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The calving of icebergs accounts for a significant fraction of the mass loss from both
the Antarctic and Greenland ice sheets. Iceberg melting affects the water properties
impacting sea ice formation, local circulation and biological activity. Laboratory
experiments have investigated the effects of the Earth’s rotation on iceberg melting
and the possible formation of Taylor columns (TCs) underneath icebergs. It is found
that at high Rossby number, Ro, when rotation is weak compared to advection,
iceberg melting is unaffected by the background rotation. As Ro decreases, the melt
rate shows an increasing trend, which is expected to reverse for very low Ro. This
behaviour is explained by considering the integrated horizontal velocity at the base
of the iceberg. For moderate Ro, a partial TC is formed and its effective blocking
accelerates the flow under the remainder of the iceberg, which increases the melt rate
since the melting is proportional to the flow velocity. It is expected that for very low
Ro the melt rate decreases because, with the expansion of the TC, the region of flow
acceleration occurs away from the base of the iceberg. For low free stream velocity
the freshwater produced by the ice melting introduces another dynamical effect. It is
observed that there is a threshold free stream velocity below which the melt rate is
constant. This is explained with the formation of a gravity current at the base of the
iceberg that insulates it from the free flow and controls its melting.

Key words: phase change, rotating flows, solidification/melting

1. Introduction

Approximately half of the observed ice loss from Antarctica and Greenland is due
to the calving of icebergs from the margins of the ice sheets (Depoorter et al. 2013;
Enderlin & Howat 2014). Once the icebergs are calved into the surrounding ocean
they are advected by both winds and ocean currents. How rapidly they melt during

† Email address for correspondence: agostino.meroni@gmail.com
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their drift will determine where the freshwater is released, which has implications for
ocean circulation, sea ice formation and biological activity.

Iceberg dynamics and thermodynamics include processes that are still poorly
understood. Indeed, there is much interest in comprehending the complex interactions
between icebergs and the surrounding ocean, in terms of both how the environment
influences the iceberg and vice versa. In particular, the meltwater produced by icebergs
has been observed to modify the local ocean physical and chemical properties,
affecting both the dynamical response (Helly et al. 2011; Stephenson et al. 2015)
and the biogeochemical response (Smith et al. 2007; Duprat, Bigg & Wilton 2016).
Moreover, icebergs are well known to pose a hazard for human activities such as oil
platforms, submarine pipelines and, of course, navigation (Bigg & Wilton 2014).

Recent numerical works have underlined the importance of correctly describing the
iceberg size distribution in order to accurately model sea ice, ocean temperature and
ocean salinity (Stern, Adcroft & Sergienko 2016; Rackow et al. 2017). The iceberg
size distribution is particularly important around Antarctica, where large tabular
icebergs with areas that can reach values up to O(103 km2) exist. There, neglecting
the giant icebergs can lead to a bias towards the south in the freshwater input, since
large icebergs drift further north (Rackow et al. 2017).

Contributions to the melting come from processes acting both above and below sea
level. In particular, above the air–sea interface, solar radiation, forced convection due
to the winds and sublimation occur, but these processes are generally negligible in
terms of the total iceberg decay. At the air–sea interface, wave erosion continuously
acts to reduce the iceberg volume both by directly transferring heat from the seawater
through the periodic wave motion and by breaking off pieces of the iceberg itself.
Below the air–sea interface, buoyant and forced convections significantly contribute to
the submarine melting by entraining relatively warmer oceanic water in the turbulent
layer attached to the iceberg. Here, buoyant convection refers to the vertical motion
associated with the positively buoyant meltwater, while forced convection refers to the
relative motion of the water masses, as explained further below. For a comprehensive
review of the mechanisms that control iceberg dynamics and melting, the reader is
referred to Savage (2001) and Bigg (2015).

Forced convection is the process that is mainly considered in the present work.
In general, it refers to the transfer of heat between a fluid and a body submerged
in it through the turbulent boundary layer that develops at the interface due to the
relative fluid flow (Eckert & Drake 1959). In the case of icebergs, the fact that
their displacement is controlled by both winds and ocean currents (Wagner, Dell &
Eisenman 2017) provides the relative motion with respect to the ocean. In particular,
for large tabular icebergs, even if their displacement is controlled by the ocean
currents (Wagner et al. 2017), there might be relative motion at the base of the
iceberg because of the presence of a vertical shear (Bigg 2015; FitzMaurice et al.
2016), because the iceberg is blocked by sea ice or some sea floor topographic
features, or because of variations of ocean currents at spatial scales smaller than the
iceberg and temporal scales faster than the iceberg response time.

Various efforts have attempted to represent the melting due to the forced
convection as a function of the fluid (speed, temperature, salinity) and the ice
properties (temperature), to understand better the relevant physical processes and to
parametrize the submarine melting in general circulation models (GCMs). The two
most widespread parametrizations are those described by Weeks & Campbell (1973)
(WC) and Holland & Jenkins (1999) (HJ). They both attempt to model the turbulent
flux of heat (and salt) to the ice to calculate the melt rate. WC is built on empirical
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observations of flow past a heated plate and only considers heat flux (Eckert &
Drake 1959), as described in § 2.1. The HJ parametrization is built upon empirical
observations of heat transport in pipe flow (Kader & Yaglom 1972) but has been
extended to consider both heat and salt transport. Typically, WC is used in studies
examining iceberg melting while HJ is used in studies focused on the melting of ice
shelves and tidewater glaciers, despite both attempting to model the same heat and
salt transport. Since the focus of this work is on iceberg melting, the choice was to
model the ice melting with the WC formulation. Examples of the use of the two
schemes in GCMs are Bigg et al. (1997) for the former and Timmermann, Wang
& Hellmer (2012) and Rackow et al. (2017) for the latter, amongst others. There
is evidence that iceberg melting representation in GCMs is over-simplified, as Stern
et al. (2017) show for tabular icebergs, highlighting that these large icebergs are not
currently well represented. Stern et al. (2017) suggest a newly developed framework
in which large icebergs are represented by smaller elements interacting together,
which enables the modelling of calving events and iceberg breakup. Active research
keeps bringing new insights into how icebergs melt in various dynamical regimes, as
in FitzMaurice, Cenedese & Straneo (2017), where an improved version of the WC
parametrization is developed to include side melting due to the buoyant meltwater,
and in FitzMaurice, Cenedese & Straneo (2018), where the presence of a vertical
shear in the flow is shown to significantly alter the submarine melting, compared to
a uniform flow case equal to the vertically averaged velocity.

