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LEBESGUE DENSITY AND Π01 CLASSES

MUSHFEQKHAN

Abstract. Analyzing the effective content of the Lebesgue density theorem played a crucial role in
some recent developments in algorithmic randomness, namely, the solutions of the ML-covering and ML-
cupping problems. Two new classes of reals emerged from this inquiry: the positive density points with
respect to effectively closed (or Π01) sets of reals, and a proper subclass, the density-one points. Bienvenu,
Hölzl,Miller, andNies have shown that theMartin-Löf random positive density points are exactly the ones
that do not compute the halting problem. Treating this theorem as our starting point, we present several
new results that shed light on how density, randomness, and computational strength interact.

§1. A generalization of 1-genericity. The Lebesgue density theorem says that if
A is any Lebesgue measurable set of reals, for almost every point x ofA, the density
of A at x is 1. Roughly speaking, the more we “zoom in” on x by looking at a
smaller and smaller interval containing it, the closer to 1 is the fractional measure
of A within that interval.
Suppose that C is a countable collection of Lebesgue measurable subsets of the
unit interval. We say x ∈ [0, 1] is a positive density point for C if for every P ∈ C that
contains x, the density ofP at x is positive.We say x is a density-one point for C if for
every P ∈ C that contains x, the density of P at x is 1. It follows from the Lebesgue
density theorem that almost every point in the unit interval is a density-one point
for C. Of particular interest are the positive density anddensity-one points we obtain
when C is the collection of effectively closed (orΠ01) subsets of the unit interval. These
have been at the heart of several recent developments in algorithmic randomness,
such as the solutions of the ML-covering and ML-cupping problems [1, 4, 5]. An
interesting fact that emerged from this line of research is a new characterization of
the Turing incomplete1 Martin-Löf random reals:

Theorem 1.1 (Bienvenu, Hölzl, Miller, and Nies [3]). AMartin-Löf random real
is a positive density point if and only if it is incomplete.

The positive density points are properly contained within the class of Kurtz
random reals, but not within the Martin-Löf random reals. So Theorem 1.1 leads
us to ask: Are positive density points computationally weak in general? In the
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LEBESGUEDENSITY AND Π01 CLASSES 81

other direction, are the Kurtz random reals that are not positive density points
computationally powerful?
The 1-generics, which have been widely studied in computability theory, are
closely connected to the density-one points of Π01 classes. In fact, every 1-generic is
a density-one point. If the former is a member of a Π01 class P, then P contains an
open interval around it. A general density-one point can then be viewed as a more
tolerant 1-generic. It permits P to have gaps in the interval, as long as the gaps are
not too big in fractional measure, and this measure goes down as we shrink the
interval. A natural question is, how unlike 1-generics can these points be?
Bienvenu, Greenberg, Kučera, Nies, and Turetsky [2] distinguish between dyadic
density and full density. The former is the natural notion of density in Cantor
space, while the latter is the natural one on the unit interval. In Section 3, we
strongly separate the two by constructing a dyadic density-one point that is not
a full positive density point (Theorem 3.5). We also show (with Joseph S. Miller)
that when we restrict our attention to the Martin-Löf random reals, being dyadic
density-one is equivalent to being full density-one (Theorem 3.12).
In Section 4, we turn to the computational power of dyadic positive density
points, showing that one direction of Theorem 1.1 fails when the assumption of
Martin-Löf randomness is removed: There is a dyadic density-one point Turing
above any degree (Theorem 4.1). In Section 5, we lift Theorem 4.1 to full density
on the unit interval (Theorem 5.3).
In Section 6, we probe the connection between 1-generics and density-one points
further. We find that the “van Lambalgen property” fails for dyadic density-
one points. However, no dyadic positive density point can be of minimal Turing
degree: Every such point is either Martin-Löf random, or computes a 1-generic
(Theorem 6.2).
In Section 7, we explore the relationship between randomness and various notions
of computability-theoretic strength within the class of reals that are not positive
density. We observe (Proposition 7.1) that there is a computably random real that
is incomplete and not positive density. On the other hand, the property of being not
positive density does imply a weaker form of computational strength on the class
of Schnorr random reals. In Proposition 7.3, we show that every such real is high.

§2. Preliminaries. We assume familiarity with basic concepts in computability
theory, on the level of the first chapters ofDowney andHirschfeldt [6], andNies [11].
A string is a finite binary sequence, i.e., an element of 2<� . Cantor space, denoted
by 2�, is the space of all infinite binary sequences, with the topology generated by
basic clopen sets of the form [�] = {X ∈ 2� : � ≺ X}, where � is a string. If S is a
set of strings, then [S]≺ denotes the open set

⋃
�∈S [�]. If S is c.e., [S]

≺ is a Σ01 class
in Cantor space, while its complement is a Π01 class. We will refer more often to Σ

0
1

classes than the c.e. sets of strings that generate them, so we depart slightly from
convention and let 〈We〉e∈� denote a uniform enumeration of Σ01 classes.
The empty string is denoted by 〈〉. If � is a string, |�| denotes its length. If it
is not the empty string, �− denotes the string obtained from � by removing the
last bit. If � is another string, we write � � � to indicate that � is a prefix of �.
If X ∈ 2�, � ≺ X means that � is an initial segment of X , while X � n denotes
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the initial segment of X of length n. If i ∈ {0, 1}, i denotes the other binary digit,
namely, 1− i .
Any irrational x ∈ [0, 1] can be identified uniquely with an infinite binary
sequence, namely, its binary expansion. Since we are seldom concerned with ratio-
nals, we use the term real to refer both to infinite binary sequences and elements of
[0, 1]. By associating the open set (0.�, 0.� + 2−|�|) to the string �, we can speak of
Σ01 and Π

0
1 classes on the unit interval.

The symbol � refers both to the uniform measure on Cantor space and to
Lebesgue measure on the unit interval, which are measure-theoretically isomor-
phic via the correspondence just described. Given � ∈ 2<� and a measurable set
C ⊆ 2�, the shorthand ��(C ) denotes the relative measure of C in [�], i.e.,

��(C ) =
�([�] ∩ C )
�([�])

.

