
Math. Struct. in Comp. Science (2009), vol. 19, pp. 1065–1090. c© Cambridge University Press 2009

doi:10.1017/S0960129509990120

Structural non-interference in elementary and trace

nets

NADIA BUSI and ROBERTO GORRIERI
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Several notions of non-interference have been proposed in the literature for studying the

problem of confidentiality in concurrent systems. The common feature of these

non-interference properties is that they are all defined as extensional properties based on

some notion of behavioural equivalence on systems. Here, instead, we address the problem

of defining non-interference by looking at the structure of the systems under investigation.

We use a simple class of Petri nets, namely, contact-free elementary net systems, as the

system model and define structural non-interference properties based on the absence of

particular places in the net: such places show that a suitable causality or conflict relation is

present between a high-level transition and a low-level one. We characterise one structural

property, called PBNI+, which we show to be equivalent to the well-known behavioural

property SBNDC. It essentially captures all the positive information flows (that is, a low-level

user can deduce that some high-level action has occurred). We start by providing a

characterisation of PBNI+ on contact-free elementary net systems, then extend the

definition to cope with the richer class of trace nets.

1. Introduction

Non-interference has been defined in the literature as an extensional property based on

some observational semantics: the high-level part of a system does not interfere with

the low-level part if whatever is done at the high level produces no visible effect on

the low-level part of the system. The original notion of non-interference in Goguen

and Meseguer (1982) was defined, using trace semantics, for system programs that are

deterministic. Generalised notions of non-interference were then designed to include (non-

deterministic) labelled transition systems and finer notions of observational semantics such

as bisimulation (see, for example, Ryan (2001), Focardi and Gorrieri (1995), Roscoe (1995),

Ryan and Schneider (1999) and Focardi and Gorrieri (2001)). Relevant properties in this

class are the trace-based properties SNNI and NDC, as well as the bisimulation-based

properties BSNNI, BNDC and SBNDC proposed by Focardi and Gorrieri some years

ago (Focardi and Gorrieri 1995; Focardi and Gorrieri 2001) on a CCS-like (Milner 1989)

process algebra. In particular, SNNI states that a system R is secure if R \ H (all the

high-level actions are prevented) and R/H (all the high-level actions are permitted but
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are unobservable) are trace equivalent. BSNNI is like SNNI, but with trace equivalence

replaced by weak bisimulation. Intuitively, NDC states that a system R is secure if R \ H

is trace equivalent to R in parallel with any high-level process Π where all the actions in

H are restricted (hence cooperation on high-level actions is forced). BNDC is the same as

NDC, but with trace equivalence replaced by weak bisimulation. And SBNDC says that

a system R is secure if, whenever a high-level action h is performed, the two instances of

the system before and after performing h are bisimilar from a low-level point of view.

In the first part of the paper we show that these non–interference properties can also

be naturally defined on Petri nets: in particular, to keep the presentation as simple as

possible, we use elementary nets (Engelfriet and Rozenberg 1998). The advantage of this

proposal is the import into the Petri net theory of security notions, which makes possible

the study of security problems. Technically, what we do is to introduce two operations

on nets, namely parallel composition (with synchronisation in TCSP-like style (Brookes

et al. 1984)) and restriction, and suitable notions of observational equivalences on the

low-level part of the system (low trace equivalence and low bisimulation). Then, five

security properties are defined and compared in a rather direct way. In particular, the

two properties based on low trace semantics, namely SNNI and NDC, are shown to be

equivalent. On the other hand, in the bisimulation case, BSNNI is strictly weaker than

BNDC, which, surprisingly, turns out to be equivalent to SBNDC. In this approach, the

security property is based on the dynamics of systems; these properties are all defined by

means of one (or more) equivalence check(s). So non-interference checking is as difficult

as equivalence checking, which is a well-studied hard problem in concurrency theory.

In the second part of the paper we address the problem of statically defining non-

interference for elementary nets by looking at the structure of the net systems under

investigation:

— in order to get a better understanding of the relationship between a flow of information

and the causality (or conflict) relation between the activites originating such a flow,

hence grounding more firmly the intuition about what is an interference; and

— in order to find more efficiently checkable non-interference properties that are sufficient

(sometimes also necessary) conditions for those that have already received some

support in the literature.

We define structural non-interference properties based on the absence of particular

places in the net. We identify two special classes of places: causal places, that is, places

for which there are both an incoming high-level transition and an outgoing low-level

transition; and, conflict places, that is, places for which there are both low- and high-level

outgoing transitions. Intuitively, causal places represent a potential source of interference

(hilo flow for high input – low output), because the occurrence of the high-level transition

is a prerequisite for the execution of the low-level transition. Similarly, conflict places

represent potential source of interference (holo flow for high output – low output), because

if the low-level event is not executable, we can deduce that a certain high-level transition

has occurred. The absence of causal and conflict places can be easily checked by a simple

inspection of the (finite) net structure; interestingly enough, this is a sufficient condition

to ensure SBNDC.

https://doi.org/10.1017/S0960129509990120 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990120


Structural non-interference in elementary and trace nets 1067

In order to characterise SBNDC more precisely, we have to refine the notions of

causal place and conflict place slightly, yielding the so-called active causal place and

active conflict place. These new definitions are also based on a limited exploration of the

state-space of the net (that is, of its marking graph), so the absence of such places is not

a purely structural property, but a hybrid property. Moreover, active causal places and

active conflict places capture all the positive information flows, that is, the information

a low-level user can deduce about the actions the high-level user has performed. We

show that when active causal and active conflict places are absent, we get a property,

called Positive Place–Based Non–Interference (PBNI+ for short), which turns out to be

equivalent to SBNDC. More precisely, the main result of the paper states that a net N

has no active causal places and no active conflict places if and only if it satisfies SBNDC.

This result shows that all the positive information flows are captured by SBNDC.

In the third part of the paper we extend the definition of PBNI+ to cope with the

richer class of trace nets (Badouel and Darondeau 1995). We provide an example showing

how PBNI+ can be used to capture the information flows arising in a shared variable

that can be accessed and modified by both high- and low-level users.

The paper is organised as follows. In Section 2 we recall the basic definitions concerning

transition systems and elementary net systems. In Section 3 we recast the behavioural

approach to non-interference properties, which was originally defined in a process algebraic

setting, on elementary nets. The original structural property PBNI+ for elementary nets is

introduced in Section 4, where the main technical result (SBNDC if and only if PBNI+)

is given. In Section 5, after recalling the basic definitions for trace nets, we extend the

definition of PBNI+ to trace nets. Finally, some concluding remarks are given in Section 6.

2. Basic definitions

Here we recall the basic definitions for transition systems and elementary net systems that

we will use in the rest of the paper.

2.1. Transition systems

Definition 2.1. A transition system is a triple TS = (St, E,→) where:

— St is the set of states

— E is the set of events

— →⊆ St × E × St is the transition relation.

In the following we use s
e→ s′ to denote (s, e, s′) ∈→. Given a transition s

e→ s′, s is said to

be the source, s′ the target and e the label of the transition. A rooted transition system is

a pair (TS, s0) where TS = (St, E,→) is a transition system and s0 ∈ St is the initial state.

2.2. Elementary net systems

Definition 2.2. An elementary net is a tuple N = (S, T , F), where

— S and T are the (finite) sets of places and transitions, with S ∩ T = �
— F ⊆ (S × T ) ∪ (T × S) is the flow relation.
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A subset of S is called a marking. Given a marking m and a place s, if s ∈ m, we say

that the place s contains a token, otherwise we say that s is empty.

Let x ∈ S ∪ T . The preset of x is the set •x = {y | F(y, x)}. The postset of x is the set

x• = {y | F(x, y)}. The preset and postset functions are generalised in the obvious way to

a set of elements: if X ⊆ S ∪ T , then •X =
⋃

x∈X
•x and X• =

⋃
x∈X x•. A transition t is

enabled at marking m if •t ⊆ m and t• ∩ m = �. The firing (execution) of a transition t

enabled at m produces the marking m′ = (m \ •t) ∪ t•. This is usually written as m[t〉m′.