Rotational effects have been shown to be important in the modulation of heat
transport in various convective systems. A non-monotonic dependence of the heat
transport in Rayleigh–Bénard convection as a function of background rotation is
discussed by King et al. (2009) and King, Stellmach & Buffet (2012). As for
horizontal convection, it has been shown that the heat transport generally decreases
with increasing rotation (Vreugdenhil, Gayen & Griffiths 2016). Given the importance
of heat transport to the melting of icebergs, it is relevant to investigate how rotation
can impact ice melting.

The goal of the present study is to quantify the effects of the Earth’s rotation on
iceberg melting in a laboratory set-up. For typical values of Antarctic icebergs with
length scale L∼ 20 km, Coriolis parameter f ∼ 10−4 s−1 and relative flow speed U∼
10 cm s−1 (Gladstone, Bigg & Nicholls 2001; FitzMaurice et al. 2016), the Rossby
number Ro=U/fL is Ro∼ 0.05, which suggests that rotational effects are important.
In particular, the possible formation of a Taylor column (TC) under an iceberg and its
influence upon melting are explored. The WC parametrization is then extended to try
to reproduce the observed variations of the submarine melt rate as a function of the
background rotation. In § 2 background information is reviewed. Section 3 describes
the experimental methods and set-up, while the results are presented in § 4. Remaining
open issues and conclusions are given in § 5.

2. Theoretical background
In the present section, some background information, on which the analysis of the

experimental data is based, is reviewed. First, the submarine melt rate parametrization
introduced by Weeks & Campbell (1973) is described. It accounts for the relative free
stream velocity and is based on the experimental measurements of the heat exchanges
of a flow past a flat plate by Eckert & Drake (1959). Second, the dynamics leading to
the formation of TCs is reviewed. The analytical solutions obtained for this problem
by Ingersoll (1969) and Johnson (1983) are the starting points for the inclusion of
rotational effects in the WC parametrization, due to the modifications of the flow
structure as the background rotation changes.
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k (W m−1 K−1) ν (m2 s−1)

Laboratory 0.6 10−6

Ocean 0.563 1.826× 10−6

TABLE 1. Values of thermal conductivity and kinematic viscosity used to calculate K in
the laboratory and in the oceans (FitzMaurice et al. 2017).

2.1. Submarine melting parametrization
Following an experimental procedure similar to the work of FitzMaurice et al. (2017),
the focus of this work is on the melting due to forced convection and its representation
by the WC parametrization. This parametrization describes the submarine melt rate v̇,
i.e. the iceberg volume loss per unit area per unit time, as a function of the relative
flow speed U, the forcing temperature 1T = Tw − Ti (with Tw denoting the water
temperature and Ti denoting the ice temperature) and the length scale of the iceberg
in the direction of the flow ` as

v̇ =K1T
Um

`1−m
with m= 0.8. (2.1)

Here K is a constant of proportionality that contains various flow parameters and
enables the results from the laboratory to be scaled to the oceans. In particular,

K =C
kPrn

ρiΓ νm
with C= 0.037, n= 1/3, (2.2)

where ρi = 917 kg m−3 is the ice density (IOC, SCOR & IAPSO 2010), Γ =
3.34× 105 J kg−1 is the ice latent heat of fusion, k is the water thermal conductivity,
ν its kinematic viscosity and Pr = cpρwν/k is the Prandtl number, with cp =

3991 J K−1 kg−1 as the water specific heat (IOC et al. 2010) and ρw= 1024 kg m−3

as its density. The values of C, n and m are based on the experimental work of
Eckert & Drake (1959) on forced convection along a flat plate. These values depend
on the geometry of the obstacle, but for the range of parameters explored in the
present work the melt rate given by the WC parametrization does not significantly
change if the values for a cylindrical obstacle are used (not shown). By choosing the
appropriate values for the physical parameters in SI units, given in table 1, one finds
K = 8.67 × 10−6 for the laboratory and K = 6.27 × 10−6 for the oceans, so that the
results scale accordingly. More details about the derivation of the WC parametrization
can be found in Weeks & Campbell (1973) and FitzMaurice et al. (2017).

It is interesting to notice that, despite salinity having been shown to be important
in affecting the melt rate of ice (Kerr & McConnochie 2015), it is not included in
the WC parametrization. In the current set-up, this is reasonable because the ice is
melting purely due to the fact that the water temperature is much higher than the
melting point of ice and, thus, the phase change is controlled by the heat flux alone
(Kerr & McConnochie 2015). However, the melting of icebergs in the polar ocean is
likely to depend on both the ambient temperature and the salinity.

FitzMaurice et al. (2017) have tested the WC parametrization behaviour for a range
of flow speeds. They find that for low flow speed U, the buoyant convection due to
the meltwater plumes controls the iceberg lateral melt rate. This happens because the
meltwater produced by the ice block itself, despite being cooler than the environment,
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is buoyant due to its lower salinity content and moves upwards forming plumes along
the sides of the ice block. For low relative flow velocity, U < wp, where wp is the
typical value of the vertical velocity of the plume (see Wells & Worster (2008) for a
detailed model of the buoyant plume behaviour near the ice surface), the melting is
correctly parametrized by WC using the iceberg draft as length scale and the buoyant
plume temperature and velocity in (2.1). Instead, for higher velocity, U>wp, the WC
parametrization with the free stream quantities and the iceberg length fits the data well.
In the former regime, the buoyant meltwater plumes remain attached to the ice block,
which is thus unaffected by the free stream flow, and in the latter, the plumes are
swept away and the free stream velocity and temperature control the forced convection
that melts the ice block.

2.2. Taylor column dynamics
Let us now consider a barotropic, inviscid, incompressible, rotating flow, with low
Rossby number Ro = U/fL, where U is the velocity scale, f = 2Ω (the Coriolis
parameter) is the background vorticity (Ω is the background rotation rate) and L is
the length scale of the flow. Under these conditions, the Taylor–Proudman theorem
can be proved (Vallis 2006). In fact, by neglecting the inertial terms in the geostrophic
limit (Ro � 1), and by neglecting the viscous and baroclinic terms for an inviscid
incompressible fluid, the vorticity equation states that the fluid velocity v is uniform
in the direction of the axis of rotation z, namely

∂v

∂z
= 0 for Ro� 1. (2.3)

This implies that, if an obstacle is placed somewhere in the domain, the flow is forced
to go around it not only at the depth where the obstacle is physically present, but
also everywhere above (or below) the obstacle. It is as if the obstacle was virtually
extended throughout the entire fluid column. This virtual obstacle is stagnant and has
been called a TC (Taylor 1923).

