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We use computational methods to determine the minimal yield stress required in order
to hold static a buoyant bubble in a yield-stress liquid. The static limit is governed by
the bubble shape, the dimensionless surface tension (γ ) and the ratio of the yield stress
to the buoyancy stress (Y). For a given geometry, bubbles are static for Y > Yc, which
we determine for a range of shapes. Given that surface tension is negligible, long prolate
bubbles require larger yield stress to hold static compared with oblate bubbles. Non-zero
γ increases Yc and for large γ the yield-capillary number (Y/γ ) determines the static
boundary. In this limit, although bubble shape is important, bubble orientation is not.
Two-dimensional planar and axisymmetric bubbles are studied.
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1. Introduction

With a closed tube of a hydrogel and some vigorous shaking one can create a wide range
of stationary bubbles; see figure 1. These range in size over many decades. The smaller
ones may be more spherical or elliptic, presumably as surface tension is significant. Larger
bubbles can be quite angular and contain concavities. There is no obvious orientation with
respect to gravity. The ability of the fluid to resist both buoyancy and surface tension
forces and remain stationary necessitates a constitutive law with a finite (deviatoric) stress
at zero strain rate, i.e. a yield stress or equivalent. This is a purely dimensional argument.
The simplest such fluids are described by viscoplastic models such as the Bingham fluid.

Viscoplastic fluids are ubiquitous in a wide variety of industrial and medical
applications, as well as geophysical sciences. The common characteristic of all these
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(a) (b) (c)

Figure 1. A range of static bubbles in a Carbopol gel (similar effects with many commercial hair gels).

materials is their yield stress, meaning that they flow only if the stress applied is greater
than a yield value; otherwise they exhibit a solid-like behaviour (Balmforth, Frigaard &
Ovarlez 2014). The dynamics of bubbles in viscoplastic fluids contains many interesting
problems that are not fully explored. In this study, we focus on the boundary between flow
and entrapment for single bubbles in a yield-stress fluid. As figure 1 suggests, shape, size
and surface tension effects are all of importance and will be explored.

More than a toy problem, static bubbles in viscoplastic fluids occur in many industrial
settings. In the oil sands industry, the by-products of the extraction of bitumen from
oil sands have been stored in tailings ponds over many decades. Pond liquids, known
as ‘fluid fine tailings’ and ‘mature fine tailings’ (FFT/MFT) are complex suspensions
rheologically characterised as thixotropic yield-stress fluids (Derakhshandeh 2016).
Anaerobic micro-organisms within the fluid form both carbon dioxide and methane.
Management of emissions presents a difficult environmental challenge to the oil sands
industry (Small et al. 2015), and there is consequent interest in estimating the degree to
which FFT/MFT can retain gas bubbles. Similar phenomena occur in the nuclear waste
slurry, where flammable (hydrogen) gas rises from the viscoplastic waste suspension
(Johnson et al. 2017). Detailed studies of gas bubbles in nuclear waste tanks, which also
contain thixotropic yield-stress material, show a wide range of shapes in retained bubbles
(Gauglitz et al. 1996). Similar mechanisms occur in geological materials, such as shallow
marine, terrestrial sediments and some flooded soils, giving a wider relevance to questions
of bubble formation and release (Boudreau 2012). In the food industry, entrapment of air
bubbles inside products may give them a different texture and flavour, such as aerated
chocolate. It may also affect the efficiency of fermentation processes. In the cosmetic
industry, products such as hair gel are often sold by volume, bubbles included.

While the above are concerned with bubble entrapment in stationary fluids, the
phenomenon is also of interest in flowing fluid. In the oil and gas industry, influx
of formation gases into the drilling mud (generally a viscoplastic fluid) might occur
during well construction, known as gas kick. If uncontrolled, the gas will rise to the
surface, potentially causing a blowout with severe safety and environmental hazards. When
controlling kicks the (gas cut) drilling mud is circulated slowly from the well, which
is closed in and under pressure. Whereas large gas bubbles generally rise through the
mud, smaller bubbles may remain trapped (Johnson & White 1991; Johnson et al. 1995).
The trapped gas fraction is, however, hazardous to well control operations (Gonzalez,
Shaughnessy & Grindle 2000) and needs to be accounted for in operations. It is
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Flow onset for a single bubble in a yield-stress fluid

worth commenting that the trapping of gas by the yield stress of a fluid is analogous
to the retention of dissolved gas under pressure e.g. carbon dioxide in deep lakes.
Risks associated with these configurations (i.e. limnic eruptions), thus have yield-stress
analogues for the industrial processes discussed.

Despite the interest in these problems, there are still relatively few studies. The motion
of bubbles in a viscoplastic fluid has been studied theoretically and numerically in the
literature by Dubash & Frigaard (2004), Singh & Denn (2008), Tsamopoulos et al. (2008),
Dimakopoulos, Pavlidis & Tsamopoulos (2013), Tripathi et al. (2015), Karapetsas et al.
(2019), Chaparian & Frigaard (2021) and Deoclecio et al. (2021). Tsamopoulos et al.
(2008) comprehensively studied the steady rise of a single axisymmetric bubble in a
viscoplastic fluid. They investigated the effect of inertia, surface tension and yield stress
on the bubble shape and velocity. Later, Dimakopoulos et al. (2013) expanded the problem
to Herschel–Bulkley fluids and compared the previous regularisation approach with the
augmented Lagrangian method, finding relatively similar results. Interaction of multiple
rising bubbles or falling droplets in a Bingham fluid is investigated in 2D by Singh & Denn
(2008), again using a regularisation method. They observed that multiple bubbles with the
same size, aligned vertically and close to each other, can overcome the yield stress, where
a single bubble would remain trapped. In Chaparian & Frigaard (2021) we have studied
the effects of multiple bubbles (clouds/suspensions) on the static stability limit using a
Monte Carlo approach, finding that the interaction of clusters of bubbles is all important in
determining the flow onset. Tripathi et al. (2015) studied the rise of axisymmetric bubbles
in a Bingham fluid using a regularisation method. They have shown that, in the presence
of inertia, high yield stress and low surface tension can lead to an unsteady oscillating
rise of bubbles. Karapetsas et al. (2019) have investigated the bubble rise dynamics when
subjected to an acoustic pressure field and found that acoustic excitation accelerates the
motion of the bubble by increasing the size of the yielded region surrounding the bubble.
In a recent study, Deoclecio et al. (2021) have analysed the entrapment conditions of
initially spherical and ellipsoidal bubbles in a regularised Bingham fluid. They found that
surface tension does not play a role in entrapment of spherical bubbles, however, it will
facilitate the rise of non-spherical bubbles by yielding of the surrounding fluid.

While in Newtonian fluids, the Stokes flow limit gives a slowly moving spherical
bubble, the Stokes flow limit of a bubble in a yield-stress fluid is non-unique for static
configurations. Tsamopoulos et al. (2008) study these scenarios as a limit of steadily
moving bubbles. For different Bond numbers the flow stops at different critical yield
stresses. However, their procedure also iterates to find the shape of the steadily moving
bubble: they take a spherical bubble as the initial shape only. Thus, shape effects are not
studied independently in their formulation. As figure 1 shows, if the static problem is
studied without limiting from a moving bubble, there is little restriction on the bubble
shape that can be trapped. This explains our approach here, in which we control the shape
and study the critical limit for flow onset. This non-uniqueness and the general theoretical
framework for static bubbles was first expounded by Dubash & Frigaard (2004), who
formally defined the critical Bingham (yield) number above which a given bubble shape
remains trapped in a viscoplastic fluid, using the variational methods. Here, we explore
this approach computationally.