We use the notation m[t〉 to mean that there exists m′ such that m[t〉m′.

An elementary net system is a pair (N,m0), where N is an elementary net and m0 is a

marking of N, called the initial marking. With abuse of notation, we use (S, T , F, m0) to

denote the net system ((S, T , F), m0).

The set of markings reachable from m, denoted by [m〉, is defined as the least set of

markings such that:

— m ∈ [m〉
— if m′ ∈ [m〉 and there exists a transition t such that m′[t〉m′′, then m′′ ∈ [m〉.
The set of firing sequences is defined inductively as follows:

— m0 is a firing sequence;

— if m0[t1〉m1 . . . [tn〉mn is a firing sequence and mn[tn+1〉mn+1, then

m0[t1〉m1 . . . [tn〉mn[tn+1〉mn+1

is a firing sequence also.

Given a firing sequence m0[t1〉m1 . . . [tn〉mn, we say t1 . . . tn is a transition sequence. The set

of transition sequences of a net N is denoted by TS(N). We use σ to range over TS(N).

Let σ = t1 . . . tn. We use m[σ〉mn as an abbreviation for m[t1〉m1 . . . [tn〉mn and also write

ti ∈ σ to mean transtion ti occurs in the transition sequence σ.

The marking graph of a net system N is the transition system

MG(N) = ([m0〉, T , {(m, t, m′) | m ∈ [m0〉 ∧ t ∈ T ∧ m[t〉m′}).

A net is transition simple if the following condition holds for all x, y ∈ T :

if •x = •y and x• = y•, then x = y.

A marking m contains a contact if there exists a transition t ∈ T such that •t ⊆ m and

¬(m[t〉). A net system is contact free if no marking in [m0〉 contains a contact. A net

system is reduced if each transition can occur at least once: for all t ∈ T there exists

m ∈ [m0〉 such that m[t〉. In the following we consider contact-free elementary net systems

that are transition simple and reduced.

3. A behavioural approach to non-interference for Petri nets

In this section we recall from Busi and Gorrieri (2004b) some basic definitions of security

properties defined on elementary nets, which were originally proposed in Focardi and

Gorrieri (1995; 1997; 2001) in a process algebraic setting. Our aim is to analyse systems

that can perform two kinds of actions: high-level actions, representing the interaction of
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the system with high-level users, and low-level actions, representing the interaction with

low-level users. We want to verify if the interplay between the high-level user and the

high-level part of the system can affect the view of the system as observed by a low-level

user. We assume that the low-level user knows the structure of the system, and we check if,

in spite of this, he is unable to infer the behaviour of the high-level user by observing the

low view of the execution of the system. Hence, we consider nets whose set of transitions is

partitioned into two subsets: the set H of high-level transitions and the set L of low-level

transitions. To emphasise this partition, we use the following notation. Let L and H be

two disjoint sets: we use (S, L,H, F, m0) to denote the net system (S, L ∪ H, F, m0).

The non-interference properties we are going to introduce are based on some notion of

low observability of a system, that is, what can be observed of a system from the point

of view of low-level users. The low view of a transition sequence is just the subsequence

where high-level transitions are discarded.

Definition 3.1. Let N = (S, L,H, F, m0) be an elementary net system. The low view of a

transition sequence σ of N is defined as follows:

ΛN(ε) = ε

ΛN(σt) =

{
ΛN(σ)t if t ∈ L

ΛN(σ) otherwise.

The definition of ΛN is extended in the obvious way to sets of transition sequences:

ΛN(Σ) = {ΛN(σ) | σ ∈ Σ} for Σ ⊆ (L ∪ H)∗.

Definition 3.2. Let N1 and N2 be two elementary net systems. We say that N1 is low-view

trace equivalent to N2 (denoted N1
Λ≈tr N2) if and only if ΛN1

(TS(N1)) = ΛN2
(TS(N2)).

We define the operations of parallel composition (in TCSP-like style, see Brookes

et al. (1984)) and restriction on nets, which will be useful for defining some non-interference

properties.

Definition 3.3. Let N1 = (S1, L1, H1, F1, m0,1) and N2 = (S2, L2, H2, F2, m0,2) be two net

systems such that S1 ∩ S2 = � and (L1 ∪ L2) ∩ (H1 ∪ H2) = �. The parallel composition

of N1 and N2 is the net system

N1 | N2 = (S1 ∪ S2, L1 ∪ L2, H1 ∪ H2, F1 ∪ F2, m0,1 ∪ m0,2).

Note that synchronisation occurs over those (low- or high-level) transitions that are

shared by the two nets, that is, a transition t that occurs both in N1 and N2 has preset

(postset), in N1 | N2, given by the union of the disjoint presets (postsets) in N1 and N2,

respectively. Observe that if N1 and N2 are contact free, transition simple and reduced,

then N1 | N2 is contact free, transition simple and reduced also.
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Fig. 1. The net system N ′ is SNNI while N ′′ is not SNNI.

Definition 3.4. Let N = (S, L,H, F, m0) be a safe net system and let U be a set of

transitions. The restriction on U is defined as N\U = (S, L′, H ′, F ′, m0), where

L′ = L \ U

H ′ = H \ U

F ′ = F \ (S × U ∪ U × S)

We can see immediately that if N is contact free, transition simple and reduced, then

so is N\U.

We will now introduce the first behavioural information-flow security property. Strong

Non-deterministic Non-Interference (SNNI for short) is a trace-based property, which says

intuitively that a system is secure if what the low-level part can see does not depend on

what the high-level part can do.

Definition 3.5. Let N = (S, L,H, F, m0) be a net system. We say that N is SNNI if and

only if N
Λ≈tr N\H .

The intuition is that, from the point of view of low-level users, the system where the

high-level transitions are prevented should offer the same traces as the system where the

high-level transitions can be freely performed. In essence, a low-level user cannot infer,

by observing the low view of the system, that some high-level activity has occurred.

As a matter of fact, this non-interference property captures the information flows from

high to low, while it admits flows from low to high. For instance, the net N ′ of Figure 1

is SNNI, while the net N ′′ is not SNNI because the low view of the transition sequence hl

of N ′′ is l, but no transition sequence l is performable by N ′′\H .

An alternative notion of non-interference, called Non-Deducibility on Composition (or

NDC for short), says that the low view of a system N in isolation must not be altered

when considering each potential interaction of N with the high-level users of the external

environment.

Definition 3.6. Let N = (S, L,H, F, m0) be a net system. We say that N is a high-level net

if L = �.
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Definition 3.7. Let N = (S, L,H, F, m0) be a net system. N is NDC if and only if for all

high-level nets K = (SK,�, HK, FK, m0,K ), we have N\H Λ≈tr (N | K)\(H \ HK).

The left-hand term represents the system N when isolated from high-level users (hence,

the low view of N in isolation), while the right-hand term expresses the low view of N

interacting with the (common transitions of the) high-level environment K (note that

the activities resulting from such interactions are invisible by the definition of low-view

equivalence). NDC is a very intuitive property: whatever high-level system K is interacting

with N, the low-level effect is unobservable. However, it is difficult to check this property

because of the universal quantification over high-level systems. Luckily enough, we can

prove that SNNI and NDC are actually the same non-interference property.

Theorem 3.8. Let N = (S, L,H, F, m0) be a net system. N is SNNI if and only if N is

NDC.

Proof.

NDC ⇒ SNNI:

Take the contact-free high-level net

K = ({s, s′},�, H ∪ {τ}, {s} × H ∪ H × {s′} ∪ {(s′, τ), (τ, s)}, {s}),

where τ is an auxiliary high-level transition not in H . Then the implication follows by

the observation that

ΛN(TS((N | K)\�)) = ΛN(TS(N)).

