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Abstract

Background. While the neuroanatomic substrates of symptoms of attention deficit hyper-
activity disorder (ADHD) have been investigated, less is known about the neuroanatomic cor-
relates of cognitive abilities pertinent to the disorder, particularly in adults. Here we define the
neuroanatomic correlates of key cognitive abilities and determine if there are associations with
histories of psychostimulant medication.
Methods. We acquired neuroanatomic magnetic resonance imaging data from 264 members
of 60 families (mean age 29.5; S.D. 18.4, 116 with ADHD). Using linear mixed model regres-
sion, we tested for associations between cognitive abilities (working memory, information pro-
cessing, intelligence, and attention), symptoms and both cortical and subcortical volumes.
Results. Symptom severity was associated with spatial working memory (t =−3.77, p = 0.0002),
processing speed (t =−2.95, p = 0.004) and a measure of impulsive responding (t = 2.19,
p = 0.03); these associations did not vary with age (all p > 0.1). Neuroanatomic associations
of cognition varied by task but centered on prefrontal, lateral parietal and temporal cortical
regions, the thalamus and putamen. The neuroanatomic correlates of ADHD symptoms over-
lapped significantly with those of working memory (Dice’s overlap coefficient: spatial, p = 0.003;
verbal, p = 0.001) and information processing ( p = 0.02). Psychostimulant medication history
was associated with neither cognitive skills nor with a brain–cognition relationships.
Conclusions. Diagnostic differences in the cognitive profile of ADHD does not vary signifi-
cantly with age; nor were cognitive differences associated with psychostimulant medication
history. The neuroanatomic substrates of working memory and information overlapped
with those for symptoms within these extended families, consistent with a pathophysiological
role for these cognitive skills in familial ADHD.

Introduction

Deficits in multiple cognitive domains have been held to act as pathways to the core symptoms
of attention deficit hyperactivity disorder (ADHD; Sonuga-Barke, 2005; Durston et al., 2011;
Castellanos and Proal, 2012). Meta-analyses demonstrate associations between ADHD symp-
toms and deficits in working memory, general intelligence, and some attentional measures,
along with the processing of rewards and emotionally charged stimuli (Lijffijt et al., 2005;
Martinussen et al., 2005; Willcutt et al., 2005a; Huang-Pollock et al., 2012). While there is
a large literature on cognitive deficits and their underlying brain function in ADHD
(Cortese et al., 2012), there are fewer studies into the neuroanatomic substrates of these skills
among those with the disorder. Thus, the first motivation for this study is the need to map the
neuroanatomic substrates of cognitive skills pertinent to ADHD. Additionally, it is unclear if
the neuroanatomic correlates of cognition overlap with the neuroanatomic correlates of the
core symptoms of ADHD. This is an important question, as a high degree of overlap is not
inevitable. The symptoms of ADHD are behaviorally complex, and the underlying neuroana-
tomic change may differ from the neural basis of more circumscribed cognitive abilities.

This study also aims to examine whether the cognitive profile associated with ADHD varies
with age. One way to address this question is to use data from both multi-generational,
extended and nuclear families that have members affected by ADHD. Families provide a rela-
tively genetically and environmentally homogenous context for probing brain-cognition rela-
tionships. The inclusion of older individuals allows us to ask if the cognitive profile of ADHD
is stable across multiple generations of the same family. In turn, this can partly address con-
cerns that ADHD persisting into adulthood might be accompanied by accumulating cognitive
deficits, as the disorder can entail a loss of educational and occupational opportunities (Doshi
et al., 2012).
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The third motivation for this study is the issue of whether life-
time use of psychostimulant medication as a treatment for ADHD
might be associated with cognitive skills and their neural sub-
strates. Again, the use of a multigenerational family design
which includes both children and adults from relatively homogen-
ous backgrounds provides a design suited to test for associations
between the lifetime use of psychostimulant medication, cogni-
tion and neuroanatomy.

In summary, using family-based data, we first delineate the
neuroanatomic correlates of cognitive abilities pertinent to
ADHD and ask if they vary significantly with age. Second, we
determine the degree of overlap between the neuroanatomy of
these key cognitive abilities and the neuroanatomic correlates of
the symptoms of the disorder. Finally, we test for associations
between cognitive skills, the brain and the lifetime history of psy-
chostimulant medication.