In addition to the numerical and analytical methods, there have been several
experimental studies trying to better understand buoyancy-driven rise of bubbles in
viscoplastic materials (Astarita & Apuzzo 1965; Terasaka & Tsuge 2001; Dubash &
Frigaard 2007; Sikorski, Tabuteau & de Bruyn 2009; Mougin, Magnin & Piau 2012;
Lopez, Naccache & de Souza Mendes 2018; Pourzahedi, Zare & Frigaard 2021; Zare,
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Daneshi & Frigaard 2021). The first notable work in this field was performed by Astarita &
Apuzzo (1965), where they reported the shape as well as the correlation between velocity
and volume of gas bubbles in various non-Newtonian fluids. Terasaka & Tsuge (2001)
experimentally investigated the effect of operating parameters such as injection nozzle
diameter, gas flow rate and rheological parameters on the bubble volume released into
viscous yield-stress fluids. Dubash & Frigaard (2007) as well as Sikorski et al. (2009)
performed a similar experimental study, and used the results to predict the stopping
condition for the rise of single bubbles using an energy budget model. In general, such
models have not been successful in that they extrapolate from the behaviour of moving
bubbles, which are typically far from the critical conditions, may have different shapes, etc.
In another study, Mougin et al. (2012) performed particle image velocimetry analysis in
order to find the local velocity and strain fields. They investigated the influence of internal
stresses existing within the yield-stress fluids on the trajectory and shape of bubbles.
Recently, Zare et al. (2021) have further explored the effect of ‘damaged’ pathways created
by previous bubbles on the trajectory of the subsequent bubbles. Lopez et al. (2018)
studied the effect of yield stress, inertia, buoyancy and elasticity on the bubble shape and
velocity using various concentrations of a Carbopol solution. An interesting feature of
experimentally observed bubbles (Dubash & Frigaard 2007; Sikorski et al. 2009; Lopez
et al. 2018; Pourzahedi et al. 2021) is that they tend to adopt an inverted teardrop shape as
they rise. This is quite different to computational results and it has been suggested that the
root cause is viscoelasticity, causing the tail to extend (Tsamopoulos et al. 2008).

In this study we fill the knowledge gap of quantifying the limits for which bubbles rise
or remain trapped. While we cannot cover all possible shapes, we study families of bubble
shapes so that the characteristic effects of aspect ratio and curvature can be understood.
For these families we explore the relative effects of surface tension and buoyancy on flow
onset. Although we also compute non-zero flows, the emphasis is on the static limit. The
definition of the problem and its governing equations is given in § 2. The computational
methods are presented in § 3. We compare results for elliptical bubbles with the slipline
theory (perfect plasticity), as a pseudo-benchmark. The effects of aspect ratio and surface
tension on the critical yield number for two-dimensional (2-D) elliptical and quartic
bubbles are explored in § 4. Axisymmetric results are presented in § 5. We study families
of elliptic bubbles, where the results are qualitatively similar to the planar 2-D bubbles.
We also explore inverted teardrop shaped bubbles similar to those found experimentally,
far from the yield limit. We close the study with some concluding remarks regarding the
findings and future directions.

2. Formulation

The general setting considered is that of a single bubble in an expanse of yield-stress fluid;
see figure 2. We mostly consider the yield limit of bubbles, which is the same for all
yield-stress fluids using a von Mises yield criterion, and hence we consider the simplest
Bingham fluid model. Similarly, due to the focus on the yield limit, we may consider the
flow to be incompressible and non-inertial. Throughout this paper, the ·̂ accent signifies a
dimensional parameter or variable

0 = −∇p̂ + ∇ · τ̂ − ρ̂f ĝ eg in Ω \ X̄, (2.1)

0 = ∇ · û. (2.2)

Here p̂ is the pressure inside the ambient yield-stress liquid and τ̂ is the deviatoric stress
tensor. The bubble is finite and the flow is driven by the buoyancy of the bubble. Thus,
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Figure 2. Schematic of the flow set-up.

distant from the bubble, the stress falls below the yield stress of the fluid and the flow is
stagnant. Without loss of generality we impose zero velocity on the flow in the far field.

2.1. Dimensionless model and relevant dimensionless groups
We scale the pressure (p̂) and the deviatoric stress tensor (τ̂ ) with the buoyancy stress
(ρ̂f − ρ̂b)ĝ�̂, and the velocity vector (û = (û, v̂)) with the velocity Û

(
ρ̂f − ρ̂b

)
ĝ �̂ = μ̂

Û

�̂
⇒ Û =

(
ρ̂f − ρ̂b

)
ĝ �̂2

μ̂
, (2.3)

which naturally arises from balancing the buoyancy stress with a viscous stress. In these
equations, ρ̂f , ρ̂b, ĝ, eg are respectively the densities of fluid, gas, the gravitational
acceleration and its direction; μ̂ is the plastic viscosity. The length �̂ is fixed by the
dimensional bubble size. For our 2-D planar flows, π�̂2 = meas(X), and for our 3-D
axisymmetric flows, (4/3)π�̂3 = meas(X), i.e. considering the circle and sphere as
reference geometries respectively. Thus, our scaled bubble domain X will have area π,
or volume (4/3)π.

The dimensionless Stokes and the constitutive equations are,

0 = −∇p + ∇ · τ − 1
1 − ρ

eg, (2.4)

and

τ =
(

1 + Y
‖γ̇ ‖

)
γ̇ if ‖τ‖ > Y,

γ̇ = 0 if ‖τ‖ � Y.

⎫⎪⎬
⎪⎭ (2.5)

The two dimensionless groups are the density ratio ρ = ρ̂b/ρ̂f , and Y = τ̂y/(�ρ̂ĝ�̂), which
is the yield number. Generally, we expect ρ̂b � ρ̂f , so that in practice �ρ̂ ≈ ρ̂f and ρ ≈ 0.
In (2.5) γ̇ is the rate of strain tensor and ‖ · ‖ is the norm associated with the tensor inner
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product

c : d = 1
2

∑
ij

cij dij; (2.6)

e.g. ‖τ‖ = √
τ : τ . The Cauchy stress tensor is σ = −pI + τ .

The velocity vector and tangential components of the traction (i.e. (σ · n) · t) are
continuous across the bubble surface ∂X. Since the dynamic viscosity of the gas inside
the bubble is generally negligible compared with the effective viscosity of yield-stress
liquids, we assume

(σ · n) · t ≈ 0, on ∂X. (2.7)

Thus, the tangential components of the traction vanish and the bubble can be regarded as
inviscid; tangential velocities may slip and the normal velocity is continuous. The jump in
the normal component of the traction is controlled by the dimensionless surface tension
γ (= γ̂ /ρ̂f ĝ�̂2; the inverse of the Bond number),

− p + pb + (τ · n) · n = γ

κ
, (2.8)

where
1
κ

= 1
κ1

+ 1
κ2

(2.9)

and κ1 and κ2 are radii of curvature (in two dimensions κ2 = ∞). In (2.8), pb is the pressure
inside the bubble which can be considered as a constant in the inviscid and incompressible
limit.

The drag force on the bubble surface should balance the buoyancy of the bubble, F. In
our 2-D flows

F̂ = π�̂2ρ̂f ĝ =
∫

∂X

[
(−p̂1 + τ̂ ) · n

] · eg dŜ =
∫

∂X

(
σ̂ · n

) · eg dŜ, (2.10)

or in dimensionless form

F = π

1 − ρ
=

∫
∂X

(σ · n) · ey dS. (2.11)

We will use these expressions later in § 3.3.