SNNI ⇒ NDC:

This implication follows by the following two observations:

(i) ΛN(TS(N\H)) ⊆ ΛN(TS((N | K)\(H \ HK))) for all high-level nets K .

(ii) ΛN(TS((N | K)\(H \ HK ))) ⊆ ΛN(TS(N)) for all high-level nets K .

The two properties above are based on (low) trace semantics. It is well known

(Focardi and Gorrieri 1995; 2001) that bisimulation semantics is more appropriate than

trace semantics because it also captures some indirect information flows due to, for

example, deadlocks. For this reason, we now consider non-interference properties based

on bisimulation. To this end, we first need to introduce a notion of low-view bisimulation.

Definition 3.9. Let N1 = (S1, L1, H1, F1, m0,1) and N2 = (S2, L2, H2, F2, m0,2) be two net

systems. A low-view bisimulation from N1 to N2 is a relation on P(S1) × P(S2)
† such that

if (m1, m2) ∈ R, then for all t ∈
⋃

i=1,2 Li ∪ Hi:

— If m1[t〉m′
1, then there exist σ, m′

2 such that we have m2[σ〉m′
2, ΛN1

(t) = ΛN2
(σ) and

(m′
1, m

′
2) ∈ R.

— If m2[t〉m′
2, then there exist σ, m′

1 such that we have m1[σ〉m′
1, ΛN2

(t) = ΛN1
(σ) and

(m′
1, m

′
2) ∈ R.

† We use P(S) to denote the powerset of S .
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Fig. 2. A net system that is SNNI but not BSNNI.

If N1 = N2, we say that R is a low-view bisimulation on N1.

We say that N1 is low-view bisimilar to N2, denoted N1
Λ≈bis N2, if there exists a low-view

bisimulation R from N1 to N2 such that (m0,1, m0,2) ∈ R.

We also say that two markings m and m′ of the net N1 are low-view bisimilar if there

exists a low-view bisimulation R on N1, that is, on P(S1) × P(S1), such that (m,m′) ∈ R.

The first obvious variation on the theme is to define the bisimulation-based version of

SNNI, yielding BSNNI.

Definition 3.10. Let N = (S, L,H, F, m0) be a net system. We say that N is BSNNI if and

only if N
Λ≈bis N\H .

Obviously, BSNNI ⊆ SNNI. The converse is not true: the net N in Figure 2 is SNNI

but not BSNNI. Note that SNNI fails to capture the indirect information flow present

in this net: if the low-level transition l cannot be performed, the low-level user can infer

that the high-level transition h has been performed, hence deducing one piece of (positive)

high-level knowledge.

Similarly, BNDC can be defined from NDC, yielding a rather appealing security

property, which is finer than BSNNI.

Definition 3.11. Let N = (S, L,H, F, m0) be a net system. N is BNDC if and only if for all

high-level nets K = (SK,�, HK, FK, m0,K ), we have N\H Λ≈bis (N | K)\(H \ HK ).

Theorem 3.12. Let N = (S, L,H, F, m0) be a net system. If N is BNDC, then N is BSNNI.

Proof. Take the contact-free high-level net K defined in the proof of Theorem 3.8. Then

the implication follows by the obvious observation that (N | K)\�
Λ≈bis N.

Unfortunately, the converse is not true. Figure 3 shows a net that is BSNNI but not

BNDC ; it is easy to see why this is the case by looking at the respective marking graphs

in Figure 4.

BNDC is, intuitively, quite appealing, but it is difficult to check: one has to perform

the bisimulation check against all possible high-level systems, and, in principle, there are

infinitely many of them. The next property, called Strong Bisimulation Non-Deducibility on

Composition (SBNDC for short), is actually an alternative characterisation of BNDC and

is more easily checkable.
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Fig. 3. A net system that is BSNNI but not BNDC.

Fig. 4. The marking graphs of the net systems N, N\H and (N | K)\{h2}.

Definition 3.13. Let N = (S, L,H, F, m0) be a net system. N is SBNDC if and only if for

all markings m ∈ [m0〉 and for all h ∈ H , the following holds:

if m[h〉m′, there exists a low-view bisimulation R on N\H such that (m,m′) ∈ R.

The intuition behind SBNDC is that, whenever a high-level transition h is performed,

the markings before h and after h are observationally indistinguishable for a low-level

observer. Note that SBNDC is clearly decidable for (finite) elementary net systems because

the number of reachable markings is finite, as well as the set H of high-level transitions.

We now prove in two steps that SBNDC is indeed an alternative characterisation of

BNDC.

Theorem 3.14. Let N = (S, L,H, F, m0) be a net system. If N is BNDC, then N is SBNDC.

Proof. Suppose N is BNDC. Let m ∈ [m0〉 and h ∈ H be such that m[h〉m′. We show

that there exists a low-view bisimulation on N\H that contains the pair (m,m′).

We need an auxiliary function HN , called high-view and defined in a very similar way to

the low-view function ΛN , that extracts from a transition sequence σ the subsequence of

its high-level transitions. Let σ be a transition sequence such that m0[σ〉m. Let HN(σ) =

h1 . . . hn. Note that the sequence h1 . . . hn may contain repeated elements. We construct the

high-level net K1 = (S1,�, H1, F1, m01), shown in Figure 5, where:

— S1 =
⋃n+1

i=1 {preeni} ∪
⋃n+1

i=1 {posteni} ∪ {end}
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Fig. 5. The net K1 used in the proof of Theorem 3.14, for the case n = 2.

— H1 =
⋃n+1

i=1 {eni} ∪ {h1, . . . , hn} ∪ {h}.
— F1 =

⋃n+1
i=1 {(preeni, eni)}∪

⋃n+1
i=1 {(end, eni)}∪

⋃n+1
i=1 {(eni, posteni)}∪

⋃n
i=1{(eni, preeni+1)}∪⋃n

i=1{(posteni, hi)} ∪ {(postenn+1, h)} ∪
⋃n

i=1{(hi, end)} ∪ {(h, end)}
— m01 = {preen1, end}.

As N is BNDC, we have that (N\H)
Λ≈bis ((N|K1)\(H \ H1)). Hence, there exists a

low-view bisimulation R1 from (N\H) to ((N|K1)\(H \ H1)). Hence, (m0, m0 ∪ m01) ∈ R1.

Moreover, it is easy to see that the only (maximal) transition sequence that can be

performed by K1 is en1h1en2h2 . . . enn+1h, leading to marking {end}. Take σ1, . . . , σn+1 such

that σ = σ1h1σ2h2 . . . σnhnσn+1. As m0[σ〉m[h〉m′, we have

m0 ∪ m01[σ
′〉m ∪ {end, preenn+1}[enn+1h〉m′ ∪ {end}

in ((N|K1)\(H \ H1)), where σ′ = σ1en1h1σ2en2h2 . . . ennhnσn+1. Note that ΛN(σ′) =

ΛN(σ′enn+1h).

As (m0, m0 ∪ m01) ∈ R1 and R1 is a low-view bisimulation, we have that there exists

m̄ such that m0[ΛN(σ′)〉m̄, such that (m̄, m′ ∪ {end}) belong to R1. As the net K1 with

marking {end} can perform no transition, it is easy to see that the relation R′
1 = {(m1, m2) |

(m1, m2 ∪ {end}) ∈ R1} is a low-view bisimulation on N\H . Moreover, as (m̄, m′ ∪ {end})
belongs to R1, we get that (m̄, m′) belongs to R′

1.

Now we take the net K2 = (S2,�, H2, F2, m02) obtained from K1 by removing transitions

h and enn+1 and the corresponding places, that is,

— S2 = S1 \ {preenn+1, postenn+1}
— H2 = H1 \ {enn+1, h}
— F2 = F1 ∩ ((S2 × H2) ∪ (H2 × S2))

— m02 = m01.