Methods

The study included 264 individuals, of whom 188 came from 25
extended multigenerational families and 76 from 35 nuclear fam-
ilies. Extended families were defined by the presence of a diagno-
sis of ADHD in at least 25% of family members, which represents
a marked increase in background population prevalence rates of
childhood and adult ADHD (Polanczyk et al., 2007; Simon
et al., 2009). In the nuclear families, at least one member had
ADHD. The study was approved by the institutional review
boards of the National Institute of Mental Health and the
National Human Genome Research Institute. Written informed
consent was obtained from adult participants and parents; chil-
dren gave written assent.

To make the diagnosis of ADHD in adults, the Conners’ Adult
ADHD Diagnostic Interview for DSM-IV was used (Epstein and
Johnson, 2001). This clinician-administered structured interview
ascertains symptoms of inattention and hyperactivity–impulsivity
in adulthood and the childhood history of these symptoms. The
Structured Clinical Interview for DSM-IV-TR Axis I Disorders,
Research Version, Patient Edition was used to ascertain other psy-
chiatric disorders (First et al., 2002). The parental Diagnostic
Interview for Children and Adolescents-IV (DICA) (Reich, 2000)
was used to obtain diagnoses in children. Interviews were conducted
by two experienced clinicians (W.S. and P.S.). General exclusion
criteria were an IQ < 80 (Wechsler, 2001, 2011), neurologic disor-
ders affecting brain structure, current substance dependence, or
psychotic disorders. Twenty-three of the 25 extended families and
24 of the 35 nuclear families were white, non-Hispanic (see online
Supplementary Table S1). Details on medications and comorbidities
are given in online Supplementary Table S2.

Neuropsychological testing was conducted by research fellows
supervised by a clinical neuropsychologist. If subjects were taking
psychostimulant medication, this was withdrawn at least 24 h
before testing. Processing speed was assessed by two tests from
the Woodcock–Johnson battery (Woodcock et al., 2001), visual
matching, and decision speed. The visual matching task measures
perceptual processing speed by asking subjects to make visual
comparisons under time pressure. In this task, subjects must
locate and circle two identical numbers in each row of six num-
bers; pairs become progressively more challenging to identify as
single digits progress to double and triple digits. The decision
speed task requires participants to analyze rows of six images
and choose the two that are most closely related in each row
under time pressure. Verbal working memory span was assessed

through the number of correctly recalled digits in the original
and reverse order. Number chains progressed from three digits
up to nine in the original order, and two digits up to eight in
the reverse order. Spatial working memory span was measured
through the number of correctly repeated tapping patterns in
the original and reverse order (Wechsler, 2003). Intelligence was
estimated from age-appropriate versions of the Wechsler intelli-
gence scales (Wechsler, 2001, 2011). Attentional abilities were
measured through the Conners’ continuous performance test
(CPT) (Conners, 2004). This task requires participants to press
a key when presented with any stimulus letter, except the letter
‘X’. Based on prior factor analyses of the CPT, we calculated indi-
ces reflecting inattentive responding (reaction time variability and
the standard error of hit reaction time, detectability, and omission
errors), impulsive responding (commission errors, reaction time,
response style, and perseverations), sustained attention (hit reac-
tion time during block changes and its standard error) and vigi-
lance (reaction time during inter-stimulus interval changes and its
standard error) (Egeland and Kovalik-Gran, 2008).