2.2. Limit of zero flow
In the present study, we are mainly interested in the yield limit of bubble motion,
i.e. conditions under which the bubble is held static. From the variational principles
derived by Dubash & Frigaard (2004), we can conclude that

Y
∫

Ω\X̄
‖γ̇ ‖ dΩ � −

∫
Ω\X̄

u · eg dΩ −
∫

∂X

γ

κ
(u · n) dS. (2.12)

From left to right, the integrals above represent the plastic dissipation, denoted j(u), the
work done by buoyancy and by surface tension, denoted L(u) and T(u), respectively.
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In terms of these functionals, for u /= 0, we have

Y � −

∫
Ω\X̄

u · eg dΩ

∫
Ω\X̄

‖γ̇ ‖ dΩ

−

∫
∂X

γ

κ
(u · n) dS

∫
Ω\X̄

‖γ̇ ‖ dΩ

≡ L(u)

j(u)
+ T(u)

j(u)
. (2.13)

Hence, for a given shape of bubble, the critical yield number Yc above which the bubble
will not rise is

Yc ≡ sup
v∈V , v /= 0

⎧⎪⎪⎨
⎪⎪⎩

−

∫
Ω\X̄

v · eg dΩ

∫
Ω\X̄

‖γ̇ (v) ‖ dΩ

−

∫
∂X

γ

κ
(v · n) dS

∫
Ω\X̄

‖γ̇ (v) ‖ dΩ

⎫⎪⎪⎬
⎪⎪⎭

, (2.14)

where v is any admissible velocity field from the set V of all admissible fields. The first
term on the right-hand side represents the effect of the buoyancy stress on yielding; the
numerator is the flux due to the bubble. This first term also appears in similar problems
involving solid particles (Putz & Frigaard 2010; Chaparian & Frigaard 2017b), although
there the interfacial conditions are different and ρ /= 0. The second term represents the
effect of the surface tension.

Since v is an admissible velocity field, it is also divergence free and the net flux through
the bubble surface is consequently zero∫

∂X
(v · n) dS = 0. (2.15)

We can split v into two components: the mean bubble speed Vb and a perturbation v′

v =
−

∫
Ω\X̄

(v · eg) dΩ

π
eg + v′ = Vb eg + v′ on ∂X. (2.16)

The surface flux can now be rewritten as∫
∂X

(v · n) dS = Vb

∫
∂X

(n · eg) dS +
∫

∂X
(v′ · n) dS = 0. (2.17)

It is clear that
∫

∂X
(n · eg) dS is zero, and therefore

∫
∂X

(v′ · n) dS = 0. (2.18)

Turning to the second term in (2.14), since κ is not a constant for a general bubble shape
along ∂X ∫

∂X

γ

κ
(v · n) dS /= 0, (2.19)

in general. The only case in which this term is definitely zero is a sphere (or a circular
bubble in two dimensions). Physically, this means that, in the case of a spherical (or
circular) bubble, only buoyancy controls the yielding of the bubble; surface tension plays
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no role. This is intuitive for these equilibrium shapes, i.e. we expect the surface tension
to deform the bubble towards its equilibrium shape. For a general bubble shape, Yc is
clearly also a function of the surface tension. Later, to analyse this effect the yield-capillary
number is defined as

CaY = Y/γ = τ̂y�̂

γ̂
. (2.20)

3. Methodology and benchmarking

In overview, we use an augmented Lagrangian method coupled with an adaptive finite
element method (Roquet & Saramito 2003) implemented in FreeFem++ (Hecht 2012) to
solve for the flow at fixed shape, γ and Y . To determine Yc we then iteratively increase Y
until the flow stops. This basic procedure has been validated extensively in previous studies
(Roustaei et al. 2016; Chaparian & Frigaard 2017b; Chaparian et al. 2020; Chaparian &
Tammisola 2021), including those with particles. The mesh refinement nicely captures the
yield surfaces after a few refinements.

3.1. Computational method
As we are concerned with finding the critical flow/no-flow condition (i.e. Yc), which
represents a limiting balance between buoyancy, surface tension and plastic dissipation
functionals, i.e. (2.14), we compute the flows by solving the variational formulation of the
exact non-smooth Bingham model. The alternative viscosity regularisation methods are
simple and effective in many cases, but have two drawbacks. First, characteristic features
such as the yield surface shape are very sensitive to the regularisation used (Burgos,
Alexandrou & Entov 1999). Second, large errors can result when computing flows that
are close to the critical no-flow limit, e.g. as shown recently by Ahmadi & Karimfazli
(2021). The issue is that as the regularisation parameter is taken to its limiting value, the
velocity field of the regularised model does converge to the exact Bingham velocity, but
there is no guarantee that the stress field will converge (Frigaard & Nouar 2005).

The variational formulation of the Bingham fluid dates back to Prager (1954) and was
formalised by Duvaut & Lions (1976). They established two inequalities for the Stokes flow
of Bingham fluid: a minimisation based on velocity field (primal variable in optimisation
literature) and a maximisation based on the stress field (dual variable). The two functionals
are

H(v) = 1
2

∫
Ω\X̄

‖γ̇ ‖2 dΩ + Yj(v) − L(v) − T(v), (3.1)

K(τ ) = 1
2

∫
Ω\X̄

max(‖τ‖ − Y, 0)2 dΩ. (3.2)

The first term in (3.1) is half of the viscous dissipation, denoted a(v, v). An admissible
velocity field v ∈ V is any divergence free velocity satisfying the boundary conditions.
An admissible stress field τ is any stress field satisfying the momentum equations (2.1)
including the stress boundary conditions. A pair (u∗, τ ∗) that solve the Stokes problem
will result in H(u∗) = −K(τ ∗). Note that the velocity is unique, but not the stress. For any
other pair of admissible velocity/stress fields there is a difference between these values
that is referred to as the duality gap. As discussed in Treskatis et al. (2018), the duality gap
is the most reliable measure to make sure we have computed accurate stress fields as well
as velocity fields, particularly close to the yield point.
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Figure 3. Viscous dissipation (©), plastic dissipation (
) and buoyancy work (�) functionals for χ = 1 and
γ = 0. Insets illustrate the velocity field (|u|) for the cases of 1 − Y/Yc = 0.011 (top left) and 0.419 (bottom
right).

Glowinski, Lions & Trémolières (1981) developed the augmented Lagrangian (AL)
method for solving the velocity maximisation (primal formulation). The AL has been
successfully used to solve various flows e.g. in ducts (Saramito & Roquet 2001), around
objects (Roquet & Saramito 2003) and for inertial flows (Roustaei & Frigaard 2015).
Advances in computational optimisation have led to a re-exploration of these flows
recently, using algorithms that exploit the duality. A variation of the FISTA (fast iterative
shrinkage-thresholding algorithm) was applied to the stress maximisation formulation by
Treskatis, Moyers-González & Price (2016), which achieves a higher order of convergence
in terms of the duality gap. Here, we have used both AL and FISTA algorithms for our
flows. This provides a basis to compare and cross-validate. We have used the duality gap as
the criterion for measuring the convergence of the solutions and find very little difference
in converged solutions with either algorithm; see the Appendix.

3.2. Benchmark flow
As a benchmark, we have computed 2-D flows around circular and elliptical bubbles
parameterised by an aspect ratio χ , i.e. the bubble surface is

χx2 + y2

χ
= 1. (3.3)

The limiting solutions are explored fully later in the paper. Figure 3 shows the viscous
dissipation a(u, u), plastic dissipation j(u) and buoyancy work L(u) functionals for χ = 1.
All functionals decay with a power-law behaviour as the yield number approaches the
critical value. The viscous dissipation decays faster compared with the other functionals,
in accordance with the computations of Dimakopoulos et al. (2013), and as must be
true theoretically (Putz & Frigaard 2010). Evidently, j(u) ∼ L(u) as they decay, as is
implicit from (2.14) in the absence of surface tension. The velocity field for two cases of
1 − Y/Yc = 0.011, 0.419 are shown as insets. At yield numbers far away from the critical
yield number (i.e. higher values of 1 − Y/Yc), the yield surface surrounding the bubble
is distant, and the yield surface at the bubble equator is small. As Y gets closer to Yc the
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Figure 4. Viscous dissipation (©), plastic dissipation (
), buoyancy (�) and surface tension work (∗)
functional for χ = 2. Cases of γ = 0, γ = 1 and γ = 10 are shown in red, blue and black symbols,

respectively.

outer yield surface shrinks and the inner yield surface expands until they merge at Y = Yc,
where the bubble becomes entrapped.

