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We propose a new estimator, the quadratic form estimator, of the Kronecker product
model for covariance matrices. We show that this estimator has good properties in the
large dimensional case (i.e., the cross-sectional dimension n is large relative to the
sample size T). In particular, the quadratic form estimator is consistent in a relative
Frobenius norm sense provided log3n/T → 0. We obtain the limiting distributions
of the Lagrange multiplier and Wald tests under both the null and local alternatives
concerning the mean vector μ. Testing linear restrictions of μ is also investigated.
Finally, our methodology is shown to perform well in finite sample situations both
when the Kronecker product model is true and when it is not true.

1. INTRODUCTION

Covariance matrices are of great importance in many fields. In finance, they
are a key element in portfolio choice and risk management (Markowitz, 1952).
In psychology, scholars have long assumed that some observed variables are
related to certain latent traits through a factor model, and then use the covariance
matrix of the observed variables to deduce properties of the latent traits. In
econometrics, covariance matrices often appear in test statistics representing
the sampling variability of a vector of parameter estimates. Anderson (1984) is
a classic statistical reference that studies estimation of and hypothesis testing
about covariance matrices in the low dimensional case (i.e., the dimension of the
covariance matrix, n, is small compared with the sample size T).

We thank the Editor Peter C.B. Phillips, the Co-Editor Yuichi Kitamura, and two anonymous referees for detailed
comments, which greatly improved the article. For useful discussions, we are grateful to Liang Jiang, Chen Wang,
Tengyao Wang, and the participants at the Celebration of Peter C.B. Phillips’ Forty Years at Yale held at Yale Uni-
versity on October 19–20, 2018 and the CUHK Workshop on Econometrics 2019. Any remaining errors are our own.
Oliver B. Linton thanks the Cambridge INET and the Keynes Fund for financial support. Haihan Tang is sponsored
by the National Natural Science Foundation of China (grant number 71903034) and Shanghai Pujiang Program
(grant number 2019PJC015). Address correspondence to Haihan Tang, Fanhai International School of Finance, Fudan
University, 220 Handan Road, Yangpu District, Shanghai, 200433, China; e-mail: hhtang@fudan.edu.cn.

© The Author(s), 2020. Published by Cambridge University Press. 1014

https://doi.org/10.1017/S026646662000050X Published online by Cambridge University Press

https://www.doi.org/10.1017/S026646662000050X
https://doi.org/10.1017/S026646662000050X


ESTIMATION OF THE KRONECKER COVARIANCE 1015

There are many new methodological approaches to covariance and precision
matrix estimation in the large dimensional case (i.e., n is large compared with
T)1; see, for example, Ledoit and Wolf (2003), Bickel and Levina (2008), Fan,
Fan, and Lv (2008), Ledoit and Wolf (2012), Fan, Liao, and Mincheva (2013),
and Ledoit and Wolf (2015). Fan, Liao, and Liu (2016) gave an excellent account
of the recent developments in theory and practice of estimating large dimensional
covariance matrices. The usual approaches include: to impose some sparsity on
the covariance matrix, meaning that many elements of the covariance matrix are
assumed to be zero or small, thereby reducing the number of parameters to be
estimated; or at least to “shrink” toward a sparse matrix, or to use a factor model,
which reduces the dimensionality of the parameter space. Most of this literature
assumes i.i.d. data.

We consider the problem of estimating a large covariance matrix �. We impose a
model structure that reduces the effective dimensionality. In particular, we consider
the Kronecker product model. Let n = n1 ×·· ·× nv, where nj ∈ Z and nj ≥ 2 for
j = 1, . . . ,v. We suppose that

� = σ 2 ×�1 ⊗·· ·⊗�v, (1.1)

where �j is an nj × nj unknown covariance matrix satisfying tr(�j) = nj for
j = 1, . . . ,v and 0 < σ 2 < ∞ is a scalar parameter.

Kronecker product models arise naturally from multiway data (cf. Kroonen-
berg, 2008). Multiway data are a generalization of two-way or three-way data that
are widely encountered in social science. For example, the scores on 3 subjects
(mathematics, English, and music) of 50 students observed over 10 years are three-
way data, the “ways” being subjects, students, and years. Let wi,j,t denote the score
of subject i of student j in year t. To model wi,j,t, one could use an interactive effects
model similar to Bai (2009):

wi,j,t = μi,j +γi,tfj,t, i = 1,2,3, j = 1, . . . ,50, t = 1, . . . ,10,

where μi,j is the subject–student specific mean, while γi,t and fj,t are the subject–
time specific and student–time specific effects, respectively. Stacking all the obser-
vations {wi,j,t} of year t into a 150×1 column vector yt, we have yt = μ+γt ⊗ ft,
where μ is the 150×1 mean vector containing stacked {μi,j}, γt = (γ1,t,γ2,t,γ3,t)

ᵀ,
and ft = (f1,t, . . . ,f50,t)

ᵀ. Suppose that γt is a random vector independent of ft, and
that both are mean-zero and stationary in time. Then,

E[(yt −μ)(yt −μ)ᵀ] = E[γtγ
ᵀ
t ]⊗E[ftf

ᵀ
t ].

In this case, the covariance matrix of yt is a Kronecker product of two submatrices,
which describe the subject specific and individual specific dependencies.

1Some studies have made a distinction between the large dimensional case and the high dimensional case (Hafner,
Linton, and Tang, 2020). We no longer make this distinction in this article. As long as n is large relative to T, regardless
of n exceeding T, we call it the large dimensional case.
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Extending the idea to multiway data, one might think of a typical equity
portfolio constructed by intersections of 5 size quintiles, 5 book-to-market ratio
quintiles, and 10 industries, in the spirit of Fama and French (1993), over a
number of years, as four-way data: sizes × B/P ratios × industries × years.
Situations in which higher-way data are collected are also on the increase. For
example, electroencephalography (EEG), a noninvasive way of detecting structural
abnormalities such as brain tumors, also provide multiway data, such as EEG
bands × patients × leads × doses × time × task conditions (Estienne et al., 2001).

Consider (v + 1)-way data wi1,i2,...,iv,t, where ij = 1, . . . ,nj for j = 1, . . . ,v and
t = 1, . . . ,T . We use subscript t to denote the (v + 1)th way of the data in the
hope to broadly interpret the (v + 1)th way as “time,” T as the sample size, all
other ways as the “cross-section,” and n := n1 × ·· · × nv as the cross-sectional
dimension. In other words, the (v + 1)th way of the data need not correspond
to the time dimension, should the multiway data contain such a dimension. In
the rest of the article, we shall no longer stress this distinction. Suppose that
wi1,i2,...,iv,t = μi1,i2,...,iv + ε1

i1,t
ε2

i2,t
· · ·εv

iv,t
, where ij = 1, . . . ,nj for j = 1, . . . ,v, and

t = 1, . . . ,T . Equivalently, in the stacked form,

yt := (w1,1,...,1,t, . . . ,wn1,n2,...,nv,t)
ᵀ = μ+ ε1

t ⊗ ε2
t ⊗·· ·⊗ εv

t ,

where μ is the stacked mean vector, ε
j
t := (ε

j
1,t, . . . ,ε

j
nj,t)

ᵀ is an nj × 1 mean-zero

random vector with covariance matrix E[εj
tε

jᵀ
t ] for all t for j = 1, . . . ,v. If ε1

t , . . . ,ε
v
t

are mutually independent for all t, then

E[(yt −μ)(yt −μ)ᵀ] = E[ε1
t ε

1ᵀ
t ]⊗E[ε2

t ε
2ᵀ
t ]⊗·· ·⊗E[εv

t ε
vᵀ
t ].

We hence see that the covariance matrix of yt is a Kronecker product of v
submatrices.

Recent work on Kronecker product models for multiway data include Hoff
(2011, 2015, 2016), etc. Kronecker product models have also been considered
in the psychometric literature (Campbell and O’Connell, 1967; Swain, 1975;
Cudeck, 1988; Verhees and Wansbeek, 1990, etc.). In the spatial literature, there
are a number of studies that consider Kronecker product models for the correlation
matrix of a random field (Loh and Lam, 2000). Robinson (1998) and Hidalgo and
Schafgans (2017) exploited separable error covariance matrix structures to develop
inference methods without the need for smoothing.

These literatures have all focused on the low dimensional case. Hafner et al.
(2020) were the first to study Kronecker product models in the large dimensional
case. The proper framework for studying the large dimensional case is the joint
limit setting developed by Phillips and Moon (1999) in which n and T tend to
infinity simultaneously.2 Since n tends to infinity, there are two main cases when

2Peter Phillips has made some fundamental contributions to large dimensional analysis. Phillips and Moon (1999)
provided three asymptotic frameworks for analysing double-index (n,T) processes: sequential limit framework (e.g.,
n → ∞ followed by T → ∞), diagonal path limit framework (i.e., both n and T pass to infinity along some specific
diagonal in the two dimensional array), and joint limit framework (i.e., n,T → ∞ simultaneously). In particular, they
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considering (1.1): (a) {nj}v
j=1 are all fixed while v → ∞; (b) nj → ∞ for at least

some j while v is fixed. Case (a) corresponds to practical situations where the data
have a large number of ways but in each way the number of entities is small; case
(b) often corresponds to, say, three-way or four-way data in which at least one
way has a large number of entities. The methodologies developed in Hafner et al.
(2020) and this article are perfectly geared for case (a) in the sense that (1.1) is
correctly specified for the data.

We do not analyze case (b) theoretically, but our estimation and inference
procedures can in principle be applied to case (b) also, but the theory will require
more work and stronger restrictions on the relationship between n and T . For
example, if v = 2 and n1 = n2 = √

n, then the submatrices �1,�2 each contain
order n unknown quantities. If n/T → 0 fast enough, then we may show some
consistency of our estimators of the submatrices �1,�2. On the other hand, if this
rate condition is not satisfied, one could combine the separable structure (i.e., the
Kronecker product) with sparsity restrictions on the submatrices. This has been
investigated in the literature. Other approaches have been considered in Akdemir
and Gupta (2011) and Hoff (2011, 2015). Henceforth, when we say the Kronecker
product model (1.1), we implicitly mean case (a).

The Kronecker product model leads to substantial dimension reduction even
though it need not be sparse in the sense of (2.1) of Fan et al. (2016). Hafner et al.
(2020) showed that the matrix logarithm of a Kronecker product covariance or
correlation matrix is a sparse matrix (with O(logn) unknown quantities) and the
logarithmic operator converts the multiplicative Kronecker product structure into
an additive one. Therefore, the logarithm of a Kronecker product covariance or
correlation matrix is a linear function of a much “smaller” vector of unknown
quantities. They used this to develop a closed-form estimator, they established
its consistency and provided a CLT. However, their results require strong, albeit
sufficient but not necessary, conditions; in particular, they obtained Frobenius
norm consistency of the estimator under a condition that at least n/T → 0, which
is very restrictive. On the contrary, other methodologies typically achieve average
Frobenius norm consistency provided s logn/T → 0, where s is some sparsity
index (e.g., see Bickel and Levina (2008) Thm. 2 with q = 0).3

In this article, we relax the rate restriction on n imposed by Hafner et al. (2020)
and allow n to be possibly larger than T. We propose a new covariance matrix
estimator called the quadratic form estimator based on the Kronecker product
model. Our estimator averages elements of the sample covariance matrix, so we
obtain a rate improvement by averaging. In particular, under a cross-sectional weak

provided a central limit theorem (CLT) in joint limit framework for double-index processes (Thm. 2 of Phillips and
Moon, 1999). However, the Lindeberg condition of that theorem is perhaps difficult to verify in practice. In Section 2,
we provide a variant (Theorem 2.1), which relies on a Lyapounov’s condition. Moreover, the variant allows the CLT
to kick in from either the cross-sectional or time dimension.
3Average Frobenius norm means dividing a Frobenius norm by

√
n, while relative Frobenius norm means dividing a

Frobenius norm by the Frobenius norm of a target matrix, say, the unknown covariance matrix. These two concepts
are similar, but not exactly the same.
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dependence condition, the quadratic form estimator achieves relative Frobenius
norm consistency provided log3n/T → 0. Moreover, this method automatically
produces a symmetric and positive definite covariance matrix estimator, unlike
some of the sparsifying methods considered by Fan et al. (2016).

We apply our methodology to a concrete testing problem; we consider the null
hypothesis H0 : μ = μ0, where μ is the mean of the large dimensional data yt and
μ0 is some known vector. One practical example would be that yt corresponds to
differences between treated and controlled groups and we want to test whether the
mean cross-sectional differences are different from zero. We define the Lagrange
multiplier (LM) and Wald test statistics based on our estimated precision matrix
and establish their asymptotic distributions under both null and local alternatives
of the form H1 : μ = μ0 + θ/

√
T for some vector θ . We also provide two results

regarding testing linear restrictions of μ.
We compare our estimation and testing methods with Ledoit and Wolf (2004)’s

linear shrinkage estimator and Ledoit and Wolf (2017)’s direct nonlinear shrinkage
estimator in Monte Carlo simulations. Our methods perform very well in moderate-
sized samples. In fact, they work well even in situations where a Kronecker product
model is misspecified for a covariance matrix.

The rest of the article is structured as follows. In Section 2, we discuss the model
and identification while in Section 3, we propose the quadratic form estimator.
Section 4 gives the rate of convergence for the quadratic form estimator. In
Section 5, we define the LM and Wald test statistics, and establish their asymptotic
distributions under both null and local alternatives. We also consider testing linear
restrictions of μ. Section 6 conducts Monte Carlo simulations comparing our
approach with Ledoit and Wolf estimators. Section 7 concludes. All the major
proofs are put in the Appendix while auxiliary lemmas and theorems are in
Section B.

1.1. NOTATION

Let A be an m × n matrix. Let vec A denote the vector obtained by stacking
the columns of A one underneath the other. The commutation matrix Km,n is an
mn×mn orthogonal matrix which translates vec A to vec (Aᵀ), that is, vec (Aᵀ) =
Km,n vec (A). If A is a symmetric n × n matrix, its n(n − 1)/2 supradiagonal
elements are redundant in the sense that they can be deduced from symmetry. If we
eliminate these redundant elements from vec A, we obtain a new n(n + 1)/2 × 1
vector, denoted vech A. They are related by the full-column-rank, n2 ×n(n+1)/2
duplication matrix Dn: vec A = Dn vech A. Conversely, vech A = D+

n vec A,
where D+

n is n(n+1)/2×n2 and the Moore–Penrose generalized inverse of Dn. In
particular, D+

n = (Dᵀ
n Dn)

−1Dᵀ
n because Dn is full-column-rank.

For x ∈ R
n, let ‖x‖2 :=

√∑n
i=1 x2

i and ‖x‖∞ := max1≤i≤n |xi| denote the
euclidean (�2) norm and the element-wise maximum (�∞) norm, respectively. Let
λmax(·) and λmin(·) denote the maximum and minimum eigenvalues of some real
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symmetric matrix, respectively. For any real m × n matrix A = (ai,j)1≤i≤m,1≤j≤n,
let ‖A‖F := [tr(AᵀA)]1/2 ≡ [tr(AAᵀ)]1/2 ≡ ‖vec A‖2, ‖A‖1 := ∑m

i=1

∑n
j=1 |ai,j|,

‖A‖�2 := max‖x‖2=1 ‖Ax‖2 ≡ √
λmax(AᵀA), ‖A‖�1 := max1≤j≤n

∑m
i=1 |ai,j|, and

‖A‖�∞ := max1≤i≤m
∑n

j=1 |ai,j| denote the Frobenius (�2) norm, �1 norm, and
spectral norm (�2-operator norm), maximum column sum matrix norm (�1-
operator norm), and maximum row sum matrix norm (�∞-operator norm) of
A, respectively. Note that ‖ · ‖∞ can also be applied to matrix A, that is,
‖A‖∞ = max1≤i≤m,1≤j≤n |ai,j|; however, ‖ · ‖∞ is not a matrix norm so it does
not have the submultiplicative property of a matrix norm.

Landau (order) notation in this article, unless otherwise stated, should be
interpreted in the sense that n,T → ∞ simultaneously. An absolute positive
constant refers to a constant independent of anything which is a function of n
and/or T. We write a � b if there exist absolute constants 0 < c1 ≤ c2 such that
c1b ≤ a ≤ c2b. For real numbers a,b, let a∨b denote max(a,b).

2. THE MODEL AND IDENTIFICATION

We now directly work with the high-level n-dimensional random vector yt with
μ := Eyt and � := E[(yt − μ)(yt − μ)ᵀ] for every t. In particular, � takes the
form of (1.1). For each j, �j contains nj(nj + 1)/2 − 1 (unrestricted) parameters.
In total, model (1.1 ) contains

∑v
j=1 nj(nj + 1)/2 − (v − 1) unknown parameters.

This model is the same as considered in Hafner et al. (2020) except that we make a
different identifying restriction. The implied form for �−1 is also Kronecker, that
is, �−1 = σ−2 ×�−1

1 ⊗·· ·⊗�−1
v .

We show that model (1.1) is indeed identified. First, the parameter σ is identified
because

tr(�) = σ 2 × tr(�1 ⊗·· ·⊗�v) = σ 2 × tr(�1)×·· ·× tr(�v) = σ 2n,

whence we have σ 2 = tr(�)/n. We next consider identification of the remain-
ing parameters based on the partial trace operator (Filipiak, Klein, and
Vojtkova, 2018). Suppose that an n×n matrix A can be written in terms of n1 ×n1

blocks of n−1 ×n−1 dimensional matrices A−1;i,j, where n−1 := n/n1; that is,

A =
⎛
⎜⎝

A−1;1,1 · · · A−1;1,n1

. . .
...