The analytical steady-state solution for the velocity field in the case of a cylindrical
obstacle is given by Ingersoll (1969) for a uniform background flow and by Johnson
(1983) for a horizontally sheared background flow. They both consider a constant
background fluid flow rotating at a constant rate and confined between two horizontal
parallel flat plates, distanced H from each other and with a cylindrical obstacle of
height h < H placed on one of the plates. Using a perturbation approach in terms
of Ro, they find that to the lowest order the interior solution is two-dimensional and
geostrophic. Ingersoll (1969) finds that the steady-state solution for the zeroth-order
horizontal velocity, denoted with u(0)(x, y) in what follows, depends only on the
parameter

α =
Ro
h0
=

U
fL

H
h
, (2.4)

where h0= h/H is the non-dimensional height of the obstacle. Instead, Johnson (1983)
derives a solution that depends on α and on

β =
1U/1y

f
H
h
, (2.5)

where 1U is the change in horizontal velocity over a cross-flow distance 1y.
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FIGURE 1. (Colour online) The colours indicate the difference between the analytical
solution for the flow speed under the cylindrical obstacle u(0)(x, y) and the far field velocity
Ũ(x, y) in the case of no shear, Ũ(x, y)= U = 4 cm s−1, in (a–c) (Ingersoll 1969), and
with positive horizontal shear, Ũ(x, y) = U + y1U/1y with 1U/1y = 0.1 s−1, in (d–f )
(Johnson 1983) for different values of α. In all cases h=2 cm and H=12 cm. The dotted
areas denote negative values of such a speed difference. The green solid thick line is the
section of the cylindrical obstacle which has radius L = 12.5 cm. The black solid thin
lines are streamlines and for anticlockwise rotation (Northern Hemisphere) the flow goes
from left to right, as the relative vorticity anomaly induced by the obstacle is anticyclonic.
The closed streamlines within the section of the obstacle in (c,e, f ) delimit regions of no
motion, i.e. partial TCs.

From a dynamical point of view, the problem is solved with the appropriate
potential vorticity conservation equation. Such a constraint induces an anticyclonic
relative vorticity anomaly due to the compression of the water column in response
to the obstacle. In the case of horizontally sheared background flow, the solutions
differ as to whether the vorticity added by the horizontal shear has the same sign as
or opposite sign to that of the vorticity anomaly induced by the fluid being squeezed
below the obstacle. For the interested reader, the analytical solution for the case of
positive β, which applies to the current set-up, is given by equations (3.5) and (3.11)
of the paper by Johnson (1983). In particular, such equations give the streamfunction
over the entire domain (both below the obstacle and outside it), from which the
velocity field can be obtained.

Figure 1 shows the analytical steady solution of the TC problem outlined above,
both for zero horizontal shear (figure 1a–c) and for a positive shear (figure 1d–f ).
The parameters used to plot this figure are taken from the experimental set-up, as
described in § 3. The top row is obtained for a uniform far field velocity Ũ(x, y)=U,
with U = 4 cm s−1, while the bottom row is obtained for a positively sheared flow
Ũ(x, y) = U + y1U/1y, with 1U/1y = 0.1 s−1. The different columns correspond
to different values of α and, going from left to right, they show the transition from
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a no-TC solution to a partial TC one. It is known, in fact, that as α decreases, a
stagnation point appears in the velocity field. Huppert (1975) showed that such a
critical value αc depends on the geometry of the obstacle and on the stratification
of the fluid. He also showed that for a cylindrical obstacle in a uniform flow of a
homogeneous fluid the critical value is αc= 0.5. Panels (a,d) have α= 1>αc and do
not have any TC, because the background rotation has a rather small effect on the flow
and thus the difference between the velocity magnitude of the flow with respect to the
far field (denoted with the colour shading) is small. Panels (b,e) have α= 0.5=αc and
in the no-shear case, panel (b), the stagnation point at the lower end of the obstacle is
visible as a cusp where the bottom streamline intersects with the obstacle. Panel (e)
shows that the presence of a positive shear makes it easier to have a region of no
motion, because the added background vorticity due to the positive β is of the same
sign as the vorticity anomaly induced by the squeezing of the fluid below the obstacle.
Panels (c, f ) have α= 0.25<αc and they both show a region of zero motion, i.e. a TC,
which is larger for lower values of α (Ingersoll 1969; Johnson 1983). It is interesting
to notice that while on one side of the obstacle a region of zero motion appears, on
the other side there is a relative increase in velocity with respect to the far field.

To have a sense of the importance of such dynamics in real oceans, the following
typical values of the quantities defining α are considered. Take the relative speed to
be U∼ 10 cm s−1, the Coriolis parameter f ∼ 10−4 s−1, the horizontal length scale of
the iceberg L∼ 20 km, the depth of the water H∼ 103 m and the draft of the iceberg
h∼ 500 m. This leads to

α =
U
fL

H
h
∼ 0.1, (2.6)

which is below the critical value αc= 0.5 considered above. This motivates the current
investigation because it shows that a TC could form below a sufficiently large iceberg
and, thus, could impact its melting. In fact, as shown in figure 1, in the case of
formation of a partial TC, a region of increased velocity and a region of decreased
velocity appear at the base of the obstacle. Then, since the melt rate depends on the
relative speed, as in (2.1), the formation of a TC could increase or decrease the melt
rate, depending upon the horizontal extent of the column relative to the area of the
object.

3. Experiments
The experiments were conducted in a rotating tank with a diameter of 210 cm, filled

to a depth H ' 12 cm with seawater with salinity of approximately 33 g kg−1 and
kept at room temperature of 18–20 ◦C. At least 30 min before the beginning of each
experiment, the rotating tank was turned on to set the fluid in solid body rotation with
angular velocity Ω0 and corresponding absolute vorticity f0 = 2Ω0. The spin-up time
that characterizes this transient fluid acceleration has been extensively studied in the
past (Greenspan & Howard 1963) and is given by the expression

τE =
H

(2νf0)1/2
. (3.1)

For the experimental parameters of this work, the e-folding time varied from roughly
50 s, corresponding to f0 = 3 rad s−1, to 190 s, corresponding to f0 = 0.2 rad s−1,
which is much shorter than the time over which the tank was allowed to reach solid
body rotation.
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FIGURE 2. Top (a) and side (b) view schematic of the experimental apparatus (not to
scale). The presence of horizontal shear is highlighted in (a) by the radially increasing
velocity profile Ũ = Ũ(r)= r1Ω . The dashed line in (b) underlines that the free surface
is parabolic, according to (3.6).