If I and C are measurable subsets of [0, 1], and I is not null, then �I (C ) denotes
the relative measure of C in I , i.e.,

�I (C ) =
�(I ∩C )
�(I )

.

Finally, the concept ofMartin-Löf randomness is an important one in this paper.
AMartin-Löf test is a uniform sequence 〈Un〉n∈� of Σ01 classes such that �(Un) ≤
2−n. A real isMartin-Löf random if it is not contained in

⋂
n Un for anyMartin-Löf

test 〈Un〉n∈� .

§3. Dyadic density vs. full density.
Definition 3.1. Let C be a measurable subset of 2� and X ∈ 2� . The (lower)
dyadic density of C at X , written �2(C |X ), is

lim inf
n
�X � n(C ).

Definition 3.2. A real X ∈ 2� is a dyadic positive density point if for every Π01
class C containing X , �2(C |X ) > 0. It is a dyadic density-one point if for every Π01
class C containing X , �2(C |X ) = 1.
Even though dyadic density seems like the natural notion of density in Cantor
space, it is a simplification of the version of density that appears in the classical
Lebesgue Density Theorem:

Definition 3.3. Let C be a measurable subset of R and x ∈ R. The (lower) full
density of C at x, written �(C |x), is

lim inf
�,�→0+

�((x − �, x + �) ∩ C )
� + �

.

Definition 3.4. We say x ∈ [0, 1] is a full positive density point if for every Π01
class C ⊆ [0, 1] containing x, �(C |x) > 0. It is a full density-one point if for every
Π01 class C ⊆ [0, 1] containing x, �(C |x) = 1.
As pointed out earlier, if x is irrational, we can identify it uniquely with a binary
sequence. So it makes sense to ask if x is a dyadic density-one point. Likewise, it
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makes sense to ask if a sequence X ∈ 2� is a full density-one point. Clearly, every
full density-one point is dyadic density-one. That the converse fails is our main
result in this section:

Theorem 3.5. There is a dyadic density-one point that is not a full positive density
point.
The real described by this theorem is not 1-generic, and as we will see shortly,
not Martin-Löf random. Its construction illustrates a method by which we can
break out of those classes, and serves as the basic template for the constructions in
Sections 4 and 5. We begin with a lemma that is a restatement of the well-known
“Kolmogorov inequality for martingales” (see, for example, [11], 7.1.9):

Lemma 3.6. Suppose W ⊆ 2� is open. For any ε such that �(W ) ≤ ε ≤ 1, let
Uε(W ) denote the set {X ∈ 2� : ��(W ) ≥ ε for some � ≺ X}. Then �(Uε(W )) ≤
�(W )/ε.
Proof. For each X ∈ Uε , let �X denote the least initial segment � of X such that
��(W ) > ε. Let V = {�X : X ∈ Uε}. Note that V is prefix-free and [V ] = Uε .
SinceW is open, for every Y ∈ W , some initial segment of Y is in V and so [V ]
coversW . Now, for each � ∈ V ,

��(W ) =
�(W ∩ [�])
2−|�| ≥ ε.

So 2−|�| ≤ �(W ∩ [�])/ε and

�([V ]) =
∑
�∈V
2−|�| ≤

∑
�∈V

�(W ∩ [�])
ε

=
�(W )
ε
.

�
Proof of Theorem 3.5. We build the desired real Y by computable approxima-
tion. At each stage s of the construction, we have a sequence of finite strings
�0,s ≺ �1,s ≺ · · · approximating Y . At the same time, we build a Σ01 class B, the
complement of which witnesses the fact that Y is not a full positive density point.
The main idea for accomplishing this is depicted in Figure 1, where � is the longest
initial segment of Y that “sees” the measure that we enumerate into B. This mea-
sure is small inside [�], but there is an interval containing Y , namely, the closure of
[�01j] ∪ [�10j], in which the measure is quite large.

Figure 1. Separating dyadic and full density.
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Recall thatWe denotes the e-th Σ01 class. Each such class represents a requirement
that needs to be met by Y . In other words, for each e, if Y is not inWe , we require
that lim�≺Y ��(We) = 0. Priorities are assigned to Σ01 classes in the usual manner,
withWj being of higher priority thanWi for any i > j.Wemake use of the following
shorthand: Let C be a measurable set and 
 and 
′ two strings such that 
 ≺ 
′. If
for every � such that 
 � � ≺ 
′, ��(C ) < α, then we say that between 
 and 
′,
�(C ) < α.
At any stage s , for each k ≤ s , we will be working above �k,s to define �k+1,s . We
have two goals in mind. First, for any e < k such that [�k,s ] is not already contained
in We , we must keep the measure of We between �k,s and �k+1,s below a certain
threshold. If the threshold is exceeded, say above a string � between �k,s and �k+1,s ,
we will “move �k+1”: �k+1,s+1 will be a string extending � so that the cone above
it is contained entirely in We . In doing so, we must ensure that the measure of B
remains small between �k,s and �k+1,s+1. It is here that Lemma 3.6 plays a key part:
it allows us to bound the measure of reals that have an initial segment above which
the measure of B is too large.
Second, we must ensure that there is an interval I ⊆ [�k,s ] such that [�k+1,s ] ⊆ I
and �I (B) is large. Both goals must be satisfied while keeping Y from entering B.
Globally, we must maintain the fact that between �k,s and �k+1,s , the measure of B
remains strictly below a threshold �s (k), which is updated each time we act above
�k,s by moving �k+1. We begin the construction by setting �0,0 = 〈〉.
Procedure above �k,s . When we first start working above �k,s , say at stage s0, we
set �s0 (k) to an initial value �

∗(k), which will have to be chosen small enough to
accommodate the actions of this procedure (see below for how �∗(k) is defined). If
k > 0, then we start by choosing a 
 
 �k,s0 long enough so that between �k−1,s0
and �k,s0 , �(Bs0 ∪ [
]) < �s0 (k − 1). We let �k+1,s0 = 
10j and enumerate [
01j]
into B, where j is chosen large enough so that the measure of B between �k,s0 and
�k+1,s0 remains below �

∗(k). If k = 0, 
 can be chosen to be 〈〉.
In a subsequent stage s , suppose that C0, . . . , Cl are those among the first k Σ01
classes in which [�k+1,s ] is not already contained, in order of descending priority.
Now if for some � between �k,s and �k+1,s and some j ≤ l , ��(Cj) exceeds

√
�s (k)

and no action has yet been taken for a higher priority Cj′ , then we act by moving
�k+1 to a string extending �. Let 
 � � be a string such that [
] ⊆ Cj and let it be
long enough so that:

(1) Between � and 
, �(Bs ) <
√
�s(k).