To explore the effects of surface tension we set χ = 2, so that the bubble is not in its
equilibrium shape. Figure 4 shows the surface tension functional T(u) in addition to the
previous functionals, for γ = 0, 1 and 10. Again, all functionals decay with a power-law
behaviour as the yield number approaches the critical value and the viscous dissipation
decay is the fastest. In the absence of surface tension, buoyancy work mainly dissipates into
plastic deformation. At γ = 1 we see an approximately equal T(u) ∼ L(u), both balanced
by j(u). As the surface tension forces increase to dominate the flow (e.g. γ = 10), it can
be seen that most of the plastic dissipation originates from balancing the surface tension
work T(u).

3.3. Slipline analysis for 2-D bubbles
As the viscous dissipation is irrelevant to the yield limit, a natural direction to look for
comparison is the theory of perfect plasticity, for which ‖τ̂ ∗‖ = τ̂y, since

τ̂ ∗ = τ̂y

‖ ˆ̇γ ∗‖
ˆ̇γ ∗. (3.4)

Here, we will use an asterisk to avoid mixing up with the viscoplastic variables. The
unrestricted 2-D perfectly plastic flow can be transformed to an orthogonal curvilinear
coordinate system (α and β) in which the directions coincide with the maximum
shear stress (τ̂αβ = ±τ̂y) directions (Hill 1950; Chakrabarty 2012). These orthogonal
directions (i.e. α- and β-directions) are the characteristic lines of the hyperbolic
momentum equations in a 2-D flow, known as the sliplines. Finding the sliplines does
not require extensive computational effort and therefore this theory has been developed to
compare with the viscoplastic ‘yield limit’ for many different problems such as particle
sedimentation (Hewitt & Balmforth 2018; Chaparian & Frigaard 2017a,b; Chaparian &
Tammisola 2021); swimming (Hewitt & Balmforth 2017; Supekar, Hewitt & Balmforth
2020); and different studies in slump/dam-break type problems (Dubash et al. 2009; Liu
et al. 2016; Chaparian & Nasouri 2018). The solution procedure consists of postulating an
admissible stress field by means of the sliplines and calculating the lower bound for the
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tangent

α-line (max shear stress)

β-line (max shear stress)

(max normal stress)

4
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4

π

π

π

Figure 5. Schematic of the slipline network about a 2-D circular bubble. A quarter of the domain is shown
due to symmetry.

limiting force. An upper bound of the force also can be calculated using an admissible
velocity field. The solution is more exact if the gap between the lower and upper bounds
is small. This is the perfectly plastic version of the duality gap.

Randolph & Houlsby (1984) proposed a slipline solution for flow around a laterally
moving circular pile in soil to calculate the resistance. This solution has been used
as a test problem in the context of 2-D particle sedimentation in yield-stress fluids
(e.g. see Chaparian & Frigaard 2017b). One of the less explored parts of Randolph &
Houlsby’s solution is the case of non-adhesive soil. In this case, the tangential shear
stress at the pile surface is less than τ̂y; namely (τ̂ ∗ · n)t = αsτ̂y, where 0 � αs � 1 is the
adhesion factor. This implies that one family of sliplines (say α-family) makes an angle
[π/2 − sin−1(αs)]/2 with the pile interface. In other words, when αs = 1, the α-lines are
tangential to the pile surface and when αs = 0, α-lines make π/4 angle with the tangent
to the pile surface. In the viscoplastic fluid context, Chaparian & Tammisola (2021) have
shown that αs represents the ratio of the ‘sliding yield stress’ to the fluid yield stress.
Hence, αs = 1 is indeed equivalent to imposing no-slip boundary condition on the object
(e.g. particle in a yield-stress fluid) and αs = 0 is the same as having Navier slip (i.e. zero
sliding yield stress) on the object. It is natural therefore to apply the same solution to the
bubble yield limit in the limit of γ → 0 (as surface tension is not accounted for). A closer
look at the boundary condition (2.7) reveals that for a 2-D circular bubble, the solution
is the same as Randolph & Houlsby (1984) for αs = 0. We therefore briefly revisit the
Randolph & Houlsby (1984) solution for the case of 2-D circular bubble and then extend
it for an elliptical bubble with aspect ratio χ .

3.3.1. Circular bubble
This is covered in more detail in Chaparian & Tammisola (2021). The maximum normal
stress direction is perpendicular to the bubble surface. This is directly dictated by the
boundary condition on the bubble surface where the bubble pressure pb, is constant along
∂X. Hence, the β-lines make an angle π/4 with the normal vector. As discussed above, the
shear stress in the tangential direction is zero and therefore the α-lines make an angle π/4
with the tangent to the bubble surface; see figure 5. From the symmetry constraints, along
the vertical line of symmetry (x = 0), the shear stress is zero (τ ∗

xy = 0), while along the
horizontal axis (y = 0), it is maximum. Translating this into the slipline network, it means
that the horizontal axis is itself an α-line and all the sliplines that intercept the vertical
axis should make an angle π/4 with it.
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We can construct an admissible stress field around the bubble with the aid of the sliplines
and then integrate the force on the bubble surface in the direction eg to find [F̂∗

c ]L, the lower
bound of the limiting force. The effect of buoyancy is absent in this admissible stress field,
but by balancing the drag force with �ρ̂ĝÂ = �ρ̂ĝπ�2, we can find the equivalent Yc.
The limiting plastic drag coefficient is defined as follows, where �̂⊥ is the linear length of
bubble perpendicular to the flow direction, e.g. twice the radius R̂ for a circular bubble

Cp
d,c = F̂

τ̂y�̂⊥
= F̂

2R̂τ̂y
, (3.5)

and from the slipline analysis we find

Cp
d,c = 6 + π (for αs = 0). (3.6)

Hence, we balance buoyancy and the lower bound of the drag force[
F̂∗

]
L

= 2R̂τ̂y(6 + π) = (ρ̂f − ρ̂b)ĝ × πR̂2, (3.7)

and find the upper bound of the critical yield number as

[Yc]U = τ̂y

�ρ̂ĝR̂
= π

2(6 + π)
≈ 0.172. (3.8)

3.3.2. Ellipse
For the planar elliptical bubble (3.3), with aspect ratio χ , we calculate the lower bound
force from

[
F̂∗

]
L

= 4
∫ π/2

0
τ̂y�̂⊥

(
σ̄ + 3π

2
+ 1 − 2ζ

) √
χ−1 sin2 θ1 + χ cos2 θ1 cos ζ dθ1, (3.9)

where θ1 = tan−1[χ−1 tan θ ] and ζ = tan−1(χ cot θ1). Details of this type of calculation
can be found in Chaparian & Frigaard (2017b) and Chaparian & Tammisola (2021).

This force lower bound converts to

[Yc]U = π

4
[
F̂∗

]
L

. (3.10)

3.3.3. Comparing slipline and viscoplastic solutions
Figure 6 compares the slipline network with the viscoplastic solution for χ = 1, 2, for Y
just below Yc. Although not precisely the same, the envelope of the sliplines approximates
the yielded region of the viscoplastic fluid. The white line denotes the yield surface in
the viscoplastic fluid and we see that the fluid is unyielded over a large part of the bubble
surface, extending from the horizontal axis.