A−1;n1,n1

⎞
⎟⎠ . (2.1)

Then the partial trace operator PTRn1 : Rn×n→ R
n1×n1 is defined as follows:

PTRn1(A) =
⎛
⎜⎝

tr(A−1;1,1) · · · tr(A−1;1,n1)

. . .
...

tr(A−1;n1,n1)

⎞
⎟⎠ .

Consider model (1.1), and let �−1 := �2 ⊗·· ·⊗�v. Define the n1 ×n1 matrix
d(1) := PTRn1(�) = σ 2tr(�−1) × �1. Then �1 = d(1)/(tr(d(1))/n1). According
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to Def. 1.1(ii) of Filipiak et al. (2018), PTRn1(�) =∑n−1
�=1(In1 ⊗ eᵀ

�,n−1
)�(In1 ⊗

e�,n−1), where e�,n−1 is the n−1 × 1 elementary vector with one in position � and
zero elsewhere. In this sense, d(1) is a quadratic form of �.

We next consider the remaining components �h,h = 2, . . . ,v. Write

�−h :=
{

�h+1 ⊗·· ·⊗�v ⊗�1 ⊗·· ·⊗�h−1 for h = 2, . . . ,v−1

�1 ⊗·· ·⊗�v−1 for h = v.
.

Note that �−h is n−h × n−h dimensional, where n−h := n/nh. Recalling the
identity B ⊗ A = Kp,m(A ⊗ B)Km,p for A (m × m) and B (p × p) (Magnus and
Neudecker, 1986, Lem. 4), we write

�(h) := Knh×···×nv,n1×···×nh−1�Kn1×···×nh−1,nh×···×nv

= Knh×···×nv,n1×···×nh−1(σ
2 ×�1 ⊗·· ·⊗�v)Kn1×···×nh−1,nh×···×nv

= σ 2 ×�h ⊗�h+1 ⊗·· ·⊗�v ⊗�1 ⊗·· ·⊗�h−1 = σ 2 ×�h ⊗�−h. (2.2)

Define the nh ×nh matrix d(h) := PTRnh(�
(h)) = σ 2tr(�−h)×�h. Then,

�h = d(h)

tr(d(h))/nh
.

3. ESTIMATION

We observe an n-dimensional weakly stationary time series vector {yt}T
t=1 with

mean μ and covariance matrix �. Define the sample covariance matrix

MT := 1

T

T∑
t=1

(yt − ȳ)(yt − ȳ)ᵀ,

where ȳ := 1
T

∑T
t=1 yt. Define d̂(1) := PTRn1(MT). Then let �̃1 := d̂(1)/(tr(d̂(1))/n1).

Likewise, define the “permuted” sample covariance matrix

M(h)
T := Knh×···×nv,n1×···×nh−1 MTKn1×···×nh−1,nh×···×nv, (3.1)

for h = 2, . . . ,v. Define d̂(h) := PTRnh(M
(h)
T ) for h = 2, . . . ,v. Then

�̃h := d̂(h)

tr(d̂(h))/nh

, (3.2)

for h = 1, . . . ,v.
The quadratic form estimator �̃ for � is

�̃ = σ̂ 2 × �̃1 ⊗·· ·⊗ �̃v,

σ̂ 2 := tr(MT)

n
. (3.3)
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By Lem. 2.4 of Filipiak et al. (2018), if MT is symmetric and positive semidefinite,
then so are {�̃j}v

j=1 and hence �̃. Moreover, simulations show that even for positive

semidefinite MT , {�̃j}v
j=1, and hence �̃, are positive definite. As a result, the

quadratic form estimator �̃−1 for �−1 is �̃−1 = σ̂−2 ×�̃−1
1 ⊗·· ·⊗�̃−1

v . We stress
that �̃−1 exists even if n > T . The quadratic form estimator is closely related to
the quasi-maximum likelihood estimation, but has the particular advantage in large
dimensions in the sense that it is in closed form.4

In general, we expect each element of MT to be
√

T-consistent, but here we are
averaging over a large number of such elements. Under a cross-sectional weak
dependence condition, like Assumption 4.3, we should have a rate improvement
for the quadratic form estimator. We formally establish this in Section 4.

4. THE RATE OF CONVERGENCE

In this section, we shall derive the rate of convergence for the quadratic form
estimator. We make the following assumptions:

Assumption 1.

(i) The sample {yt}T
t=1 are independent over t.

(ii)

max
1≤i≤n

1

T

T∑
t=1

E|yt,i|m ≤ Am, m = 2,3, . . . ,

for some absolute positive constant A.
(iii) Consider a normal random vector zt, which has the same mean vector and

covariance matrix as those of yt. The n2 ×n2 kurtosis matrix of yt satisfies

var
(
(yt −μ)⊗ (yt −μ)

)≤ C var
(
(zt −μ)⊗ (zt −μ)

)
,

for some absolute positive constant C for every t, where ≤ is to be interpreted
componentwise.

Assumption 4.1(i) facilitates our technical analysis, but is perhaps not necessary.
Assumption 4.1(ii) assumes the existence of an infinite number of moments of
yt, which allows one to invoke a concentration inequality such as the Bern-
stein’s inequality. Normal random vectors or random vectors that exhibit some
exponential-type tail probability (e.g., subgaussianity, subexponentiality, semiex-
ponentiality, etc.) satisfy this condition. Assumption 4.1(iii) supposes that the
kurtosis matrix of yt is of the same order of magnitude as if it were a normal random
vector. We impose this restriction on the kurtosis matrix of yt because not much

4In the previous version of this article, we introduced a variant of the quadratic form estimator, which was derived
by replacing the partial trace operator with a partial sum operator. Because of inferiority of that variant, we no longer
include it in the current version.
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research has touched on unrestricted kurtosis matrices in the large dimensional
case.

Assumption 2.

(i) {nj}v
j=1 are all fixed for any fixed v and v → ∞ (i.e., n,T → ∞).

(ii) min1≤j≤v λmin(�j) is bounded away from zero by an absolute positive constant
as n,T → ∞.

Assumption 4.2(i) says that the dimensions of the submatrices are fixed when
the number of submatrices tends to infinity. Note that Assumption 4.2(ii) does not
necessarily imply that λmin(�) is bounded away from zero by an absolute positive
constant. This is because λmin(�) = σ 2 ×∏v

j=1 λmin(�j) and v → ∞.

LEMMA 4.1. Suppose Assumption 4.2(i) hold. We have

(i) v = O(logn).
(ii) max1≤j≤v λmax(�j) is bounded from above by an absolute positive constant as

n,T → ∞.

Note that Lemma 4.1(ii) does not necessarily imply that λmax(�) is bounded
from above by an absolute positive constant. This is because λmax(�) = σ 2 ×∏v

j=1 λmax(�j) and v → ∞.

Assumption 3. Let 0 ≤ β1 ≤ 2.

lim
n→∞

1

nβ1
‖�‖2

F = lim
n→∞

σ 4

nβ1

( v∏
j=1

‖�j‖2
F

)
= ω < ∞.

Assumption 4.3 characterizes the cross-sectional dependence of {yt}T
t=1. Accord-

ing to Prop. 1 of Chudik and Pesaran (2013), {yt}T
t=1 is said to be cross-sectionally

weakly dependent. The smaller β1 is, the less cross-sectional dependence of {yt}T
t=1

is allowed and the stronger Assumption 4.3 is. When β1 = 2, Assumption 4.3
is slack as we are not restricting cross-sectional dependence of {yt}T

t=1 at all
(‖�‖2

F = O(n2) in general). On the one hand, we would like to assume β1 as close
to 2 as possible to make Assumption 4.3 as weak as possible. On the other hand,
the smaller β1 is, the weaker cross-sectional dependence {yt}T

t=1 exhibits, and the
faster rate of convergence the quadratic form estimator will be able to achieve.
There is a trade-off.

One important case is β1 = 1. In this case, one sufficient condition for Assump-
tion 4.3 is that � has bounded maximum column sum matrix norm (i.e., ‖�‖�1 =
O(1)) or bounded maximum row sum matrix norm (i.e., ‖�‖�∞ = O(1)). To see
this,

1

n
‖�‖2

F ≤ 1

n
n‖�‖2

�1
= 1

n
n‖�‖2

�∞ = O(1).
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Note that for symmetric �, bounded maximum column sum matrix norm or
bounded maximum row sum matrix norm implies that the maximum eigenvalue
of � is bounded from above by an absolute positive constant and the minimum
eigenvalue of �−1 is bounded away from zero by an absolute positive constant:
1/(λmin(�

−1)) = λmax(�) = ‖�‖�2 ≤ ‖�‖�1 = ‖�‖�∞ = O(1). The assumption
of bounded maximum column/row sum matrix norm has been used by Fan, Liao,
and Yao (2015) (their Assump. 4.1(i)) and Pesaran and Yamagata (2012) (their
Assump. 3).

THEOREM 4.1. Suppose Assumptions 4.1, 4.2, and 4.3 hold. If log3n/T → 0
as n,T → ∞, then we have

(i) ∥∥�̃ −�
∥∥

F

‖�‖F
= Op

(√
log3n

n2−β1 T

)
+Op

(
log2n

T

)
.

(ii) ∥∥�̃−1 −�−1
∥∥

F

‖�−1‖F
= Op

(√
log3n

n2−β1 T

)
+Op

(
log2n

T

)
.

(iii) ∥∥�̃ −�
∥∥

1

‖�‖1
= Op

(√
log3n

n2−β1 T

)
+Op

(
log2n

T

)
.

(iv) ∥∥�̃−1 −�−1
∥∥

1

‖�−1‖1
= Op

(√
log3n

n2−β1 T

)
+Op

(
log2n

T

)
.

(v) ∥∥�̃ −�
∥∥

�2

‖�‖�2

= Op

(√
log3n

n2−β1 T

)
+Op

(
log2n

T

)
.

(vi) ∥∥�̃−1 −�−1
∥∥

�2

‖�−1‖�2

= Op

(√
log3n

n2−β1 T

)
+Op

(
log2n

T

)
.

The reason that we divide the Frobenius norm of the estimation error, say,
‖�̃ −�‖F, by the Frobenius norm of the target, that is, ‖�‖F, is to define a proper
notion of “consistency.” This is necessary because the cross-sectional dimension
n is growing to infinity. In this case, even if every element of a matrix-valued
estimator is converging in probability to the corresponding element of its target
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matrix, there is no guarantee that its overall estimation error will converge to zero in
probability when n,T → ∞. The rescaling of the Frobenius norm of the estimation
error is standard in the large dimensional case, but in the literature, scholars tend
to divide the Frobenius norm of the estimation error by

√
n (e.g., see Bickel and

Levina, 2008, Thm. 2; Fan et al., 2011, p. 3330; Ledoit and Wolf, 2004, Def. 1,
etc.). The same reasoning applies to the �1 and the spectral norm of the estimation
error.

Note that there are two terms on the right side. The term Op(log2n/T) exists
because we need to estimate the unknown μ. If we knew μ, this term would not
be present.5 The rateof convergence, (log3n/(n2−β1 T))

1/2
, contains an additional,

nonstandard item
√

n2−β1 in the denominator. This nonstandard item exists because
of the cross-sectional weak dependence condition (Assumption 4.3). If β1 = 2
(i.e., we are not restricting cross-sectional dependence of {yt}T

t=1 at all), this term
vanishes. The rate of convergence of the quadratic form estimator then becomes
(log3n/T)1/2, which is comparable to the convergence rates of other existent
estimators in the large dimensional case.

Take part (i) of the theorem as an illustration. If β1 = 2 and we knew μ, we
have ‖‖�̃ −�‖‖F = Op(‖�‖F(log3n/T)1/2). A typical threshold estimator �̂thres

has ‖�̂thres −�†‖F = Op
(
(sn logn/T)1/2

)
, where �† is some sparse truth and s is

its sparsity index (see Bickel and Levina, 2008, Thm. 2 with q = 0). According
to Bickel and Levina (2008), s is the upper bound of nonzero elements for every
row, so ‖�†‖F = O(

√
sn) under the sparsity model. If one assumes ‖�†‖F � √

sn,
one can write ‖�̂thres − �†‖F = Op

(‖�†‖F(logn/T)1/2
)
. Then the two rates of

convergence only differ by a logarithmic factor.
Because of the cross-sectional weak dependence condition (Assumption 4.3),

the quadratic form estimator is able to achieve a faster rate of convergence than a
typical estimator does.

5. TEST STATISTICS

We apply our methodology to the testing issue. We consider the problem of testing
the null hypothesis H0 : μ = μ0 against the alternative H1 : μ 
= μ0.

The classical Wald test statistic (based on the sample covariance matrix MT ) is
not defined when n ≥ T; there is a large literature that proposes alternative test
statistics. Bai and Saranadasa (1996) proposed a statistic based on ‖ȳ‖2

2, thereby
avoiding the inversion of the large sample covariance matrix, and established its
asymptotic normality. Pesaran and Yamagata (2012) extended this approach to
the Capital Asset Pricing Model (CAPM) regression setting and proposed several
test statistics. One of the test statistics is based on ‖t‖2

2, where t is a vector of
individual t-statistics; Pesaran and Yamagata (2012) derived the limiting normal
distribution of the centred and scaled version of this under cross-sectional weak
dependence conditions. Fan et al. (2015) considered a Wald test statistic for testing

5If we knew μ, the estimation procedure in Section 3 applies to M0
T := T−1∑T

t=1(yt −μ)(yt −μ)ᵀ instead of MT .
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the CAPM restrictions inside a linear regression in the large dimensional case.
They regularized the estimated error covariance matrix by imposing a sparsity
assumption, and used that to form a quadratic form. They established the null
limiting distribution of their test statistic (they also proposed a novel power
enhancement procedure, which we do not study here).

We now define the LM test statistic

LMn,T = T(ȳ−μ0)
ᵀ�̃−1

μ0
(ȳ−μ0), (5.1)

where �̃μ0 is the quadratic form estimator assuming that we know μ = μ0. The
Wald test statistic is

Wn,T = T(ȳ−μ0)
ᵀ�̃−1(ȳ−μ0), (5.2)

which is the Hotelling T2-statistic based on the quadratic form estimator. We next
present the large sample properties of the binity LMn,T and Wn,T . We make one
more cross-sectional dependence assumption.

Assumption 4. Let 0 ≤ β2 ≤ 2.

lim
n→∞

1

nβ2
‖�−1‖1 = lim

n→∞
1

nβ2σ 2

( v∏
j=1

‖�−1
j ‖1

)
= ω′ < ∞.

The bigger β2 is, the weaker Assumption 5.1 is. This is because it is putting
less restriction on the cross-sectional dependence of �−1. When β2 = 2, Assump-
tion 5.1 is slack, as in essence we are not restricting anything. On the one hand,
we wish to assume β2 as close to 2 as possible to make Assumption 5.1 as weak
as possible. On the other hand, we wish to assume that β2 is as small as possible
so that our methodology could accommodate an n as large as possible.

One important case is β2 = 1. In this case, a sufficient condition for Assump-
tion 5.1 is that �−1 has bounded maximum column sum matrix norm (i.e.,
‖�−1‖�1 = O(1)) or bounded maximum row sum matrix norm (i.e., ‖�−1‖�∞ =
O(1)). To see this

1

n
‖�−1‖1 = 1

n

n∑
i=1

n∑
j=1

∣∣(�−1)i,j

∣∣≤ max
1≤i≤n

n∑
j=1

∣∣(�−1)i,j

∣∣
= ‖�−1‖�∞ = ‖�−1‖�1 = O(1).

Note that for symmetric �−1, bounded maximum column sum matrix norm
or bounded maximum row sum matrix norm implies that the maximum eigen-
value of �−1 is bounded from above by an absolute positive constant and the
minimum eigenvalue of � is bounded away from zero by an absolute positive
constant: 1/(λmin(�)) = λmax(�

−1) = ‖�−1‖�2 ≤ ‖�−1‖�1 = ‖�−1‖�∞ = O(1).
The assumption of bounded maximum column/row sum matrix norm has been
used by Fan et al. (2015) (their Assump. 4.1(i)) and Pesaran and Yamagata (2012)
(their Assump. 3).
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THEOREM 5.1. Suppose Assumptions 4.1, 4.2, 4.3, and 5.1 hold. We make the
following assumptions:

(a)

n2β2+β1−3log5n

T
= o(1).

(b) Consider the Cholesky decomposition of �, that is, � = LLᵀ, where L is
a nonsingular lower triangular matrix L with positive diagonal elements.
Assume that xt := L−1(yt −μ) is cross-sectionally independent for any t, and
for some δ > 0

limsup
n,T→∞

max
1≤i≤n

max
1≤t≤T

E
∣∣xt,i

∣∣4+2δ
< ∞.

Then under H0 : μ = μ0, as n,T → ∞,

LMn,T −n√
2n

d−→ N(0,1).

If one additionally assumes

nβ2− 1
2 · log3n

T
= o(1), (5.3)

then under H0 : μ = μ0, as n,T → ∞,

Wn,T −n√
2n

d−→ N(0,1). (5.4)

For the LM test, if we want to allow the interesting case of n/T → ∞, then
assumption (a) necessarily implies that 2β2 +β1 < 4, which restricts both β2 and
β1. In the special case of β1 = β2 = 1, assumption (a) is reduced to log5n/T = o(1),
which is a weak condition.