Following a reasoning similar to that performed for net K1, we get that there exists a low-

view bisimulation R2 from (N\H) to ((N|K2)\(H\H2)) with (m0, m0∪m02) ∈ R2. As m0[σ〉m,

we have m0∪m02[σ
′〉m∪{end} in ((N|K2)\(H\H2)), where σ′ = σ1en1h1σ2en2h2 . . . ennhnσn+1.

As (m0, m0 ∪ m02) ∈ R2, R2 is a low-view bisimulation and we have seen above that the

marking reached from m0 after firing ΛN(σ′) is m̄, we have (m̄, m ∪ {end}) ∈ R2. As the
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net K2 with marking {end} can perform no transition, it is easy to see that the relation

R′
2 = {(m1, m2) | (m1, m2 ∪ {end}) ∈ R2} is a low-view bisimulation on N\H . Moreover, as

(m̄, m ∪ {end}) belongs to R2, we get that (m̄, m) belongs to R′
2. Thus, we have (m̄, m′) ∈ R′

1

and (m̄, m) ∈ R′
2. It is easy to see that if R is a low-view bisimulation, then R−1 is a

low-view bisimulation and that if R and S are low-view bisimulations, then R ◦ S is a

low-view bisimulation. Let R = (R′
2)

−1 ◦R′
1. We have that R is a low-view bisimulation on

N\H and (m,m′) ∈ R. Hence, N is SBNDC.

Theorem 3.15. Let N = (S, L,H, F, m0) be a net system. If N is SBNDC, then N is BNDC.

Proof. Suppose that N is SBNDC. Let K = (Sk,�, Hk, Fk, m0k) be a high-level net.

To show that N is BNDC, we need to provide a low-view bisimulation from N\H to

(N|K)\(H \ Hk).

Let R = {(m, m̄∪mk | m, m̄ ∈ [m0〉, mk ∈ [m0k〉 and let there exist a low-view bisimulation

R′ on N\H : (m, m̄) ∈ R′}. We want to prove that R is the required low-view bisimulation.

We have that (m0, m0 ∪ m0k) ∈ R.

Take (m, m̄ ∪ mk) ∈ R.

If m[l〉m′, as there exists a low-view bisimulation R′ containing (m, m̄), then there exists

m̄′ such that m̄[l〉m̄′ and (m′, m̄′) ∈ R′. From m̄[l〉m̄′, we get m̄ ∪ mk[l〉m̄′ ∪ mk . From

(m′, m̄′) ∈ R′, we get (m′, m̄′ ∪ mk) ∈ R. Conversely, if m̄ ∪ mk[l〉m1, as K contains only

high-level transitions, there exists m̄′ such that m̄[l〉m̄′ and m1 = m̄′ ∪mk . As there exists R′

such that (m, m̄) ∈ R′, there exists m′ such that m[l〉m′ and (m′, m̄′) ∈ R′. Hence, following

the same reasoning as above, we have (m′, m̄′ ∪ mk) ∈ R.

If m̄ ∪ mk[h〉m1, there exist m̄′ and m′
k such that m̄[h〉m̄′, mk[h〉m′

k and m1 = m̄′ ∪ m′
k .

By SBNDC, from m̄[h〉m̄′, we get that there exists a low-view bisimulation R′′ such that

(m̄, m̄′) ∈ R′′. As, by hypothesis, (m, m̄) ∈ R′, we have (m, m̄′) ∈ R′ ◦ R′′, which is also

a low-view bisimulation. Hence, we get (m, m̄′ ∪ m′
k) ∈ R. (As ΛN(h) = ε, we also have

m[ΛN(h)〉m.)

Hence, R is a low-view bisimulation from N\H to (N|K)\(H \ Hk).

The two theorems above give the following corollary.

Corollary 3.16. Let N = (S, L,H, F, m0) be a net system. N is BNDC if and only if N is

SBNDC.

The above corollary holds because we are in an unlabelled setting, that is, transitions

are not labelled. Focardi and Gorrieri (1995; 2001) proved that, for the Security Process

Algebra, SBNDC is strictly finer than BNDC. Nonetheless, it is an interesting observation

that two properties that are defined in a radically different way actually coincide in this

setting.

4. A structural approach to positive non-interference

We defined two notions of non-interference in Busi and Gorrieri (2004a; 2004b), namely,

PBNI and RBNI, which were aimed at capturing any kind of information flow from

high-level users to low-level users. Those notions capture both positive and negative
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Fig. 6. Examples of net systems containing conflict and (potentially) causal places.

pieces of information on the high-level behaviour of the system. More precisely, a positive

information flow arises when the occurrence of a high-level transition can be deduced from

the low-level behaviour of the system, whereas a negative information flow is concerned

with the deduction that a high-level transition has not occurred.

In this section we provide a characterisation of positive information flows, that is, we

consider a system secure if it is not possible to deduce that some high-level action has been

performed by observing the low-level behaviour. In this sense, the behavioural properties

studied in the previous section are able to capture positive (and also some negative)

information flows. However, we still need to determine if all the positive information flows

are captured. With this end in mind, we propose the structural PBNI+ property, which is

based on the absence of some kinds of places in a net system and captures all the positive

information flows in a rather intuitive way.

Consider a net system N = (S, L,H, F, m0). Consider a low-level transition l of the net:

if l can fire, we know that the places in the preset of l are marked before the firing of

l; moreover, we know that such places become unmarked after the firing of l. If there

exists a high-level transition h that produces a token in a place s in the preset of l (see

the system N1 in Figure 6), then the low-level user can infer that h has occurred if he can

perform the low-level transition l. We note that there exists a causal dependency between

the transitions h and l because the firing of h produces a token that is consumed by l.

Hence, the occurrence of l gives a piece of positive high-level information (the execution

of h) to a low-level user.

Consider now the situation illustrated in the system N2 of Figure 6: in this case, place

s is in the preset of both l and h, that is, l and h are competing for the use of the resource

represented by the token in s. Aware of the existence of such a place, a low-level user

knows that the high-level action h has been performed if he is not able to perform the

low-level action l, hence deducing a piece of positive information about the high-level

behaviour. Place s represents a conflict between transitions l and h, because the firing of

h prevents l from firing.

Our idea is to consider a net system secure if it does not contain places of the kinds

illustrated above.
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Fig. 7. A net system containing a potentially conflict place but no active conflict places.

In order to avoid the definition of a security notion that is too strong, and that rules

out systems that do not reveal information about the high-level actions that have been

performed, we need to refine the concepts illustrated above. Consider, for instance, the net

system N3 shown in Figure 6. Although s is a potentially causal place, the net system has

to be considered secure, as the (unique) possible firing of l is at the initial marking, hence

it is not caused by h. For s to be a source of information on the occurrence of h, there

must exist a firing sequence where l consumes a token produced by h. In other words, s

is an active causal place if there exists a path in MG(N3) connecting (an occurrence of)

h to (an occurrence of) l, such that the transitions occurring after h and before l do not

produce tokens in s.

As far as conflicts are concerned, consider the net system N4 shown in Figure 7. At first

sight, the net N4 might appear to be insecure because of the presence of the conflict place

s. However, we note that the occurrence of h has no effect on the low-level behaviour

of the system, as the possibility of firing l has already been ruled out by the firing of

transition l′. Hence, for s to be a source of information about the occurrence of h, there

must exist a reachable marking where the firing of h rules out the possibility of firing

(immediately or after some other transitions) l. In other words, s is an active conflict

place if there exists a path in MG(N4) connecting the source of (an occurrence of) h to

(an occurrence of) l such that the transitions occurring in the path do not produce tokens

in s.

Definition 4.1. Let N = (S, L,H, F, m0) be an elementary net system. Let s be a place of

N such that s• ∩ L �= � (that is, a token in s can be consumed by a low-level transition).