Once the fluid was in solid body rotation, which was confirmed by the vertical
straight lines left behind when potassium permanganate crystals were dropped into the
fluid, a cylindrical ice block of radius L was suspended in the water with a wooden
support at a distance R from the axis of rotation and with a submerged part of height
h (see figure 2). As soon as the ice block was in position, the rotation rate of the tank
was increased by an amount 1Ω . This set a relative velocity field ũ between the ice
block and the fluid characterized by the radial distance r from the centre of the tank
and a quasi-exponential decay (Greenspan & Howard 1963), namely

ũ(r, t)= Ũ(r) exp(−t/τE), (3.2)

with Ũ(r) = r1Ω being the initial velocity profile whose value at the centre of the
obstacle is set to be equal to the free stream velocity U, namely Ũ(R) = R1Ω =
U. To keep the relative flow speed almost constant throughout the duration of the
experiments, the rotation rate of the tank was further increased by a smaller amount
δΩ < 1Ω at regular intervals δt. In particular, using the equivalent of (3.2) for the
angular velocity together with the expression of the spin-up time (3.1), the interval
δt at which the tank needs to be accelerated to balance the relative velocity decay is
given by

δt=−τE log
(

1−
δΩ

1Ω

)
, (3.3)

after choosing δΩ to be some fraction of 1Ω . The choice for the experiments was
δΩ = 1Ω/10, so that the values of δt were between 15 and 40 s, depending on
the initial background rotation. Since the experiments lasted for 3 min, the number
of rotation increase steps was always lower than 12. This procedure was tested for
different values of f0, R and 1Ω by measuring the fluid angular velocity with floating
tracers and it was possible to keep the relative flow speed constant, with fluctuations
of the order of 5 % (not shown). The value of background vorticity f used to calculate
Ro and α was taken to be the average between the initial value f0 and the final one.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

79
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.798


840 A. N. Meroni, C. D. McConnochie, C. Cenedese, B. Sutherland and K. Snow

The radial increase of Ũ(r) also sets its cross-flow derivative, which corresponds
to the value of the horizontal shear that appears in the problem solved by Johnson
(1983), namely

1U
1y
=

dŨ
dr
=1Ω. (3.4)

Since 1Ω is constant for a given value of U, this implies that β is directly
proportional to α according to

β =
L
U
1U
1y

α =
L
U
1Ωα. (3.5)

This was chosen so that a single parameter controlled the dynamics, even in the case
of horizontally sheared flow. The parameter β could have been varied independently
from α, but the study of the dependence of the solution on β is left for future work.

The ice blocks were made in stainless steel cylindrical moulds with radius
L = 12.5 cm and height 5 cm, so that they could be half-submerged during the
experiments, resulting in values of h ' 2 or 3 cm. The water used to make the ice
blocks was degassed and dyed with 2 ml of blue food dye in order to be able to
distinguish the meltwater from the ambient fluid in the tank. There are two reasons
why the ice blocks were cylindrical. The first is because the focus of this work was
on the basal iceberg melting rather than the lateral one. Thus, since the circle is the
figure that maximizes the area for a given perimeter, the cylinder has the highest
basal to lateral area ratio for a given height. This means that it is the optimal choice
to study the melting coming from the base and for the values of the experiments,
h ∼ 2 cm and L = 12.5 cm, the area of the base πL2 is roughly three times larger
than the area of the side 2πLh. The second reason is because the analytical solutions
for the TC problem, described in § 2.2, have been developed only for flat-topped
cylindrical obstacles (Ingersoll 1969; Johnson 1983).

The actual fluid height η varied radially due to the parabolic free surface as

η(r, Ω)=H +
Ω2

4g
(2r2
−D2), (3.6)

with g being the acceleration due to gravity, D = 105 cm the radius of the rotating
tank and H= 12 cm the non-rotating fluid height. With respect to the flat free surface
of the non-rotating case, the deviation on each side of the ice block was approximately

1η= η(R+ L, Ω)− η(R, Ω)' η(R, Ω)− η(R− L, Ω)' 0.8 cm (3.7)

in the cases of highest rotation rate, f = 3 rad s−1. All the experiments, even those
with the most tilted free surface, were conducted making sure that the upper side of
the ice block was never submerged, in order to avoid the introduction of an extra
melting source. When calculating the TC dynamics, the water column height at the
centre of the ice block η(R, Ω) was used.

For each experiment, two quantities were measured: the mass loss 1m and the
initial submerged draft h. The mass loss was measured by weighing the ice block
before and after each experiment and was converted to a volume loss 1V =1m/ρi
from the known density of the ice ρi = 917 kg m−3 (IOC et al. 2010). The initial
submerged draft was measured with a ruler as the difference between the initial
height of the ice block (measured before the experiment) and the height of the
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non-submerged part (measured right after the experiment). The melting of the
non-submerged part of the blocks was observed to be negligible. For each block,
to remove the asymmetry due to the free surface tilting, the measure was taken in
four antipodal points and then averaged. Then v̇ was calculated assuming the melt
rate to be equal on the base and on the sides (this assumption is discussed in more
detail at the end of § 4) and uniform for the duration of an experiment, 1t= 3 min.
The duration of the experiments was chosen as a compromise. A shorter time interval
would have reduced the asymmetries in the ice block melting, due to the presence of
horizontal shear in the flow and due to the free surface tilting. A longer time interval
would have allowed more ice to melt, inducing a larger mass loss and thus reducing
its relative uncertainty.

With these hypotheses, the submarine melt rate was calculated as

v̇ =
1V

Aa1t
, (3.8)

where Aa is the average submerged area between the initial state and the final one.
Since the melt rate is considered constant and uniform, the average area Aa is the
arithmetic mean between the initial submerged area Ai = π(L2

+ 2Lh) and the final
one Af . The latter is obtained considering that each dimension is reduced by a length
equal to the product of the melt rate and the duration of the melting, v̇1t, namely
Af =π[(L− v̇1t)2 + 2(L− v̇1t)(h− v̇1t)]. Explicitly, the average area is

Aa =
π

2
[L2
+ 2Lh+ (L− v̇1t)2 + 2(L− v̇1t)(h− v̇1t)], (3.9)

which is equivalent to the assumption that the measured mass loss constrains the
value of the final area. Equations (3.8) and (3.9) are then solved together for the two
unknowns v̇ and Aa. The parameters and measured quantities for each experiment are
given in table 2.

4. Results
In this section, the experimental data obtained from four series of experiments with

different values of the free stream velocity, U ∈ [0, 2, 4, 6] cm s−1, are described. For
each value of U, a range of values of α was explored by changing the background
rotation of the tank, as shown in table 2.