Assumption (b) is standard in the literature. Fan et al. (2015) maintained
normality (their Assump. 4.1(i)), which is a special case of assumption (b).
Pesaran and Yamagata (2012) also maintained assumption (b) (their Assump.
2a). Assumption (b) implicitly assumes that λmin(�) is bounded away from zero
by an absolute positive constant, which strengthens Assumption 4.2(ii). Also
note that var (xt) = In, so strengthening from cross-sectional uncorrelatedness to
cross-sectional independence in assumption (b) is rather innocuous. In addition,
we assume that the (4 + 2δ)th moment of xt,i is (uniformly in i and t) finite
for n,T sufficiently large, which is also a weak assumption. Under the more
restricted sequential limit (T → ∞ and then n → ∞),

√
T(ȳ−μ0) is approximately

normal so the limiting properties could be calculated for the non-normal case as if
normality held. However, in our framework of joint limits, such procedures break
down, so we make assumption (b).

In the low-dimensional case (n fixed, T → ∞), the LM test statistic LMn,T and
the Wald test statistic Wn,T are asymptotically equivalent in the sense that they
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all converge in distribution to χ2
n .6 In the large dimensional case (n,T → ∞),

Theorem 5.1 shows that LMn,T and Wn,T are, again, asymptotically equivalent.
The Wald test requires an additional rate restriction (5.3), which is the price we
pay for estimating �−1 under the alternative H1 : μ 
= μ0.

Recall that a typical threshold estimator �̂thres has ‖�̂−1
thres − (�†)−1‖�2 =

Op
(
s(logn/T)1/2

)
, where �† is some sparse truth and s is its sparsity index (see

Bickel and Levina, 2008, Thm. 1 with q = 0). For this rate of convergence, a result
like (5.4) requires, as both Pesaran and Yamagata (2012) and Fan et al. (2015) have
pointed out, n logn/T = o(1), which is essentially a low-dimensional scenario.
Pesaran and Yamagata (2012) and Fan et al. (2015) have hence come up with their
own ingenious ways to relax the condition n logn/T = o(1) and established results
similar to (5.4) for their Wald test statistics in the CAPM context.

In the case of our Wald test, if we also want to allow the interesting large
dimension case of n/T → ∞, then assumption (a) and (5.3) necessarily imply that
2β2 +β1 < 4 and β2 < 3/2, respectively. For example, we can choose the special
case β1 = β2 = 1, so assumption (a) and (5.3) reduce to

log5n

T
= o(1),

n
1
2 · log3n

T
= o(1),

the latter of which is the binding rate condition and the same as the rate condition
in Assump. 4.2 of Fan et al. (2015).

In the simulation study below, we compare our tests with test statistics that use
Ledoit and Wolf procedures to regularize the sample covariance matrix estimator.

5.1. Power Investigation

In this section, we analyze the asymptotic distributions of the proposed test
statistics under the alternative hypothesis H1 : μ 
= μ0. In particular, we shall
focus on a sequence of local alternatives H1 : μ = μT := μ0 + θ/

√
T , where

max1≤i≤n |θi| = O(
√

logn). We focus on the Wald test without loss of generality.

THEOREM 5.2. Suppose Assumptions 4.1, 4.2, 4.3, and 5.1 hold. We make the
following additional assumptions:

(a) (i)

n2β2+β1−3 · log5n

T
= o(1),

(ii)

nβ2− 1
2 · log3n

T
= o(1).

6The finite sample performance of these statistics is known to vary. Park and Phillips (1988) established higher order
approximations for a Wald test of nonlinear restrictions in the finite dimensional case, and showed how to improve
performance of the test statistic. It may be possible to apply their methodology to the large dimensional case.
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(b) Consider the Cholesky decomposition of �, that is, � = LLᵀ, where L is an
n × n nonsingular lower triangular matrix with positive diagonal elements.
Assume that xt := L−1(yt −μ) is cross-sectionally independent for any t, and
for some δ > 0

limsup
n,T→∞

max
1≤i≤n

max
1≤t≤T

E
∣∣xt,i

∣∣4+2δ
< ∞

limsup
n→∞

1

n

n∑
i=1

∣∣(L−1θ)i

∣∣2+δ
< ∞.

Then under H1 : μ = μ0 + θ/
√

T,

Wn,T −n√
2n
(
1+ 2

nθᵀ�−1θ
) − θᵀ�−1θ√

2n
(
1+ 2

nθᵀ�−1θ
) d−→ N(0,1).

The preceding theorem shows that the asymptotic distribution of (Wn,T −
n)/

√
2n+4θᵀ�−1θ under H1 has a center θᵀ�−1θ/

√
2n+4θᵀ�−1θ . Note that

θᵀ�−1θ√
2n+4θᵀ�−1θ

≥ θᵀθλmin(�
−1)√

2n+4θᵀθλmax(�−1)
= θᵀθ/λmax(�)√

2n+4θᵀθ/λmin(�)
.

In the special case of 0 < λmin(�) < λmax(�) < ∞, we see that the test has power
against local alternatives that satisfy max1≤i≤n |θi| = O(

√
logn) and θᵀθ = O(nδa),

where δa ≥ 1/2, and power tending to one in the case where δa > 1/2. This
specification requires that θ has a sufficiently large number of nonzero elements.
It does not require that all the elements of θ are nonzero.

5.2. Testing Linear Restrictions of μ

In this section, we consider testing linear restrictions of μ using two approaches.
We first consider H0 : Rμ = r, where R is a q×n matrix of rank q. We assume that
q is a fixed number; this case covers applications where a finite number of linear
restrictions are coming from economic theory.

THEOREM 5.3. Suppose Assumptions 4.1, 4.2, and 4.3 hold. We also make the
following assumptions:

(a) λmin(�) is bounded away from zero by an absolute positive constant.
(b) Consider H0 : Rμ = r, where R is a q×n matrix of rank q for any fixed n and

n → ∞ (q is a fixed number). Moreover, R and r are rescaled in such a way
that λmin(RRᵀ) is bounded away from zero by an absolute constant, and

λmax(RRᵀ)‖�‖�2

(√
log3n

n2−β1 T
+ log2n

T

)
= o(1). (5.5)
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Then under H0 : Rμ = r, if log3n/T → 0 as n,T → ∞,

W∗
n,T := T(Rȳ− r)ᵀ(R�̃Rᵀ)−1(Rȳ− r)

d−→ χ2
q .

Assumption (a) strengthens Assumption 4.2(ii) slightly, which is a mild condi-
tion. A sufficient condition for (5.5) in assumption (b) is λmax(RRᵀ) is bounded
from above by an absolute positive constant and ‖�‖�2 < ∞. The requirement
of λmin(RRᵀ) and λmax(RRᵀ) being bounded away from zero and from above by
absolute positive constants, respectively, could be achieved by normalizing each
row of R to have �2 norm of 1.

We next take another approach to derive simultaneous confidence intervals for
all linear combinations of μ.

LEMMA 5.1. Suppose Assumptions 4.1, 4.2, 4.3, and 5.1 hold. Simultaneously
for all φ ∈ R

n, the unknown μ satisfies the following inequalities with confidence
1−α:

T
[
φᵀ(ȳ−μ)

]2
/φᵀ�̃φ −n√

2n
< zα,

as n,T → ∞, where zα is the upper α percentile of a standard normal.

One disadvantage of this approach is that the confidence region for μ could be
conservative.

6. SIMULATION STUDY

In this section, we provide some Monte Carlo simulations that evaluate perfor-
mance of our procedures.

6.1. The Correctly Specified Case

We suppose that yt ∼ N(μ,�) with � = �1 ⊗·· ·⊗�v, where

�j =
(

1 ρj

ρj 1

)
|ρj| < 1, j = 1, . . . ,v,

so in this case � is also the correlation matrix. Given ‖�j‖2
F = 2(1+ρ2

j ), we have

1

nβ1
‖�‖2

F = 1

nβ1

v∏
j=1

2(1+ρ2
j ) = n1−β1

v∏
j=1

(1+ρ2
j ).

Since
∏v

j=1(1+ρ2
j ) ≥ 1, Assumption 4.3 necessarily implies β1 ≥ 1. When β1 = 1,

1/nβ1‖�‖2
F = ∏v

j=1(1 + ρ2
j ), which converges to a finite, nonzero limit as v →

∞ if and only if
∑v

j=1 ρ2
j converges (Knopp, 1947, Thm. 28.3). When β1 > 1,

Assumption 4.3 is satisfied if
∏v

j=1(1+ρ2
j ) = O(nβ1−1).
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Likewise

‖�−1
j ‖1 = 2(1+|ρj|)

1−ρ2
j

= 2

1−|ρj| j = 1, . . . ,v,

so that via Lemma 2.3 in Section B

1

nβ2
‖�−1‖1 = 1

nβ2

v∏
j=1

‖�−1
j ‖1 = n1−β2

v∏
j=1

1

1−|ρj| = n1−β2
1∏v

j=1

(
1−|ρj|

) .

Since
∏v

j=1

(
1−|ρj|

)≤ 1, Assumption 5.1 necessarily implies β2 ≥ 1. When β2 =
1, 1/nβ2‖�−1‖1 = 1/

∏v
j=1

(
1−|ρj|

)
, the denominator of which converges to a

finite, nonzero limit as v → ∞ if and only if
∑v

j=1 |ρj| converges (Knopp, 1947,

Thm. 28.4). When β2 > 1, Assumption 5.1 is satisfied if
[∏

j=1

]v(
1−|ρj|

)−1 =
O(nβ2−1).7

We consider μ = 0, n = 2v, and ρj = ρ j for j = 1, . . . ,v. The number of Monte
Carlo simulations is 1,000. We compare the quadratic form estimator with Ledoit
and Wolf (2004)’s linear shrinkage estimator (the LW04 estimator hereafter) and
Ledoit and Wolf (2017)’s direct nonlinear shrinkage estimator (the LW17 estimator
hereafter).8

The first evaluation criterion is the relative mean square error (MSE) in terms
of �. Given a generic estimator �̂G of the covariance matrix �, we compute

E‖�̂G −�‖2
F

‖�‖2
F

,

where the expectation operator is taken with respect to all the simulations. Often
the precision matrix �−1 is of more interest than �, so we also compute the MSE
of the estimator of �−1:

E‖�̂−1
G −�−1‖2

F

‖�−1‖2
F

,

where the expectation operator is taken with respect to all the simulations. Note
that this requires invertibility of the generic estimator �̂G and therefore cannot be
calculated for the sample covariance matrix MT when n > T .

We next calculate

1− E‖�̂G −�‖2
F

E‖MT −�‖2
F

,

where the expectation operator is taken with respect to all the simulations. The
preceding display is called the simulated percentage relative improvement in

7Furthermore, the largest eigenvalue of � is
∏v

j=1(1 + |ρj|), which converges as v → ∞ if and only if
∑v

j=1 |ρj|
converges (Knopp, 1947, Thm. 28.3).
8The Matlab code for the LW04 and LW17 estimators is downloaded from the website of Professor Michael Wolf
from the Department of Economics at the University of Zurich. We are grateful for this.
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average loss (PRIAL) criterion in terms of � by Ledoit and Wolf (2004). The
PRIAL measures the performance of the generic estimator �̂G with respect to
the sample covariance estimator MT . Note that PRIAL∈ (−∞,1]: A negative
value means �̂G performs worse than MT while a positive value means otherwise.
Likewise we also compute

1− E‖�̂−1
G −�−1‖2

F

E‖M−1
T −�−1‖2

F

.

Note that this requires invertibility of the sample covariance matrix MT and
therefore can only be calculated for n < T .

Finally, we consider testing H0 : μ = 0 against H1 : μ 
= 0. We compute sizes of
the LM and Wald tests (Theorem 5.1). The significance level is 5%. To investigate

power, we generate μi as μi
i.i.d.∼ N(0,1)/

√
T for i = 1,2, . . . ,�n0.7�, where �x� is

the largest integer less than or equal to x; μi = 0 for i = �n0.7�+1,�n0.7�+2, . . . ,n.
These also require invertibility of �̂G.

The results are reported in Tables 1–3. In Table 1, we set T = 252 and v =
10 so that n = 2v = 1,024; we set ρ = 0.5,0.7,0.85. First, consider the top panel
(ρ = 0.5). For the MSE in terms of � (i.e., MSE-1), all the estimators beat the
sample covariance matrix MT by a large margin. The quadratic form estimator �̃

also outperformed the LW04 and LW17 estimators considerably. For the MSE in
terms of �−1 (i.e., MSE-2), a similar pattern exists. Note that the MSE-2 cannot
be computed for MT because MT is not invertible when n > T . For the PRIAL in
terms of � (i.e., PRIAL-1), again �̃ is better than the LW04 and LW17 estimators.
The sample covariance matrix MT has zero PRIAL-1 by definition. The superiority
of �̃ in this experiment is expected because the true covariance matrix is indeed a
Kronecker product.

Considering the size of the Wald test, we realize that the quadratic form
estimator �̃ has the correct size while the LW04 and LW17 estimators are over-
sized. Note that the Wald test is not defined for MT because MT is not invertible.
Size of the LM test is similar to that of the Wald test for �̃, but the LM test
seems to perform poorly for both the LW04 and LW17 estimators. Undoubtedly,
the quadratic form estimator �̃ is the best performing estimator.

As we increase the “mother” correlation parameter ρ from 0.5 to 0.85, perfor-
mance of �̃ remains unchanged across all five criteria. In terms of MSE-1, perfor-
mance of MT improves while performances of LW04 and LW17 estimators initially
worsen and then improve. In terms of MSE-2, PRIAL-1, the size of the LM test, and
the size of the Wald test, the performances of both the LW04 and LW17 estimators
worsen. Again the quadratic form estimator �̃ is the best performing estimator.

Next, we fix ρ at 0.7 and examine effects of n and T; the results are reported in
Table 2. If we fix T at 252 and increase v (and hence n), in terms of MSE-1, all
the estimators except the quadratic form estimator �̃ worsen. The same pattern is
observed when we use the MSE-2 criterion instead (the sample covariance matrix
MT dropped out in this case). In terms of PRIAL-1, we see that all the candidate
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Table 1. MT , �̃, LW04, and LW17 stand for the sample covariance matrix,
quadratic form estimator, Ledoit and Wolf (2004)’s linear shrinkage estimator,
and Ledoit and Wolf (2017)’s direct nonlinear shrinkage estimator, respectively.
MSE-1 and MSE-2 are the MSE in terms of � and �−1, respectively. PRIAL-1
is the PRIAL in terms of �. T = 252 and n = 210 = 1,024. 0.000 means less than
0.001.

MT �̃ LW04 LW17

ρ = 0.5

MSE-1 2.989 0.000 0.242 0.243

MSE-2 NA 0.000 0.311 0.308

PRIAL-1 0 1.000 0.919 0.919

Size of LM NA 0.051 1.000 1.000

Size of Wald NA 0.050 0.085 0.093

ρ = 0.7

MSE-1 1.760 0.000 0.429 0.430

MSE-2 NA 0.000 0.722 0.715

PRIAL-1 0 1.000 0.756 0.756

Size of LM NA 0.050 1.000 1.000

Size of Wald NA 0.051 0.158 0.164

ρ = 0.85

MSE-1 0.501 0.001 0.320 0.316

MSE-2 NA 0.002 0.980 0.980

PRIAL-1 0 0.998 0.360 0.370

Size of LM NA 0.051 1.000 1.000

Size of Wald NA 0.060 0.334 0.329

estimators are becoming increasingly superior to MT . As n increases, size of the
Wald test worsens for all the estimators except �̃; a similar pattern is observed for
the LM test. If we increase T from 252 to 504, all the estimators improve in terms
of both the MSE-1 and MSE-2 criteria. Also sizes of the Wald and LM tests in
general improve for all the estimators.

The results of power investigation are reported in Table 3. We see that power
of the quadratic form estimator �̃ is very good for the specified local alternative.
Powers of the LW04 and LW17 estimators in terms of the Wald test are less good.
Powers of the LW04 and LW17 estimators in terms of the LM test come at a price
of their sizes.

6.2. The Misspecified Case

To gauge how well the Kronecker product model performs when the true covari-
ance matrix does not have a Kronecker product form, we consider the Monte Carlo
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Table 2. MT , �̃, LW04, and LW17 stand for the sample covariance matrix,
quadratic form estimator, Ledoit and Wolf (2004)’s linear shrinkage estimator,
and Ledoit and Wolf (2017)’s direct nonlinear shrinkage estimator, respectively.
MSE-1 and MSE-2 are the MSE in terms of � and �−1, respectively. PRIAL-1 is
the PRIAL in terms of �. ρ = 0.7. 0.000 means less than 0.001.