(2) Bs ∩ [
] = ∅.
(3) If k > 0, then between �k−1,s and �k,s , �(Bs ∪ [
]) must be strictly less than
�s(k − 1).

Let j be large enough so that between �k,s and 
, �(Bs ∪ [
01j ]) remains strictly
below

√
�s (k). We set �k+1,s+1 = 
10j+k and enumerate [
01j] into B. Finally, we

set �s+1(k) =
√
�s (k).

This describes the construction, save for the choice of the initial values of the
thresholds, which we now address.

Choosing �∗(k). We move [�k+1] into Cj when the following is seen to occur at
some stage s : For some � between �k,s and �k+1,s , ��(Cj) exceeds the threshold
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√
�s(k). If this does not occur, we wish to limit the measure of Cj to 2−k between
�k,s and �k+1,s . Each action above �k,s raises the threshold by a power of 1/2, and
there are at most k actions (i.e., at most one for eachWe with e < k), so it suffices
to ensure that the initial value of the threshold �∗(k) satisfies

(�∗(k))1/2
k+1 ≤ 2−k.

Verification.
Claim 3.7. Unless the procedure above �k,s acts, the measure of B remains strictly
below �s(k) between �k,s and �k+1,s .

Proof. Condition (2) above ensures that if �k is moved at stage s due to an
action above �l,s for some l < k, then �(Bs ∩ [�k,s ]) = 0. If we act above �k+1,s ,
then condition (3) ensures that �(Bs ) remains below �s(k) between �k,s and �k+1,s .
Note that there is a string 
 such that �k+1,s ≺ 
 ≺ �k+2,s and �(Bs ∪ [
]) < �s(k)
between �k,s and �k+1,s . So if we act above �l,s for some l > k + 1, then we add
some measure to B, but this measure is contained entirely in [
]. �
Claim 3.8. We can act above �k,s while satisfying requirements (1) through (3)
above.

Proof. By Claim 3.7, �(Bs ) < �s(k) between �k,s and �k+1,s . If for some
� between �k,s and �k+1,s , �(Cj) exceeds

√
�s(k) then by Lemma 3.6,

��(U√�s (k)(Bs )) < �s (k)/
√
�s(k) < ��(Cj). So there is an X ∈ Cj extending

� such that for every α such that � � α ≺ X , �α(B) <
√
�s (k). Thus there are

arbitrarily long strings extending � satisfying condition (1). Conditions (2) and (3)
are met by simply choosing a long enough such string. �
Claim 3.9. For each k ∈ �, �k = lims �k,s exists, and Y =

⋃
k �k is total.

Proof. Assume that �k,s has stabilized by stage s . Then �k+1 is moved after stage
s only by the procedure above �k,s , hence at most once for eachWe where e < k. �
Claim 3.10. Y is a dyadic density-one point.

Proof. Suppose that Y /∈ We . Let k be large enough so that k > e and for all
e′ < e, if Y ∈We′ , then [�k] ⊆We′ . Fixing a k′ > k, let s be large enough so that
�k′ ,s has stabilized. By our choice of k, we never act above �k′,s for the sake ofWe′
for any e′ < e, and by the assumption that Y /∈ We , we never act for the sake of
We . Let t > s be such that �k′+1,t has stabilized. For all t′ > t, between �k′ ,t′ and
�k′+1,t′ , �(We) does not exceed

√
�t′(k′), which is always bounded by 2−k

′
. �

Claim 3.11. Y is not a full positive density point.

Proof. Let �k and �k+1 be the final values of �k,s and �k+1,s respectively. Then
by construction there is a string 
 such that �k ≺ 
 ≺ �k+1 ≺ Y , and �k+1 =

10j+k for some j and [
01j] ⊆ B. Let l = |
| + j + 1 and let I be the interval
(0.
1−2−l , 0.
1+2−(l+k)). SinceY is a dyadic density-one point,Y is not a rational
and so Y ∈ (0.
1, 0.
1 + 2−(l+k)) ⊂ I , and �I (B) ≥ 1/(1 + 2−k). �
This completes the proof of Theorem 3.5. �
Bienvenu, et al. have observed (see [3], Remark 3.4) that Theorem 1.1 remains
true if full density is replaced by dyadic density. It follows that aMartin-Löf random
real is dyadic positive density if and only if it is full positive density. We now show
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that the notions of dyadic density-one and full density-one also coincide on the class
of Martin-Löf random reals.

Theorem 3.12 (Khan, J. Miller). Suppose X is Martin-Löf random. Then X is a
dyadic density-one point if and only if X is a density-one point.

In order to prove Theorem 3.12, we need to introduce nonporosity points.

Definition 3.13. We say that a Π01 classC is porous atX ∈ 2� if there is an ε > 0
such that for every α > 0, there is a 0 < � < α such that (X − �,X + �) contains
an open interval of length ε� that is disjoint from C .
We say Y ∈ 2� is a nonporosity point if every Π01 class to which Y belongs is
nonporous at Y .

Lemma 3.14 (Khan, J. Miller). If X ∈ 2� is dyadic density-one but not full
density-one, then there is a Π01 class that is porous at X .