Neuroimaging

A high-resolution (1.07 × 1.07 × 1.2 mm3) T1 weighted volumet-
ric structural image was obtained using a magnetization prepared
rapid gradient echo sequence (with ASSET preparation; 124 slices,
1.2 mm slice thickness, 224 × 224 acquisition metric, flip angle = 6°,
field of view = 24 cm2) on a 3 T General Electric Signa scanner
(USA) using an eight-channel head coil. Analyses were conducted
on the National Institutes of Health High Performance Computer
Cluster (Biowulf). Cerebral cortical reconstruction and cortical
and subcortical volumetric segmentation were performed with
the FreeSurfer image analysis suite version 5.3.0 (http://surfer.
nmr.mgh.harvard.edu/). Technical procedures of this widely used
method are described in the web link above. Analyses were con-
ducted on the National Institutes of Health High Performance
Computer Cluster (Biowulf). We chose volumes as our metric
as these can be defined using FreeSurfer on both cortical and
subcortical structures, unlike metrics such as thickness or gyrifica-
tion that apply only to the cortex. All T1 images were visually
inspected, and those with moderate or severe motion or other
artifacts were excluded (∼15%). Those judged by two raters to
have no or minimal motion artifact proceeded to segmentation
of the subcortical, cerebellar and cerebral cortical structures.
Other artifacts that resulted in a scan not proceeding to segmen-
tation included incomplete coverage of the brain; artifacts arising
from dental procedures; high carotid pulsation artifact. These seg-
mentations were inspected by two raters and scored as ‘1’ if no
errors were detected; ‘2’ if minor errors were noted (e.g. poor seg-
mentation of the inferior regions on one or two of the serial slices);
‘3’ if moderate errors were found (e.g. segmentation errors noted on
three or more consecutive slices); ‘4’ if there were gross errors. If
ratings differed by more than one point, the segmentations were
re-inspected and a consensus rating reached. Only scans rated as
1 or 2 were retained, resulting in the further exclusion of around
15% of the segmentations. This study complements our earlier
report on the heritability of the brain’s structural connectivity
defined through diffusion tensor imaging of white matter micro-
structure and functional connectivity defined through using func-
tional magnetic resonance imaging (fMRI) resting state data
(Sudre et al., 2017). A single scanner was used throughout the
study, circumventing the problems inherent in trying to integrate
data acquired on different platforms.
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Analysis

To examine associations between ADHD, cognition and the brain
we used linear mixed models, implemented in the nlme R package
(Pinheiro and Bates, 2000; Pinheiro et al., 2014). All models
included a random term which accounted for relatedness
among individuals through a term for nuclear family identity
which was nested within a term for extended family identity. In
our neuroimaging analyses, we adjusted for multiple comparisons
using the false discovery rate (FDR) procedure, declaring signifi-
cance at an adjusted p value of 0.05 (meaning that 5% of the ‘dis-
coveries’ were false) (Benjamini and Hochberg, 1995).

We first consider associations between cognitive abilities and
the brain. We asked if brain-cognition associations differed over
the age range covered (i.e. testing for an interaction between diag-
nosis and the brain in the determination of cognition). No such
interaction emerged that survived adjustment for multiple testing,
and thus in further analyzes, we entered as fixed factors cognitive
measures, age terms, and gender. We included quadratic and lin-
ear age terms as fixed effects, as our initial analyses showed these
generally had a significant association with the brain measures.
Thus, in the final model the jth brain region measure in the ith
individual was modeled as:

Brain regionij = intercept+ b1 cognitivemeasure+ b2 age

+ b3 age
2 + b4 gender+ di + eij

where d is a nested random effect modeling dependence within
nuclear and extended family. The intercept and β terms are fixed
effects and eij represents the residual error. The association between
regional brain volume and cognition is given by the β1 term.

The same approach tested for associations between symptoms
and the brain. Again, we first tested if age terms interacted with
symptoms with respect to the brain regional volumes. No such
interactions emerged as significant following adjustment for mul-
tiple comparisons and thus we used the same model as above,
substituting symptoms for cognition. Finally, we calculated the
lifetime history of psychostimulant medication by dividing years
taking psychostimulant medication by years in the study and
entered this term in the models above.

We used Dice’s coefficient to quantify the degree of overlap
between brain–cognition and brain–symptom relationships.

First, brain–cognition and brain-symptom associations were
binarized based on a p < 0.05. We determined the overlap between
these two data sets (dividing twice the number of intersecting ele-
ments by the total number of elements in both sets). To deter-
mine the significance of this index we randomly shuffled (2000
permutations) the brain/cognition and brain/symptom labels to
create a null distribution. The p value for an observed Dice coef-
ficient is given by the number of Dice coefficients in the permuted
sets that are larger than the observed coefficient, divided by the
number of permutations.

Results

Cognition

Several cognitive abilities showed associations with symptom
severity: spatial span (t = −3.77, p = 0.0002, Bonferroni-adjusted
p = 0.002), visual matching processing speed task (t =−2.95,
p = 0.004, Bonferroni-adjusted p = 0.03) and impulsive responding
from the CPT (t = 2.19, nominally significant only at p = 0.03)
(see Table 1). The patterns of associations between inattentive
and hyperactive–impulsive symptoms were similar for both work-
ing memory and information processing. In the CPT, the factor
measuring impulsive responding associated with hyperactive–
impulsive symptoms (t = 2.16, p = 0.03), whereas a vigilance factor
associated with inattentive symptoms (t = 2.09, p = 0.04) (see
online Supplementary Table S3). The associations between symp-
tom severity and cognitive abilities did not vary significantly with
age (i.e. there were no significant interactions between the age
terms and symptoms with respect to cognition, all p > 0.05).

