuxDS,CCParam) :-

(1) select(Goal,Gleft,A,Gright), !,

(2) (internal(A) -> match(A,Bs) ; (call(A), Bs = []),

(3) update ccaux(CCAuxDS,A,CCAuxDS’),

(4) append([Gleft,Bs,Gright],Goal’),

(5) (terminates(A,CCAuxDS’,CCParam) -> add resultant(Root,Goal’)

(6) ; unfold(Root,Goal’,CCAuxDS’,CCParam)).

unfold(Root,Goal, ,) :- add resultant(Root,Goal).

The main operation dependent on the CC is terminates/3, which indicates when the

derivation must be stopped. For this aim, it uses an input set of parameters CCParam

and an auxiliary data-structure CCAuxDS. Intuitively, given a goal Goal, an initial

CCAuxDS and CCParams, unfold/4 performs unfolding steps until either select/4

https://doi.org/10.1017/S1471068410000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000347

670 M. Gómez-Zamalloa et al.

fails, because there are no atoms to be reduced in the goal, or terminates/3

succeeds. In both cases, the corresponding resultant is stored, which can then be

used to generate a test-case (or a rule in the test-case generator; Albert et al. 2009).

The Root argument carries along the root atom of SymEx. An unfolding step

consists in the following: (1) select the atom to be reduced, which splits the goal into

the selected atom A and the sub-goals to its left Gleft and right Gright; (2) match the

atom with the head of a clause in the program, or call it in case it is a builtin or

constraint; (3) update CCAuxDS; (4) compose the new goal; and (5) if the CC stops

the derivation (i.e. terminates/3 succeeds) then store the resultant, otherwise (6)

continue unfolding.

In order to instantiate this generic unfolding rule with a specific CC, one has to

provide the corresponding auxiliary data-structure and parameters, as well as suitable

implementations for update ccaux/3 and terminates/3. Additionally, match/2

and select/4 allows resp. tuning the order of generation of the evaluation tree, and

extending the functionality of TCG by allowing non-leftmost unfolding steps (Albert

et al. 2006), as will be further discussed. Note that, in order to guarantee that we get

correct results in presence of non-leftmost unfoldings, predicates which are “jumped

over” must be pure (see Albert et al. 2006 for more details). E.g., for block-k, CCParam

is just the K and CCAuxDS is the ancestor stack (see Albert et al. 2009).

4.2 Including Preconditions during TCG

In practice, it is also essential to prune horizontally the evaluation tree in order to

limit the number of test-cases obtained without sacrificing interesting paths. The

information used to perform this task is usually provided by the user by means of

preconditions on the inputs, formulated using a set of pre-defined properties. These

properties can range from simple arithmetic constraints, to more complex properties

like sharing or cyclicity of data-structures. We consider two levels of properties.

The first-level comprises properties which can be executed beforehand thus being

carried along by the CLP engine, like equality and disequality constraints, arithmetic

constraints, etc. E.g., let us re-consider Example 3. We can specify the precondition

that the lists are not aliased simply by providing these literals at the beginning of

the goal “Argsin=[r(Th),L], member(L,[null,r(L’)]), Th #\= L’”.

The second level comprises properties that require a certain level of instantiation

on inputs in order to be executed. Depending on the property, unfold/4 can

either: perform non-leftmost unfoldings until having the required instantiation, or

incrementally check the property as the corresponding structure is being generated,

or just delay the property check until the end of the derivation. Interestingly, the

different behaviors can be achieved providing suitable implementations of select/2.

Let us re-consider again Example 3. We can specify the precondition that the lists

do not share by providing this in the goal “Argsin = [Th,L], noshare(Th,L)”,

where predicate noshare/2 checks that the data transitively referenced from Th do

not share with that from L.