Proof. Suppose that the Σ01 class W witnesses that X is not a full density-one
point, i.e., there is an ε > 0 such that for all � > 0, there is an open interval
I ⊆ (X − �,X + �) containingX such that �I (W ) > ε. Since X is a dyadic density-
one point, there is an initial segment � of X such that for all 
 � �, �
(W ) ≤ ε/6,
and � is not all zeros or all ones2.
If � is a string of length k that is not all zeros or all ones, let �− and �+ denote the
lexicographically preceding and succeeding strings of length k. The intervals [�−],
[�] and [�+] are all of the same length and adjacent.
Now let I ⊆ [�] be any open interval containingX , and let � be the longest initial
segment of X extending � such that the closure of [�−] ∪ [�] ∪ [�+] covers I and
denote this closure by I ′. Then �(I ) ≥ �(I ′)/6. To see this, assume without loss
of generality, that X 
 �0. By the maximality of �, it cannot be the case that I is
contained in the closure of [�0−] ∪ [�0] ∪ [�0+]. So I must overlap either half of
the interval [�−] or half of the interval [�], which means that �(I ) > �([�])/2 =
�(I ′)/6.
Next, assume that ��−(W ) ≤ ε/6 and ��+(W ) ≤ ε/6. Since � extends �,
��(W ) ≤ ε/6. It follows that �I ′(W ) ≤ ε/6. Then

�I (W ) =
�(W ∩ I )
�(I )

≤ 6�(W ∩ I )
�(I ′)

≤ 6�(W ∩ I ′)
�(I ′)

= 6�I ′ (W ) ≤ ε.

We have shown that if �I (W ) > ε, then either ��−(W ) or ��+(W ) must exceed
ε/6. We build C as follows: whenever we see a � � � such that ��(W ) > ε/6,
enumerate [�] into the complement of C . Note that we never enumerate an ini-
tial segment of X into the complement of C , so C contains X . Moreover, C is
porous at X : Given an α > 0, there is an open interval I ⊆ [�] containing X
such that I ⊆ (X − α/24, X + α/24) and �I (W ) > ε. Let � be chosen as above,
and I ′ accordingly. Then I ′ ⊆ (X − α/4, X + α/4). Finally, let � = 2 · 2−|�|.
Then (X − �,X + �) ⊆ (X − α/2, X + α/2), and there is a subinterval of
(X − �,X + �) of size �/2, namely, one of [�−] or [�+], that lies in the complement
of C . �
2Note that X is not computable.
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Theorem 3.12 now follows from two facts. By Theorem 1.1 (and the fact that it
holds for dyadic density), X in Lemma 3.14 is incomplete, while the Π01 class C is
porous at X . But then X cannot be Martin-Löf random:

Theorem 3.15 (Bienvenu, et al. [3]). Every incomplete Martin-Löf random real is
a nonporosity point.

Nies [10] has extended Lemma 3.14 to show that ifX is a nonporosity point, then
for each Π01 class C , �(C |X ) = �2(C |X ).

§4. A dyadic density-one point above any degree. We have seen that the Martin-
Löf random positive density points are incomplete. Every 1-generic G satisfies
G ⊕ 0′ ≡T G ′ and is therefore also incomplete. However, the proof of Theorem 3.5
suggests a way of constructing dyadic density-one points outside of those classes. In
this section, we use this framework to show that general dyadic density-one points
can be arbitrarily powerful as oracles. Our ultimate goal is Theorem 5.3 which
shows this to be true of full density-one points, but working on the unit interval
presents complications that obscure the idea behind the proof of that theorem. For
this reason, we first present the dyadic version.

Theorem 4.1. For every X ∈ 2� , there is a dyadic density-one point Y ∈ 2� such
that X ≤T Y ≤T X ⊕ ∅′.
Proof. We build a Δ02 perfect tree F : 2

<� → 2<� and a functional Γ such that
for every X ∈ 2� , F (X ) is a density-one point and ΓF (X ) = X . F will be obtained
as the limit of partial computable functions Fs : 2<� → 2<� . For each s , we will
ensure that if Fs(�) is defined, then ΓFs (�) = �. If, at any stage s , we set Fs(�) to a
new value, it should be assumed that for any � ′ properly extending �, we undefine
Fs(� ′). Each Σ01 class now represents a requirement that needs to be met by each
path on the tree. In other words, for each e and for each X ∈ 2�, if F (X ) is not in
We , we require that lim�≺F (X ) ��(We) = 0. Priorities are assigned as before.
Above Fs(�), we work to define Fs(�i) for i ∈ {0, 1}. We want to ensure that for
each e < |�|, if [Fs (�i)] is not already contained in We , then between Fs(�) and
Fs(�i), �(We) remains below a certain threshold. If the threshold is exceeded above
some � between Fs(�) and Fs(�i), we will “move F (�i)”: Fs+1(�i) will be chosen
to be a string 
 extending � such that [
] is contained in We . Complications arise
because 
 cannot be such that Γ
 properly extends �i or is incompatible with �i .
In the proof of Theorem 3.5, we built a single forbidden Σ01 class B, the measure of
which we had to keep small along the approximation. Here, we maintain a Σ01 class
B� for every nonempty string �: if � = αi , then B� consists of the union of the set
of current or previous values of [F (�0)], [F (�1)] and [F (αi)]. We also maintain
thresholds �s(�), and the fact that at every stage s , for every nonempty string �,
between Fs(�−) and Fs(�), the measure of B�,s is strictly below �s(�).
We begin the construction by setting F0(〈〉) = 〈〉.

Procedure for Fs(�i). Let t be the stage at which Fs(�) is first set to its current
value. Both �t(�0) and �t(�1) are set to the same initial value �∗(|�|). The strings
Ft(�i) for i ∈ {0, 1} are chosen initially so that:
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• The measure of [Ft(�i)] between Ft(�) and Ft(�i) is strictly below �∗(|�|).
• If � is not the empty string, Ft(�0) and Ft(�1) must be long enough so that
between Ft(�−) and Ft(�), �(B�,t) < �t(�).
Suppose that C0, . . . , Cl are those among the first |�| many Σ01 classes in which
[Fs (�i)] is not already contained, in order of descending priority. Now if for some �
between Fs(�) and Fs(�i) and some j ≤ l , ��(Cj) exceeds

√
�s(�i) and no action

has yet been taken for a higher priority Cj′ , then we act: Let 
 be a string extending
� such that [
] ⊆ Cj and
(1) between � and 
, �(B�i,s ) <

√
�s(�i).