MT �̃ LW04 LW17 MT �̃ LW04 LW17

n = 29, T = 252 n = 29, T = 504

MSE-1 0.882 0.001 0.346 0.345 0.442 0.000 0.249 0.246

MSE-2 NA 0.001 0.676 0.656 NA 0.000 0.601 0.531

PRIAL-1 0 0.999 0.608 0.609 0 0.999 0.438 0.443

Size of LM NA 0.039 1.000 1.000 NA 0.053 1.000 1.000

Size of Wald NA 0.041 0.153 0.149 NA 0.058 0.148 0.151

n = 210, T = 252 n = 210, T = 504

MSE-1 1.760 0.000 0.429 0.430 0.882 0.000 0.345 0.344

MSE-2 NA 0.000 0.722 0.715 NA 0.000 0.677 0.659

PRIAL-1 0 1.000 0.756 0.756 0 1.000 0.608 0.610

Size of LM NA 0.050 1.000 1.000 NA 0.059 1.000 1.000

Size of Wald NA 0.051 0.158 0.164 NA 0.062 0.168 0.168

n = 211, T = 252 n = 211, T = 504

MSE-1 3.514 0.000 0.489 0.490 1.760 0.000 0.429 0.429

MSE-2 NA 0.000 0.747 0.744 NA 0.000 0.723 0.717

PRIAL-1 0 1.000 0.861 0.861 0 1.000 0.756 0.757

Size of LM NA 0.057 1.000 1.000 NA 0.057 1.000 1.000

Size of Wald NA 0.067 0.202 0.221 NA 0.060 0.169 0.181

setting used by Ledoit and Wolf (2004). We still assume that yt ∼ N(μ,�). The true
covariance matrix � is diagonal without loss of generality. The diagonal entries
�ii (i.e., the eigenvalues of �) are log normally distributed: log�ii ∼ N(μLW,σ 2

LW).
Ledoit and Wolf (2004) defined the grand mean μg and cross-sectional dispersion
α2 of the eigenvalues of � as, respectively,

μg := 1

n

n∑
i=1

�ii α2 := 1

n

n∑
i=1

(�ii −μg)
2.

In the Monte Carlo simulations, we re-define μg and α2 as the corresponding
population counterparts:

μg = E�ii = eμLW+σ 2
LW/2 α2 = var �ii = e2(μLW+σ 2

LW) − e2μLW+σ 2
LW.
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Table 3. MT , �̃, LW04, and LW17 stand for the sample covariance matrix,
the quadratic form estimator, the Ledoit and Wolf (2004)’s linear shrinkage
estimator, and the Ledoit and Wolf (2017)’s direct nonlinear shrinkage estimator,
respectively. T = 252. Powers are not size-adjusted.

MT �̃ LW04 LW17 MT �̃ LW04 LW17

ρ = 0.5, n = 29 ρ = 0.5, n = 210

Power of LM NA 0.890 0.730 0.866 NA 0.925 0.999 1.000

Power of Wald NA 0.905 0.689 0.734 NA 0.942 0.750 0.780

ρ = 0.7, n = 29 ρ = 0.7, n = 210

Power of LM NA 1.000 1.000 1.000 NA 1.000 1.000 1.000

Power of Wald NA 1.000 0.742 0.833 NA 1.000 0.746 0.806

ρ = 0.85, n = 29 ρ = 0.85, n = 210

Power of LM NA 1.000 1.000 1.000 NA 1.000 1.000 1.000

Power of Wald NA 1.000 0.990 1.000 NA 1.000 0.981 0.977

Ledoit and Wolf (2004) set μg = 1, so we can solve μLW = − log(1 +α2)/2 and
σ 2

LW = log(1+α2), whence we have

log�ii ∼ N

(
− log(1+α2)

2
, log(1+α2)

)
.

Note that in this data generating process, there are two sources of randomness: one
from the normal distribution of yt and the other from the log normal distribution
of �ii. Also note that a diagonal covariance matrix need not have a Kronecker
product structure unless, say, the diagonal elements are all equal. The number of
Monte Carlo simulations is again set at 1,000. In the baseline setting of Ledoit and
Wolf (2004), μ = 0,n = 20, T = 40, and α2 = 0.5.

There are a number of different Kronecker products that we can consider to
approximate � (see Hafner et al., 2020 for more discussions of model selection).
The possible Kronecker factorizations are 5×2×2, 4×5, 2×10. Within each Kro-
necker factorization, we can further permute the Kronecker submatrices to obtain
different Kronecker models. We study all the Kronecker products and compare
with the LW04 and LW17 estimators. All estimators do not use knowledge of μ = 0
and have to estimate it, except in the case of the LM test.

The results are reported in Table 4. The first observation is that the performance
of the quadratic form estimator �̃ is relatively robust to the Kronecker product
factorization; the best performing one is 2×5×2. All the candidate estimators beat
the sample covariance matrix MT . In terms of MSE-1 and MSE-2, the LW04 and
LW17 estimators are only slightly better than �̃(2×5×2). In terms of PRIAL-1
and PRIAL-2, �̃(2×5×2) is almost as good as the LW04 and LW17 estimators. In
terms of size of the LM test, �̃(2×5×2) has the correct size while the LW04 and
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Table 4. MT , �̃, LW04, and LW17 stand for the sample covariance matrix,
quadratic form estimator (factorizations given in parentheses), Ledoit and Wolf
(2004)’s linear shrinkage estimator, and Ledoit and Wolf (2017)’s direct nonlinear
shrinkage estimator, respectively. MSE-1 and MSE-2 are the MSE in terms of �
and �−1, respectively. PRIAL-1 and PRIAL-2 are the PRIAL in terms of � and
�−1, respectively. n = 20,T = 40,α2 = 0.5.

MT �̃ �̃ �̃ �̃

(5×2×2) (2×5×2) (2×2×5) (4×5)

MSE-1 0.446 0.137 0.136 0.137 0.140

MSE-2 6.876 0.154 0.153 0.154 0.163

PRIAL-1 0 0.684 0.685 0.682 0.675

PRIAL-2 0 0.977 0.977 0.977 0.976

Size of LM 0.004 0.043 0.050 0.038 0.038

Size of Wald 0.690 0.092 0.087 0.081 0.094

�̃ �̃ �̃ LW04 LW17

(5×4) (2×10) (10×2)

MSE-1 0.139 0.189 0.188 0.113 0.129

MSE-2 0.163 0.293 0.288 0.122 0.148

PRIAL-1 0.679 0.570 0.571 0.738 0.702

PRIAL-2 0.976 0.957 0.958 0.982 0.978

Size of LM 0.041 0.035 0.028 0.022 0.015

Size of Wald 0.100 0.163 0.167 0.074 0.083

LW17 estimators are under-sized. In terms of size of the Wald test, all candidate
estimators are slightly over-sized.

We next vary α2. We base the comparisons on the 2×5×2 Kronecker product
factorization. The results are reported in Table 5. As α2 increases, performance
of MT actually improves in terms of MSE-1 and MSE-2. On the other hand,
performances of �̃, the LW04 and LW17 estimators worsen in terms of MSE-
1, MSE-2, PRIAL-1, and PRIAL-2. The worsening performance of �̃ is not
surprising because α2 can be interpreted as the distance of � from a Kronecker
product model. The worsening performance of the LW04 estimator has also been
documented by Ledoit and Wolf (2004). As α2 increases, �̃ has roughly correct
size for the LM test while both the LW04 and LW17 estimators are under-sized.
In terms of the Wald test, all the candidate estimators are slightly over-sized.

Finally, we vary the ratio n/T . In the baseline setting, we have n/T = 0.5. Here
we consider two variations. The first variation is n = 16,T = 50 with a ratio of
n/T = 0.32. The second variation is n = 40,T = 20 with a ratio of n/T = 2. For
the first variation, we identify the Kronecker product factorizations: 2×2×2×2,
4×4, 4×2×2, and 2×8. For the second variation, we use the Kronecker product
factorizations: 5×2×2×2, 5×2×4, 5×8, and 10×2×2. We also considered

https://doi.org/10.1017/S026646662000050X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662000050X


1036 OLIVER B. LINTON AND HAIHAN TANG

Table 5. MT , �̃, LW04, and LW17 stand for the sample covariance matrix,
quadratic form estimator (factorizations given in parentheses), Ledoit and Wolf
(2004)’s linear shrinkage estimator, and Ledoit and Wolf (2017)’s direct nonlinear
shrinkage estimator, respectively. MSE-1 and MSE-2 are the MSE in terms of �
and �−1, respectively. PRIAL-1 and PRIAL-2 are the PRIAL in terms of � and
�−1, respectively. n = 20,T = 40.

MT �̃ LW04 LW17 MT �̃ LW04 LW17

(2×5×2) (2×5×2)

α2 = 0.25 α2 = 0.50

MSE-1 0.492 0.077 0.050 0.070 0.446 0.136 0.113 0.129

MSE-2 7.405 0.089 0.048 0.086 6.876 0.153 0.122 0.148

PRIAL-1 0 0.843 0.898 0.856 0 0.685 0.738 0.702

PRIAL-2 0 0.988 0.993 0.988 0 0.977 0.982 0.978

Size of LM 0.004 0.042 0.035 0.020 0.004 0.050 0.022 0.015

Size of Wald 0.690 0.083 0.064 0.066 0.690 0.087 0.074 0.083

MT �̃ LW04 LW17 MT �̃ LW04 LW17

(2×5×2) (2×5×2)

α2 = 0.75 α2 = 1

MSE-1 0.396 0.195 0.154 0.167 0.353 0.243 0.173 0.184

MSE-2 6.311 0.241 0.194 0.204 5.807 0.335 0.259 0.246

PRIAL-1 0 0.469 0.589 0.557 0 0.218 0.469 0.440

PRIAL-2 0 0.959 0.966 0.966 0 0.934 0.948 0.953

Size of LM 0.004 0.058 0.017 0.013 0.004 0.067 0.017 0.013

Size of Wald 0.690 0.091 0.087 0.093 0.690 0.106 0.090 0.091

permutations of submatrices for each factorization, but the performances remained
relatively unchanged, so we do not report them in the interest of space. The results
are reported in Table 6.

Consider the top panel of Table 6 first. All the candidate estimators beat the
sample covariance matrix MT . Performance of the quadratic form estimator �̃ is
relatively robust to the Kronecker product factorizations (2×2×2×2, 4×4, and
4×2×2); the best performing one is 4×2×2. In terms of MSE-1, MSE-2, PRIAL-
1, and PRIAL-2, the quadratic form estimator �̃(4×2×2) is only slightly worse
than the LW04 and LW17 estimators. In terms of size of the LM test, �̃(4×2×2)

has the correct size while both the LW04 and LW17 estimators are under-sized. In
terms of size of the Wald test, all the candidate estimators are slightly over-sized.

Next consider the bottom panel of Table 6. All the candidate estimators beat the
sample covariance matrix MT again. The best performing quadratic form estimator
has a factorization (5 × 2 × 2 × 2). In terms of MSE-1, MSE-2, and PRIAL-1,
�̃(5 × 2 × 2 × 2) is comparable to the LW04 and LW17 estimators. In terms of
size of the LM test, �̃(5 × 2 × 2 × 2) and the LW04 estimator have correct size
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Table 6. MT , �̃, LW04, and LW17 stand for the sample covariance matrix,
quadratic form estimator (factorizations given in parentheses), Ledoit and Wolf
(2004)’s linear shrinkage estimator, and Ledoit and Wolf (2017)’s direct nonlinear
shrinkage estimator, respectively. MSE-1 and MSE-2 are the MSE in terms of �
and �−1, respectively. PRIAL-1 and PRIAL-2 are the PRIAL in terms of � and
�−1, respectively. α2 = 0.5.

n/T = 0.32 MT �̃ �̃ �̃ �̃ LW04 LW17

(2×2×2×2) (4×4) (4×2×2) (2×8)

MSE-1 0.292 0.118 0.122 0.120 0.145 0.098 0.109

MSE-2 1.491 0.134 0.142 0.137 0.190 0.110 0.118

PRIAL-1 0 0.580 0.571 0.576 0.492 0.655 0.618

PRIAL-2 0 0.907 0.902 0.905 0.870 0.924 0.919

Size of LM 0.013 0.057 0.050 0.050 0.041 0.023 0.019

Size of Wald 0.373 0.081 0.090 0.080 0.133 0.072 0.074

n/T = 2 MT �̃ �̃ �̃ �̃ LW04 LW17

(5×2×2×2) (5×2×4) (5×8) (10×2×2)

MSE-1 1.684 0.168 0.175 0.216 0.234 0.159 0.196

MSE-2 NA 0.182 0.194 0.286 0.337 0.151 0.164

PRIAL-1 0 0.898 0.894 0.870 0.860 0.904 0.882

PRIAL-2 NA NA NA NA NA NA NA

Size of LM NA 0.051 0.054 0.050 0.049 0.051 0.070

Size of Wald NA 0.155 0.159 0.224 0.260 0.129 0.140

while the LW17 estimator is slightly over-sized. In terms of size of the Wald test,
all the candidate estimators are slightly over-sized.

By looking at Tables 4 and 6 together, we observe that as n/T increases, PRIAL-
1 increases monotonically for the best performing quadratic form estimator as well
as the LW04 and LW17 estimators. Such a pattern is consistent with Ledoit and
Wolf (2004). In terms of MSE-1 and MSE-2, performances of the best performing
quadratic form estimator as well as the LW04 and LW17 estimators worsen as
n/T increases. In terms of size of the LM test, the best performing quadratic
form estimator always has the correct size, while sizes of the Wald tests increase
monotonically with n/T .

7. CONCLUDING REMARKS

We have proposed a new estimator of the Kronecker product model for covariance
matrices—the quadratic form estimator. We establish the rate of convergence
and use the estimated precision matrix to form the LM and Wald test statistics.
The asymptotic distributions of these test statistics are established under both
null and local alternative hypotheses. Testing linear restrictions of the unknown
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mean vector is also investigated. In Monte Carlo simulations, the quadratic form
estimator performs well both when the Kronecker product model is correctly
specified and when it is misspecified.

We remark on a number of possible extensions. One can generalize to allow
weakly time series dependent data (see Hafner et al., 2020 for some work in this
direction), and perhaps to where the spectral density matrix is Kronecker product
factored. We may also consider the two-sample case, where �1 := E[(y1,t −
μ1)(y1,t − μ1)

ᵀ](n × n), �2 := E[(y2,t − μ2)(y2,t − μ2)
ᵀ](n × n), μ1 := E(y1,t),

and μ2 := E(y2,t). Cho and Phillips (2018) showed that the hypothesis of �1 = �2

can be tested based on tr(�1�
−1
2 ) = n; if both the covariance matrices have a

conformable Kronecker product structure, this simplifies to tr(�1,1�
−1
2,1) × ·· · ×

tr(�1,v�
−1
2,v) = n.

APPENDIX A

A.1. Proof of Lemma 4.1

Proof. For part (i), since
∏v

j=1 nj = n, we have
(

min1≤j≤v nj
)v ≤ n. Thus,

v ≤ logn/ log
(

min
1≤j≤v

nj
)= O(logn).

For part (ii):

max
1≤j≤v

λmax(�j) ≤ max
1≤j≤v

tr(�j) = max
1≤j≤v

nj < ∞.

�

A.2. Proof of Theorem 4.1

We first give an auxiliary lemma and an auxiliary theorem leading to the proof of
Theorem 4.1.

A.2.1. Lemma A.1.

LEMMA A.1. Suppose Assumptions 4.1 and 4.2 hold. Then we have

(i) Both max1≤j≤v ‖�j‖F and max1≤j≤v ‖�−1
j ‖F are bounded from above by absolute

positive constants. Moreover, both min1≤j≤v ‖�j‖F and min1≤j≤v ‖�−1
j ‖F are

bounded away from zero by absolute positive constants.
(ii) Both max1≤j≤v ‖�j‖1 and max1≤j≤v ‖�−1

j ‖1 are bounded from above by abso-

lute positive constants. Moreover, both min1≤j≤v ‖�j‖1 and min1≤j≤v ‖�−1
j ‖1 are

bounded away from zero by absolute positive constants.
(iii) Both max1≤j≤v ‖�j‖�2 and max1≤j≤v ‖�−1

j ‖�2 are bounded from above by absolute

positive constants. Moreover, both min1≤j≤v ‖�j‖�2 and min1≤j≤v ‖�−1
j ‖�2 are

bounded away from zero by absolute positive constants.

https://doi.org/10.1017/S026646662000050X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662000050X


ESTIMATION OF THE KRONECKER COVARIANCE 1039

Proof of Lemma A.1. For part (i), note that

λmin(�j) ≤ λmax(�j) ≤ ‖�j‖F ≤√njλmax(�j)

whence we deduce that max1≤j≤v ‖�j‖F is bounded from above by an absolute positive
constant and min1≤j≤v ‖�j‖F is bounded away from zero by an absolute positive constant
via Assumption 4.2 and Lemma 4.1. Similarly, we have

1

λmax(�j)
= λmin(�−1

j ) ≤ λmax(�−1
j ) ≤ ‖�−1

j ‖F ≤√njλmax(�−1
j ) =√nj

1

λmin(�j)
,

whence we deduce that max1≤j≤v ‖�−1
j ‖F is bounded from above by an absolute positive

constant and min1≤j≤v ‖�−1
j ‖F is bounded away from zero by an absolute positive constant

via Assumption 4.2 and Lemma 4.1.
For part (ii), note that

‖�j‖F ≤ ‖�j‖1 ≤ nj‖�j‖F

‖�−1
j ‖F ≤ ‖�−1

j ‖1 ≤ nj‖�−1
j ‖F

whence we deduce that part (ii) holds via part (i).
For part (iii), we have

max
1≤j≤v

‖�j‖�2 ≤ max
1≤j≤v

‖�j‖F

max
1≤j≤v

‖�−1
j ‖�2 ≤ max

1≤j≤v
‖�−1

j ‖F

whence we could deduce the first half of the statement via part (i). Next,

min
1≤j≤v

‖�j‖�2 = min
1≤j≤v

λmax(�j) ≥ min
1≤j≤v

λmin(�j)

which is bounded away from zero by an absolute positive constant via Assumption 4.2(ii).
Finally,

min
1≤j≤v

‖�−1
j ‖�2 = min

1≤j≤v
λmax(�−1

j ) ≥ min
1≤j≤v

λmin(�−1
j )

= min
1≤j≤v

1

λmax(�j)
= 1

max1≤j≤v λmax(�j)
,

which is bounded away from zero by an absolute positive constant via Lemma 4.1(ii). �

A.2.2. Theorem A.1.