The place s ∈ S is a potentially causal place if •s ∩ H �= � (that is, a token in s can

be produced by a high-level transition). A potentially causal place s is an active causal

place if the following condition holds: there exist l ∈ s• ∩ L, h ∈ •s ∩ H , m ∈ [m0〉 and a

transition sequence σ such that m[hσl〉 and s �∈ t• for all t ∈ σ.

The place s ∈ S is a potentially conflict place if s• ∩ H �= � (that is, the token in s

can also be consumed by a high-level transition). A potentially conflict place is an active

conflict place if the following condition holds: there exist l ∈ s• ∩ L, h ∈ s• ∩ H , m ∈ [m0〉
and a transition sequence σ such that m[h〉, m[σl〉 and s �∈ t• for all t ∈ σ.
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It is quite convincing that the presence of an active causal place, such as place s in

net N1 of Figure 6, may determine the only causal positive information flow that exists

from high to low: if l is performed, then h has also been performed. Note that it is not

possible to define a negative causal information flow: in no way, by performing (or not)

the low-level transition l, we can deduce the fact that the high-level transition h has not

been performed.

It is quite convincing that the presence of an active conflict place, such as place s in

net N2 of Figure 6, may determine the only conflict positive information flow that exists

from high to low: if l is not executable, then h has been performed. Observe that the

definition of active conflict place is correct because it implicitly uses the assumption of

contact-freeness: no transition in σ can generate a contact for h. This ensures that if l

after σ is not executable, then h has been performed†. Note, however, that a negative

information flow can also be derived: if l has been performed, then h cannot occur. Note

also that if the role of h and l are exchanged in the definition of active conflict place (that

is, m[l〉, m[σh〉), we get a definition that may only reveal a negative information flow: if

l is performed, then h cannot occur, because the non-occurrence of l says nothing about

the possible firing of h (if σ is non-empty). Since we are interested in capturing positive

information flows only, we will ignore this additional source of information flows.

Definition 4.2. Let N = (S, L,H, F, m0) be an elementary net system. We say that N is

PBNI+ (positive Place-Based Non-Interference) if, for all s ∈ S , s is neither an active causal

place nor an active conflict place.

We have that the absence of both active causal and active conflict places is a necessary

and sufficient condition for SBNDC, thereby showing that the behavioural property

SBNDC captures all the positive information flows. This result, which represents the main

technical achievement of this paper, is proved in two steps.

Theorem 4.3. Let N = (S, L,H, F, m0) be an elementary net system. If N is PBNI+, then

N is SBNDC.

Proof. Let N be PBNI+. We will show that N is SBNDC. Take m ∈ [m0〉 such that

m[h〉m′ for some h ∈ H . We have to prove that there exists a low-view bisimulation R on

N\H such that (m,m′) ∈ R.

Let

R = {(m1, m2) |∀l ∈ L ∀s ∈ •l :

m1(s) �= m2(s) ⇒ (∀σ∀i ∈ {1, 2} : mi[σl〉 ⇒ ∃l1 ∈ σ : s ∈ l•1)}

be the candidate relation.

— We show first that R is a low-view bisimulation on N\H .

Let (m1, m2) ∈ R. Suppose m1[l〉m′
1. We show that m2[l〉 also. Suppose there exists s ∈ •l

such that m2(s) = 0; hence, m1(s) �= m2(s). As (m1, m2) ∈ R and m1[l〉, by definition

† Note that transitions in σ may disable h simply by consuming other tokens needed for h to fire, but in such

a case, after σ, l will be always executable.
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of R (with σ = ε), there must exist t ∈ ε, which gives a contradiction. Hence, ∀s ∈ •l

m2(s) � 1, so there exists m′
2 such that m2[l〉m′

2.

Now we show that (m′
1, m

′
2) ∈ R. Suppose (m′

1, m
′
2) �∈ R. Then there exist l′, s′ ∈ •l′

such that m′
1(s

′) �= m′
2(s

′), and there exists σ and i such that m′
i[σl

′〉 and s′ ∈ l•1 for no

l1 ∈ σ. As mi[l〉m′
i for i = 1, 2, we have m1(s

′) �= m2(s
′) and there exists i ∈ {1, 2} such

that mi[lσl
′〉 and s′ ∈ l•1 for no l1 ∈ σ. Since m′

1(s
′) �= m′

2(s
′), necessarily s′ �∈ l•, hence

s′ ∈ l•1 for no l1 ∈ lσ. Thus we obtain (m1, m2) �∈ R, which gives a contradiction. Hence

we have (m′
1, m

′
2) ∈ R.

The symmetric case can be proved in the same way, which shows that R is a low-view

bisimulation on N\H .

— We now show that (m,m′) ∈ R.

Suppose there exists s and l ∈ s• such that m(s) �= m′(s). We show that ∀σ : m[σl〉 ⇒
∃t ∈ σ : s ∈ t• and ∀σ : m′[σl〉 ⇒ ∃t ∈ σ : s ∈ t•.

As m[h〉m′, we can deduce from m(s) �= m′(s) that one of the following holds:

– s ∈ h•.

Hence, s is a potentially causal place.

Take a sequence σ such that m[σl〉. We show that there exists t ∈ σ such that s ∈ t•.

There are two possible subcases:

(i) σ = hσ′.

As PBNI+ holds, s is not an active causal place. Hence, for all m̄ ∈ [m0〉 and

for all σ̄, we have if m̄[hσ̄l〉, there exists t ∈ σ̄ such that s ∈ t•. As m[σl〉 and

σ = hσ′, there exists t ∈ σ′ such that s ∈ t•.

(ii) σ = ε or σ = t′σ′ with t′ �= h.

As s ∈ h•, we have m(s) = 0. As m[σl〉 and s ∈ •l, there must exist a transition

t ∈ σ that produces one token in s, that is, such that s ∈ t•. In particular, σ �= ε.

Now consider a sequence σ such that m′[σl〉. We show that there exists t ∈ σ such

that s ∈ t•. As m[h〉m′, we have m[hσl〉, hence, because PBNI+ holds, there exists

t ∈ σ such that s ∈ t•.

– s ∈ •h.

So s is a potentially conflict place.

Take a sequence σ such that m[σl〉. We show that there exists t ∈ σ such that s ∈ t•.

As PBNI+ holds, s cannot be an active conflict place. Hence, for all m̄ ∈ [m0〉 and

for all σ̄, we have if m̄[h〉 and m̄[σ̄l〉, there exists t ∈ σ̄ such that s ∈ t•.

As m[h〉m′ and m[σl〉, there exists t ∈ σ such that s ∈ t•.

Now take a sequence σ such that m′[σl〉. As s ∈ •h, we have m′(s) = 0. As s ∈ •l,

from m′[σl〉 we have that there must exist a transition t ∈ σ producing one token

in s, that is, s ∈ t•.

Theorem 4.4. Let N = (S, L,H, F, m0) be an elementary net system. If N is SBNDC, then

N is PBNI+.
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Proof. Suppose N is SBNDC. We show that no place in N can be an active causal

place or an active conflict one:

— Suppose first that s is an active causal place.

Then, there exist h ∈ •s, l ∈ s•, m ∈ [m0〉 and σ such that m[hσ l〉 and ∀t ∈ σ : s �∈ t•.

Among the markings and the transition sequences that satisfy the conditions above,

take m and σ such that σ contains the minimum number of transitions in H .

There are two cases to consider:

– All transitions in σ belong to L.

We have m[h〉m′. By SBNDC, there exists a low-view bisimulation on N\H
containing the pair (m,m′). As m′[σl〉, we also have m[σl〉. But from h ∈ •s

and m[h〉, we deduce that s �∈ m. We also know that ∀t ∈ σ : s �∈ t•. So, after the

firing of σ, place s is still empty, contradicting the fact that m[σl〉.
– There exists a high-level transition in σ.