As we increase Y we find Yc computationally for the viscoplastic flow, which can be
compared with that from (3.9) and (3.10). We find χ = 1 : Yc ≈ 0.172, χ = 2 : Yc ≈ 0.27
and χ = 5 : Yc ≈ 0.5 from the slipline method, compared with χ = 1 : Yc ≈ 0.172, χ =
2 : Yc ≈ 0.267 and χ = 5 : Yc ≈ 0.460, from the limiting viscoplastic flow computations.
Figure 7 shows this comparison graphically over a wider range of χ , from which we can
see a growing discrepancy between the two limits as χ increases.
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Figure 6. (a,b) Slipline network about a 2-D circular bubble and a 2-D ellipse with χ = 2. (c,d) Velocity
|u| contour; Y = 0.17 and Y = 0.255 for the circular and elliptical bubble, respectively. Unyielded regions are
marked with white solid lines.
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0

0.2
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0.6

0.8

Yc

χ

Figure 7. Value of Yc vs the aspect ratio for χ � 1; the symbols represent the viscoplastic computations and
the line is expressions (3.9) and (3.10).

There are two reasons for this discrepancy. First, we should note that the slipline
solutions and limiting viscoplastic solutions are not quite simply the same. Although both
flows limit to zero motion at Yc, the stress fields are not the same. In the viscoplastic
solution the yield surfaces bound regions within which the stress is at or below the yield
stress. In the perfectly plastic solution the stress is constrained to be at the yield value
everywhere within the slipline envelope. The slipline stress field can be used to construct
an admissible stress field for the viscoplastic problem (if it can be extended outside the
slipline envelope), and using the stress maximisation principle one can infer that this will
lead to an upper bound for the viscoplastic Yc, as is observed.

The second reason for the discrepancy is that, although it is widely believed that the
Randolph & Houlsby (1984) solution is exact (i.e. the lower and upper bounds of the
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drag are the same for the whole range of αs), this is not the case. An issue was first
detected by Murff, Wagner & Randolph (1989): for αs < 1, there is a region in the vicinity
of the pile surface in which the rate of strain is negative and its absolute value should
consequently be taken into account in calculating the upper bound, to avoid negative
plastic dissipation. If one does so, then there is a discrepancy between the lower and
upper bounds, i.e. for αs < 1 the Randolph & Houlsby (1984) solution is not exact for the
perfectly plastic problem. Martin & Randolph (2006) postulated two new velocity fields
which improved the upper bound predictions to some extent. See Chaparian & Tammisola
(2021) for a detailed comparison with the viscoplastic flow about a solid particle. Also
Supekar et al. (2020) have shown that the Martin & Randolph (2006) solution is indeed
superior compared with the lower bound solution.

Note that this does not affect the results here in figure 7, which are taken from (3.9) and
(3.10) and use the slipline stress field (the lower bound). Indeed, our conclusion is that the
slipline method is a valuable check on computed limiting solutions. It exhibits very similar
geometric features and often gives a close estimate to Yc. A similar conclusion was reached
in our study of solid particles (Chaparian & Frigaard 2017b), for which the Randolph &
Houlsby (1984) slipline solution is both correct and exact (αs = 1).

4. Results for 2-D bubbles

4.1. Elliptic bubbles
Here, we investigate the behaviour of critical yield number (Yc) with respect to both aspect
ratio (χ ) and the dimensionless surface tension (γ ) for 2-D elliptical bubbles described
by (3.3). The range of aspect ratios considered are between 0.1 and 10 and the range of
surface tensions considered are between 0 and 10. Regarding realistic values of (χ ) and
(γ ), there are two main sources of information. First, we refer to the discussion of different
static bubble shapes in § 1. Second, we can look at experimental studies of rising bubbles
in yield-stress fluids (Dubash & Frigaard 2007; Sikorski et al. 2009; Lopez et al. 2018;
Pourzahedi et al. 2021), where they find aspect ratios 0.2–5, and γ in the range 0.01–0.5.
Evidently, experimental bubble shapes are not elliptical (nor planar) and we also note that
moving bubbles in experiments tend to be larger than stationary (increased buoyancy).
Thus, our range of parameters is practically motivated. In order to find Yc, we vary the yield
number until the flow field reaches zero everywhere in the domain using the computational
methods discussed in previous section.

Figure 8 shows how the critical yield number varies with aspect ratio for different
surface tension parameters γ . For γ = 0, Yc increases with χ : prolate bubbles (χ > 1) can
flow easier compared with oblate bubbles (χ < 1). One physically intuitive interpretation
of the increases is that, for increasing χ , the bubbles create a static pressure differential
proportional to their height: a higher yield stress is consequently required to overcome
the stresses created. The height of the bubble scales with

√
χ , which is approximately the

slope of the γ = 0 curve. Although attractive in its simplicity, the same explanation does
not account for our axisymmetric results later, which suggests that there is more going on
here and a different explanation needed. We consider χ < 1 and χ > 1 separately.

For χ < 1, it is apparent that, in order for the bubble to propagate, the fluid must move
around an increasingly wide obstacle as χ → 0. Primarily the bubble pushes the fluid out
of the way, suggesting that normal stresses at the interface are important and tangential
stresses less relevant. In this sense oblate bubbles and particles may be similar in their
yield limit behaviour. In Chaparian & Frigaard (2017b), the yield limit of planar elliptical
particles for χ � 1 varies as Yc ∼ χ0.5, just as here. However, the rigid particle displaces

933 A21-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
55

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1055


Flow onset for a single bubble in a yield-stress fluid

Yc

χ

γ = 0
γ = 0.05

γ = 0.1
γ = 0.5

γ = 1
γ = 2

γ = 5
γ = 8

γ = 10

10–2

10–1

10–1

101

102

100

100 101

Figure 8. Critical yield number against aspect ratio for various surface tensions for elliptic bubbles.

a triangular region of unyielded fluid ahead of it, which then pushes a ring of fluid around
the particle at constant speed; see figure 10(c) in Chaparian & Frigaard (2017b). This
simple flow structure allows us to estimate Yc directly for the particle.

When we explore the flow around the bubble as Y ∼ Yc, for χ < 1, we observe that
the yielded fluid is confined within two disks of approximate radius

√
2/χ , centred at the

ends of the bubble. This feature is just like the flow around elliptical particles. Unlike
the rigid particle, the flow is significantly less structured, without sharp gradients. This
prevents us from easily deriving an approximation to Yc, but the order of Yc as χ → 0
can be estimated. From (2.14), we see that Yc ≈ L(u)/j(u) for the limiting solutions u.
If Ub represents the mean bubble rise velocity, then we also have L(u) ∼ Ub, due to
incompressibility. The bubble width is 2a, also giving the length scale of the yielded
region. The strain rate is likely to scale with Ub/a within the yielded region, leading to
j(u) ∼ Ub/a × a2 = aUb. Dividing through we have Yc ≈ L(u)/j(u) ∼ 1/a ∼ χ0.5, as we
have observed.

In contrast, for χ > 1 we cannot expect that the bubble yield limit behaves as the particle
yield limit. The particle is strongly influenced by a thin yielded boundary layer (Chaparian
& Frigaard 2017b; Hewitt & Balmforth 2018). For Y ∼ Yc, we find that for tall bubbles
much of the bubble surface is covered by an unyielded plug that moves slowly downwards
as the bubble slips against it. This plug region is surrounded by a yielded shear layer and
then bounded by the outer yield envelope. In the shear layer the shear stress ‖τ‖ exceeds
the yield stress Y . We may suppose that ‖γ̇ ‖ ∼ (‖τ‖ − Y) ∝ dK, where d represents
the distance from the outer yielded envelope to the inner plug, and K is the size of the
pressure gradient oriented along the flow in the shear layer. Thus, now j(u) ∼ d2Kχ0.5,
if we estimate the shear layer as having size d × χ0.5. For the velocity within the yielded
envelope, we integrate once more to find |u| ∝ d2K and now integrate over the entire
region within the yielded envelope to give L(u) ∼ d2Kχ , i.e. not only across the width of
the shear layer. Note that both the height and width of the yielded envelope appear to scale
with χ0.5. Thus again we find Yc ≈ L(u)/j(u) ∼ χ0.5.