(2) 
 is long enough so that �(B�i,s ∪ [
]) < �s (�i) between Fs(�) and Fs(�i),
and �(B�,s ∪ [
]) < �s (�) between Fs(�−) and Fs(�).

(3) B�i,s ∩ [
] = ∅.
We set Fs+1(�i) = 
 and �s+1(�i) =

√
�s(�i).

Choosing �∗(|�|). Wemove [F (�i)] intoCj when the following is seen to occur at
some stage s : For some � between Fs(�) and Fs(�i), ��(Cj) exceeds the threshold√
�s (�i). If this does not occur, we wish to limit the measure ofCj to 2−|�| between
Fs(�) and Fs(�i). Each action raises the threshold by a power of 1/2, and there are
at most |�| actions, so we require that �∗(|�|), the initial value of �(�i), satisfy

(�∗(|�|))1/2|�|+1 ≤ 2−|�|.

Verification.
Claim 4.2. For every � ∈ 2<� , lims Fs(�) exists.
Proof. Assume that Fs(�) has stabilized by stage s0. For each i ∈ {0, 1}, F (�i)
is moved after stage s0 at most |�| times. �
Claim 4.3. The procedure for Fs(�i) can act while satisfying requirements (1)
through (3) above.
Proof. Suppose at stage s , we move F (�i) for the sake of Cj , i.e., for some �
between Fs(�) and Fs(�i), ��(Cj,s) >

√
�s (�i). By Lemma 3.6, there is a Y ∈ 2�

extending � such that for each α such that � � α ≺ Y , �α(B�i,s ) <
√
�s(�i). Thus

there are arbitrarily long strings α extending � satisfying condition (1). To satisfy
(2) and (3), we simply choose an α long enough and designate it Fs+1(�i). �
Claim 4.4. Suppose at stage s + 1, we set Fs+1(�i) = 
 and set Γ
s+1 = �i . Then
Γ
s � �i . In other words, setting Γ
 = �i keeps Γ consistent.
Proof. We first show by induction that if t is the stage when Fs(�) is first set
to its current value, then for all � � Ft(�), Γ�t = �. The base case is trivial since
Fs(〈〉) = 〈〉 for all s . Suppose � = αj for some j ∈ {0, 1}. When Fs(α) is first set
to its current value, say at stage t0, then for all 
 � Fs(α), Γ
t0 = α. Now suppose
at some subsequent stage t1, we set Ft1 (αj) = 
, then because of requirement (3),
Bαj,t1 ∩ [
] is empty, and hence for all � � 
, Γ�t1 = �.
Subsequent to initialization, [Fs(�i)] is always disjoint from B�i,s , hence ΓFs (�i)

never properly extends �i or becomes incompatible with �i . �
Claim 4.5. For each X ∈ 2� , F (X ) = ⋃

k∈� lims→∞ Fs(X � k) is a dyadic
density-one point.
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Proof. Suppose that F (X ) /∈ We . Let � ≺ X be long enough so that |�| > e
and for all e′ < e, if F (X ) ∈We′ , then F (�) ∈We′ . Let � be any initial segment of
X that properly extends � and let t be large enough so that Ft(�) has stabilized. By
our choice of �, we never move F (�) after stage t for the sake ofWe′ for any e′ < e,
and by the assumption that F (X ) /∈ We , we never act for the sake of We . Hence,
for all t′ ≥ t, between Ft′(�−) and Ft′(�), �(We) never exceeds

√
�t′(�), which is

always bounded by 2−(|�|−1). �
Now, for every X ∈ 2�, ΓF (X ) = X , and because F is Δ02, F (X ) ≤T X ⊕ 0′. This
concludes the proof of Theorem 4.1. �

§5. A full density-one point above any degree. We can adapt the previous con-
struction to produce a full density-one point above any degree. We will need a
version of Lemma 3.6 for the unit interval:

Lemma 5.1 (Bienvenu, et al. [3]). SupposeW ⊆ [0, 1] is open. For any ε such that
�(W ) ≤ ε ≤ 1, let Uε(W ) denote the set

{X ∈ [0, 1] : ∃ an interval I , X ∈ I , and �I (W ) ≥ ε}.
Then �(Uε(W )) ≤ 2�(W )/ε.
Lemma 5.1 has a subtle shortcoming.When relativizing it to an interval J ⊂ [0, 1],
we obtain a bound on �J (Uε(W ∩J )), but in our construction we will be concerned
about �J (Uε(W )). Fortunately, this is easily remedied:
Lemma 5.2. Let W ⊆ [0, 1] be open, and let K be an open interval such that for
all open intervals L containingK , �L(W ) < �. Then for any interval I containingK ,
and any ε such that �(W ) ≤ ε ≤ 1, �I (Uε(W )) < 6�/ε.
Proof. By Lemma 5.1, �I (Uε(W ∩ I )) ≤ 2�/ε. Let S = Uε(W ) \ Uε(W ∩ I )
and c = �I (S). If c = 0, then �I (Uε(W )) = �I (Uε(W ∩ I )), and we are done.
If c > 0, there exists an X ∈ S ∩ I such that X is at least �(I )c/4 away from the
nearest endpoint of I . Let J be an interval containing X such that �J (W ) ≥ ε.
Since X /∈ Uε(W ∩ I ), J cannot be contained in I , so �(J ∩ I ) > �(I )c/4. We now
have �(J )/�(J ∪ I ) ≥ �(J ∩ I )/�(I ) > c/4, and so:

�I∪J (W ∩ J ) = �(W ∩ J )
�(I ∪ J ) =

�(W ∩ J )
�(J )

.
�(J )
�(I ∪ J ) > �J (W )

c

4
≥ εc
4
.