Let h′ be the last high-level transition in σ. Hence, there exist σ1, σ2 such that

σ = σ1h
′σ2 and all transitions in σ2 belong to L. Thus, there exist m1, m2 such that

m[hσ1〉m1[h
′〉m2[σ2l〉.

From m1[h
′〉m2, by SBNDC there exists a low-view bisimulation on N\H containing

the pair (m1, m2). From m2[σ2l〉, we also get that m1[σ2l〉, thus obtaining the firing

sequence m[hσ1σ2l〉, which contradicts the assumption that the chosen transition

sequence was the one with the least number of high-level transitions.

— Now suppose s is an active conflict place.

The proof proceeds in an analogous way to the case above.

Corollary 4.5. Let N = (S, L,H, F, m0) be an elementary net system. Then N is PBNI+ if

and only if N is SBNDC.

An obvious consequence is that if N has no potentially causal or potentially conflict places,

then N is SBNDC. Hence, a simple strategy for checking if N is SBNDC is to first

identify potential causal/conflict places, a procedure that is linear in the size of the net†.

If no place of these sorts is found, then N is PBNI+ . Otherwise, any such candidate

place should be further studied to check if it is actually an active causal/conflict place, a

procedure that requires a limited exploration of the marking graph‡.

Moreover, we state that PBNI+ is a compositional property with respect to parallel

composition and restriction.

Theorem 4.6. Let Ni = (Si, Li, Hi, Fi, m0,i) (i = 1, 2) be two PBNI+ net systems and let

U ⊆ L be a set of low-level transitions. Then, N1 | N2 is PBNI+ as well as N1\U.

† In the worst case, the identification of the potentially causal or conflict places is O(n × m), where n is the

number of places and m is the number of transitions. In the average case, this is O(n × k) where k is the

maximum number of transitions connected to a place (hence k is typically rather small).
‡ Efficient algorithms for checking if potential places are active are beyond the scope of this paper. However,

they will have to cope with the nature of the marking graph, which is exponential in the number of places.

Initial work in this direction has been reported in Frau (2008).
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This compositionality principle can be helpful in proving the security of a large net N

obtained as the composition of many subnets: N = N1 | . . . | Nk . As a matter of fact, if

we prove that all the k subnets Ni are PBNI+, we can derive for free that N is PBNI+

also. This may be of little use in checking potentially causal/conflict places, because of

the linearity of this check. However, it actually is of great help when exploration of the

marking graph is needed to check if a potential causal/conflict place is actually an active

one, because in this case the problem of state space explosion can be kept under control.

On the other hand, if any of the Ni is not PBNI+, we cannot conclude that N is not

PBNI+, hence in this case we are forced to analyze N as a whole.

We conclude this section with an observation that gives a better indication of the

different discriminating power of trace semantics and bisimulation semantics in the

definition of security properties; this observation shows that the absence of active causal

places is enough to ensure NDC (which is the same as SNNI ), hence showing that

information flows due to conflicts are completely ignored by the trace-based version of

BNDC (which is the same as SBNDC ).

Lemma 4.7. Let N = (S, L,H, F, m0) be a net system without active causal places. If

m0[σ〉m1, then there exists m2 such that m0[ΛN(σ)〉m2 and m2(s) � m1(s) for all s ∈ •L such

that there exist l ∈ L, s ∈ •l and σ̄ ∈ TS(N) such that m1[σ̄l〉 and s �∈ t• for all t ∈ σ̄.

Proof. We use induction on the length of σ. For simplicity, instead of repeating the

formal condition on s (namely, for all s ∈ •L such that ∃l ∈ L, s ∈ •l, m1[σ̄l〉 and s �∈ t•

for all t ∈ σ̄), we will write ‘for all s that can be consumed by a low-level transition l’ (in

some cases l will be assumed).

The case σ = ε is trivial.

If σ = σ′t, there exists m′
1 such that m0[σ

′〉m′
1 and m′

1[t〉m1. By the induction hypothesis,

there exists m′
2 such that m0[ΛN(σ′)〉m′

2 and m′
2(s) � m′

1(s) for all the places s that can be

consumed by a low-level transition l. There are two cases to consider:

— If t ∈ L, as m′
1[t〉m1 by definition of firing (in a contact-free net), we have •t ⊆ m′

1. As,

by the induction hypothesis, m′
2(s) � m′

1(s) for all s ∈ •t, we have •t ⊆ m′
2. So m′

2[t〉m2

and m2 = m′
2 \ •t∪ t•. Since m′

2(s) � m′
1(s) for all s that can be consumed by a low-level

transition, and since m2 = m′
2 \ •t∪ t•, and since m1 = m′

1 \ •t∪ t•, we have m2(s) � m1(s)

for all s that can be consumed by a low-level transition. Thus, m0[ΛN(σ′t)〉m2 and

m2(s) � m1(s) for all s that can be consumed by a low-level transition.

— If t ∈ H , by m′
1[t〉m1 and the definition of firing, we have m1(s) = m′

1(s) − •t(s) + t•(s)

for all s ∈ S . As N has no active causal places and t ∈ H , we have t•(s) = 0 for

all s that can be consumed by a low-level transition l. Hence, m′
1(s) � m1(s) for all

such s. By the induction hypothesis, m′
2(s) � m′

1(s) for all s that can be consumed by

a low-level transition l, hence m′
2(s) � m1(s) for all such s. As ΛN(σ′t) = ΛN(σ′), we

have m0[ΛN(σ′t)〉m′
2, with m′

2(s) � m1(s) for all s that can be consumed by a low-level

transition l.

Corollary 4.8. Let N = (S, L,H, F, m0) be a net system. If N has no active causal places,

then N is SNNI.
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Fig. 8. A BSNNI net with an active causal place.

The converse of this corollary does not hold: the net N in Figure 8 is SNNI, in fact it

is also BSNNI, but place s is an active causal place (and also a conflict place). The same

argument applies also to the net N in Figure 3, which is BSNNI but the marked place in

the middle is an active causal place (and also an active conflict place).

5. Non-interference in trace nets

In this section we extend the definition of PBNI+ to cope with the richer class of trace

nets (Badouel and Darondeau 1995) and show that the results presented in the previous

section for elementary nets also hold in this setting. Finally, we provide an example to

show how our property can be used to capture the information flows arising in a shared

variable that can be accessed and modified by both high- and low-level users.

5.1. Trace nets

Trace nets (Badouel and Darondeau 1995) are an extension of elementary nets: in addition

to the classical flow arcs, we add arcs permitting the testing for presence/absence of tokens

in a place, and arcs permitting the filling/emptying of a place regardless of its previous

contents.

Definition 5.1. A trace net is a tuple N = (S, T ,W ), where:

— S and T are the (finite) sets of places and transitions, with S ∩ T = �.

— W : (S × T ) → {in, out, nop, read, inhib, set, reset} is the flow function, with ∀t ∈ T∃s ∈
S : W (s, t) �= nop.

The arcs of kind in and out correspond to the flow arcs of elementary nets: more

precisely, a flow arc from a place s to a transition t is represented in a trace net by setting

W (s, t) = in, while a flow arc from t to s is represented by setting W (s, t) = out. The

arcs of kind read and inhib permit us to test a condition on a place, without altering its

contents. A read (respectively, inhibitor) arc from s to t requires that s contains a token

(respectively, no tokens) for t to fire. The arcs of kind set and reset permit us to set

the contents of the place to a given value, independently of the previous contents of the

place. A set (respectively, reset) arc from s to t sets the number of tokens in place s to 1
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Fig. 9. Graphic conventions for drawing trace nets.

(respectively, 0) when t fires. Finally, an arc of kind nop denotes the absence of any kind

of relation between the contents of s and the firing of t.