For γ > 0 we see a departure from the γ = 0 curve. Surface tension has no effect at
χ = 1, and deviation from the γ = 0 curve is more abrupt for larger γ . As γ increases, the
curves become increasingly symmetrical about χ = 1, meaning that deformation occurs
mainly due to surface tension. This behaviour is better illustrated in figure 9, where Yc is
plotted with respect to γ for various aspect ratios. It can be observed that the Yc values
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Figure 9. Critical yield number against surface tension for various aspect ratios of elliptic bubbles; χ < 1 is
plotted in dotted lines.
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Figure 10. Yield-capillary number against aspect ratio for various surface tensions for elliptic bubbles.

for specific χ and 1/χ collapse on each other for high values of γ (e.g. χ = 2, 0.5). The
overlap of the curves for χ and 1/χ in figure 9 suggests that the high curvature of the
more pointed ends of the bubble leads to a dominant effect on the stress field that must
be resisted by the yield stress. Therefore, eventually we expect to find a direct balance
between yield stress and surface tension. The ratio of yield number to surface tension is
the yield-capillary number discussed earlier. The critical value with respect to aspect ratio
is plotted for various values of γ in figure 10. As γ → ∞ the curves appear to collapse to a
limiting curve, confirming this interpretation. We may also evaluate the maximal curvature
of the bubble, as a function of χ , which occurs at the top and bottom for χ > 1 and at the
sides for χ < 1. We find that the maximal contribution of the surface tension to the jump
in pressures is given by γχ1.5 for χ > 1, and by γχ−1.5 for χ < 1. The symmetry for
large/small χ is evident in the planar bubble shape. On returning to figure 8, we note that
for large γ the slopes of the Yc-curves align well with ∼ χ1.5 for χ � 1, and ∼ χ−1.5 for
χ � 1.

The effect of the surface tension on the velocity field around moving bubbles, with
χ = 2 and χ = 0.5, is depicted in figure 11(a–h). In all cases, the yield number is selected
to satisfy 1 − Y/Yc = 0.1. It can be seen that velocity magnitudes increase with surface
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Figure 11. Velocity field around an elliptical bubble for the cases of χ = 2 (a–d) and χ = 0.5 (e–h), for γ

equal to: 0 (a,e), 1 (b, f ), 5 (c,g) and 10 (d,h). In all cases, the yield number satisfies 1 − Y/Yc = 0.1.

tension for both aspect ratios, suggesting that larger yield number is required to immobilise
the bubble at higher surface tension values. We emphasise that these velocity fields do not
represent steadily moving bubbles, but are simply Stokes flow solutions for these specific
shapes. In the case of γ = 0 for both aspect ratios the flow field as well as the unyielded
regions are symmetrical in the upper and lower halves of the bubble (figure 11a,e). For the
case of χ = 2, in addition to the outer field unyielded region, an unyielded region forms
around the bubble equator at low surface tensions, and the yielded fluid circulates from
the top to bottom in the pathway between the two regions (figure 11b). Interestingly, the
unyielded region attached to the equator shrinks as surface tension increases, and the outer
unyielded region surrounds the lower tip (figure 11c). This can be explained by considering
the role of surface tension in defining the bubble shape. Surface tension tends to push the
bubble boundary into its equilibrium shape (i.e. circle). In the lower half, buoyancy and
surface tension forces add up as they both push upwards. However, in the upper half of the
bubble, the surface tension force changes direction and pulls downwards. Therefore, they
cancel each other out partly. Thus, higher yield stress is required to immobilise the lower
half of the bubble compared with the upper half. Further increasing the surface tension
creates stronger forces at the tips, which again starts to yield the fluid around the upper tip
of the bubble (figure 11d). The unyielded region in the lower half is larger than the upper
half due to the same reason explained above.

For the case of χ = 0.5, similarly, the unyielded region attached to the bubble equator
shrinks as surface tension increases. The shape of the unyielded region can be justified
using the same logic as before. In the upper half both the surface tension and buoyancy
forces are pointing upwards. However, in the lower half, buoyancy is still pointing upwards
while the surface tension is acting downwards, therefore they counteract each other. Thus
the upper half requires more yield stress to become immobilised (figure 11 f ). Further
increasing the surface tension yields the fluid around the bottom half and induces a new
unyielded region.
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Figure 12. Illustration of quartic (black line) and elliptical bubble (discontinuous red) shapes at various
aspect ratios.

4.2. Long bubbles
To give a second geometry we explore bubbles with quartic profile. To clarify, the interface
is given by

(x/a)4 + ( y/b)4 = 1, (4.1)

with an area equal to π. We denote the aspect ratio b/a = χ and again investigate the
variation of Yc, with χ and γ . A selection of shapes are shown in figure 12. Here, we
just note that χ = 1 does not give a circular shape and in general these bubbles are
more rectangular, with rounded corners, in comparison with the elliptical bubbles. As an
aside, we first tried some computations of long straight-sided bubbles with semi-circular
ends. However, the jump in curvature (between circular cap and straight sides) created
unphysical behaviour when γ > 0, whereas the quartic profile is smooth.

Looking at figures 13 and 14 we see a qualitatively similar behaviour of Yc. It can be
observed again that higher Yc is required to stop the flow as γ increases. For low values
of γ , buoyancy dominates the flow regime and figure 13 shows that the vertically oriented
bubbles are more difficult to stop. Analogous to elliptical bubbles, Yc values for any
specific χ and its inverse 1/χ collapse on each other for high values of γ . As before, the
regions of largest curvature dominate as γ increases and orientation becomes unimportant.
This observation appears to be quite general and also not confined to these two specific
orientations. Figure 15 demonstrates that for high values of surface tension, the critical
yield-capillary numbers tend to converge to a single curve.

Same example velocity fields around representative quartic bubbles are shown in
figure 16. At γ = 0 we again observe fore–aft symmetry, broken only by the surface
tension. For the larger values of γ the main velocity gradients are near the ends of bubble.
Close inspection (figure 16d,h), reveals that the peak velocities are generated just off
centreplane where curvature effects are maximal.

For both the 2-D elliptical and quartic bubbles the behaviour of the critical yield number
with γ appears to follow the same trend, in being progressively dominated by the regions
of high curvature. Looking at figure 17, when χ > 1, we find that Yc has a power-law
behaviour for high γ , (Yc = Aγ B), and is constant for small γ , (Yc = C). The values
of coefficients A and B for two sample aspect ratios of χ = 2, 10 are listed in table 1.
Evidently, the exponent B ≈ 1 as is expected from physical grounds (for large γ when
surface tension dominates buoyancy, in order to prevent motion the yield stress must
balance surface tension).

When χ < 1, Yc can be approximated with the same power-law behaviour of the
equivalent vertical aspect ratio (i.e. that fitted to the data for 1/χ ) almost over the whole
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Figure 13. Critical yield number against aspect ratio for various surface tensions for quartic bubbles.
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Figure 14. Critical yield number against surface tension for various aspect ratios of quartic bubbles; χ < 1 is
plotted in dotted lines.
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Figure 15. Yield-capillary number against aspect ratio for various surface tensions for quartic bubbles.
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Figure 16. Velocity field around quartic bubbles for the cases of χ = 6 (a–d) and χ = 1/6 (e–h), for γ equal
to: 0 (a,e), 0.1 (b, f ), 1 (c,g) and 5 (d,h). In all cases, the yield number satisfies 1 − Y/Yc = 0.1.