The experimental measurements of the submarine melt rate for all the experiments
are shown in figure 3 as a function of the free stream velocity U. The data points
are colour-coded with the value of α = Ro/h0, which controls the TC dynamics as
described in § 2.2. The orange solid line shows the WC parametrization, as in (2.1),
with 1T = 18 ◦C and `= 2L= 25 cm. The value of K, as discussed in § 2.1, contains
several physical constants of the system. Here, the laboratory value of K is chosen and
it is rescaled so that all the inputs of the parametrization are taken in SI units and v̇
is measured in cm min−1. The value of 1T is taken to be the difference between the
ambient fluid temperature, 18 ◦C, and the melting point of the ice block, 0 ◦C. Despite
being in a salty environment, the ice block melts at 0 ◦C because the temperature
gradient between ice and water is much larger than the salinity gradient, and thus the
ice is in a condition of pure melting with no dissolution. Physically, it means that a
thin layer of freshwater insulates the ice block from the seawater, so that the salinity
at the interface is zero and the freezing temperature is 0 ◦C, accordingly (Kerr &
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U (cm s−1) f0 (rad s−1) f (rad s−1) h (cm) Ro α v̇ (cm min−1)

0 0.00 0.00 2.0 0.000 0.000 0.081
0 2.60 2.60 1.7 0.000 0.000 0.100
0 2.60 2.60 3.0 0.000 0.000 0.092
2 0.20 0.27 2.0 0.593 3.544 0.098
2 0.20 0.27 2.1 0.593 3.375 0.099
2 0.20 0.27 2.8 0.593 2.531 0.103
2 0.60 0.69 2.1 0.232 1.298 0.107
2 0.80 0.89 2.3 0.180 0.906 0.106
2 1.00 1.09 2.3 0.147 0.727 0.100
2 1.40 1.51 2.7 0.106 0.427 0.107
2 1.80 1.91 1.9 0.084 0.448 0.108
2 2.20 2.31 2.3 0.069 0.280 0.117
2 2.60 2.71 2.6 0.059 0.188 0.113
2 3.00 3.11 2.0 0.052 0.182 0.107
4 0.20 0.34 2.1 0.941 5.347 0.099
4 0.20 0.34 2.2 0.941 5.104 0.093
4 0.20 0.34 2.7 0.941 4.159 0.120
4 0.30 0.45 2.5 0.711 3.381 0.117
4 0.45 0.61 2.2 0.533 2.862 0.099
4 0.45 0.61 1.8 0.529 3.468 0.098
4 0.45 0.61 1.9 0.529 3.290 0.113
4 0.75 0.93 2.5 0.344 1.588 0.122
4 1.20 1.37 2.7 0.234 0.954 0.139
4 1.80 2.01 2.0 0.159 0.789 0.133
4 2.20 2.41 2.3 0.133 0.520 0.147
4 2.60 2.80 2.4 0.115 0.382 0.128
4 2.60 2.80 2.0 0.114 0.452 0.125
6 0.20 0.34 2.1 1.412 8.043 0.123
6 0.20 0.34 2.2 1.412 7.678 0.125
6 0.20 0.34 3.0 1.412 5.631 0.144
6 0.20 0.34 3.1 1.412 5.449 0.159
6 1.00 1.18 2.0 0.407 2.366 0.152
6 1.40 1.61 2.0 0.298 1.688 0.161
6 1.80 2.01 1.8 0.239 1.452 0.179
6 2.00 2.21 2.5 0.218 0.932 0.178
6 2.40 2.61 2.3 0.184 0.819 0.197
6 2.60 2.81 3.0 0.171 0.567 0.181

TABLE 2. Summary of all the experiments. Parameter U is the free stream velocity
obtained as U=R1Ω . In particular, the ice block is placed at R=[40,40,60] cm from the
centre of the tank with 1Ω =[0.05, 0.1, 0.1] rad s−1 for U=[2, 4, 6] cm s−1, respectively.
Parameter f is the average between the initial f0 and the final value of the background
vorticity.

McConnochie 2015). The length scale of the obstacle to be used in the parametrization
is the diameter.

The experimental uncertainty is ±0.01 cm min−1 based on some repeated
experiments. The fact that for U = 0 cm s−1 and U = 2 cm s−1 the measured melt
rate is significantly higher than the parametrized one is indicative of the action of
another process controlling the melting for low free stream velocity, similar to what
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FIGURE 3. (Colour online) Submarine melt rate as a function of the free stream
velocity U. The experimental uncertainty is shown in the upper left corner of the figure.
The WC parametrization, (2.1), is shown as an orange solid line. The colour of the
data points is chosen according to the value of α of each experiment. A constant v̇
line is added (black dashed) corresponding to the experimental value obtained with no
relative flow, v̇U=0 = 0.09 cm min−1, for a free stream velocity below the threshold Ut =

3.8 cm s−1. See the text for further details.

was found for the side melt rate by FitzMaurice et al. (2017). The hypothesis is that
at low U, the positively buoyant meltwater formed at the base of the ice block flows
as a gravity current which moves faster than the free stream velocity. Unfortunately,
due to the experimental tank having opaque walls, it was not possible to accurately
observe this process at the base of the ice block. Thus, further experiments with
submerged cameras and/or in a non-rotating transparent tank are encouraged to better
observe and understand what happens at the base of the ice block for low U.

To include the effect of this basal meltwater gravity current in the submarine melt
rate dependence on the free stream velocity, a constant v̇ below a certain threshold
velocity Ut is introduced (shown as a black dashed line in figure 3). In particular, Ut
is calculated from the WC parametrization as

Ut =

(
v̇U=0`

0.2

K1T

)5/4

, (4.1)

imposing the melt rate to be equal to the value obtained from the experiments at
zero relative flow velocity, with v̇U=0= 0.09± 0.01 cm min−1. The threshold value is
Ut = 3.8± 0.5 cm s−1. Data points at high α (low relative rotation rate) of both the
4 cm s−1 and 2 cm s−1 series agree quite well with this constant value (figure 3).

Considering, now, the series of experiments with approximately constant non-zero
free stream velocity, the experimental submarine melt rate generally increases as α
decreases. The melt rate as a function of α for U = [2, 4, 6] cm s−1 is shown in
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figures 4, 5 and 6, respectively. The data points, together with their uncertainty, are
shown as green circles. The uncertainty on α comes both from the experimental
uncertainty on h, the draft of the ice block, and from the fact that to maintain
the relative velocity U constant, the rate of rotation had to increase throughout the
experiment, as explained in § 3. The black solid line denotes the value of the WC
parametrization calculated for the specified U. The parametrized melt rate is constant
because it does not depend on the background rotation rate.