We adopt the graphical convention proposed in Badouel and Darondeau (1998), and

depicted in Figure 9 to draw trace nets: input (respectively, output) arcs are represented as

directed edges with an arrow on the transition (respectively, place) side; read (respectively,

inhibitor) arcs are represented as edges with a small black (respectively, white) circle on

the transition side; set (respectively, reset) arcs are represented as edges with a small black

(respectively, white) circle on the place side.

To simplify the definitions of the enabling of a transition and of the firing rule, we

introduce the following auxiliary relations. Intuitively, t test1 s (respectively, t test0 s)

holds if it is necessary that s contains one (respectively, zero) tokens for t to fire. On the

other hand, t set1 s (respectively, t set0 s) holds if, after the firing of t, s contains one

(respectively, zero) tokens.

Given s ∈ S and t ∈ T , we define the following relations:

t test1 s if and ony if W (s, t) ∈ {in, read}
t test0 s if and ony if W (s, t) ∈ {out, inhib}
t set1 s if and ony if W (s, t) ∈ {out, set}
t set0 s if and ony if W (s, t) ∈ {in, reset}.

A transition t is enabled at marking m if {s | t test1 s} ⊆ m and {s | t test0 s} ∩ m = �.

The firing (execution) of a transition t enabled at m produces the marking m′ = {s ∈
S | t set1 s} ∪ {s ∈ m | W (s, t) = nop}. This is usually written as m[t〉m′.

A trace net system is a pair (N,m0), where N is a trace net and m0 is a marking of N,

called the initial marking. With abuse of notation, we use (S, T ,W ,m0) to denote the trace

net system ((S, T ,W ), m0).

The definitions of reachable markings, firing sequences, marking graph and reduced

system given in Section 2 for elementary nets apply also for trace nets.

In the following we consider trace net systems that are reduced.

5.2. Positive Place-Based Non-Interference for trace nets

As we have already done for elementary nets, we consider trace nets whose set of

transitions is partitioned into two subsets: the set H of high-level transitions and the set

L of low-level transitions. Also, for trace nets, given two disjoint sets L and H , we use

(S, L,H,W ,m0) to denote the trace net system (S, L ∪ H,W,m0).

We extend the definitions of causal and conflict places for elementary nets given in

Section 4 to trace nets.
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An extension of the definition of potentially causal place for contact-free elementary

nets to trace nets leads to the following: a place s is a potentially causal place if there exist

a high-level transition h that puts a token in s (either through an output or a set arc) and

a low-level transition l that needs place s to be full to fire (because s and l are connected

by a read or an input arc). However, as contact freeness no longer holds for trace nets, we

also have to take into account causal dependencies arising from the fact that a high-level

transition h removes a token contained in a place s (either through an input or a reset

arc) that is required to be empty for a low-level transition l to fire (because s and l are

connected by an output or an inhibitor arc).

Also, for potentially conflict places, two kinds of conflicts can arise. In a similar way

to the case for elementary nets, s is a potentially conflict place if there exists a high-level

transition h that removes a token from s and a low-level transition l that needs place s to

be full to fire. Morevoer, s also has to be considered a potentially conflict place if there

exists a high-level transition h that produces a token in s and a low-level transition l that

needs place s to be empty in order to fire.

Definition 5.2. Let N = (S, L,H,W ,m0) be a trace net system.

The place s ∈ S is a potentially causal place if there exist h ∈ H , l ∈ L and X ∈ {0, 1}
such that h setX s and l testX s.

A potentially causal place s is an active causal place if there exist h ∈ H , l ∈ L and

X ∈ {0, 1} such that:

— h setX s

— l testX s

— there exists a marking m ∈ [m0〉 and a transition sequence σ such that

– m[hσl〉
– s ∈ m if and only if X = 0

– for all t ∈ σ: ¬(t setX s).

The place s ∈ S is a potentially conflict place if there exist h ∈ H , l ∈ L and X ∈ {0, 1}
such that h setX s and l test(1 − X) s.

A potentially conflict place is an active conflict place if there exist h ∈ H , l ∈ L and

X ∈ {0, 1} such that:

— h setX s

— l test(1 − X) s

— there exists a marking m ∈ [m0〉 and a transition sequence σ such that

– m[h〉 and m[σl〉
– s ∈ m if and only if X = 0

– for all t ∈ σ: ¬(t set(1 − X) s).

Definition 5.3. Let N = (S, L,H,W ,m0) be a trace net system. We say that N is PBNI+

(positive Place-Based Non-Interference) if, for all s ∈ S , s is neither an active causal place

nor an active conflict place.
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The definitions of parallel composition and restriction presented in Section 3 are

extended to trace nets in the obvious way as follows.

Definition 5.4. Let N1 = (S1, L1, H1,W1, m0,1) and N2 = (S2, L2, H2,W2, m0,2) be two trace

net systems such that S1 ∩S2 = � and (L1 ∪L2)∩ (H1 ∪H2) = �. The parallel composition

of N1 and N2 is the trace net system

N1 | N2 = (S1 ∪ S2, L1 ∪ L2, H1 ∪ H2,W1 ∪ W2, m0,1 ∪ m0,2).

Definition 5.5. Let N = (S, L,H,W ,m0) be a trace net system and let U be a set of

transitions. The restriction on U is defined as N\U = (S, L′, H ′,W ′, m0), where

L′ = L \ U

H ′ = H \ U

W ′ = W �(S × ((L ∪ H) \ U)).

The results presented in Section 3 also hold for trace nets.

Theorem 5.6. Let N = (S, L,H,W ,m0) be a trace net system. N is BNDC if and only if

N is SBNDC.

Proof. The proofs of Theorems 3.14 and 3.15 can be used for trace nets without any

significant change.

Also, the theorems of Section 4, with slight modification, hold for trace nets too. Here

we give full details for one of the proofs; the other can be adapted similarly.

Theorem 5.7. Let N = (S, L,H,W ,m0) be a trace net system. If N is PBNI+, then N is

SBNDC.

Proof. We follow the proof idea of the corresponding theorem, Theorem 4.3, on

elementary net systems. Take m ∈ [m0〉 such that m[h〉m′ for some h ∈ H . We have

to prove that there exists a low-view bisimulation R on N\H and that (m,m′) ∈ R.

Let R = {(m1, m2) | (∀l ∈ L ∀s) l testX s ∧ m1(s) �= m2(s) ⇒ ((∀σ∀i ∈ {1, 2}) mi[σl〉 ⇒
∃l1 ∈ σ : l1 setX s )} be the candidate relation.

— We show that R is a low-view bisimulation on N\H .

Let (m1, m2) ∈ R. Suppose m1[l〉m′
1. We show that m2[l〉 also. Suppose there exists s

such that l testX s and m2(s) = (1 − X). So m1(s) �= m2(s). As (m1, m2) ∈ R and m1[l〉,
by the definition of R (with σ = ε), there must exist t ∈ ε, which gives a contradiction.

Hence, for all s such that l testX s, we have m2(s) = X, so there exists m′
2 such that

m2[l〉m′
2.

Now we show that (m′
1, m

′
2) ∈ R. Suppose (m′

1, m
′
2) �∈ R. Then there exist l′, s′ such that,

l′ testX s′ and m′
1(s

′) �= m′
2(s

′), and there exist σ and i such that m′
i[σl

′〉 and l1 setXs′

for no l1 ∈ σ.

As mi[l〉m′
i for i = 1, 2, we have m1(s

′) �= m2(s
′) and there exists i ∈ {1, 2} such that

mi[lσl
′〉 and l1 setXs′ for no l1 ∈ σ.

Since m′
1(s

′) �= m′
2(s

′), we necessarily have ¬(l setX s′), so l1 setXs′ for no l1 ∈ lσ. Thus

we have (m1, m2) �∈ R, which gives a contradiction. So we have (m′
1, m

′
2) ∈ R.
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The symmetric case can be proved in the same way, so we have now shown that R is

a low-view bisimulation on N\H .