γ

Yc

10–1

101

102

100

10–1 100 101

Ellipse χ = 2

Ellipse χ = 10

Quartic χ = 2 

Quartic χ = 10

Figure 17. Behaviour of the critical yield number with respect to surface tension for sample aspect ratios of
χ = 2, 10. For high γ this behaviour is almost linear, but for low γ it is constant.

A B C

Ellipse (χ = 2) 0.29 0.95 0.26
Ellipse (χ = 10) 2.98 0.99 0.69
Quartic (χ = 2) 0.44 1.00 0.25
Quartic (χ = 10) 1.40 0.96 0.65

Table 1. Example curve fit coefficients for 2-D elliptical and quartic bubble shapes; Yc = Aγ B for high
values of γ , and Yc = C for small values of γ .
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Yc
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γ/κmin

Ellipse

Quartic

Figure 18. Value of Yc plotted with respect to the ratio of γ and the minimum radius of curvature (κmin) for
the 2-D elliptical (◦) and quartic (∗) bubbles. The colour interpretation is the same as figure 15.

range of γ . We have already seen this symmetry and data collapse in e.g. figures 13 and
14. To emphasise and confirm that the effect of curvature is the leading order, we have
computed the minimal radius of curvature κmin for each shape as a function of χ . We
then plot Yc against γ /κmin for all our data, for both the ellipses and quartic bubbles; see
figure 18. The colour interpretation is the same as figure 15. Circles and stars are used for
the elliptical and quartic bubbles, respectively. We observe that the data collapse onto the
same curve at large γ /κmin. There is a slight offset for the two families of bubble shapes.

5. Axisymmetric bubbles

To obtain a more realistic quantitative estimate of the yield criterion, we look at similar
problems but using an axisymmetric version of our codes. Figure 19 shows the contours of
the speed, the log of the rate of strain tensor and the hoop strain rate. In the axisymmetric
bubbles the large kidney shaped unyielded regions attached to the bubble surface are
absent due to the hoop strain rate, which we see is non-zero here, except on the equator.
This gives a very small unyielded region at the equator, made possible due to the slip at
the bubble surface. Note that in the case of the solid spherical particle (Beris et al. 1985;
Iglesias et al. 2020) where there is a no-slip condition, these regions are absent (although
present in 2-D planar flows away from the surface).

Figure 20 plots Yc against χ for ellipsoidal bubbles. Here, the ellipsoids are constructed
by rotating the shape (3.3) about the y-axis

x2

a2 + y2

b2 + z2

a2 = 1, a2b = 1; (5.1)

(gravity aligns with the −y axis). Thus, χ = b/a has the same meaning as in two
dimensions, viz., the bubble aspect ratio. When χ = 1 then a = b = 1 which is the scaled
spherical bubble radius. When γ = 0, as with the 2-D bubbles, prolate bubbles (χ > 1)
are harder to stop than oblate (χ < 1). For the spherical bubble Yc is independent of
the surface tension, as also recently stated by Deoclecio et al. (2021). At first glance the
ellipsoidal results qualitatively resemble those earlier in figure 8 for planar bubbles.

For γ = 0, the slope of Yc in figure 20 changes, from ∼ χ2/3 for χ � 1 to ∼ χ0.47

for χ � 1. As the bubble height now scales with b ∼ χ2/3 the arguments for static

933 A21-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
55

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1055


A. Pourzahedi, E. Chaparian, A. Roustaei and I.A. Frigaard

0

1

2

3

4

−4

−3

−2

–2

–1

0

1

2

(×10–3) (×10–2)(a) (b) (c)

Figure 19. Axisymmetric spherical bubble at Y = 0.125: (a) velocity field, (b) log(‖γ̇ ‖) and (c) γ̇θθ .
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Figure 20. Critical yield number against aspect ratio for various surface tensions for ellipsoidal bubbles.

pressure governing Yc are inadequate for prolate bubbles, and seem non-intuitive for oblate
bubbles. Effectively, the flow characteristics and 3-D volumetric effects must come into
play. Fortunately, the functional analytic framework developed is valid and we may expect
that Yc ≈ L(u)/j(u) for u that are close to the solution at the yield limit. We may now
construct a phenomenological explanation for the asymptotic behaviour observed. For
oblate bubbles, we observe the largest velocities are directly above/below the bubbles,
where fluid is pushed out of the way and this is also where significant velocity gradients are
found. We therefore have ‖γ̇ ‖ ∼ Ub/a and consequently j(u) ∼ a3Ub/a = a2Ub, where
Ub represents the mean bubble rise velocity. On the other hand, since the fluids are
considered incompressible, we also have L(u) ∼ Ub, i.e. what flows up must flow down,
meaning that L(u)/j(u) ∼ 1/a2 ∼ χ2/3 as we have observed.

For χ > 1 we generally find that the largest speeds are found near the two ends of the
bubble, but decay outwards to the boundary of the yielded envelope. If we denote the
outer radius of the yield envelope at y = 0 by R⊥ we find that R⊥ � a as χ increases.
All of the fluid displaced by the bubble must pass through the plane y = 0. Thus, the
fluid velocity scales as Ub(a/R⊥)2. The yielded region around the bubble has height ∼ b
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γ

Yc

Figure 21. Critical yield number against surface tension for various aspect ratios of ellipsoidal bubbles;
χ < 1 is plotted in dotted lines.

and hence L(u) ∼ Ub(a/R⊥)2 × [bR2
⊥] ∼ Ub, as must also follow from incompressibility,

(note a2b = 1). On the other hand, ‖γ̇ ‖ ∼ Ub a2/R3
⊥ so that j(u) ∼ Ub/R⊥, from which

Yc ≈ L(u)/j(u) ∼ R⊥. Examination of R⊥, taken from our results for χ > 1 does indeed
show that R⊥ ∼ χ0.47. This really just establishes consistency of our results, i.e. Yc ∼ R⊥,
but not the reason for the specific exponent χ0.47. In terms of the fit to the data in figure 20,
it is worth commenting that for χ > 1 the fit of the slope to χ0.47 is not as clean as for
χ < 1 with Yc ∼ χ2/3. Extending our computations to the range χ > 10 would be helpful
to better evaluate the asymptotic limit.

Looking now at γ > 0, we see that although Yc increases for all χ /= 1, unlike the planar
cases the profiles of Yc do not become symmetric about χ = 1, i.e. comparing χ and 1/χ .
This is because for the three-dimensional bubbles χ and 1/χ do not yield the same shape;
see (5.1). This is seen more clearly in figure 21 which plots Yc against γ for different pairs
of χ and 1/χ : the curves that do not overlap directly at large γ . The physical reasoning
for the increase is the same as for the planar bubbles: at large γ the dominant contribution
to the pressure in the fluid comes from surface tension, and hence buoyancy is only a
secondary influence on yielding. This is captured in figure 22, which demonstrates that
for high values of surface tension, the critical yield-capillary numbers tend to collapse
onto the same limiting curve. It is also interesting to note that the Yc values for small χ

are larger than those for large χ , i.e. comparing values for χ and 1/χ . This is a purely
geometric effect of viewing the change in shape via the aspect ratio χ . For the oblate
ellipsoids, as χ � 1 there is a single minimal radius of curvature that scales as χ5/3, so
that the pressure jump at the interface is of order ∼ γχ−5/3. For the prolate ellipsoids, as
χ � 1 there are two identical minimal radii of curvature that scale as χ−4/3, leading to a
pressure jump at the interface that is of order ∼ γχ4/3. When we compare the slopes of
the curves for large γ in figure 20 we do indeed find Yc ∼ χ−5/3 and Yc ∼ χ4/3 for small
and large χ , respectively.