On the other hand, �I∪J (W ∩ J ) < � by assumption, so c < 4�/ε. �
The following shorthand is convenient: Let C be a measurable set and I and I ′

intervals such that I ′ ⊆ I . If for every interval J such that I ′ ⊆ J ⊆ I , �J (C ) < α,
then we say that between I and I ′, �(C ) < α.
We briefly outline the obstacles to lifting Theorem 4.1 to the unit interval. The
first is that what was an advantage in the proof of Theorem 3.5 now works against
us. In building a full density-one point X , we can no longer restrict our attention
to relative measures of Σ01 classes within dyadic cones of the form [Xs � n]. As an
example, consider the intervals we enumerate into B in the proof of Theorem 3.5,
which appear small in dyadic cones along the approximation, but big when we
consider their fractional measure within arbitrary intervals around Xs .
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The second obstacle is subtler. In the proof of Theorem 4.1 we decompose a
density requirement with respect to a single Σ01 class into countably many subre-
quirements. At each level of the construction, we attempt to satisfy stronger and
stronger subrequirements with respect to We that, when taken together, ensure
that the limiting density requirement is satisfied. The key is that if 
0 � 
1 � 
2
are strings, and the measure of the set W is below ε between 
0 and 
1, and also
between 
1 and 
2, then the measure ofW is below ε between 
0 and 
2. However,
if I0 ⊆ I1 ⊆ I2 are intervals, it may be the case that the measure of W is below ε
between I0 and I1, and also between I1 and I2, but not between I0 and I2.

Theorem 5.3. For every X ∈ 2� , there is a density-one point Y ∈ 2� such that
X ≤T Y ≤T X ⊕ ∅′.
Proof. Let I denote the collection of closed subintervals of the unit interval
with dyadic rational endpoints. By computable approximation, we build a tree
F : 2<� → I of intervals and a functional Γ such that for all every � in 2<�, and
every Y ∈ F (�), ΓY � |�| = �. F is obtained as a limit of partial computable
functions Fs such that if � � � ′ and Fs(�) and Fs(� ′) are both defined, then
Fs(� ′) ⊆ Fs(�). If at any stage s , we “move F (�)”, i.e., we define Fs+1(�) to be
something other than Fs(�), it should be assumed that we set ΓXs+1 = � for all X in
Fs+1(�) and we undefine Fs+1(� ′) for any � ′ properly extending �.
As in the previous construction, we will be working within Fs (�) to define Fs(�i)
for i ∈ {0, 1}. A key difference is that we nowmaintain a proper subinterval Js(�) of
Fs(�) within which Fs(�0) andFs(�1) reside. If we act at stage s by setting Fs+1(�i)
to a new value, we are allowed to move it outside Js(�), in which case we expand
Js(�) to a larger interval Js(�)+ = Js+1(�) that contains Fs+1(�i). We postpone
explaining how the initial value of Js(�) is chosen and how Js(�)+ is defined.
Let B�i,s denote the union over all t ≤ s of Ft(�i0)∪Ft(�i1)∪Ft(�i). By moving
F (�i0), say, we contribute measure to B�i . We shall have to ensure that we can do
this without violating the measure constraint �(�) for B�i .
We begin the construction by setting F0(〈〉) = [0, 1].
Procedure for Fs(�i). Let t be the stage at which Fs(�) is first set to its current
value. We set �t(�0) and �t(�1) to the same initial value �∗(|�|). We set Jt(�) =
Int(Ft(�), |�|) (we define Int later) and choose Ft(�0) and Ft(�1) to satisfy the
following conditions:

• Both are contained in Jt(�).
• Between Jt(�)+ and Jt(�0), �(Ft(�1)) < �∗(|�|).
• Between Jt(�)+ and Jt(�1), �(Ft(�0)) < �∗(|�|).
• If � is not the empty string, let α = �−. Then between Jt(α)+ and Jt(�),
�([B�,t ]) < �t(�).

It is not hard to see that these conditions can be met by ensuring that the intervals
are small enough and far enough apart relative to their width.
In a subsequent stage s , letC0, . . . , Cl be those among the first |�|many Σ01 classes
that Fs(�i) has not already entered, in order of descending priority. Suppose that
for some interval I such that Js(�)+ ⊇ I ⊇ Js(�i), �I (Cj) exceeds 6

√
�s(�i), and

no action has yet been taken within Fs(�) for a higher priority Cj′ . Then there is
an interval L ⊆ Cj such that:
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(1) For every Z ∈ L, and every interval K ⊆ Js(�)+ such that Z ∈ K ,
�K(B�i,s ) <

√
�s(�i). To see that such an interval exists, note that we induc-

tively maintain the property that between Js(�)+ and Js(�i), �(B�i,s ) <
�s(�i). By Lemma 5.2,

�I (U√�s (�i)(B�i,s ∩ Js(�)
+)) < 6

√
�s(�i).

Now let L be an interval contained in Cj ∩ I that is disjoint from
U√

�s (�i)
(B�i,s ∩ Js(�)+).

(2) L is small enough so that between Js(�)+ and Js(�i), �(B�i,s ∪L) < �s(�i).
(3) If � is not the empty string, let α = �−. Then between Js(α)+ and Js(�),
�(B�,s ∪ L) < �s(�).

(4) L ∩ B�i,s = ∅.
In this case, we let Fs+1(�i) = L, Js+1(�) = Js(�)+, and �s+1(�i) =

√
�s(�i).

Choosing �∗(|�|). IfWj is a Σ01 class that Fs(�) has not already entered, then if
F (�i) never entersWj , we wish to limit the measure ofWj to 2−k between Js(�)+

and Js(�i). The idea is the same as in the proof of Theorem 4.1, the only difference
being the factor of 6 in the statement of Lemma 5.2. It suffices to pick �∗(|�|) small
enough so that

6(�∗(|�|))1/2k+1 ≤ 2−k.
Defining Int and +. For an interval I , let I+ be obtained by padding I on either
side with intervals of the same length. For an interval J , let Int(J, k) be a subinterval
I of J small enough so that 2k applications of the + operation to I result in an
interval still contained in J .