Brain-cognition associations

Multiple brain regions emerged as significantly associated with cog-
nitive measures, and both nominal associations and those surviving
an FDR adjustment are shown in Figures 1 and 2. Associations sur-
viving FDR adjustment were found between spatial working mem-
ory and volumes of most of the prefrontal cortex, extending to the
insula and lateral temporal regions. Verbal working memory
showed more limited associations with the right orbitofrontal, mid-
dle frontal, cingulate and superior temporal gyri. The information
processing speed measures both showed association with the

Table 1. Performance on cognitive tasks in those with and without ADHD

Subdomain
assessed Test

ADHD mean
(S.D.)

Unaffected mean
(S.D.) t, p value

Regression against total
symptom count

Working memory Digit span 16.9 (4.2) 17.3 (3.9) t(257) = 0.07, p = 0.95 t(134) =−0.53, p = 0.72

Spatial span 14.6 (4.5) 16.5 (3.9) t(252) = 2.91, p = 0.004 t(131) =−3.77, p = 0.0002*

Processing speed Visual matching 45.3 (10.5) 48.9 (8.8) t(256) = 2.96, p = 0.004 t(133) =−2.95, p = 0.004*

Decision speed 33.1 (6.8) 34.4 (6.0) t(256) = 1.42, p = 0.16 t(133) =−1.30, p = 0.20

General intelligence IQ 110.0 (10.3) 110.6 (10.6) t(262) = 0.34, p = 0.74 t(138) =−0.25, p = 0.80

Attention Impulsive responding 0.11 (0.6) −0.09 (0.6) t(251) =−1.60, p = 0.12 t(128) = 2.19, p = 0.03

Sustained attention −0.01 (0.5) 0.01 (0.9) t(251) = 0.27, p = 0.78 t(128) = 0.33, p = 0.74

Vigilance 0.14 (1.0) −0.11 (0.9) t(251) =−0.36, p = 0.72 t(128) = 1.06, p = 0.29

Inattentive responding 0.09 (0.7) −0.07 (0.6) t(251) = 0.34, p = 0.74 t(128) = 0.82, p = 0.41

*Bonferroni-adjusted p < 0.05.
Categorical contrasts are shown (ADHD v. non-ADHD), along with the results from a regression of total symptom counts against cognition (all analyses adjust for age terms and sex).
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precentral, anterior cingulate and orbitofrontal cortical volumes.
General intelligence was associated with the volumes of the super-
ior frontal, parietal (postcentral) and superior temporal gyrus.
From the CPT, significant associations emerged between the factor
reflecting impulsive responding and the right pericalcarine gyrus;
and between vigilance and the right frontal pole – see online

Supplementary Table S4 for FDR significant and nominal associa-
tions between CPT and subregional volumes.

At a subcortical level, information processing and spatial, but
not verbal, working memory were associated with the volumes of
the thalami, hippocampus and right putamen (Fig. 2). Processing
speed measures were additionally associated with cerebellar white

Fig. 1. Associations between symptoms of ADHD, cognitive abilities and cortical volumes (FDR adjusted and nominally significant associations are shown).

Fig. 2. Associations between cognitive tasks and subcortical
volumes (FDR-adjusted p < 0.05 and nominally significant
associations at p < 0.05 are shown).
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matter volume. None of these associations between cognition and
brain region volumes differed with age (i.e. there were no signifi-
cant interactions between age and cognitive effects, following
adjustment for multiple testing). The associations also did not dif-
fer by diagnostic group (see online Supplementary Results 1).

Impact of psychostimulant medication

Psychostimulant medication among those with ADHD (as repre-
sented by the proportion of life on the medication) was not asso-
ciated with any cognitive measures (all FDR-adjusted p > 0.1).
There were also no significant interactions between medication
and the cognitive measures with respect to brain volumes: that
is, the associations between cognitive abilities and the brain
were not altered by psychostimulant medication history. Finally,
we repeated analyses excluding those who were taking any psy-
chotropic medication, and this did not alter the main pattern of
results (online Supplementary Table S5). We also repeated ana-
lyses excluding those with comorbid disorders. The patterns of
results held although some findings lost significance due to
reduced sample size (online Supplementary Table S5).