5 Experimental evaluation

We have implemented and integrated the presented techniques in the PET tool (Al-

bert et al. 2010), which is available for download and for online use through

https://doi.org/10.1017/S1471068410000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000347

Test case generation for object-oriented imperative languages in CLP 671

Bench Es Cs Ms Is Tdec Td50
tcg Nd50 Cd50 Td200

tcg Nd200 Cd200 Tbk2
tcg Nbk2 Cbk2

Trityp 1 1 1 98 38 22 14 100% 20 14 100% 22 14 100%

Josephus 1 1 3 61 34 6 1 56% 366 45 100% 8 3 100%

DoublyLinkedList 13 2 20 253 157 85 31 37% 594 178 100% 369 116 100%

RedBlackTree 10 2 10 485 365 60 57 30% 2432 539 96% 10010 638 99%

NodeStack 6 3 12 94 51 14 9 100% 8 9 100% 8 9 100%

ArrayStack 7 3 11 103 58 16 15 100% 16 15 100% 16 15 100%

NodeQueue 6 3 15 133 73 18 14 100% 13 15 100% 19 15 100%

NodeDeque 9 3 19 223 150 32 23 67% 38 28 100% 34 28 100%

NodeList 19 9 33 449 383 152 77 73% 182 91 91% 184 91 91%

SortedListPriorityQ 11 14 40 491 442 62 33 29% 190 79 77% 512 164 91%

Sort 4 9 30 735 661 26 12 12% 328 43 44% 400 55 72%

Table 3. Experimental results

its web interface at http://costa.ls.fi.upm.es/pet. We now present some

experiments which aim at illustrating the applicability of our approach to TCG

of realistic OO programs. We use two sets of benchmarks. The first group (first four

benchmarks) comprises a set of classical programs used to evaluate testing tools

taken from (Charreteur and Gotlieb). The second one (last seven) is a selection

from the net.datastructures library (Goodrich et al. 2003), a well-known library

of algorithms and data-structures for Java. Table 3 shows the times taken by the

different phases performed by PET as well as the number of test-cases generated

and the code coverage achieved for different CCs, block-k and depth-k (which simply

limits the number of derivation steps). All times are in milliseconds, and were

obtained as the arithmetic mean of five runs on an Intel Core 2 Quad Q9300

at 2.5GHz with 1.95GB of RAM, running Linux 2.6.26 (Debian lenny). For each

benchmark we show: the number of methods for which we have generated test-cases

(Es); the number of reachable classes, methods and Java bytecode instructions (Cs,

Ms and Is) (not considering Java libraries); the time taken by PET to decompile the

bytecode to CLP (Tdec); the time of the TCG, total number of test-cases and code

coverage for depth-50 (Td50
tcg , Nd50 and Cd50); for depth-200 (Td200

tcg , Nd200 and Cd200)

and for block-2 (Tbk2
tcg , Nbk2 and Cbk2).

The code coverage measures, given a method, the percentage of bytecode in-

structions which are exercised by the obtained test-cases, among all reachable

instructions (including all transitively called methods). This is usually the main

measure considered in TCG to reason about the effectiveness of CCs. We observe

that block-2 achieves a very high degree of coverage (100% for the first 8

benchmarks) thus demonstrating its effectiveness in practice. There are however

cases where block-2 is not able to achieve 100% coverage. There are different

reasons for this: (i) In some cases, K = 2 is not sufficient to reach some parts of

the code. This is the case of most methods in class Sort. Indeed, block-3 achieves

100% of code coverage for this class. (ii) Sometimes there are parts of the code

which are simply unreachable at execution time (dead code). This is frequent in very

generic OO programs, as it is the case of some methods reachable from NodeList

and SortedListPriorityQ.

The results obtained for depth-k show that its effectiveness highly depends on

the chosen k, and this in turn depends on the particular program. This results in

an unsatisfactory CC in practice. E.g., depth-50 for Josephus obtains 1 test-case in

https://doi.org/10.1017/S1471068410000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000347

672 M. Gómez-Zamalloa et al.

6 ms, which exercises only the 56% of the code. However depth-200 achieves 100%

coverage, but at the cost of spending much more time (366 ms), thus obtaining

many more test-cases (45). Observe that block-2 can achieve 100% coverage with 3

test-cases in only 8 ms.