To include the effect of the TC dynamics on the melting of the iceberg, an effective
velocity u∗(r, θ), where {r, θ} now denote the set of polar coordinates centred on
the obstacle, was calculated. The analytical solution for the velocity field obtained by
Johnson (1983) u(0)(r, θ), introduced in § 2.2 and shown in figure 1, was calculated
with the parameters of the experimental set-up for every point under the ice block.
Where the velocity was lower than the threshold value calculated in (4.1), it was
replaced by Ut itself, to account for the gravity current dynamics described above.
The effective velocity field at the base of the obstacle was written as

u∗(r, θ)=
{

Ut if u(0)(r, θ) <Ut

u(0)(r, θ) otherwise.
(4.2)

Then the WC parametrization was calculated with the area-averaged velocity over the
base of the cylindrical obstacle, namely

U =
1

πL2

∫ 2π

0
dθ
∫ L

0
dr u∗(r, θ), (4.3)

instead of the free stream value U. The area-averaged velocity was used in the WC
parametrization because in their derivation Weeks & Campbell (1973) used a spatial
average of the velocity field. Alternatively, one could think of dividing the base of
the ice block into smaller regions, according to the value of u∗(r, θ), and finding
the melt rate as an area average of the local melt rate using u∗(r, θ) in the WC
parametrization, instead of U. But since the dependence of the melt rate v̇ on the
velocity U is slightly sublinear, v̇ ∝ U0.8, it was confirmed that calculating the melt
rate pointwise using u∗(r, θ) and then averaging over the base of the obstacle did
not significantly change the results (not shown). In figures 4–6, the effect of using
U instead of U in the calculation of the melt rate using the WC parametrization is
shown by the blue line, together with the uncertainty associated with Ut. This new
prediction still underestimates the experimental data, but captures the increasing trend
as α decreases.

For U = 2 cm s−1 (figure 4), the velocity is always below the threshold Ut and
thus there is not a strong dependence on the rotation rate, i.e. on α, either in the
experimental data points or in the corrected velocity U WC parametrization, which
agree quite well.

For U=4 cm s−1 (figure 5), the significant increasing trend in the experimental data
as α decreases, i.e. the background rotation increases, is visible. For very low α (high
background rotation), a decrease in melt rate v̇ is also visible. This is consistent with
the hypothesis that as the area of the TC expands, the region of increased velocity
is pushed out of the bottom of the ice block. It was not possible to investigate the
behaviour of this decreasing trend for even lower α because the tank rotation became
too fast for the ice block to be removed safely and the free surface deviation too large.

For U= 6 cm s−1 (figure 6), even if the U WC parametrization is further below the
data with respect to the U= 4 cm s−1 case, the increase of the melt rate as a function
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FIGURE 4. (Colour online) Submarine melt rate as a function of α for U = 2 cm s−1.
The black constant line is the WC parametrization calculated with U and the blue line,
with the shaded area denoting its uncertainty, is the WC parametrization calculated with
U, i.e. it includes both the TC dynamics and the threshold behaviour, as explained in the
text.

of α is stronger both in the data and in the curve. Thus, the combination of TC
dynamics and the threshold behaviour due to the meltwater gravity current observed
for low free stream velocity appears to correctly capture the trend of the melt rate as
a function of α for all the free stream velocities considered.

The increased melt rate for high background rotation was also observed in the
laboratory by visual inspection of the base of the ice block at the end of the
experiments, as shown in figure 7. Comparing two experiments with the same free
stream velocity U but different background rotation f , it was clear that in the case
of higher rotation (lower α) the basal melting was higher than in the case of lower
background rotation (higher α). In particular, in the case of high background rotation,
a region of higher melting, in forms of elongated stripes roughly along the curved
streamlines of the steady-state solution and outside the TC region, was observed.

To resolve the discrepancy between the experimental melt rates and the corrected
WC parametrization, there are a few other dynamical aspects that should be
considered: for example, the meltwater gravity current dynamics at the base of
the ice block, the effects of the meltwater on the TC dynamics through changes in
the stratification, which are known to introduce a dependence of the velocity on the
vertical distance from the obstacle (Huppert 1975), the curvature of the streamlines
due to the geometrical shape of the tank, the transient features of the flow response
and an accurate description of the flow changes due to the fact that the obstacle is
finite (within the fluid).

Another aspect of the theory that needs further work is the assumption that the side
and basal melt rate, v̇s and v̇b, are equal. Here, this assumption is based on some
considerations following the work of Eckert & Drake (1959). In fact, by estimating the
side melt rate using the turbulent heat flux for a flow past a cylinder and by estimating
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FIGURE 5. (Colour online) As in figure 4 but for U = 4 cm s−1.
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FIGURE 6. (Colour online) As in figure 4 but for U = 6 cm s−1.

the basal melt rate using the flux for a flow past a flat plate, one can calculate the ratio
of the two melt rates. In particular, this means that the parameters K, m and n that
appear in (2.1) and (2.2) are different for the side and basal melt rates. This results
in the ratio v̇s/v̇b being 1.06, 0.93 and 0.87 for U = 2, 4 and 6 cm s−1, respectively.
Some estimates of v̇s and v̇b by image analysis of the pictures of the ice blocks taken
before and after the experiments are in agreement with the assumption that the two
melt rates are of the same order (not shown). Since this method has large uncertainties,
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(a) (b)

FIGURE 7. (Colour online) Two pictures of the bottom of the ice blocks after two
experiments with the same free stream velocity U = 4 cm s−1 and different background
rotation: (a) low f , α>αc and (b) high f , α<αc. In (b) a partial TC was observed. When
submerged, the rightward side of the ice blocks in these images was closest to the axis
of rotation of the tank.

the ratio v̇s/v̇b could not be constrained further to improve the analysis. An additional
factor to bear in mind, as discussed below, is that the finite height of the obstacle
alters the flow structure and, thus, the heat transfer to the ice block and, ultimately,
its melting.

In what follows, a discussion is added about the fact that in the derivation of
the interior flow solution neither Ingersoll (1969) nor Johnson (1983) include the
description of the flow near the edges of a finite cylindrical obstacle. In the extreme
case of a TC fully extended over the base of the obstacle, for Ro� 1, the flow is
two-dimensional and always goes around the motionless portion of fluid under the
obstacle, i.e. the TC. Instead, if the background rotation is negligible, for Ro� 1, the
flow has a three-dimensional structure near the edge of the obstacle, with a fraction
of the fluid going under it and the remaining fraction going around it. Thus, the
assumption that the velocity field is two-dimensional and independent of the height
may not hold even in the intermediate case of Ro∼ 1, as in the experiments of this
work. This has a clear parallel in the problem of stratified flow over a mountain,
where the stratification is acting to suppress vertical motion, but in the vicinity of the
topography there is a region of three-dimensional motion with part of the fluid going
over the mountain (Greenslade 1994). In the present case, the thickness of this layer
is expected to scale with Ro or α, so that it gets small in the limit of vanishing Ro.