ADHD symptoms and the brain

Symptom severity was associated (at FDR p < 0.05) with predomin-
ately prefrontal cortical volumes – specifically the middle, inferior,
orbital and paracentral gyri, and the left inferior temporal gyri.
Nominal associations were found in predominately lateral pre-
frontal and cingulate regions. Associations between regional
volumes and hyperactive-impulsive symptoms were more extensive
than those seen for inattentive symptoms, although the general pat-
tern was very similar (see online Supplementary Figure S1).

We next determined the significance of the spatial overlap
between the neuroanatomic substrates of symptoms and the cogni-
tive measures that showed extensive brain associations (working
memory, information processing, and IQ). The neuroanatomic sub-
strates of working memory showed the most significant overlap with
the neuroanatomic correlates of symptoms (Dice coefficient overlap
with spatial working memory, p = 0.003; for verbal working mem-
ory p = 0.001). The overlap between the substrates for symptoms
and information processing was found for the visual matching subt-
est only ( p = 0.02). No other significant overlaps were found (for
symptoms: IQ, p = 0.15; symptoms: decision speed, p = 0.48).

Discussion

There are three central findings in this study of families with
ADHD. First, we find the cognitive profile tied to ADHD did
not differ across generations. Second, lifetime history of treatment
with psychostimulant medication in ADHD is associated with nei-
ther cognitive skills nor the relationships between cognition and the
brain. Finally, extensive associations are found between brain struc-
ture and spatial working memory, information processing speed,
impulsive responding and intelligence that centered on prefrontal
and cortico–striato–thalamic regions. Further, there is a significant
overlap between the neuroanatomic substrate of symptoms and the
substrates for working memory and information processing.

Cognitive findings in ADHD

This work builds upon earlier studies of families affected by
ADHD, which have mainly focused on young sibling pairs or

parent–child dyads (Bidwell et al., 2007; Casey et al., 2007;
Goos et al., 2009; Gau and Shang, 2010). By including adults in
middle age and beyond we find no differences in the ADHD cog-
nitive profile across generations, suggesting there is no
age-related cognitive decline in ADHD. However, as the study
was cross-sectional it could only delineate how ADHD symptoms
relate to cognition at one point in time, and we find that this
cross-sectional association does not vary with the age of the par-
ticipants. However, the study does not address the important but
different question of whether a change in symptoms over time
within a subject is tied to change in cognitive profiles. This
requires a definitive developmental mapping of cognitive pro-
cesses which awaits the collection of both cognitive and clinical
longitudinal data. Secondly, we add to the growling literature
associating ADHD with deficits in information processing, par-
ticularly perceptual processing speed as assessed by visual match-
ing (Sergeant et al., 1999; Willcutt et al., 2005b; Rommelse et al.,
2007; Salum et al., 2014a, 2014b). The finding echoes recent sug-
gestions that processing deficits might be a core feature of the dis-
order (Salum et al., 2014a, 2014b).

Psychostimulant medication

We examined chronic rather than acute effects of psychostimulant
medication for ADHD as we tested during temporary medication
cessation and found no significant associations between lifetime
history of the medication and cognitive abilities. While psychos-
timulants have acute beneficial effects on core symptoms, the evi-
dence of beneficial acute effects on cognition is more mixed
(Advokat and Scheithauer, 2013; Baroni and Castellanos, 2015).
Looking to the brain, psychostimulant medication for ADHD
has generally been associated with either no detectable change
in brain structure or a slight shift toward more typical dimensions
(Nakao et al., 2011; Frodl and Skokauskas, 2012; Shaw et al.,
2014a; Friedman and Rapoport, 2015). Here we further the
field by demonstrating that psychostimulants do not uncouple
the typical associations between cognition and brain structure,
which were not significantly affected by the duration of psychos-
timulant treatment. These observational findings on psychostimu-
lants should, however, be cautiously interpreted, as many factors
that influence psychostimulant use could also impact on cogni-
tion and randomized control trials are required for causal infer-
ences. Additionally, other neural measures, particularly of brain
function, were not examined in this study and these may be
more sensitive to the effects of psychostimulants.