THEOREM A.1. Suppose Assumptions 4.1, 4.2, and 4.3 hold. Then,

(i)

max
1≤h≤v

max
1≤i,j≤nh

1

n−h

∣∣d̂(h)
i,j −d(h)

i,j

∣∣= Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)
.
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(ii) We have tr(d(h))/(nhn−h) = σ 2 > 0 for h = 1, . . . ,v. Also,

max
1≤h≤v

1

nhn−h

∣∣tr(d̂(h))− tr(d(h))
∣∣= Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)
.

As a result, min1≤h≤v tr(d̂(h))/(nhn−h) is bounded away from zero by an absolute
positive constant in probability.

(iii)

max
1≤h≤v

‖�̃h −�h‖∞ = max
1≤h≤v

max
1≤i,j≤nh

∣∣∣[�̃h]i,j − [�h]i,j

∣∣∣
= Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)
,

where [�̃h]i,j and [�h]i,j are the (i,j)th entry of �̃h and �h, respectively.
(iv)

∣∣σ̂ 2 −σ 2
∣∣= Op

(√
1

n2−β1 T

)
+Op

(
logn

T

)
.

(v)

max
1≤h≤v

‖�̃h −�h‖F = Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)
.

(vi)

max
1≤h≤v

‖�̃−1
h −�−1

h ‖F = Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)
.

(vii)

max
1≤h≤v

‖�̃h −�h‖1 = Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)
.

(viii)

max
1≤h≤v

‖�̃−1
h −�−1

h ‖1 = Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)
.

(ix)

max
1≤h≤v

‖�̃h −�h‖�2 = Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)
.

(x)

max
1≤h≤v

‖�̃−1
h −�−1

h ‖�2 = Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)
.

Proof. For part (i), note that d(h)
i,j = tr�(h)

{[i,j]}, where �
(h)
{[i,j]} is the [i,j]th block of �(h)

(each block is n−h × n−h dimensional) for i,j = 1, . . . ,nh. Similarly, d̂(h)
i,j = trM(h)

T,{[i,j]},
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where M(h)
T,{[i,j]} is the [i,j]th block of M(h)

T (each block is n−h ×n−h dimensional). Write

d̂(h)
i,j = trM(h)

T,{[i,j]} = trM0,(h)
T,{[i,j]} − tr

([
(ȳ−μ)(ȳ−μ)ᵀ

](h)
)
{[i,j]}

=: d̂0,(h)
i,j − tr

([
(ȳ−μ)(ȳ−μ)ᵀ

](h)
)
{[i,j]},

where

M0
T := 1

T

T∑
t=1

(yt −μ)(yt −μ)ᵀ

M0,(h)
T := Knh×···×nv,n1×···×nh−1 M0

T Kn1×···×nh−1,nh×···×nv[
(ȳ−μ)(ȳ−μ)ᵀ

](h) := Knh×···×nv,n1×···×nh−1(ȳ−μ)(ȳ−μ)ᵀKn1×···×nh−1,nh×···×nv,

M0,(h)
T,{[i,j]} is the [i,j]th block of M0,(h)

T (each block is n−h × n−h dimensional), and([
(ȳ−μ)(ȳ−μ)ᵀ

])(h)
{[i,j]} is the [i,j]th block of

[
(ȳ−μ)(ȳ−μ)ᵀ

](h) (each block is
n−h ×n−h dimensional). Thus, we have

max
1≤h≤v

max
1≤i,j≤nh

1

n−h

∣∣d̂(h)
i,j −d(h)

i,j

∣∣
≤ max

1≤h≤v
max

1≤i,j≤nh

1

n−h

∣∣d̂0,(h)
i,j −d(h)

i,j

∣∣
+ max

1≤h≤v
max

1≤i,j≤nh

1

n−h

∣∣∣∣tr([(ȳ−μ)(ȳ−μ)ᵀ
](h)
)
{[i,j]}

∣∣∣∣. (A.1)

We consider the first term of (A.1) first. Note that E[d̂0,(h)
i,j ] = d(h)

i,j . Write for some M > 0

P

(
max

1≤h≤v
max

1≤i,j≤nh

√
n2−β1 T

logn

1

n−h
|d̂0,(h)

i,j −d(h)
i,j | > M

)

= P

( ⋃
1≤h≤v

⋃
1≤i,j≤nh

⎧⎨
⎩
√

n2−β1 T

logn

1

n−h
|d̂0,(h)

i,j −d(h)
i,j | > M

⎫⎬
⎭
)

≤
v∑

h=1

nh∑
i=1

nh∑
j=1

P

(√
n2−β1 T

logn

1

n−h
|d̂0,(h)

i,j −d(h)
i,j | > M

)

≤
n2−β1 T

∑v
h=1

∑nh
i=1
∑nh

j=1 var (d̂0,(h)
i,j /n−h)

logn ·M2

≤
vmax1≤h≤v n2

hn2−β1 T max1≤h≤v max1≤i,j≤nh var (d̂0,(h)
i,j /n−h)

logn ·M2
,

where the second inequality is due to Chebyshev’s inequality. We now show that

max
1≤h≤v

max
1≤i,j≤nh

var (d̂0,(h)
i,j /n−h) = O

(
1

n2−β1 T

)
.
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For arbitrary i,j = 1, . . . ,nh,

var (d̂0,(h)
i,j /n−h)

= 1

n2−h

var

( n−h∑
k=1

[
M0,(h)

T,{[i,j]}
]
kk

)

= 1

n2−h

var

(
1

T

T∑
t=1

n−h∑
k=1

ẏ(h)
t,(i−1)n−h+kẏ(h)

t,(j−1)n−h+k

)

= 1

n2−hT

n−h∑
k=1

n−h∑
�=1

cov
(
ẏ(h)

t,(i−1)n−h+kẏ(h)
t,(j−1)n−h+k,ẏ

(h)
t,(i−1)n−h+�

ẏ(h)
t,(j−1)n−h+�

)

≤ C

n2−hT

n−h∑
k=1

n−h∑
�=1

cov
(
ż(h)
t,(i−1)n−h+kż(h)

t,(j−1)n−h+k, ż
(h)
t,(i−1)n−h+�

ż(h)
t,(j−1)n−h+�

)
, (A.2)

where ẏ(h)
t := Knh×···×nv,n1×···×nh−1(yt − μ) such that E[ẏ(h)

t ẏ(h)ᵀ
t ] = �(h) and ż(h)

t is
to be interpreted similarly, the third equality is due to independence over t of yt in
Assumption 4.1(i), and the first inequality is due to Assumption 4.1(iii). Using Lem. 9 of
Magnus and Neudecker (1986), we have

var
(

vec (ż(h)
t ż(h)ᵀ

t )
)= var

(
ż(h)
t ⊗ ż(h)

t
)= 2DnD+

n (�(h) ⊗�(h))

= (In2 +Kn,n
)
(�(h) ⊗�(h)),

where the last equality is due to (33) of Magnus and Neudecker (1986). Thus, we recognise
that the summand on the right side of (A.2) is some element of

(
In2 +Kn,n

)
(�(h) ⊗�(h)).

We need to determine the exact position of the summand on the right side of (A.2) in(
In2 +Kn,n

)
(�(h) ⊗�(h)). We consider �(h) ⊗�(h) and Kn,n(�(h) ⊗�(h)) separately.

Consider �(h) ⊗�(h) first. We now introduce a new way to locate an element in a matrix.
Divide the n2 ×n2 matrix �(h) ⊗�(h) into n×n blocks of matrices, each of which is n×n
dimensional. Then (�(h) ⊗�(h)){[x,w],[p,q]} refers the [p,q]th element of the [x,w]th block

matrix of �(h) ⊗�(h), where x,w,p,q = 1, . . . ,n. It is not difficult to see that

cov
(
ż(h)
t,(i−1)n−h+kż(h)

t,(j−1)n−h+k, ż
(h)
t,(i−1)n−h+�

ż(h)
t,(j−1)n−h+�

)
corresponds to

(�(h) ⊗�(h)){[
(i−1)n−h+k,(i−1)n−h+�

]
,
[
(j−1)n−h+k,(j−1)n−h+�

]}. (A.3)

We now consider Kn,n(�(h) ⊗�(h)). It is important to recognise that Kn,n is a permuta-
tion matrix. Left multiplication of �(h) ⊗�(h) by Kn,n permutes the rows of �(h) ⊗�(h).
Since Kn,n is n×n, we can also divide Kn,n into n×n blocks of matrices, each of which is
n×n dimensional. Since Kn,n is also a permutation matrix, its elements can only be either
0 or 1. It is not difficult to see that the [q,p]th element of the [p,q]th block matrix of Kn,n
is 1 for p,q = 1, . . . ,n; all other elements of Kn,n are 0. Switch back to the traditional way
to locate an element in a matrix. For p,q = 1, . . . ,n, [Kn,n](p−1)n+q,(q−1)n+p = 1. This

implies that the ((p − 1)n + q)th row of Kn,n(�(h) ⊗�(h)) is actually the ((q − 1)n + p)th
row of �(h) ⊗ �(h). Switch back to the new way to locate an element in a matrix. This

https://doi.org/10.1017/S026646662000050X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662000050X


ESTIMATION OF THE KRONECKER COVARIANCE 1043

says that, for arbitrary x,w = 1, . . . ,n, the [q,x]th element of the [p,w]th block matrix of
Kn,n(�(h) ⊗�(h)) is the [p,x]th element of the [q,w]th block matrix of �(h) ⊗�(h). Thus,

cov
(
ż(h)
t,(i−1)n−h+kż(h)

t,(j−1)n−h+k, ż
(h)
t,(i−1)n−h+�

ż(h)
t,(j−1)n−h+�

)
corresponds to

[Kn,n(�(h) ⊗�(h))]{[
(i−1)n−h+k,(i−1)n−h+�

]
,
[
(j−1)n−h+k,(j−1)n−h+�

]}
= (�(h) ⊗�(h)){[

(j−1)n−h+k,(i−1)n−h+�
]
,
[
(i−1)n−h+k,(j−1)n−h+�

]}. (A.4)

Using (A.3) and (A.4), we have

max
1≤h≤v

max
1≤i,j≤nh

var (d̂0,(h)
i,j /n−h)

= max
1≤h≤v

max
1≤i,j≤nh

1

n2−hT

n−h∑
k=1

n−h∑
�=1

cov

× (ẏ(h)
t,(i−1)n−h+kẏ(h)

t,(j−1)n−h+k,ẏ
(h)
t,(i−1)n−h+�

ẏ(h)
t,(j−1)n−h+�

)
≤ max

1≤h≤v
max

1≤i,j≤nh

C

n2−hT

n−h∑
k=1

n−h∑
�=1

cov

× (ż(h)
t,(i−1)n−h+kż(h)

t,(j−1)n−h+k, ż
(h)
t,(i−1)n−h+�

ż(h)
t,(j−1)n−h+�

)
= max

1≤h≤v
max

1≤i,j≤nh

C

n2−hT

n−h∑
k=1

n−h∑
�=1

× (�(h) ⊗�(h)){[
(i−1)n−h+k,(i−1)n−h+�

]
,
[
(j−1)n−h+k,(j−1)n−h+�

]}
+ max

1≤h≤v
max

1≤i,j≤nh

C

n2−hT

n−h∑
k=1

n−h∑
�=1

× (�(h) ⊗�(h)){[
(j−1)n−h+k,(i−1)n−h+�

]
,
[
(i−1)n−h+k,(j−1)n−h+�

]}
= max

1≤h≤v
max

1≤i,j≤nh

C

n2−hT

n−h∑
k=1

n−h∑
�=1

(
�

(h)
(i−1)n−h+k,(i−1)n−h+�

·�(h)
(j−1)n−h+k,(j−1)n−h+�

)
+ max

1≤h≤v
max

1≤i,j≤nh

C

n2−hT

n−h∑
k=1

n−h∑
�=1

(
�

(h)
(j−1)n−h+k,(i−1)n−h+�

·�(h)
(i−1)n−h+k,(j−1)n−h+�

)
= max

1≤h≤v
max

1≤i,j≤nh

Cσ 4

n2−hT

n−h∑
k=1

n−h∑
�=1

[
[�h]i,i · [�−h]k,� · [�h]j,j · [�−h]k,� + [�h]j,i

· [�−h]k,� · [�h]i,j · [�−h]k,�

]
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= max
1≤h≤v

max
1≤i,j≤nh

(
[�h]i,i · [�h]j,j + [�h]i,j · [�h]j,i

) Cσ 4

n2−hT

n−h∑
k=1

n−h∑
�=1

[�−h]2
k,�

= max
1≤h≤v

max
1≤i,j≤nh

(
[�h]i,i · [�h]j,j + [�h]i,j · [�h]j,i

) Cσ 4

n2−hT
‖�−h‖2

F

≤ max
1≤h≤v

max
1≤i,j≤nh

2C[�h]i,i[�h]j,jσ
4

n2−hT
‖�−h‖2

F

= max
1≤h≤v

O(1)σ 4

n2−hT
‖�−h‖2

F = max
1≤h≤v

O(1)n2
hσ 4

n2T‖�h‖2
F

(
‖�−h‖2

F‖�h‖2
F

)

= O

(
1

n2−β1 T

)
max

1≤h≤v

(
σ 4

nβ1
‖�−h‖2

F‖�h‖2
F

)
= O

(
1

n2−β1 T

)
,

where the second inequality is due to Cauchy–Schwarz inequality [�h]i,j ≤√
[�h]i,i

√
[�h]j,j using the fact that �h is a covariance matrix, the fourth last equality

uses the fact that max1≤h≤v max1≤i≤nh [�h]i,i ≤ max1≤h≤v λmax(�h) < ∞, the second
last equality is due to Lemma A.1, and the last equality is due to Assumption 4.3. We hence
have

max
1≤h≤v

max
1≤i,j≤nh

1

n−h

∣∣d̂0,(h)
i,j −d(h)

i,j

∣∣= Op

(√
logn

n2−β1 T

)
. (A.5)

We now consider the second term of (A.1).

max
1≤h≤v

max
1≤i,j≤nh

1

n−h

∣∣∣∣tr([(ȳ−μ)(ȳ−μ)ᵀ
](h)
)
{[i,j]}

∣∣∣∣
= max

1≤h≤v
max

1≤i,j≤nh

1

n−h

∣∣∣∣
n−h∑
k=1

[([
(ȳ−μ)(ȳ−μ)ᵀ

](h)
)]

{[i,j]}kk

∣∣∣∣
≤ max

1≤h≤v
max

1≤i,j≤nh
max

1≤k≤n−h

∣∣∣∣
[([

(ȳ−μ)(ȳ−μ)ᵀ
](h)
)
{[i,j]}

]
kk

∣∣∣∣
≤ max

1≤h≤v

∥∥∥[(ȳ−μ)(ȳ−μ)ᵀ
](h)
∥∥∥∞

=
∥∥∥(ȳ−μ)(ȳ−μ)ᵀ

∥∥∥∞ =
[

max
1≤i≤n

∣∣∣∣ 1

T

T∑
t=1

(yt,i −Eyt,i)

∣∣∣∣
]2

= Op

(
logn

T

)
, (A.6)

where the last equality is due to Lemma B.1 in Section B. Inserting (A.5) and (A.6) into
(A.1) delivers part (i).