Verification.
Claim 5.4. The procedure for Fs(�i) can act without violating any measure
constraints.
Proof. Given a string 
, there are two ways in which the measure constraint for
B
,s could be affected: by the direct addition of measure toB
,s , or by the expansion
of Js(�). It is easy to see that the only such 
 are � and �i .
Property (2) of L above ensures that �(B�i,s ∪ L) < �s(�i) between Js(�)+ and
Js(�i), and since Fs(�)∩ (B�i ,s ∪L) is contained entirely in Js(�)+ = Js+1(�), also
between Js+1(�)+ and Js+1(�i).
Property (3) of L ensures that �(B�,s ∪ L) < �s (�) between Js(�−)+ and Js(�),
and hence between Js+1(�−)+ and Js+1(�) = Js(�)+. �
The argument for the following claim is virtually the same as for Claim 4.4.
Claim 5.5. Suppose at stage s + 1, we set Fs+1(�i) = I . Then for any X ∈ I ,
ΓXs � �i . In other words, setting ΓXs+1 = �i for all X ∈ I keeps Γ consistent.
Claim 5.6. Let X be any real, and let Y be a real in

⋂
�≺X F (�). Then Y is a

density-one point.
Proof. For � ∈ 2<�, let F (�), J (�), and �(�) denote the limiting values of
Fs(�), Js(�), and �s(�), respectively. Suppose thatY is not inWj . Let � be an initial
segment of X such that |�| > j and if Y ∈ Wl for any l < j, then F (�) ⊆Wl . We
claim that for any I ⊆ J (�)+ such that Y ∈ I , �I (Wj) ≤ 2−|�|+1.
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Let � � � be the longest initial segment of X such that I is entirely contained in
J (�)+. Suppose X 
 �i . Let I ′ = I ∪ J (�i). Now,

�(I ′)
�(I )

≤ �(I ∪ J (�i))
�(I )

≤ 1 + �(J (�i))
�(I )

.

By the maximality of �, I �⊆ J (�i)+. Since J (�i)+ is obtained by pasting a copy
of J (�i) on either side of J (�i), �(I ) ≥ �(J (�i)). So the ratio above is bounded
by 2. Since I ′ is an interval between J (�)+ and J (�i), �I ′(Wj) never exceeds
�(�i) ≤ 2−|�|. Therefore, �I (Wj) never exceeds 2−|�|+1. �
Now, for anyX ∈ 2�, and anyY ∈ ⋂

�≺X F (�), Γ
Y = X , andY is a full density-

one point. Since F is Δ02, Y ≤T X ⊕ 0′. This concludes the proof of Theorem 5.3. �

§6. Nonminimality. It is easy to see that if A⊕ B is dyadic positive density, then
so areA andB (and ifA⊕B is dyadic density-one, so areA andB). The similarities
with 1-generics seem to end here. It can be shown using the techniques of the
constructions above that the “van Lambalgen property” fails badly for density-one
points:
Proposition 6.1 (Khan [8]). There is a dyadic density-one pointA⊕ B such that
A ≡T B.
It is nevertheless a consequence of the main result of this section that no positive
density point can be of minimal Turing degree.
Theorem 6.2. Every dyadic positive density point is either Martin-Löf random or
computes a 1-generic.
Proof. Let 〈Un〉n∈� be a Martin-Löf test. For each n, let Sn be a prefix-free c.e.
set of strings such thatUn = [Sn]≺. We can assume that S0,s = {〈〉} for all s , and if

 ∈ Sj+1,s , then there is some � � 
 such that � ∈ Sj,s . Let Ve denote the e-th c.e.
set of strings.
We define a functional Γ such that for each Y ∈ ⋂

n Un,
(1) ΓY is total, and
(2) if Y is a dyadic positive density point, ΓY is 1-generic.
We define Γ inductively on a sequence 〈Rn〉n∈� of c.e. sets of strings. LetR0 = S0,
and let Γ〈〉 = 〈〉. When a string 
 enters Rn, we choose m large enough so that
2−m ≤ 2−|
|−n, and so �
(Um) ≤ 2−n. Then, whenever a string 
 extending 
 enters
Sm at stage s , we extend the definition of Γ as follows: If there exists an e ≤ s such
that [Γ
 ] is not already contained in [Ve,s ]≺ and there is an extension of Γ
 in Ve,s ,
then let e′ be the least such index and let � be an extension of Γ
 in Ve′ ,s . We set
Γ
 = �0. On the other hand, if no such e exists, we set Γ
 = Γ
0. In either case, we
enumerate 
 into Rn+1. This completes the definition of Γ.
Consider aY ∈ ⋂

n Un. To see that (1) holds, note that for each n,Y has a unique
initial segment �n in Rn, and Γ�n+1 properly extends Γ�n . It remains to verify (2). If
ΓY is not 1-generic, then let e be the least index such that Ve is dense along it, but
Y /∈ [Ve ]≺. Let M be large enough so that for each e′ < e, if ΓY ∈ [Ve′ ]≺, then
[Γ�M ] ⊆ [Ve′ ]≺, otherwise [Γ�M ] ∩ [Ve′ ]≺ = ∅. We exhibit a Σ01 class B such that
Y ∈ B and �2(B |Y ) = 0. For each n ≥M and for each 
 ∈ Rn , we wait for a stage
s ≥ e such that an extension of Γ
 is in Ve,s . If this occurs, we enumerate the open
set [
] \ [Rn+1,s ]≺ into B.
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If 
 is an initial segment of Y , then since Ve is dense along ΓY , such a stage s
must occur. Let 
 be the initial segment ofY inRn+1, and let t ≥ e be the least stage
such that 
 ∈ Rn+1,t . By our choice ofM , if an extension � of Γ
 occurs in Ve,t , we
would have set Γ
 = �0. Therefore, t < s , which implies that Y ∈ B . Moreover,
�
([Rn+1]≺) ≤ 2−n, and so �2(B |Y ) = 0. �
Corollary 6.3. No dyadic positive density point is of minimal degree.
Theorem 6.2 has an interesting consequence. Bienvenu, et al. [2] introduce
Oberwolfach randomness and show that every Oberwolfach random real is a full
density-one point. Based on earlier work by Figueira, Hirschfeldt, Miller, Ng, and
Nies [7], they observe that one “half” of every Martin-Löf random real is always
Oberwolfach random, hence full density-one3:
Proposition 6.4 (Bienvenu, et al. [2]; Figueira, et al. [7]). IfA⊕B is Martin-Löf
random, then either A or B is a full density-one point.
Thus, every Martin-Löf random real computes a full density-one point, which,
together with Theorem 6.2, implies:
Corollary 6.5. Every dyadic positive density point computes a full density-one
point.