The neuroanatomic substrates of cognition and symptoms

Working memory and information processing measures all
showed associations with prefrontal cortical regions, with the
exact regions varying by the task. Thus, while spatial working
memory showed extensive links with most of the prefrontal cor-
tex, the correlates of verbal working were more circumscribed.
This is consistent with the literature, including both a
meta-analysis and a recent large study of just over a thousand par-
ticipants that found superior working memory to be associated
with greater prefrontal cortical volumes, specifically the orbito-
frontal, and lateral prefrontal cortex (pars orbitalis) (Yuan and
Raz, 2014; Owens et al., 2018). Additionally, we report novel asso-
ciations between information processing speed and multiple
frontal cortical regions (the precentral, cingulate and orbitofrontal
cortex). General intelligence was tied to prefrontal (superior,
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precentral), parietal (parietal lobule), and temporal (superior and
inferior gyri) dimensions in line with previous reports (Colom
et al., 2006; Shaw, 2007; Deary et al., 2010). Notably, all the mea-
sures of information processing and working memory overlapped
in their association with volumes of the right rostral anterior cin-
gulate cortex, a region that has been consistently implicated in
ADHD (Seidman et al., 2006; Makris et al., 2010).

In the subcortex, we find that information processing speed is
also associated with thalamo–striato–cerebellar structures. We
find stronger associations between cognitive skills and the putamen
rather than the caudate. In this context, it is notable that a recent
mega-analysis of neuroanatomic MRI studies finds the disorder is
more strongly associated with a volume reduction in the putamen
rather than the caudate (Hoogman et al., 2017). Additionally, the
rostral putamen emerges as the most strongly correlated of all stri-
atal subregions with fluid intelligence (Burgaleta et al., 2014). We
find that the neuroanatomic correlates of attentional skills are
more circumscribed although these have been extensively mapped
using functional neuroimaging both in those with and without
ADHD (Cortese et al., 2012; Petersen and Posner, 2012). We
also find associations between the left amygdala, working memory
and processing speed. While the amygdala is well recognized as a
pivotal structure in the emotional brain, our finding is consistent
with evidence for its role in higher cognitive processing (Schaefer
and Gray, 2007). For example, individual differences in amygdala
activation predict processing speed during working memory
tasks, and the amygdala acts to direct attention towards goal-
relevant stimuli, that are often emotionally charged.

We also find associations between cerebellar volumes and process-
ing speed. This is consistent with the role of the cerebellum in rapid
information processing and the modification of behavior in response
to feedback (Ivry, 1997). Faster information processing is associated
with greater cerebellar grey matter volume (Genova et al., 2009;
Eckert et al., 2010) and childhood change in cerebellar grey matter
is tied to increases in processing speed (Moore et al., 2017).

Working memory showed the most significant overlap with
the neural substrate of symptoms. This is in keeping with behav-
ioral data which find prominent working memory deficits in chil-
dren and adults with ADHD (Martinussen et al., 2005; Kasper
et al., 2012; Alderson et al., 2013) and experimental demonstra-
tions that ADHD symptoms are exacerbated by increasing work-
ing memory demands, (Rapport et al., 2009; Tillman et al., 2011;
Hudec et al., 2014). It has been argued that boosting working
memory might have some beneficial effect on symptom profile,
though the evidence is mixed (Rapport et al., 2013). Combined
these behavioral and imaging studies point to working memory
as a core deficit in the disorder.

Limitations

There are several limitations. First, we did not assess some key
cognitive domains pertinent to ADHD, such as processing of
emotionally charged and rewarding stimuli (Plichta and
Scheres, 2014; Shaw et al., 2014b). We attempted to minimize
the effects of comorbidity by excluding disorders known to
impact brain structure, such as the psychoses, substance depend-
ence and dementias. Other comorbidities, such as anxiety disor-
ders, were too uncommon to evaluate separately but the general
pattern of findings was unchanged when those with any current
comorbidities were excluded. The inclusion criteria for the
study centered on a high familial prevalence of ADHD and
thus may limit the generalizability of the findings to the general

population. Similarly, the main results held when those who
were taking any psychotropics (including psychostimulants)
were excluded. Finally, we consider only brain structure but
note that the functional correlates of cognition in ADHD have
already been extensively characterized (Cortese et al., 2012; Hart
et al., 2013; Rubia et al., 2014).

Conclusion

We delineate anatomic alterations in fronto–striato–thalamo–
cerebellar regions that are tied to the cognitive deficits found in
the disorder; these associations are not significantly altered by
psychostimulant medication history. The overlapping neural sub-
strate of symptoms and cognition provide further evidence that
working memory may be a core cognitive deficit in the disorder.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291718001241
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