For part (ii), note that for h = 1, . . . ,v

tr(d(h))/(nhn−h) = 1

n−h
σ 2tr(�−h)

= σ 2 1

n−h
tr(�h+1)×·· ·× tr(�v)× tr(�1)×·· ·× tr(�h−1)

= σ 2 > 0.
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Now, write

max
1≤h≤v

1

nhn−h

∣∣tr(d̂(h))− tr(d(h))
∣∣= max

1≤h≤v

1

nhn−h

∣∣∣∣
nh∑

i=1

(d̂(h)
i,i −d(h)

i,i )

∣∣∣∣
≤ max

1≤h≤v

1

nhn−h

nh∑
i=1

∣∣d̂(h)
i,i −d(h)

i,i

∣∣
≤ max

1≤h≤v
max

1≤i≤nh

1

n−h

∣∣d̂(h)
i,i −d(h)

i,i

∣∣
= Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)
,

where the last equality is due to part (i). The last part of part (ii) also follows.
For part (iii), write

max
1≤h≤v

max
1≤i,j≤nh

∣∣[�̃h]i,j − [�h]i,j
∣∣≤ max

1≤h≤v
max

1≤i,j≤nh

∣∣∣∣ d̂(h)
i,j

tr(d̂(h))/nh
−

d(h)
i,j

tr(d̂(h))/nh

∣∣∣∣
+ max

1≤h≤v
max

1≤i,j≤nh

∣∣∣∣ d(h)
i,j

tr(d̂(h))/nh
−

d(h)
i,j

tr(d(h))/nh

∣∣∣∣.
(A.7)

Consider the first term on the right side of (A.7).

max
1≤h≤v

max
1≤i,j≤nh

∣∣∣∣ d̂(h)
i,j

tr(d̂(h))/nh
−

d(h)
i,j

tr(d̂(h))/nh

∣∣∣∣
= max

1≤h≤v
max

1≤i,j≤nh

1

tr(d̂(h))/(nhn−h)

1

n−h

∣∣d̂(h)
i,j −d(h)

i,j

∣∣
= Op(1) max

1≤h≤v
max

1≤i,j≤nh

1

n−h

∣∣d̂(h)
i,j −d(h)

i,j

∣∣= Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)
,

where the second equality is due to part (ii) and the last equality is due to part (i). Consider
the second term on the right side of (A.7).

max
1≤h≤v

max
1≤i,j≤nh

∣∣∣∣ d(h)
i,j

tr(d̂(h))/nh
−

d(h)
i,j

tr(d(h))/nh

∣∣∣∣
= max

1≤h≤v
max

1≤i,j≤nh

∣∣∣ tr(d(h))
nhn−h

− tr(d̂(h))
nhn−h

∣∣∣∣∣∣ tr(d̂(h))
nhn−h

· tr(d(h))
nhn−h

∣∣∣
1

n−h

∣∣d(h)
i,j

∣∣

=
[

Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)]
max

1≤h≤v
max

1≤i,j≤nh

|d(h)
i,j |

n−h

=
[

Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)]
max

1≤h≤v
max

1≤i,j≤nh

σ 2|[�h]i,j|tr(�−h)

n−h
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=
[

Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)]
max

1≤h≤v
max

1≤i,j≤nh
σ 2|[�h]i,j|

=
[

Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)]
σ 2 max

1≤h≤v
λmax(�h)

= Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)
,

where the second equality is due to part (ii), and the last equality is due to Lemma 4.1(ii).
Part (iii) hence follows.

For part (iv), write

∣∣σ̂ 2 −σ 2∣∣= ∣∣∣∣1n tr(MT −�)

∣∣∣∣=
∣∣∣∣1n tr

(
M0

T − (ȳ−μ)(ȳ−μ)ᵀ −�
)∣∣∣∣

=
∣∣∣∣1n

n∑
i=1

(
M0

T,i,i −
[
(ȳ−μ)(ȳ−μ)ᵀ

]
i,i −�i,i

)∣∣∣∣
≤
∣∣∣∣ 1

nT

n∑
i=1

T∑
t=1

[
(yt,i −μi)

2 −E(yt,i −μi)
2]∣∣∣∣

+
[

max
1≤i≤n

∣∣∣∣ 1

T

T∑
t=1

(yt,i −μi)

∣∣∣∣
]2

=
∣∣∣∣ 1

nT

n∑
i=1

T∑
t=1

[
ẏ2

t,i −Eẏ
]2
t,i

∣∣∣∣+Op

(
logn

T

)
, (A.8)

where ẏt,i := yt,i − μi, and the last equality is due to Lemma B.1 in Section B. We now
establish a rate for the first term in (A.8). For some M > 0,

P

(∣∣∣∣
√

n2−β1 T

nT

n∑
i=1

T∑
t=1

(ẏ2
t,i −Eẏ2

t,i)

∣∣∣∣> M

)
≤ n2−β1 T var

( 1
nT
∑n

i=1
∑T

t=1 ẏ2
t,i

)
M2

.

We now show var
( 1

nT
∑n

i=1
∑T

t=1 y2
t,i

)= O(1/(n2−β1 T)).

var

(
1

nT

n∑
i=1

T∑
t=1

ẏ2
t,i

)

= 1

T
var

(
1

n

n∑
i=1

ẏ2
t,i

)
= 1

Tn2

n∑
i=1

n∑
j=1

cov
(
ẏt,iẏt,i,ẏt,jẏt,j

)

≤ C

Tn2

n∑
i=1

n∑
j=1

cov
(
żt,iżt,i, żt,jżt,j

)

= C

Tn2

n∑
i=1

n∑
j=1

(
(� ⊗�){[i,j],[i,j]} + (Kn,n(� ⊗�)

)
{[i,j],[i,j]}

)
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= 2C

Tn2

n∑
i=1

n∑
j=1

(� ⊗�){[i,j],[i,j]} = 2C

Tn2

n∑
i=1

n∑
j=1

�i,j ·�i,j

= 2C

Tn2−β1

1

nβ1
‖�‖2

F = O

(
1

Tn2−β1

)
,

where the first equality is due to independence over t of Assumption 4.1(i), the first
inequality is due to Assumption 4.1(iii), the third and fourth equalities are due to the similar
arguments which we used to prove part (i), and the last equality is due to Assumption 4.3.
Thus we have∣∣∣∣ 1

nT

n∑
i=1

T∑
t=1

(ẏ2
t,i −Eẏ2

t,i)

∣∣∣∣= Op

(√
1

n2−β1 T

)
.

Substituting this into (A.8) delivers part (iv).
For part (v), we have

max
1≤h≤v

‖�̃h −�h‖F ≤ max
1≤h≤v

nh‖�̃h −�h‖∞ = Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)
,

where the last equality is due to part (iii). For part (vi), invoke Lemma B.4 and use that
max1≤h≤v ‖�−1

h ‖F = O(1) in Lemma A.1.
For part (vii), we have

max
1≤h≤v

‖�̃h −�h‖1 ≤ max
1≤h≤v

nh‖�̃h −�h‖F = Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)
.

For part (viii), we have

max
1≤h≤v

‖�̃−1
h −�−1

h ‖1 ≤ max
1≤h≤v

nh‖�̃−1
h −�−1

h ‖F = Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)
.

For part (ix), we have

max
1≤h≤v

‖�̃h −�h‖�2 ≤ max
1≤h≤v

‖�̃h −�h‖F = Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)
.

For part (x), we have

max
1≤h≤v

‖�̃−1
h −�−1

h ‖�2 ≤ max
1≤h≤v

‖�̃−1
h −�−1

h ‖F = Op

(√
logn

n2−β1 T

)
+Op

(
logn

T

)
.

�

A.2.3. Proof of Theorem 4.1.

Proof of Theorem 4.1. For part (i),∥∥�̃ −�
∥∥

F/‖�‖F = ∥∥σ̂ 2 × �̃1 ⊗·· ·⊗ �̃v −σ 2 ×�1 ⊗·· ·⊗�v
∥∥

F/‖�‖F

= ∥∥σ̂ 2 × �̃1 ⊗·· ·⊗ �̃v − σ̂ 2 ×�1 ⊗·· ·⊗�v + σ̂ 2 ×�1 ⊗·· ·⊗�v −σ 2

×�1 ⊗·· ·⊗�v
∥∥

F/‖�‖F
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≤ σ̂ 2∥∥�̃1 ⊗·· ·⊗ �̃v −�1 ⊗·· ·⊗�v
∥∥

F/‖�‖F +|σ̂ 2 −σ 2|
×∥∥�1 ⊗·· ·⊗�v

∥∥
F/‖�‖F . (A.9)

We consider the first term in (A.9). By inserting terms like �1 ⊗ �̃2 ⊗ ·· · ⊗ �̃v and the
triangular inequality, we have

∥∥�̃1 ⊗·· ·⊗ �̃v −�1 ⊗·· ·⊗�v
∥∥

F

≤
∥∥∥∥�̃1 −�1

∥∥∥∥
F

v∏
�=2

‖�̃�‖F +
v−1∑
j=2

([ j−1∏
k=1

‖�k‖F

]∥∥∥∥�̃j −�j

∥∥∥∥
F

[ v∏
�=j+1

‖�̃�‖F

])

+
[ v−1∏

k=1

‖�k‖F

]∥∥∥∥�̃v −�v

∥∥∥∥
F

. (A.10)

We first divide the first term of (A.10) by
∏v

�=1 ‖��‖F . We have

∥∥�̃1 −�1
∥∥

F
∏v

�=2 ‖�̃�‖F∏v
�=1 ‖��‖F

=
∥∥�̃1 −�1

∥∥
F

‖�1‖F

v∏
�=2

‖�̃�‖F

‖��‖F

≤
∥∥�̃1 −�1

∥∥
F

‖�1‖F

v∏
�=2

[
1+ ‖�̃� −��‖F

‖��‖F

]

≤
∥∥�̃1 −�1

∥∥
F

‖�1‖F

[
1+ max1≤k≤v ‖�̃k −�k‖F

min1≤k≤v ‖�k‖F

]v−1

. (A.11)

We next divide the summand of the second term of (A.10) by
∏v

�=1 ‖��‖F . We have for
j = 2, . . . ,v−1

[∏j−1
k=1 ‖�k‖F

]∥∥�̃j −�j
∥∥

F

[∏v
�=j+1 ‖�̃�‖F

]
∏v

�=1 ‖��‖F
=
∥∥�̃j −�j

∥∥
F

‖�j‖F

v∏
�=j+1

‖�̃�‖F

‖��‖F

≤
∥∥�̃j −�j

∥∥
F

‖�j‖F

v∏
�=j+1

[
1+ ‖�̃� −��‖F

‖��‖F

]

≤
∥∥�̃j −�j

∥∥
F

‖�j‖F

[
1+ max1≤k≤v ‖�̃k −�k‖F

min1≤k≤v ‖�k‖F

]v−j

. (A.12)

We finally divide the third term of (A.10) by
∏v

�=1 ‖��‖F . We have

[∏v−1
k=1 ‖�k‖F

]∥∥�̃v −�v
∥∥

F∏v
�=1 ‖��‖F

=
∥∥�̃v −�v

∥∥
F

‖�v‖F
. (A.13)
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Thus, we have

σ̂ 2
∥∥∥∥�̃1 ⊗·· ·⊗ �̃v −�1 ⊗·· ·⊗�v

∥∥∥∥
F
/‖�‖F

≤ σ̂ 2

σ 2

v∑
j=1

∥∥∥∥�̃j −�j

∥∥∥∥
F

‖�j‖F

(
1+ max1≤k≤v ‖�̃k −�k‖F

min1≤k≤v ‖�k‖F

)v−j

≤ σ̂ 2

σ 2

(
1+ max1≤k≤v ‖�̃k −�k‖F

min1≤k≤v ‖�k‖F

)v−1 v∑
j=1

∥∥∥∥�̃j −�j

∥∥∥∥
F

‖�j‖F

= σ̂ 2

σ 2
Op(1)

v∑
j=1

∥∥∥∥�̃j −�j

∥∥∥∥
F

‖�j‖F
= Op(1)

v∑
j=1

∥∥∥∥�̃j −�j

∥∥∥∥
F

= vOp

(√
logn

n2−β1 T
∨ logn

T

)
= Op

(√
log3n

n2−β1 T

)
+Op

(
log2n

T

)
,

where the first inequality is due to that ‖�‖F = σ 2∏v
j=1 ‖�j‖F via Lemma B.3, (A.11),

(A.12), and (A.13), the first equality is due to Lemma A.1 and Theorem A.1(v)9, the
second equality is due to Lemma A.1 and Theorem A.1(iv), and the third equality is due to
Theorem A.1(v).

We now consider the second term in (A.9).

|σ̂ 2 −σ 2|‖�1 ⊗·· ·⊗�v‖F/‖�‖F = |σ̂ 2 −σ 2|
σ 2

= Op

(√
1

n2−β1 T

)
+Op

(
logn

T

)
,

where the last equality is due to Theorem A.1(iv). Part (ii)–(vi) of the theorem could be
established in a similar manner, so we omit the details. �

A.3. Proof of Theorem 5.1

We first give an auxiliary theorem leading to the proof of Theorem 5.1.

A.3.1. Theorem A.2. The following theorem is adapted from Thm. 1 of Kelejian and
Prucha (2001).

THEOREM A.2. Consider {εT,i : 1 ≤ i ≤ n,n ≥ 1,T ≥ 1}, an array of real numbers
{bT,i : 1 ≤ i ≤ n,n ≥ 1,T ≥ 1} and Qn,T :=∑n

i=1 ε2
T,i +

∑n
i=1 bT,iεT,i. Suppose that

(i) E[εT,i] = 0 for 1 ≤ i ≤ n,n ≥ 1,T ≥ 1. Furthermore, for each n ≥ 1,T ≥ 1,
εT,1, . . . ,εT,n are (mutually) independent.

9To see this:

(
1+ max1≤k≤v ‖�̃k−�k‖F

min1≤k≤v ‖�k‖F

)v−1

=
(

1+Op

(√
logn

n2−β1 T
∨ logn

T

)O(logn))
= Op(1), where the last equality

could be deduced from the fact that limx→∞(1+1/x)x = e and log3n/T → 0.
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(ii)

limsup
T→∞

supn≥1sup1≤i≤nE|εT,i|4+2δ < ∞

limsup
n,T→∞

1

n

n∑
i=1

|bT,i|2+δ < ∞

for some δ > 0.
(iii)

liminf
n,T→∞

1

n
var (Qn,T ) ≥ C > 0

for some absolute positive constant C.

Then as n,T → ∞,

Qn,T −E[Qn,T ]√
var (Qn,T )

d−→ N(0,1).

Proof. We can calculate that

E[Qn,T ] = E

[ n∑
i=1

ε2
T,i +

n∑
i=1

bT,iεT,i

]
=

n∑
i=1

E
[
ε2

T,i
]=:

n∑
i=1

σ 2
T,i

Qn,T −E[Qn,T ] =
n∑

i=1

(
ε2

T,i −σ 2
T,i +bT,iεT,i

)=:
n∑

i=1

YT,i

E[Y2
T,i] = E[ε4

T,i]−σ 4
T,i +b2

T,iσ
2
T,i +2bT,iEε3

T,i

var (Qn,T ) = E

[ n∑
i=1

YT,i

]2

= E

[ n∑
i=1

n∑
j=1

YT,iYT,j

]
=

n∑
i=1

E[Y2
T,i],

where the last equality is due to independence of ε2
T,i across i. We now show that

Qn,T −E[Qn,T ]√
var (Qn,T )

=
n∑

i=1

YT,i√
var (Qn,T )

d−→ N(0,1)

as n,T → ∞. This reduces to verifying the Lyapounov’s condition in Theorem B.1 part (b);
that is, for some δ > 0,

lim
n,T→∞

n∑
i=1

1

[var (Qn,T )]1+δ/2
E
∣∣YT,i

∣∣2+δ = 0.

We first find an upper bound for E
∣∣YT,i

∣∣2+δ .

E
∥∥YT,i

∥∥2+δ = E
∣∣ε2

T,i −σ 2
T,i +bT,iεT,i

∣∣2+δ

≤ 31+δ
(
E|ε2

T,i|2+δ +E|σ 2
T,i|2+δ +|bT,i|2+δ

E|εT,i|2+δ
)

= 31+δ
(
E|εT,i|4+2δ +σ 4+2δ

T,i +|bT,i|2+δ
E|εT,i|2+δ

)
≤ K1 +K2|bT,i|2+δ,

https://doi.org/10.1017/S026646662000050X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662000050X


ESTIMATION OF THE KRONECKER COVARIANCE 1051

for absolute positive constants K1 and K2 for sufficiently large T, where the first inequality is
due to Loeve’s cr inequality, and the last inequality is due to assumption (ii) of the theorem.
Then, we have

n∑
i=1

E
∣∣YT,i

∣∣2+δ

[var (Qn,T )]1+δ/2
≤ nK1 +nK2

( 1
n
∑n

i=1 |bT,i|2+δ
)

[n−1 var (Qn,T )]1+δ/2n1+δ/2

= K1 +K2
( 1

n
∑n

i=1 |bT,i|2+δ
)

[n−1 var (Qn,T )]1+δ/2nδ/2
→ 0

as n,T → ∞, where the convergence to 0 relies on assumptions (ii) and (iii) of the theorem.
�

A.3.2. Proof of Theorem 5.1.

Proof of Theorem 5.1. Write

LMn,T −n√
2n

= T(ȳ−μ0)ᵀ�̃−1
μ0

(ȳ−μ0)−n√
2n

= T(ȳ−μ0)ᵀ�−1(ȳ−μ0)−n√
2n

+ T(ȳ−μ0)ᵀ(�̃−1
μ0

−�−1)(ȳ−μ0)√
2n

.

We first show that under H0 as n,T → ∞,

T(ȳ−μ0)ᵀ�−1(ȳ−μ0)−n√
2n

d−→ N(0,1).

Write

T(ȳ−μ0)ᵀ�−1(ȳ−μ0)−n√
2n

=
[ 1√

T

∑T
t=1(yt −μ0)

]ᵀ
(L−1)ᵀL−1[ 1√

T

∑T
t=1(yt −μ0)

]−n
√

2n

=:

( 1√
T

∑T
t=1 xt

)ᵀ( 1√
T

∑T
t=1 xt

)−n
√

2n

=:
zᵀT zT −n√

2n
=
∑n

i=1 z2
T,i −n√
2n

=:
Qn,T −n√

2n
.