To allow comparison of the velocity fields with the 2-D planar results, we compute the
flows around the same aspect ratio ellipsoids as in figure 11. Largely, we see the same
behaviour as for the 2-D planar elliptical bubbles, with the exception of the yield surfaces
around the bubble equator (see figure 23). There also seems to be much less rigid rotational
motion around the bubble surface, which is likely due to the additional hoop strain rate
component.
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Figure 22. Yield-capillary number against aspect ratio for various surface tensions for ellipsoidal bubbles.
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Figure 23. Velocity field around axisymmetric ellipsoidal bubbles for the cases of χ = 2 (a–d) and χ = 0.5
(e–h), for γ equal to: 0 (a,e), 1 (b, f ), 5 (c,g) and 10 (d,h). In all cases, the yield number satisfies 1 − Y/Yc = 0.1.

Finally, we have also modelled bubble shapes that resemble the inverse teardrop shape
often observed. We use the following basic parameterisation of the surface:

x = a cos(t), y = b sin(t) + c(1 + cos(2t)), (5.2a,b)

where t ∈ [−π/2, π/2]. This shape is rotated about the y-axis. Adjusting the coefficients
enables us to obtain various aspect ratios and the whole shape is scaled to give the correct
volume. Here, we present two aspect ratios (χ = b/a = 1 and 2) and two surface tension
values (γ = 0, 1). As seen in figure 24, the velocity is focused more at the tail of the
bubble, and hence the yield surface is also oriented towards the tail. This is also where the
radius of curvature is lowest. This behaviour is most apparent in figure 24(d). Note that
these bubbles are mobile and we are relatively far from Yc. The large velocity gradients
(hence stress) at the bubble tail suggest that these bubbles will deform significantly here.
In other words, steady propagation of a shape such as these is not possible. Since steady
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Figure 24. Velocity field around an axisymmetric teardrop bubble: (a,b) χ = 1 and c/a = 0.15, (c,d) χ = 2
and c/a = 0.4. The surface tension (γ ) equals to (a,c) 0 and (b,d) 1. In all cases, the yield number satisfies
1 − Y/Yc = 0.1.

χ 0.2 1 5

Two-dimensional ellipse 0.073 0.172 0.460
Ellipsoid 0.047 0.132 0.321

Table 2. Sample computed Yc for single 2-D ellipses and axisymmetric ellipsoid shapes for the case of
γ = 0.

bubble motion of similar shapes is actually observed experimentally (see e.g. figure 6 in
Pourzahedi et al. 2021), this supports the suggestion often made, that other rheological
effects are responsible for the tail.

6. Discussion and conclusions

This paper studied the critical yield number required to stop the motion of different
bubble shapes, studying a wide range of aspect ratios and surface tension values. The
computations have been conducted using both AL and FISTA algorithms, both of which
are able to capture zero strain rates reliably in unyielded regions. Coupled with the adaptive
meshing methods, these capture the yield surfaces well, as has been the case with many
other flows. The good agreement between methods confirms the reliability of our results.
Slipline theory has also been used to validate the results for 2-D elliptical bubbles for the
case of no surface tension, providing a close upper bound for Yc. Table 2 presents the
results of Yc for sample aspect ratios of χ = 0.2, 1, 5 in the absence of surface tension.
For the case of a 2-D circle, Singh & Denn (2008) have reported a value of 0.167. For the
case of a sphere, Tsamopoulos et al. (2008), Dimakopoulos et al. (2013) and Deoclecio
et al. (2021) have reported values of 0.143, 0.129 and 0.133, respectively. There is good
agreement for the critical yield number between previous studies and our data. Thus, the
results tabulated in table 2 can be used as benchmarks for future computational studies.
Slightly different, Karapetsas et al. (2019) have found a value of 0.175 for a spherical
bubble using an analytical solution based on a Lagrangian formalism.
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The shapes studied include 2-D elliptic and quartic, axisymmetric ellipsoidal and
inverted teardrop. There are common qualitative features of the results as the aspect ratio
is varied and as the surface tension comes to dominate buoyancy. Regarding the effect
of aspect ratio on the critical yield number, it was found that when the flow is buoyancy
dominated, prolate bubbles require more yield stress to remain stationary compared with
oblate bubbles. However, when the flow is surface tension dominated, a similar yield stress
is required to stop the motion of both vertical and horizontal bubbles. The critical yield
number was found to increase with surface tension. As surface tension becomes dominant,
the yield capillary number is the relevant balance to study.

As approximate guidance, a 1.5 Pa yield-stress is sufficient to hold a spherical bubble
of 1 mm diameter static in an aqueous gel. A prolate bubble of the same volume with a
3 : 1 aspect ratio would require a 3 Pa yield stress in the absence of surface tension and
this could be many time larger for γ > 0. Yield stresses of waste slurries vary enormously
over the range ∼1–103 Pa, depending on many factors. Surface tension values are more
constrained and small radii of curvature are generally accompanied by small volumes,
i.e. buoyancy. Thus, some care is needed in interpretation.

It is interesting to reflect on how to validate/compare our results with experiments and
their broader relevance. First, it is hard to compare with many results of experiments with
moving bubbles. Bubble motion in experiments usually needs some form of injection into
a yield-stress fluid. Both injection (Sikorski et al. 2009; Lopez et al. 2018; Pourzahedi
et al. 2021) or over-pressure (Zare & Frigaard 2018) are common, but in both cases there
is a transient motion associated with the release/pinch-off. The bubble typically then
deforms quickly on release towards a steady propagation shape. Thus, we are typically
far from the critical conditions. Ongoing work instead looks at using a small seed bubble
in fluid within a vacuum chamber. Pressure reduction increases the volume, but the
pinch-off/release/invasion steps are eliminated and viscoelastic effects do not have time
to manifest in the initial shapes.

A second point of reflection is on the meaning of the results at large/small aspect
ratio, where surface tension dominates. For example, with fixed yield stress a sufficiently
long/thin bubble will not be static. Does this mean it will be released? Not necessarily, as
the yielded flow will deform under the action of surface tension. Where surface tension is
dominant, we presume the tendency is to pull the bubble towards circular/spherical shapes,
which we have seen are more stable. It is certainly conceivable that the initial deformation
results in bubbles that do not rise significantly before the shape adapts. This is a limitation
of our work in only calculating steady flows.

The results on the shape and aspect ratio are also interesting in the context of more
complex distributions of bubbles, such as in figure 1, or in the industrial waste contexts
that motivated this study. If the bubble release is due to a bulk effect, such as lowering
of pressure or degradation of the rheology, we see that the angular and long aspect ratio
bubbles are likely to deform first. With a cyclic atmospheric variation this could result
in some release but also a refinement/homogenisation of the shapes and sizes of the
remaining retained bubble distribution. Does nature help in this way and could this cyclic
procedure be imposed industrially? If the aim is to retain bubbles, use of surfactant to
reduce γ might also be an effective strategy. Indeed, the case γ = 0 appears to be the best
case scenario from the bubble trapping perspective. Other effects of bubble clouds on Yc
are studied in Chaparian & Frigaard (2021).
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Figure 25. Comparing the duality gap of AL and FISTA methods.
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Appendix. Comparison of AL and FISTA methods

Here, we illustrate convergence behaviour of the two numerical methods used in this paper
(i.e. AL and FISTA) for the case of a 2-D circular bubble. The difference between the
velocity minimisation (primal) and stress maximisation (dual) functionals, also known as
the duality gap, is plotted for successive iterations in figure 25. As investigated by Treskatis
et al. (2018), in both methods the duality gap will shrink successively but the convergence
of FISTA is superior, as is clear from figure 25.

In terms of the velocity fields or yield surface positions, the differences are not
discernible. Both algorithms are operating with the exact Bingham model, as opposed
to a regularisation approach, and thus approximate the rigid unyielded regions correctly,
which is the main point for computations that explore stopping/static flows. Practically
speaking, in terms of computing the static limits and yield surface shapes, as here, more
relevant than the (FISTA or AL) algorithm is the number of the mesh adaptations used.
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