Overall, from the first group of benchmarks we conclude that PET can com-

pete and even outperform related tools (Charreteur and Gotlieb ; Tillmann and

de Halleux 2008). The second group demonstrates the effectiveness of PET with

realistic OO programs making extensive use of inheritance and virtual invocations.

A careful look at the most complex methods suggests that a more restrictive CC

should be used to further prune the SymEx tree when considering more complex

programs. E.g. PET obtains 276 (in 880 ms) for RedBlackTree.fixAfterInsertion. We

conclude also that the use of preconditions, as explained in Section 4.2, (in principle

provided by the user) will be crucial in order to obtain manageable test-suites for

more complex programs.

6 Related work and conclusions

In the fields of program verification, static analysis and static checking, transform-

ational approaches are widely used (Vaziri and Jackson 2003; Flanagan 2004). The

common technique is to translate an imperative program into an equivalent inter-

mediate representation on which the verification, analysis or checking is performed.

The work of Flanagan (2004) is similar to ours in the translation of the imperative

program into a constraint logic one. However, the goal here is to perform bounded

software model checking rather than TDG and it is not concerned with our problems

of ensuring coverage of the shape of data structures. Also, there are no extensions

to consider OO features like in our work. In the case of Vaziri and Jackson (2003),

the imperative program is translated into a propositional formula and SAT solving

is used to find a solution. Again, coverage of shape of data structures is not studied

here, which makes it fundamentally different from ours.

Much attention has been devoted to the use of constraint solving in the automation

of software testing since the seminal work of DeMillo and Offutt (1991). For the

particular case of Java bytecode, Müller et al. (2004) develop a symbolic Java virtual

machine which integrates constraint solvers and a backtracking mechanism, as

without knowledge about the input data, the execution engine might need to execute

more than one path. In other approaches the problem is tackled by transforming

the program into corresponding constraints, on which the testing process is then

carried out by applying constraint solving techniques. Recent progress has been

done in this direction towards handling heap-allocated data structures (Gotlieb

et al. 1998; Charreteur et al. 2009; Schrijvers et al. 2009). An important advantage

of our approach is that, since the source program is transformed into another

(constraint logic) program—and not into constraints only—on which the symbolic

execution is performed, we can easily track the relation between the test-cases and

the source program. Keeping this relation is important for at least two reasons: (1)

in order to model new coverage criteria on the source program by using particular

evaluation techniques on the CLP counterpart, and (2) to relate the generated

https://doi.org/10.1017/S1471068410000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000347

Test case generation for object-oriented imperative languages in CLP 673

test-cases to paths in the source program to spot errors, etc. This relation is less

clear in pure constraint-based approaches (see discussion in Schrijvers et al. 2009).

Some approaches are focused on improving the efficiency of TDG for dynamic

pointer data (Visvanathan and Gupta 2002; Zhao and Li 2007). The basic idea is

to separate the process of generating the shape of the data structure to the one of

generating values for the fields of data. Our approach is similar to them in that

both process are also separated and, although actual experimentation is needed, we

believe that a similar efficiency will be achieved.

As another important point, while numeric data can be natively supported by

constraint solvers, when extending the constraint-based approach to handle heap-

allocated data structures, one has to define new constraint models based on operators

that model the heap (Charreteur et al. 2009). In Schrijvers et al. (2009), these

constraints operators are implemented in CHR. In these approaches, one needs to

adjust the solver to the particular data structures considered in the language. For

instance, Schrijvers et al. (2009) provide support for lists and sketches how to extend

it to handle trees by adding new operators. Instead, we have provided a general

solution to generate arbitrary data structures by means of objects.

Acknowledgements

We gratefully thank Samir Genaim and the anonymous referees for many useful

comments and suggestions that greatly helped improve this article.

References

Albert, E., Gómez-Zamalloa, M. and Puebla, G. 2009. Test data generation of bytecode by

CLP partial evaluation. In 18th International Symposium on Logic-based Program Synthesis

and Transformation (LOPSTR’08). Lecture Notes in Computer Science, vol. 5438. Springer,

4–23.