§7. Randomness and computational strength. We have already mentioned that
Theorem 1.1 holds regardless of whether we use dyadic density or full density,
so one direction of that theorem can be rephrased as follows: Every Martin-Löf
random point that is not dyadic positive density computes 0′. Theorem 6.2 implies
that we cannot weaken the hypothesis fromMartin-Löf randomness to computable
randomness. To see this, note that there is a computably random real of minimal
degree. By Corollary 6.3, it cannot be dyadic positive density.
Proposition 7.1. There is a computably random real that is not dyadic positive
density and is incomplete.
In this section, we will see that the property of not being positive density does
imply some form of computational strength, namely, being high, on the computably
random reals, and in fact, on a more general randomness class, the Schnorr random
reals. While this fact is a straightforward consequence of Theorem 1.1 and the
result by Nies, Stephan, and Terwijn [12] that every nonhigh Schnorr random
real is Martin-Löf random, we give a direct proof here that does not appeal to
Theorem 1.1, and which highlights the extent to which the result is uniform.

Definition 7.2. A Schnorr test is a Martin-Löf test 〈Gn〉n∈� where �(Gn) is
uniformly computable in n. A real X is Schnorr random if there is no Schnorr test
〈Gn〉n∈� such that X is contained in Gn for infinitely many n.
Proposition 7.3 (Nies, et al. [12]; Bienvenu, et al. [3]). Every Schnorr random
real that is not full positive density is high.
We will need the following lemma:
Lemma 7.4 (Bienvenu, et al. [3]). LetW ⊆ [0, 1] be open. Fixing an ε ∈ (0, 1), let

Uε(W ) = {z : ∃ an open interval I , z ∈ I , and �I (W ) > 1− ε}.
Then �(Uε(W ) \W ) < 2ε.
3The author thanks A. Kučera for bringing this fact to his attention.
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Proof of Proposition 7.3. Fix z ∈ 2� such that it is Schnorr random, and let B
be a Σ01 class such that z ∈ B and �(B | z) = 0. Let f ≤T z be the function such
that f(n) is the least stage s such that there is an open interval I containing z with
�I (Bs ) > 1 − 2−n. Note that f is total, and that it is uniformly computable in z
and an index for B. We claim that f is a dominating function.
Suppose that g is a computable function that it fails to dominate. Then for each
n ∈ �, let

Gn = U2−n−1 (Bg(n)) \ Bg(n).

Each Gn is a Σ01 class modulo the rationals. By Lemma 7.4, �(Gn) < 2
−n. It is not

hard to see that �(Gn) is uniformly computable in n, and in fact, that U2−n−1 (Bg(n))
is the union of a finite collection of open intervals with rational endpoints that can
be computed from Bg(n). Moreover, there are infinitely many n such that z ∈ Gn,
which contradicts the assumption that z is Schnorr random. �
Figure 2 shows the relationship between three important randomness classes and
three forms of classical computability-theoretic strength within the class of reals
that are not positive density4. Every computably random real is Schnorr random,
and so Proposition 7.1 yields nonimplication (a).
To see nonimplication (b), let X be a minimal degree below 0′. Every minimal
degree is GL2, and so X satisfies (X ⊕ 0′)′ ≡T X ′′, which implies that it is not
high. Because it is minimal, X cannot compute a 1-generic, so by Theorem 6.2, it is
not dyadic positive density. However, every hyperimmune degree contains a Kurtz
random real [9], and so X ≡T Y , where Y is Kurtz random, not dyadic positive
density (because it is minimal), and not high.
For implication (c), we appeal to a result by L. Yu (see, for example, [6],
Theorem 8.11.12) that every hyperimmune-free Kurtz random is weakly 2-random.
For each Π01 class C and each rational ε > 0, the set of points {X ∈ C : �(C |X ) <
1 − ε} is a null Π02 set. The weakly 2-random reals are exactly those which avoid
every null Π02 set. Therefore, every hyperimmune-free Kurtz random real is, in fact,
full density-one.

Martin-Löf ≥T 0′

Schnorr high

Kurtz hyperimmune

\
(a)

(c)

\
(b)

Figure 2. Relationships between randomness and notions of
computability-theoretic strength within the reals that are not
positive density.

4It does not matter whether we use dyadic or full density.
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We conclude with a question. In Theorems 4.1 and 5.3, we saw that general
positive density points (in fact, density-one points) can be arbitrarily powerful as
oracles. It is unknown whether this remains true under the assumption of any form
of randomness intermediate between Kurtz and Martin-Löf randomness.

Question 7.5. Is there a positive density real which is Schnorr random and
complete?

§8. Acknowledgments. The author would like to thank Joseph S. Miller for his
invaluable guidance during the course of the research, as well as the anonymous
referees for their thorough and insightful comments on the preprint. The research
was funded in part by NSF Grant DMS-1001847. The author’s participation in
the 2013 Semester in Computability, Complexity and Randomness in Buenos Aires,
Argentina, duringwhich some of the research took place, was funded byNSFGrant
DMS-1242444.

REFERENCES

[1] Laurent Bienvenu, Adam R. Day, Noam Greenberg, Antonı́n Kučera, Joseph S. Miller,
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