Note that for each n ≥ 1,T ≥ 1, zT,1, . . . ,zT,n are (mutually) independent under assumption
(b) of the theorem and Assumption 4.1(i). Under H0,

E[zT,i] = E

[
1√
T

T∑
t=1

xt,i

]
= 0

var (zT ) = var

(
1√
T

T∑
t=1

xt

)
= In
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E[Qn,T ] = E

[ n∑
i=1

z2
T,i

]
=

n∑
i=1

E
[
z2
T,i
]= n

var (Qn,T ) = var

( n∑
i=1

z2
T,i

)
=

n∑
i=1

var
(
z2
T,i
)=

n∑
i=1

[
E[z4

T,i]−
(
E[z2

T,i]
)2]

=
n∑

i=1

(
E[z4

T,i]−1
)

=:
n∑

i=1

(
γz,i +2

)
,

where γz,i is the excess kurtosis of zT,i:

γz,i := E[z4
T,i]

[var (zT,i)]2
−3 = E[z4

T,i]−3.

We next calculate E[z4
T,i] in terms of moments of xt,i.

E[z4
T,i] = E

[(
1√
T

T∑
t=1

xt,i

)4]
= 1

T2

T∑
t=1

T∑
s=1

T∑
k=1

T∑
�=1

E
[
xt,ixs,ixk,ix�,i

]
. (A.14)

Note that the summand in (A.14) is nonzero only if t = s = k = �, t = s 
= k = �, t = k 
= s = �,
t = � 
= k = s. First, consider the case t = s = k = �. Collecting all the summands in (A.14)
satisfying this, we have

1

T2

T∑
t=1

E
[
x4

t,i
]= 1

T2

T∑
t=1

(γx,t,i +3) = 1

T2

T∑
t=1

γx,t,i + 3

T
, (A.15)

where γx,t,i is the excess kurtosis of xt,i:

γx,t,i := E
[
x4

t,i

]
[var (xt,i)]2

−3 = E
[
x4

t,i
]−3.

Second, consider the case t = s 
= k = �. Collecting all the summands in (A.14) satisfying
this, we have

1

T2

T∑
t=1

T∑
k=1
=t

E
[
x2

t,ix
2
k,i
]= 1

T2

T∑
t=1

T∑
k=1
=t

E
[
x2

t,i
]
E
[
x2

k,i
]= T(T −1)

T2
= 1− 1

T
. (A.16)

Likewise, for cases t = k 
= s = � and t = � 
= k = s, both sums are 1 − 1/T . Substituting
(A.15) and (A.16) into (A.14), we have

E[z4
T,i] = 1

T2

T∑
t=1

γx,t,i + 3

T
+3

(
1− 1

T

)
= 1

T2

T∑
t=1

γx,t,i +3
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whence we have γz,i = E[z4
T,i]−3 = 1

T2

∑T
t=1 γx,t,i and

var (Qn,T ) =
n∑

i=1

(
γz,i +2

)=
n∑

i=1

(
1

T2

T∑
t=1

γx,t,i +2

)

= 2n

(
1+ 1

2T

1

nT

n∑
i=1

T∑
t=1

γx,t,i

)
. (A.17)

It remains to verify condition (ii)–(iii) of Theorem A.2. We have

1

n
var (Qn,T ) = 2+ 1

T

(
1

nT

n∑
i=1

T∑
t=1

γx,t,i

)
> 0

for large enough T because γx,t,i > −3 for all t and i by definition of the excess kurtosis.
Hence (iii) of Theorem A.2 is satisfied. Condition (ii) of Theorem A.2 is also satisfied: for
some δ > 0

limsup
T→∞

supn≥1sup1≤i≤nE

∣∣∣∣ 1√
T

T∑
t=1

xt,i

∣∣∣∣
4+2δ

< ∞

by Theorem B.3 in Section B under assumption (b) of the theorem. Thus, we have

T(ȳ−μ0)ᵀ�−1(ȳ−μ0)−n√
2n

= Qn,T −n√
2n

= Qn,T −n√
2n
(
1+ 1

2T
1

nT
∑n

i=1
∑T

t=1 γx,t,i
) (1+o(1)

) d−→ N(0,1),

under H0 as n,T → ∞, where the second equality is due to

limsup
n,T→∞

1

nT

n∑
i=1

T∑
t=1

E[x4
t,i] ≤ limsup

n,T→∞
max

1≤i≤n
max

1≤t≤T
E[x4

t,i] < ∞

under assumption (b) of the theorem, and the weak convergence is due to Theorem A.2.
The theorem would follow if we show that

T(ȳ−μ0)ᵀ(�̃−1
μ0

−�−1)(ȳ−μ0)√
2n

= op(1).
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We now show this.

T
∣∣(ȳ−μ0)ᵀ(�̃−1

μ0
−�−1)(yt −μ0)

∣∣
√

2n

=

∣∣∣∣
(

1√
T

∑T
t=1(yt −μ0)

)ᵀ
(�̃−1

μ0
−�−1)

(
1√
T

∑T
t=1(yt −μ0)

)∣∣∣∣
√

2n

= 1√
2n

∣∣∣∣
n∑

i=1

n∑
j=1

(
1√
T

T∑
t=1

(yt,i −μ0,i)

)

×
(

1√
T

T∑
t=1

(yt,j −μ0,j)

)
(�̃−1

μ0,i,j
−�−1

i,j )

∣∣∣∣
≤ 1√

2n

(
max

1≤i≤n

∣∣∣∣ 1√
T

T∑
t=1

(yt,i −μ0,i)

∣∣∣∣
)2 n∑

i=1

n∑
j=1

|�̃−1
μ0,i,j

−�−1
i,j |

= 1√
2n

(
max

1≤i≤n

∣∣∣∣ 1√
T

T∑
t=1

(yt,i −μ0,i)

∣∣∣∣
)2

‖�̃−1
μ0

−�−1‖1

= Op

(
logn√

n

)
‖�−1‖1Op

(√
log3n

n2−β1 T

)
= 1

nβ2
‖�−1‖1Op

(√
n2β2−1log5n

n2−β1 T

)

= Op

(√
n2β2+β1−3log5n

T

)
= op(1),

where the fourth equality is due to Lemma B.1, the sixth equality is due to Assumption 5.1,
and the last equality is due to assumption (a) of the theorem.

For the Wald statistic, write

Wn,T −n√
2n

= T(ȳ−μ0)ᵀ�̃−1(ȳ−μ0)−n√
2n

= T(ȳ−μ0)ᵀ�−1(ȳ−μ0)−n√
2n

+ T(ȳ−μ0)ᵀ(�̃−1 −�−1)(ȳ−μ0)√
2n

.

We have already shown in the proof of the LM test that under assumptions (a)–(b) of the
theorem and under H0 as n,T → ∞,

T(ȳ−μ0)ᵀ�−1(ȳ−μ0)−n√
2n

d−→ N(0,1).

Display (5.4) would follow if we show that

T(ȳ−μ0)ᵀ(�̃−1 −�−1)(ȳ−μ0)√
2n

= op(1).
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We now show this.

T|(ȳ−μ0)ᵀ(�̃−1 −�−1)(yt −μ0)|√
2n

=

∣∣∣∣
(

1√
T

∑T
t=1(yt −μ0)

)ᵀ
(�̃−1 −�−1)

(
1√
T

∑T
t=1(yt −μ0)

)∣∣∣∣
√

2n

= 1√
2n

∣∣∣∣
n∑

i=1

n∑
j=1

(
1√
T

T∑
t=1

(yt,i −μ0,i)

)(
1√
T

T∑
t=1

(yt,j −μ0,j)

)
(�̃−1

i,j −�−1
i,j )

∣∣∣∣

≤ 1√
2n

(
max

1≤i≤n

∣∣∣∣ 1√
T

T∑
t=1

(yt,i −μ0,i)

∣∣∣∣
)2 n∑

i=1

n∑
j=1

|�̃−1
i,j −�−1

i,j |

= 1√
2n

(
max

1≤i≤n

∣∣∣∣ 1√
T

T∑
t=1

(yt,i −μ0,i)

∣∣∣∣
)2

‖�̃−1 −�−1‖1

= Op

(
logn√

n

)
‖�−1‖1

[
Op

(√
log3n

n2−β1 T

)
+Op

(
log2n

T

)]

= 1

nβ2
‖�−1‖1

[
Op

(√
n2β2−1log5n

n2−β1 T

)
+Op

(
nβ2− 1

2 log3n

T

)]

= Op

(√
n2β2+β1−3log5n

T

)
+Op

(
nβ2− 1

2 log3n

T

)
= op(1),

where the fourth equality is due to Lemma B.1 and Theorem 4.1(iv), and the sixth equality
is due to Assumption 5.1. �

A.4. Proof of Theorem 5.2

Proof. Write

Wn,T = T(ȳ−μ0)ᵀ�̃−1(ȳ−μ0) = T
[
ȳ−μT +μT −μ0

]ᵀ
�̃−1[ȳ−μT +μT −μ0

]
= T(ȳ−μT )ᵀ�̃−1(ȳ−μT )+2T(μT −μ0)ᵀ�̃−1(ȳ−μT )

+T(μT −μ0)ᵀ�̃−1(μT −μ0)

=: Wn,T,1 + θᵀ�̃−1θ

whence we have

Wn,T −n√
2n
(
1+ 2

n θᵀ�−1θ
) − θᵀ�−1θ√

2n
(
1+ 2

n θᵀ�−1θ
) = Wn,T,1 −n√

2n
(
1+ 2

n θᵀ�−1θ
)

+ θᵀ(�̃−1 −�−1)θ√
2n
(
1+ 2

n θᵀ�−1θ
) . (A.18)

https://doi.org/10.1017/S026646662000050X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662000050X


1056 OLIVER B. LINTON AND HAIHAN TANG

We first consider the first term on the right side of (A.18).

Wn,T,1 −n√
2n
(
1+ 2

n θᵀ�−1θ
)

= T(ȳ−μT )ᵀ�−1(ȳ−μT )+2T(μT −μ0)ᵀ�−1(ȳ−μT )−n√
2n
(
1+ 2

n θᵀ�−1θ
)

+ T(ȳ−μT )ᵀ(�̃−1 −�−1)(ȳ−μT )+2T(μT −μ0)ᵀ(�̃−1 −�−1)(ȳ−μT )√
2n
(
1+ 2

n θᵀ�−1θ
) .

(A.19)

We show that the first term on the right side of (A.19) converges in distribution under the
local alternatives.

T(ȳ−μT )ᵀ�−1(ȳ−μT )+2T(μT −μ0)
ᵀ�−1(ȳ−μT )−n√

2n
(
1+ 2

n θᵀ�−1θ
)

=
[ 1√

T

∑T
t=1(yt −μT )

]ᵀ
(L−1)ᵀL−1

[ 1√
T

∑T
t=1(yt −μT )

]+2θᵀ(L−1)ᵀL−1
[ 1√

T

∑T
t=1(yt −μT )

]−n√
2n
(
1+ 2

n θᵀ�−1θ
)

=:

( 1√
T

∑T
t=1 xt

)ᵀ( 1√
T

∑T
t=1 xt

)+2(L−1θ)ᵀ
( 1√

T

∑T
t=1 xt

)−n√
2n
(
1+ 2

n θᵀ�−1θ
)

=:
zᵀ

T zT +bᵀ
T zT −n√

2n
(
1+ 2

n θᵀ�−1θ
)

=
∑n

i=1 z2
T,i +

∑n
i=1 bT,izT,i −n√

2n
(
1+ 2

n θᵀ�−1θ
) =:

Qn,T −n√
2n
(
1+ 2

n θᵀ�−1θ
) .

Note that for each n ≥ 1,T ≥ 1, zT,1, . . . ,zT,n are (mutually) independent under assumption
(b) of the theorem and Assumption 4.1(i). Under H1,

E[zT,i] = E

[
1√
T

T∑
t=1

xt,i

]
= 0

var (zT ) = var

(
1√
T

T∑
t=1

xt

)
= In

E[Qn,T ] = E

[ n∑
i=1

z2
T,i +

n∑
i=1

bT,izT,i

]
=

n∑
i=1

E
[
z2
T,i
]= n.
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We next calculate var (Qn,T ).

var (Qn,T ) = var

( n∑
i=1

z2
T,i +

n∑
i=1

bT,izT,i

)
=

n∑
i=1

var
(
z2
T,i +bT,izT,i

)

=
n∑

i=1

E
[
z2
T,i +bT,izT,i −Ez2

T,i
]2 =

n∑
i=1

E
[
z2
T,i +bT,izT,i −1

]2

=
n∑

i=1

[(
E[z4

T,i]−1
)+2bT,iE[z3

T,i]+b2
T,i

]

=
n∑

i=1

(
γz,i +2

)+2
n∑

i=1

bT,iE[z3
T,i]+

n∑
i=1

b2
T,i.

In (A.17), we have already calculated that

n∑
i=1

(
γz,i +2

)= 2n

(
1+ 1

2T

1

nT

n∑
i=1

T∑
t=1

γx,t,i

)
.

We now calculate E[z3
T,i].

E[z3
T,i] = E

[
1√
T

T∑
t=1

xt,i

]3

= E

[
1

T3/2

T∑
t=1

T∑
s=1

T∑
k=1

xt,ixs,ixk,i

]

= 1

T3/2

T∑
t=1

T∑
s=1

T∑
k=1

E
[
xt,ixs,ixk,i

]

= 1

T3/2

T∑
t=1

E
[
x3

t,i
]
.

Backing up, we have

var (Qn,T ) = 2n

(
1+ 1

2T

1

nT

n∑
i=1

T∑
t=1

γx,t,i

)

+ 2

T3/2

n∑
i=1

bT,i

T∑
t=1

E
[
x3

t,i
]+ n∑

i=1

b2
T,i.

We now verify conditions (ii) and (iii) of Theorem A.2. For condition (ii), we have already

verified in the proof of Theorem 5.1 that limsupT→∞ supn≥1sup1≤i≤nE
∣∣zT,i

∣∣4+2δ
< ∞.

Next,

limsup
n,T→∞

1

n

n∑
i=1

|bT,i|2+δ = limsup
n→∞

1

n

n∑
i=1

∣∣2(L−1θ)i
∣∣2+δ

= 22+δ limsup
n→∞

1

n

n∑
i=1

∣∣(L−1θ)i
∣∣2+δ

< ∞
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via assumption (b) of the theorem. Thus condition (ii) of Theorem A.2 is met. Finally,

1

n
var (Qn,T ) = 2

(
1+ 1

2T

1

nT

n∑
i=1

T∑
t=1

γx,t,i

)

+ 2

nT3/2

n∑
i=1

bT,i

T∑
t=1

E
[
x3

t,i
]+ 1

n

n∑
i=1

b2
T,i

= 2

(
1+ 1

2T

1

nT

n∑
i=1

T∑
t=1

γx,t,i

)

+ 4√
T

1

nT

n∑
i=1

T∑
t=1

(L−1θ)iE
[
x3

t,i +
4

n
θᵀ�−1θ > 0

for large enough n and T because γx,t,i > −3 for all t and i by definition of the excess
kurtosis. Thus condition (iii) of Theorem A.2 is met.

Thus, we have

T(ȳ−μT )ᵀ�−1(ȳ−μT )+2T(μT −μ0)ᵀ�−1(ȳ−μT )−n√
2n
(
1+ 2

n θᵀ�−1θ
)

= Qn,T −n√
2n
(
1+ 2

n θᵀ�−1θ
) = Qn,T −n√

var (Qn,T )

√
var (Qn,T )√

2n
(
1+ 2

n θᵀ�−1θ
)

= Qn,T −n√
var (Qn,T )

(1+o(1))
d−→ N

(
0,1
)

as n,T → ∞.
We next show that the second term on the right side of (A.19) is op(1) under H1

T
∣∣(ȳ−μT )ᵀ(�̃−1 −�−1)(ȳ−μT )

∣∣√
2n
(
1+ 2

n θᵀ�−1θ
) + 2T

∣∣(μT −μ0)ᵀ(�̃−1 −�−1)(ȳ−μT )
∣∣√

2n
(
1+ 2

n θᵀ�−1θ
)

=

∣∣∣∣
(

1√
T

∑T
t=1(yt −μT )

)ᵀ
(�̃−1 −�−1)

(
1√
T

∑T
t=1(yt −μT )

)∣∣∣∣√
2n
(
1+ 2

n θᵀ�−1θ
)

+
2

∣∣∣∣θᵀ(�̃−1 −�−1)

(
1√
T

∑T
t=1(yt −μT )

)∣∣∣∣√
2n
(
1+ 2

n θᵀ�−1θ
)

≤

∣∣∣∣
(

1√
T

∑T
t=1(yt −μT )

)ᵀ
(�̃−1 −�−1)

(
1√
T

∑T
t=1(yt −μT )

)∣∣∣∣
√

2n
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+
2

∣∣∣∣θᵀ(�̃−1 −�−1)

(
1√
T

∑T
t=1(yt −μT )

)∣∣∣∣
√

2n

≤ 1√
2n

(
max

1≤i≤n

∣∣∣∣ 1√
T

T∑
t=1

(yt,i −μT,i)

∣∣∣∣
)2

‖�̃−1 −�−1‖1

+
√

2

n
max

1≤i≤n
|θi|
(

max
1≤i≤n

∣∣∣∣ 1√
T

T∑
t=1

(yt,i −μT,i)

∣∣∣∣
)

‖�̃−1 −�−1‖1

= Op

(
logn√

n

)
‖�−1‖1

[
Op

(√
log3n

n2−β1 T

)
+Op

(
log2n

T

)]

= 1

nβ2
‖�−1‖1

[
Op

(√
n2β2−1log5n

n2−β1 T

)
+Op

(
nβ2− 1

2 log3n

T

)]

= Op

(√
n2β2+β1−3log5n

T

)
+Op

(
nβ2− 1

2 log3n

T

)
= op(1), (A.20)

where the second equality is due to Lemma B.1 and Theorem 4.1(iv), and the fourth equality
is due to Assumption 5.1.