Albert, E., Gómez-Zamalloa, M. and Puebla, G. 2010. PET: A partial evaluation-based test

case generation tool for java bytecode. In ACM SIGPLAN Workshop on Partial Evaluation

and Semantics-based Program Manipulation (PEPM). ACM Press, Madrid, 25–28.

Albert, E., Puebla, G. and Gallagher, J. 2006. Non-leftmost unfolding in partial evaluation

of logic programs with impure predicates. In 15th International Symposium on Logic-based

Program Synthesis and Transformation (LOPSTR’05). Lecture Notes in Computer Science,

vol. 3901. Springer, 115–132.

Charreteur, F., Botella, B., and Gotlieb, A. 2009. Modelling dynamic memory

management in constraint-based testing. The Journal of Systems and Software 82, 11, 1755–

1766.

Charreteur, F. and Gotlieb, A. JAUT: A tool for automatic test case generation. url:

http://www.irisa.fr/lande/gotlieb/resources/jaut.html.

DeMillo, R. A. and Offutt, A. J. 1991. Constraint-based automatic test data generation.

IEEE Transactions on Software Engineering 17, 9, 900–910.

Flanagan, C. 2004. Automatic software model checking via constraint logic. Science of

Computer Programming 50, 1–3, 253–270.

Futamura, Y. 1971. Partial evaluation of computation process—An approach to a compiler-

compiler. Systems, Computers, Controls 2, 5, 45–50.

https://doi.org/10.1017/S1471068410000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000347

674 M. Gómez-Zamalloa et al.

Gómez-Zamalloa, M., Albert, E. and Puebla, G. 2009. Decompilation of java bytecode to

prolog by partial evaluation. Information and Software Technology 51, 1409–1427.

Goodrich, M., Tamassia, R. and Zamore, R. 2003. The net.datastructures package, version

3. Available at http://net3.datastructures.net.

Gotlieb, A., Botella, B. and Rueher, M. 1998. Automatic test data generation using

constraint solving techniques. SIGSOFT Software Engineering Notes 23, 2, 53–62.

Gotlieb, A., Botella, B. and Rueher, M. 2000. A clp framework for computing structural

test data. In Computational Logic, 399–413.

King, J. C. 1976. Symbolic execution and program testing. Communications of the ACM 19, 7,

385–394.

Meudec, C. 2001. Atgen: Automatic test data generation using constraint logic programming

and symbolic execution. Software Testing, Verification and Reliability 11, 2, 81–96.

Müller, R. A., Lembeck, C. and Kuchen, H. 2004. A symbolic java virtual machine for test

case generation. In IASTED Conference on Software Engineering. IASTED, 365–371.

Schrijvers, T., Degrave, F. and Vanhoof, W. 2009. Towards a framework for constraint-

based test case generation. In 19th International Symposium on Logic-based Program

Synthesis and Transformation (LOPSTR’09), 128–142.

Tillmann, N. and de Halleux, J. 2008. Pex-white box test generation for .NET. In Tests and

Proofs. Springer, 134–153.

Vaziri, M. and Jackson, D. 2003. Checking properties of heap-manipulating procedures with

a constraint solver. In TACAS, H. Garavel and J. Hatcliff, Eds. Lecture Notes in Computer

Science, vol. 2619. Springer, 505–520.

Visvanathan, S. and Gupta, N. 2002. Generating test data for functions with pointer inputs.

In ASE ’02: Proceedings of the 17th IEEE international conference on Automated software

engineering. IEEE Computer Society, Washington, DC, 149.

Zhao, R. and Li, Q. 2007. Automatic test generation for dynamic data structures. In SERA

’07: Proceedings of the 5th ACIS International Conference on Software Engineering Research,

Management & Applications. IEEE Computer Society, Washington, DC, 545–549.

Zhu, H., Hall, P. A. V. and May, J. H. R. 1997. Software unit test coverage and adequacy.

ACM Computing Surveys 29, 4, 366–427.

https://doi.org/10.1017/S1471068410000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000347