The fact that some fluid flows under the ice block rather than around it is not
included in the corrected WC parametrization and if a fraction of fluid is added
beneath the obstacle, it means that the flow is accelerated at the base of the cylinder,
for conservation of mass. Since the ice melt rate is based on the velocity field
immediately below the ice block, this acceleration might affect its melting.

A simple attempt to quantify this process is now introduced. An additional
velocity Uε = Uε(α) is added to the free stream velocity U, so that the WC
parametrization calculated with the corresponding U matches the experimental data.
The non-dimensional extra velocity Uε/U is shown in figure 8 as a function of α for
U = 4 cm s−1 and U = 6 cm s−1. The series with U = 2 cm s−1 is excluded because
its dynamics seems to be controlled by the meltwater gravity current that forms at
the base of the block. Unfortunately, at this stage, it is not possible to determine if
the dependence on α is due to more fluid being swept under the block or to the
accelerated layer being confined to a thinner height under the block, because the
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FIGURE 8. (Colour online) Normalized extra velocity Uε/U as a function of α.

full three-dimensional flow is not known. Therefore, more work is encouraged to
investigate the behaviour of a rotating flow past a finite cylinder as a function of Ro
or α.

To address the open issues highlighted above, apart from performing new
experiments in the laboratory, one could also think of some direct numerical
simulations of the flow past an ice block. Numerical simulations of ice melting
face several complications due to the small but important turbulent boundary layer
near the ice–fluid interface and the evolving boundary. Nonetheless, they would be a
useful tool to determine the three-dimensional flow field around the obstacle and the
partial TC.

5. Conclusions
Through laboratory experiments in a rotating tank with cylindrical ice blocks

mimicking Antarctic tabular icebergs, the effects of the Earth’s rotation on iceberg
melting were investigated. It is found that at high rotation rates the base of the
ice block melts more rapidly because of an increased average basal velocity below
the block itself. This results from the enhanced relative vorticity below the block
following the squeezing of the fluid column in the rotating system. In contrast, at low
background rotation, the fluid flow is almost unaffected. When increasing the rotation,
i.e. lowering α, the ratio of the Rossby number to the non-dimensional height of the
obstacle, the TC starts forming on one side of the obstacle and partially covers its
base. In this condition, where the TC is not present, the flow velocity is larger than
the far-field value, which is thought to be responsible for the observed higher melting.
As the background rotation is further increased, i.e. for lower α, the TC extends its
area until it covers the entire ice block base. It is expected, then, that the melt rate
is no longer dependent on the rotation rate, because the TC structure is unchanging.

The WC parametrization is then applied to describe the trend of the melt rate as
a function of the free stream velocity U. It is observed that for low relative velocity,
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below a certain threshold Ut, the basal melt is not controlled by the forced convection
due to U, but it is controlled by a gravity current formed by the buoyant meltwater
pool spreading radially towards the edge of the ice block. More work is needed to
understand better what is happening in this region, both in a non-rotating environment
and in a rotating one. However it is clear that for low U, the free stream velocity does
not control the melting.

Two corrections have been made to the WC parametrization to add the TC
dynamics and the observed change in regime at low relative free stream velocity.
First, rotational effects are included by considering the analytical steady solution
obtained by Johnson (1983) for the TC problem under a cylindrical obstacle. Second,
wherever the analytical velocity magnitude falls below the threshold velocity Ut, it is
replaced by Ut itself. This represents the fact that the ice melt rate does not vanish
for vanishing free stream velocity, because the heat transfer from the fluid to the
ice is controlled by the meltwater gravity current dynamics. The WC parametrization
calculated with U, the area average of the corrected velocity field at the base of the
ice block, correctly reproduces the increasing melt rate trend for decreasing α, for all
the series of experiments. By looking at such a trend in the experimental data, the
inclusion of rotational effects thus determines a 30–40 % relative increment of the
melt rate.

Despite additional dynamics still needing to be considered, the present work shows
that moderate background rotation characterized by α∼1 can significantly increase the
basal melting of an ice block due to modifications of the flow typical of a rotating
system and that for low relative free stream velocity the basal melt is not controlled
by the free stream velocity. The first-order dynamics is understood and the increasing
trend of the melt rate for decreasing α observed in the data is reproduced by the
corrected WC parametrization. There are two key results that apply in the realistic
ocean case, α∼ 0.1. It is found that a TC is likely to form under a significant portion
of the iceberg. Within this region, the melt rate is controlled by a gravity current like
flow of buoyant meltwater towards the edge of the iceberg. Outside the TC region,
the velocity is significantly higher than the free stream velocity due to the deflection
of the ambient fluid around the TC. Within these regions, the melt rate is higher than
predicted by the WC parametrization. This is likely to result in an asymmetric melt
rate pattern inside and outside of the TC region. More work examining the structure of
the flow past a finite cylinder as a function of Ro together with the meltwater gravity
current dynamics at the base of the ice block is encouraged for further developments.

Acknowledgements
The authors acknowledge A. Jensen for his help in building the apparatus

and the ice block moulds and the GFD Summer Program held at Woods Hole
Oceanographic Institution where the work was undertaken. A.N.M. was funded
by the 2017 GFD Summer Program Fellowship and thanks C. Pasquero for her
continuous scientific encouragement and support. C.D.M. acknowledges funding from
the Weston Howard Jr Fellowship. C.C. was supported by NSF OCE-1658079.

REFERENCES

BIGG, G. R. 2015 Icebergs: Their Science and Links to Global Change. Cambridge University Press.
BIGG, G. R., WADLEY, M. R., STEVENS, D. P. & JOHNSON, J. A. 1997 Modelling dynamics and

thermodynamics of icebergs. Cold Reg. Sci. Technol. 26, 113–135.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

79
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.798


850 A. N. Meroni, C. D. McConnochie, C. Cenedese, B. Sutherland and K. Snow

BIGG, G. R. & WILTON, D. J. 2014 Iceberg risk in the Titanic year of 1912: was it exceptional?
Weather 69 (4), 100–104.

DEPOORTER, M. A., BAMBER, J. L., GRIGGS, J. A., LENAERTS, J. T. M., LIGTENBERG, S. R. M.,
VAN DEN BROEKE, M. R. & MOHOLDT, G. 2013 Calving fluxes and basal melt rates of
Antarctic ice shelves. Nature 502 (7469), 89–92.

DUPRAT, L. P. A., BIGG, G. R. & WILTON, D. J. 2016 Enhanced Southern Ocean marine productivity
due to fertilization by giant icebergs. Nat. Geosci. 9, 219–221.