Backing up, in (A.19), we hence have under H1 as n,T → ∞
Wn,T,1 −n√

2n
(
1+ 2

n θᵀ�−1θ
) d−→ N

(
0,1
)
.

We finally consider the second term on the right side of (A.18), noting that

θᵀ(�̃−1 −�−1)θ√
2n
(
1+ 2

n θᵀ�−1θ
) = op(1)

using a similar device as that in (A.20). Backing up, in (A.18), we hence have under H1 as
n,T → ∞

Wn,T −n√
2n
(
1+ 2

n θᵀ�−1θ
) − θᵀ�−1θ√

2n
(
1+ 2

n θᵀ�−1θ
) d−→ N

(
0,1
)
.

�

A.5. Proof of Theorem 5.3

Proof of Theorem 5.3.

W∗
n,T := T(Rȳ− r)ᵀ(R�̃Rᵀ)−1(Rȳ− r)

= T(Rȳ− r)ᵀ(R�Rᵀ)−1(Rȳ− r)−T(Rȳ− r)ᵀ
[
(R�̃Rᵀ)−1 − (R�Rᵀ)−1](Rȳ− r)

(A.21)

We now show that the first term of (A.21) is asymptotically chi-square distributed under H0.
Since R has full row rank q and λmin(�) is bounded away from zero by an absolute positive
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constant, R�Rᵀ has full rank q. Consider the Cholesky decomposition of R�Rᵀ = LRLᵀ
R ,

where LR is a q × q nonsingular lower triangular matrix with positive diagonal elements.
Write

T(Rȳ− r)ᵀ(R�Rᵀ)−1(Rȳ− r) = T(Rȳ− r)ᵀ(L−1
R )ᵀL−1

R (Rȳ− r)

=
[

1√
T

T∑
t=1

L−1
R R(yt −μ)

]ᵀ[
1√
T

T∑
t=1

L−1
R R(yt −μ)

]
.

Note that L−1
R R(y1 −μ),L−1

R R(y2 −μ), . . . ,L−1
R R(yT −μ) are independent random vectors

in R
q with mean zero and variance matrix Iq. Then we can invoke a version of the

multivariate CLT to show T−1/2∑T
t=1 L−1

R R(yt −μ)
d−→ N(0,Iq) as n,T → ∞, whence we

have T(Rȳ− r)ᵀ(R�Rᵀ)−1(Rȳ− r)
d−→ χ2

q as n,T → ∞.
We now show that the second term of (A.21) is op(1) under H0.

∣∣∣T(Rȳ− r)ᵀ
[
(R�̃Rᵀ)−1 − (R�Rᵀ)−1](Rȳ− r)

∣∣∣
=
∣∣∣∣

q∑
i=1

q∑
j=1

(
1√
T

T∑
t=1

[R(yt −μ)]i

)

×
(

1√
T

T∑
t=1

[R(yt −μ)]j

)[
(R�̃Rᵀ)−1

i,j − (R�Rᵀ)−1
i,j

]∣∣∣∣
≤
(

max
1≤i≤q

∣∣∣∣ 1√
T

T∑
t=1

[R(yt −μ)]i

∣∣∣∣
)2∥∥(R�̃Rᵀ)−1 − (R�Rᵀ)−1∥∥

1

= Op(1)
∥∥(R�̃Rᵀ)−1 − (R�Rᵀ)−1∥∥

1.

We need to find a rate for
∥∥(R�̃Rᵀ)−1 − (R�Rᵀ)−1

∥∥
1. First, note that

∥∥R�̃Rᵀ −R�Rᵀ∥∥
1 ≤ q3/2∥∥R(�̃ −�)Rᵀ∥∥

�2
≤ q3/2‖R‖�2‖�̃ −�‖�2‖Rᵀ‖�2

= q3/2‖Rᵀ‖2
�2

‖�̃ −�‖�2 = q3/2λmax(RRᵀ)‖�̃ −�‖�2

= q3/2λmax(RRᵀ)‖�‖�2

[
Op

(√
log3n

n2−β1 T

)
+Op

(
log2n

T

)]
= op(1),

where the second to last equality is due to Theorem 4.1(v), and the last equality is due to
(5.5). Second,

∥∥(R�Rᵀ)−1∥∥
1 ≤ q3/2∥∥(R�Rᵀ)−1∥∥

�2
= q3/2λmax

[
(R�Rᵀ)−1]= q3/2

λmin
[
R�Rᵀ]

≤ q3/2

λmin(RRᵀ)λmin(�)
= O(1),
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where the last inequality is due to Lemma 2.2 in Section B and the last equality is due to
the assumption of the theorem. Then via Lemma B.4 in Section 2, we have

∥∥(R�̃Rᵀ)−1 − (R�Rᵀ)−1∥∥
1 = q3/2λmax(RRᵀ)‖�‖�2

[
Op

(√
log3n

n2−β1 T

)
+Op

(
log2n

T

)]
= op(1).

Backing up, we have proved that the second term of (A.21) is op(1) under H0. �

A.6. Proof of Lemma 5.1

Proof of Lemma 5.1. The assumptions of the lemma allow us to invoke Theorem 5.1.
Thus under H0 : μ = μ0, as n,T → ∞,

Wn,T −n√
2n

= T(ȳ−μ0)ᵀ�̃−1(ȳ−μ0)−n√
2n

d−→ N(0,1).

This implies that for any unknown μ

Pμ

(
T(ȳ−μ)ᵀ�̃−1(ȳ−μ)−n√

2n
< zα

)
→ 1−α

as n,T → ∞, where zα is the upper α percentile of N(0,1).
Invoking Lemma B.5 in Section B with x = ȳ−μ and S = �̃ yields: For any φ ∈ R

n

[
φᵀ(ȳ−μ)

]2 ≤ φᵀ�̃φ · (ȳ−μ)ᵀ�̃−1(ȳ−μ)

whence we have[
φᵀ(ȳ−μ)

]2
φᵀ�̃φ

≤ (ȳ−μ)ᵀ�̃−1(ȳ−μ).

Multiply both sides by T, minus n, and divide by
√

2n:

T
[
φᵀ(ȳ−μ)

]2
/φᵀ�̃φ −n√

2n
≤ T(ȳ−μ)ᵀ�̃−1(ȳ−μ)−n√

2n
.

Thus, we assert with confidence 1 −α that the unknown μ satisfies simultaneously for all
φ the inequalities:

T
[
φᵀ(ȳ−μ)

]2
/φᵀ�̃φ −n√

2n
< zα,

as n,T → ∞. �

APPENDIX B. Auxiliary Lemmas

LEMMA B.1. Suppose Assumption 4.1 (i)–(ii) hold. Then, we have

max
1≤i≤n

∣∣∣∣ 1√
T

T∑
t=1

(
yt,i −Eyt,i

)∣∣∣∣= Op(
√

logn).

https://doi.org/10.1017/S026646662000050X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662000050X


1062 OLIVER B. LINTON AND HAIHAN TANG

Proof. Under Assumption 4.1(ii), we have, for i = 1, . . . ,n, m = 2,3, . . .,

1

T

T∑
t=1

E
∣∣yt,i −Eyt,i

∣∣m ≤ 1

T

T∑
t=1

2m−1(
E|yt,i|m +E|Eyt,i|m

)

≤ 1

T

T∑
t=1

2m−1(
E|yt,i|m +E|yt,i|m

)

= 2m 1

T

T∑
t=1

E|yt,i|m ≤ 2mAm ≤ 2m!Am = m!

2
Am−2A24

for some absolute positive constant A. Now invoke the Bernstein’s inequality in Section B
with σ 2

0 = 4A2: For all ε > 0

P

(∣∣∣∣ 1

T

T∑
t=1

(yt,i −Eyt,i)

∣∣∣∣≥ σ 2
0

[
Aε +√

2ε
])

≤ 2e−Tσ 2
0 ε .

Invoking Corollary 2.1 in Section 2, we have

max
1≤i≤n

∣∣∣∣ 1

T

T∑
t=1

(yt,i −Eyt,i)

∣∣∣∣= Op

(
logn

T
∨
√

logn

T

)
= Op

(√
logn

T

)
.

The lemma follows. �

We next give two CLTs for double-index (n,T) processes.

THEOREM B.1.

(a) Suppose Yn,t is a random variable independent across 1 ≤ t ≤ T for n ≥ 1 and T ≥ 1.
Assume that

E[Yn,t] = 0 E[Y2
n,T,t] = σ 2

n,t.

Define

s2
n,T :=

T∑
t=1

σ 2
n,t ξn,T,t := Yn,t

sn,T
.

Assume that s2
n,T > 0 for large enough n and T. Suppose the following Lyapounov’s

condition holds: For some δ > 0,

lim
n,T→∞

T∑
t=1

1

s2+δ
n,T

E
∣∣Yn,t

∣∣2+δ = 0.

Then as n,T → ∞
T∑

t=1

ξn,T,t
d−→ N(0,1).
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(b) Suppose YT,i is a random variable independent across 1 ≤ i ≤ n for n ≥ 1 and T ≥ 1.
Assume that

E[YT,i] = 0 E[Y2
T,i] = σ 2

T,i.

Define

s2
n,T :=

n∑
i=1

σ 2
T,i ξn,T,i := YT,i

sn,T
.

Assume that s2
n,T > 0 for large enough n and T. Suppose the following Lyapounov’s

condition holds: For some δ > 0,

lim
n,T→∞

n∑
i=1

1

s2+δ
n,T

E
∣∣YT,i

∣∣2+δ = 0.

Then as n,T → ∞
n∑

i=1

ξn,T,i
d−→ N(0,1).

Proof. The proofs can be easily adapted from Lyapounov’s condition for triangular
arrays (cf. Billingsley, 1995, p. 362). �

THEOREM B.2 (Bernstein’s inequality). We let Z1, . . . ,ZT be independent random
variables, satisfying for absolute positive constants A and σ 2

0

EZt = 0 ∀t,
1

T

T∑
t=1

E|Zt|m ≤ m!

2
Am−2σ 2

0 , m = 2,3, . . . .

Let ε > 0 be arbitrary. Then,

P

(∣∣∣∣ 1

T

T∑
t=1

Zt

∣∣∣∣≥ σ 2
0

[
Aε +√

2ε
])

≤ 2e−Tσ 2
0 ε .

Proof. Slightly adapted from Bühlmann and van de Geer (2011), p. 487. �

We can use Bernstein’s inequality to establish a rate for the maximum.

COROLLARY B.1. Suppose via Bernstein’s inequality that we have for 1 ≤ i ≤ n,

P

(∣∣∣∣ 1

T

T∑
t=1

Zt,i

∣∣∣∣≥ σ 2
0
[
Kε +√

2ε
])≤ 2e−Tσ 2

0 ε .

for some absolute positive constants K and σ 2
0 . Then,

max
1≤i≤n

∣∣∣∣ 1

T

T∑
t=1

Zt,i

∣∣∣∣= Op

(
logn

T
∨
√

logn

T

)
.
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Proof. We need to use joint asymptotics n,T → ∞. We shall use the preceding inequality
with ε = (2logn)/(Tσ 2

0 ). Fix ε > 0. These exist Nε := 2/ε, Tε and Mε := max(4K,4σ0)

such that for all n > Nε and T > Tε , we have

P

(
max

1≤i≤n

∣∣∣∣ 1

T

T∑
t=1

Zt,i

∣∣∣∣≥ Mε

(
logn

T
∨
√

logn

T

))

≤
n∑

i=1

P

(∣∣∣∣ 1

T

T∑
t=1

Zt,i

∣∣∣∣≥ σ 2
0
[
Kε +√

2ε
])≤ 2elogn−2logn = 2

n
< ε.

�

LEMMA B.2. Suppose matrix A is real symmetric. Then for any comparable real
matrix B,

λmin
(
A
)
λmin

(
BBᵀ)≤ λmin

(
BABᵀ)≤ λmax

(
BABᵀ)≤ λmax

(
A
)
λmax

(
BBᵀ).

Proof. First, note that BABᵀ is Hermitian. By Rayleigh–Ritz theorem, we have

λmax
(
BABᵀ)= max‖c‖2=1

cᵀBABᵀc ≤ max‖c‖2=1
λmax(A)‖Bᵀc‖2 = λmax(A) max‖c‖2=1

cᵀBBᵀc

= λmax
(
A
)
λmax

(
BBᵀ).

On the other hand,

λmin
(
BABᵀ)= min‖c‖2=1

cᵀBABᵀc ≥ min‖c‖2=1
λmin(A)‖Bᵀc‖2 = λmin(A) min‖c‖2=1

cᵀBBᵀc

= λmin
(
A
)
λmin

(
BBᵀ).

�

LEMMA B.3. For any real matrices A and B,

(i)

‖A⊗B‖F = ‖A‖F ×‖B‖F .

(ii)

‖A⊗B‖�2 = ‖A‖�2 ×‖B‖�2 .

(iii)

‖A⊗B‖1 = ‖A‖1 ×‖B‖1.

Proof. For part (i),

‖A⊗B‖2
F = tr

[
(Aᵀ ⊗Bᵀ)(A⊗B)

]= tr
[
AᵀA⊗BᵀB

]= tr(AᵀA)tr(BᵀB) = ‖A‖2
F‖B‖2

F .

For part (ii),

‖A⊗B‖�2 =√maxeval[(A⊗B)ᵀ(A⊗B)] =√maxeval[(Aᵀ ⊗Bᵀ)(A⊗B)]

=√maxeval[AᵀA⊗BᵀB] =√maxeval[AᵀA]maxeval[BᵀB] = ‖A‖�2‖B‖�2,
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where the fourth equality is due to the fact that both AᵀA and BᵀB are symmetric and
positive semidefinite. For part (iii), suppose that A is m×n and B is p×q.

‖A⊗B‖1 =
m∑

i=1

n∑
j=1

(|ai,j|‖B‖1
)=

m∑
i=1

n∑
j=1

(
|ai,j|

p∑
k=1

q∑
�=1

|bk,�|
)

=
( m∑

i=1

n∑
j=1

|ai,j|
)( p∑

k=1

q∑
�=1

|bk,�|
)

= ‖A‖1‖B‖1.

�

LEMMA B.4. Let �̂n,j and �n,j be invertible (both possibly stochastic) n × n square
matrices for j = 1, . . . ,m, where both n and m could be growing. Let T be the sample size.
For any matrix norm ‖ ·‖, suppose that max1≤j≤m ‖�−1

n,j ‖ = Op(1) and max1≤j≤m ‖�̂n,j −
�n,j‖ = Op(am,n,T ) for some sequence am,n,T with am,n,T → 0 as m,n,T → ∞ simulta-

neously. Then max1≤j≤m ‖�̂−1
n,j −�−1

n,j ‖ = Op(am,n,T ).

Proof. The original proof could be found in Saikkonen and Lutkepohl (1996), Lem. A.2.

‖�̂−1
n,j −�−1

n,j ‖ ≤ ‖�̂−1
n,j ‖‖�n,j − �̂n,j‖‖�−1

n,j ‖
≤ (‖�−1

n,j ‖+‖�̂−1
n,j −�−1

n,j ‖
)‖�n,j − �̂n,j‖‖�−1

n,j ‖.

Let vj,n,T , zj,n,T and xj,n,T denote ‖�−1
j,n ‖, ‖�̂−1

j,n −�−1
j,n ‖ and ‖�j,n − �̂j,n‖, respectively.

From the preceding equation, we have

wj,n,T := zj,n,T

(vj,n,T + zj,n,T )vj,n,T
≤ xj,n,T,

whence we have max1≤j≤m wj,n,T ≤ max1≤j≤m xj,n,T = Op(am,n,T ) = op(1). We now
solve for zj,n,T :

zj,n,T =
v2

j,n,T wj,n,T

1− vj,n,T wj,n,T
.

Then, we have

max
1≤j≤m

zj,n,T = max
1≤j≤m

v2
j,n,T wj,n,T

1− vj,n,T wj,n,T
=

max1≤j≤m v2
j,n,T max1≤j≤m wj,n,T

1−max1≤j≤m vj,n,T max1≤j≤m wj,n,T

= Op(am,n,T ),

where the second equality is due to the fact that 0 ≤ vj,n,T wj,n,T ≤ 1 for any j. �

THEOREM B.3. Let {xt,i} be a double-index process having zero mean and being
independent across 1 ≤ t ≤ T for n ≥ 1 and T ≥ 1. If there exists k, k ≥ 2, such that

max
n≥1

max
1≤i≤n

max
T≥1

max
1≤t≤T

E|xt,i|k < ∞,
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then we have

max
n≥1

max
1≤i≤n

max
T≥1

E

∣∣∣∣ 1√
T

T∑
t=1

xt,i

∣∣∣∣k ≤ K

for some absolute positive constant K.

Proof. Slightly adapted from Brillinger (1962). �

LEMMA B.5 (Generalised Cauchy–Schwarz Inequality). For a positive definite matrix
S and any vectors φ and x

(φᵀx)2 ≤ φᵀSφ · xᵀS−1x.

Proof. See Lem. 5.3.2 (p. 178) of Anderson (1984). �
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