— We show that (m,m′) ∈ R.

Suppose there exists s and l such that l testX s and m(s) �= m′(s). We show that

∀σ : m[σl〉 ⇒ ∃t ∈ σ : t setX s and that ∀σ : m′[σl〉 ⇒ ∃t ∈ σ : t setX s.

As m[h〉m′, we can deduce from m(s) �= m′(s) that one of the following holds:

– h setX s.

Hence, s is a potentially causal place. Moreover, m′(s) = X and m(s) = (1 − X)

because m(s) �= m′(s).

Take a sequence σ such that m[σl〉. We show that there exists t ∈ σ such that

t setX s. There are two subcases:

(i) σ = hσ′.

As PBNI+ holds, s is not an active causal place. Hence, for all m̄ ∈ [m0〉 and

for all σ̄, we have if m̄[hσ̄l〉 and m̄(s) = (1 − X), then there exists t ∈ σ̄ such

that t setX s. As m[σl〉, and σ = hσ′, there exists t ∈ σ′ such that t setX s.

(ii) σ = ε or σ = t′σ′ with t′ �= h.

As we have already observed that m(s) = (1 −X), and we know that m[σl〉 and

l testX s, there must exist a transition t ∈ σ such that t setX s. (In particular,

σ �= ε.)

Now consider a sequence σ such that m′[σl〉. We show that there exists t ∈ σ such

that t setX s.

As m[h〉m′, we have m[hσl〉. As h setX s and m(s) �= m′(s), we have m(s) = (1 − X).

Hence, because PBNI+ holds (s cannot be an active causal place), there exists

t ∈ σ such that t setX s.

– h set(1 − X) s.

Hence, s is a potentially conflict place. Moreover, m′(s) = (1 − X) and m(s) = X

because m(s) �= m′(s).

Take a sequence σ such that m[σl〉. We show that there exists t ∈ σ such that

t setX s.

As PBNI+ holds, s cannot be an active conflict place. Hence, for all m̄ ∈ [m0〉 and

for all σ̄, we have if m̄[h〉 and m̄[σ̄l〉 and m̄(s) = X, then there exists t ∈ σ̄ such that

t setX s. As m[h〉m′ and m[σl〉, there exists t ∈ σ such that t setX s.

Now take a sequence σ such that m′[σl〉. We have already observed that m′(s) =

(1 − X). As l testX s, we get from m′[σl〉 that there must exist a transition t ∈ σ

such that t setX s.

Theorem 5.8. Let N = (S, L,H,W ,m0) be a trace net system. If N is SBNDC, then N is

PBNI+ .

Proof. It is enough to follow the proof of Theorem 4.4, with the proviso of interpreting

membership of transition to pre/postsets of places in terms of setX or testX, for example,

h ∈ •s as h setX s.
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Fig. 10. The trace net modelling a binary memory cell.

5.3. Example: binary memory cell

In this section we recast the example of a binary memory cell proposed in Bossi et al. (2004)

in our framework.

A binary memory cell can contain a binary value, that is, either 0 or 1. The memory

cell is accessible to both high- and low-level users, who can read and write a value in the

cell. The trace net representing the binary cell is shown in Figure 10.

A token in place c0 (respectively, c1) represents the fact that the current value contained

in the cell is 0 (respectively, 1). Each operation is modelled by two transitions: one for each

binary value that can be contained in the cell. For example, transition wh0 (respectively,

wh1) is performed by a high-level user who writes the value 0 (respectively, 1) in the cell.

A write operation of, for example, value 0 in the cell is represented by a transition that

sets the contents of place c0 (that is, puts one token in place c0 regardless of its previous

contents), and resets the contents of place c1 (that is, removes the possible token present

in place c1). A read operation of, for example, value 0 is represented by a transition with

a read arc on place c0, that is, a transition that can happen only if place c0 contains a

token.

As has already been pointed out in Bossi et al. (2004), the binary memory cell depicted in

Figure 10 is completely insecure since a high-level user can send confidential information

to a low-level user through the binary cell. In fact, the binary cell is not PBNI+ because

of the existence of (at least) the active causal place c1. Note that c1 is a potentially

causal place, because the high-level transition wh1 has a set arc on c1, and the low-level

transition rl1 has a read arc on c1. Moreover, if we also consider the firing sequence

{c0}[wh1〉{c1}[rl1〉{c1}, the conditions for the potentially causal place c1 to be an active

causal place are fulfilled.

In order to avoid the flow of information from the high-level user to the low-level user,

we can either forbid all the read operations performed by a low-level user or forbid all

the write operations performed by a high-level user, thus obtaining the trace nets depicted

in Figures 11 and 12.
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Fig. 11. The trace net obtained by removing the low-level read operations.

Fig. 12. The trace net obtained by removing the high-level write operations.

The trace nets obtained in this way do not contain any (potential) causal or conflict

place.

6. Conclusion

We have proposed a structural non-interference property PBNI+ on elementary nets to

make explicit the essence of (positive) information flows. These can be of two kinds:

causal flows, when a low-level transition consumes a token produced by a high-level

transition, or conflict flows, when a high-level and a low-level transition compete for the

same token. We have shown that PBNI+ turns out to be equivalent to the behavioural

property SBNDC (which is in turn equivalent to BNDC ), which was originally proposed

in a process algebraic setting (Focardi and Gorrieri 1995; Focardi and Gorrieri 2001).

We argue that PBNI+ is often more easily checkable than SBNDC, which is based on (a

number of) equivalence checks. We have also shown that the basic definition can be easily

extended to the richer class of trace net systems, allowing us to analyse one non-trivial

example.

The property PBNI+ is structural because no notion of observational equivalence is

considered in its definition; however, to be precise, the definition of PBNI+ requires a

limited exploration of the state space (marking graph), hence it is in some sense a hybrid

property.
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The main difference between PBNI+ compared with the non-interference properties

PBNI and RBNI, which were introduced in Busi and Gorrieri (2004a; 2004b) (the

latter being based on a suitable exploitation of the theory of regions (Badouel and

Darondeau 1998)), is that PBNI+ only captures flows of positive information from high-

level users to low-level users (together with some inevitable negative information flows),

whereas RBNI (and in some cases PBNI also) also captures unnecessary negative flows.

Consider, for example, the net system N4 in Figure 7: the net N4 does not satisfy PBNI

and RBNI, because of the presence of the conflict place s. Indeed, there exists a negative

information flow from high-level users to low-level users: if the low-level action l is

performed, the low-level user knows that the high-level action h has not been performed

(and will never be performed). On the other hand, N4 is PBNI+, because s is not an

active conflict place. Indeed, no positive information can flow from high-level users to

low-level users.

In order to keep the presentation as simple as possible, the current investigation was

carried out for two classes of ‘safe’ net systems, that is, for nets whose places can contain

at most one token. A natural generalisation is to consider Place/Transition systems, where

each place can contain more than one token. Such a class of nets is particularly interesting

because the marking graph associated with a finite P/T net system may be infinite. We

claim that PBNI+ can also be defined on this richer class of nets with a minor change

in the definition of potential causal and conflict places. Moreover, we claim that PBNI+

is also the same as SBNDC for finite P/T net systems. We conjecture that PBNI+ can

be checked in a finite amount of time by inspecting the (finite) coverability tree of a

finite P/T net, thereby possibly providing the first decidability result for a behavioural

information flow security property, like SBNDC, on a class of infinite state systems.

Another interesting future research area is the extension of this approach to other,

rather general, non-interference frameworks, such as, for example, the one discussed in

Gruska (2007).

Finally, we would like to mention that the theory developed here has been implemented

recently in a tool, called the Petri Net Security Checker (Frau 2008), where a user-

friendly graphical interface allows the user to build nets with transitions of two different

confidentiality levels and to check if they satisfy PBNI+.
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