ECKERT, E. R. G. & DRAKE, R. M. 1959 Heat and Mass Transfer. McGraw-Hill.
ENDERLIN, E. & HOWAT, I. 2014 An improved mass budget for the Greenland ice sheet. Geophys.

Res. Lett. 41, 866–872.
FITZMAURICE, A., CENEDESE, C. & STRANEO, F. 2017 Nonlinear response of iceberg side melting

to ocean currents. Geophys. Res. Lett. 44 (11), 5637–5644.
FITZMAURICE, A., CENEDESE, C. & STRANEO, F. 2018 A laboratory study of iceberg side melting

in vertically sheared flows. J. Phys. Oceanogr. 48, 1367–1373.
FITZMAURICE, A., STRANEO, F., CENEDESE, C. & ANDRES, M. 2016 Effect of a sheared flow on

iceberg motion and melting. Geophys. Res. Lett. 43, 12520–12527.
GLADSTONE, R. M., BIGG, G. R. & NICHOLLS, K. W. 2001 Iceberg trajectory modeling and

meltwater injection in the Southern Ocean. J. Geophys. Res. 106, 19903–19915.
GREENSLADE, M. D. 1994 Strongly stratified airflow over and around mountains. In Stably Stratified

Flows: Flow and Dispersion over Topography (ed. I. P. Castro & N. J. Rockcliff), pp. 25–37.
Clarendon Press.

GREENSPAN, H. P. & HOWARD, L. N. 1963 On a time-dependent motion of a rotating fluid. J. Fluid
Mech. 17 (3), 385–404.

HELLY, J. J., KAUFMANN, R. S., STEPHENSON, G. R. & VERNET, M. 2011 Cooling, dilution and
mixing of ocean water by free-drifting icebergs in the Weddell Sea. Deep-Sea Res. II 58
(11–12), 1346–1363.

HOLLAND, D. M. & JENKINS, A. 1999 Modeling thermodynamic ice-ocean interactions at the base
of an ice shelf. J. Phys. Oceanogr. 29 (8), 1787–1800.

HUPPERT, H. E. 1975 Some remarks on the initiation of inertial Taylor columns. J. Fluid Mech. 67
(2), 397–412.

INGERSOLL, A. P. 1969 Inertial Taylor columns and Jupiter’s Great Red Spot. J. Atmos. Sci. 26
(4), 744–752.

IOC, SCOR & IAPSO 2010 The International Thermodynamic Equation of Seawater –
2010: Calculation and Use of Thermodynamic Properties, Intergovernmental Oceanographic
Commission, Manuals and Guides No. 56. UNESCO.

JOHNSON, E. R. 1983 Taylor columns in horizontally sheared flow. Geophys. Astrophys. Fluid Dyn.
24, 143–164.

KADER, B. A. & YAGLOM, A. M. 1972 Heat and mass transfer laws for fully tubulent wall flows.
Intl J. Heat Mass Transfer 15, 2329–2351.

KERR, R. C. & MCCONNOCHIE, C. D. 2015 Dissolution of a vertical solid surface by turbulent
compositional convection. J. Fluid Mech. 765, 211–228.

KING, E. M., STELLMACH, S. & BUFFET, B. 2012 Heat transfer by rapidly rotating Rayleigh–Bénard
convection. J. Fluid Mech. 691, 568–582.

KING, E. M., STELLMACH, S., NOIR, J., HANSEN, U. & AURNOU, J. M. 2009 Boundary layer
control of rotating convection. Nature 457, 301–304.

RACKOW, T., WESCHE, C., TIMMERMANN, R., HELLMER, H. H., JURICKE, S. & JUNG, T. 2017 A
simulation of small to giant Antarctic iceberg evolution: differential impact on climatology
estimates. J. Geophys. Res. Oceans 122, 3170–3190.

SAVAGE, S. B. 2001 Aspects of iceberg deterioration and drift. In LNP 582: Geomorphological
Fluid Mechanics (ed. N. J. Balmforth & A. Provenzale), pp. 279–318. Springer.

SMITH, K. L., ROBISON, B. H., HELLY, J. J., KAUFMANN, R. S., RUHL, H. A., SHAW, T. J.,
TWINING, B. S. & VERNET, M. 2007 Free-drifting icebergs: hot spots of chemical and
biological erichment in the Weddell Sea. Science 317 (5837), 478–482.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

79
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.798


Nonlinear influence of the Earth’s rotation on iceberg melting 851

STEPHENSON, G. R., SPRINTALL, J., GILLE, S. T., VERNET, M., HELLY, J. J. & KAUFMANN,
R. S. 2015 Subsurface melting of a free-floating Antarctic iceberg. Deep-Sea Res. II 58 (11),
1336–1345.

STERN, A. A., ADCROFT, A. & SERGIENKO, O. 2016 The effects of Antarctic iceberg calving-size
distribution in a global climate model. J. Geophys. Res. Oceans 121, 5773–5788.

STERN, A. A., ADCROFT, A., SERGIENKO, O. & MARQUES, G. 2017 Modeling tabular icebergs
submerged in the ocean. J. Adv. Model. Earth Syst. 9 (4), 1948–1972.

TAYLOR, G. I. 1923 Experiments on the motion of solid bodies in rotating fluids. Proc. R. Soc.
Lond. A 104 (25), 213–220.

TIMMERMANN, R., WANG, Q. & HELLMER, H. H. 2012 Ice-shelf basal melting in a global finite-
element sea-ice/ice-shelf/ocean model. Ann. Glaciol. 53 (60), 303–314.

VALLIS, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.
VREUGDENHIL, C. A., GAYEN, B. & GRIFFITHS, R. W. 2016 Mixing and dissipation in a geostrophic

buoyancy-driven circulation. J. Geophys. Res. Oceans 121, 6076–6091.
WAGNER, T. J. W., DELL, R. W. & EISENMAN, I. 2017 An analytical model of iceberg drift.

J. Phys. Oceanogr. 47 (7), 1605–1616.
WEEKS, W. F. & CAMPBELL, W. J. 1973 Icebergs as a fresh-water source: an appraisal. J. Glaciol.

12 (65), 207–233.
WELLS, A. J. & WORSTER, M. G. 2008 A geophysical-scale model of vertical natural convection

boundary layers. J. Fluid Mech. 609, 111–137.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

79
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.798

	Nonlinear influence of the Earth's rotation on iceberg melting
	Introduction
	Theoretical background
	Submarine melting parametrization
	Taylor column dynamics

	Experiments
	Results
	Conclusions
	Acknowledgements
	References


