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We define a language for second-order arithmetic using the (positive) connectives ∧̇ and ∨̇,

the (positive) quantifiers ∀̇ and ∃̇, and with negation ‘pushed to the atoms’ under the form of

atomic formula t=̇u,t˙6=u,t∈̇X, t˙6∈X where t and u stand for first-order terms and X for a

second-order variable.

We define and study the translation from this language to the more usual implicational

language containing the entailment connective →. We also study the converse translation.

Next we define the appropriate notion of syntactical truth predicate for this language (such a

notion has been introduced for the implicational language in Colson and Grigorieff (1998)).

We establish using the previous translations that the existence of such a predicate for this

language is equivalent to the the existence of such a predicate for the implicational language.

This result is established in a predicative formal system. We conclude by discussing some

elementary attempts to construct such a truth predicate by a fixed point technique.

1. Introduction

1.1. Syntactical truth predicates for implicational formulas

Syntactical truth predicates have been introduced in (Colson and Grigorieff 1998) as

a proposal for a predicative approach to the semantics of impredicative second-order

arithmetic PA2. The formulas of PA2 (formalized à la Takeuti (Takeuti 1975)) that were

considered in Colson and Grigorieff (1998) were made of equality statements t = u (where

t and u are terms of some first-order language standing for natural numbers), membership

statements t ∈ X (where X is a second-order variable standing for a set of natural

numbers), entailment statements A ⇒ B (where A and B are two previously constructed

formulas) and first or second-order universal quantifications ∀xA and ∀XA. First-order

substitution A[x← t] of the term t for the first-order variable x in the formula A is defined

in the natural way by induction on A. Second-order substitution needs a little preliminary

definition: a set definition is an expression like λxB (where B is a formula) and means
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‘the set of numbers x such that B(x) holds’. Here we use Church’s lambda-notation for

the propositional function mapping the natural number x to the proposition B(x). The

substitution A[X ← D] of the set definition D for the variable X in the formula A is then

defined by induction on A. The critical case is (t ∈ X)[X ← λxB] defined as B[x ← t].

Here we shall call these formulas implicational formulas .

The notion of syntactical truth predicate for this language, which we will call in the

present paper syntactical truth predicate for implicational formulas, can then be introduced

as a set T of closed implicational formulas such that

(i ) T (t = u) iff the closed terms t and u are convertible, that is, have the same value in

the standard interpretation

(ii ) T (A⇒ B) iff (T (A)⇒ T (B))

(iii ) T (∀xA) iff (T (A[x← t]) for any closed term t)

(iv ) T (∀XA) iff (T (A[X ← D]) for any closed set definition D)

In this definition cases (i ) to (iii ) are more or less unavoidable. The main originality

of syntactical truth predicates lies in the treatment of the second-order quantification

(case (iv )): instead of interpreting the quantification over second-order variables by a

quantification over sets of natural numbers as in the ordinary semantics of PA2, we

quantify over set definitions. This is in agreement with the intuitionistic claim that sets do

not exist by themselves in a platonistic world but exist only through their definition (for an

explanation of this point of view see Poincaré (1913) and Colson and Grigorieff (1998)).

Observe that in case (iv ) the formula A[X ← D] may be bigger than A and hence makes

impossible the construction of such a predicate by induction.

The existence of syntactical truth predicates for implicational formulas has been estab-

lished in Colson and Grigorieff (1998) using Gödel’s notion of constructible set (introduced

initially by Gödel to give a proof of consistency of the Axiom of Choice and of the Con-

tinuum Hypothesis in Set Theory). It is also shown in a relatively small formal system

(predicative second-order arithmetic with a comprehension schema limited to arithmetic

formulas) that the existence of such a syntactical truth predicate implies the consistency

of impredicative second-order arithmetic PA2. This makes the existence theorem ‘strong’

from a proof-theoretical point of view.

1.2. Syntactical truth predicates and fixed point theorems

Syntactical truth predicates for implicational formulas are exactly the sets of closed

formula solutions to the fixed point equation χ0(X) = X, where χ0 is the function from

sets of closed formulas to sets of closed formulas defined by F ∈ χ0(X) iff one of the

following conditions is fullfilled:

(i ) F is t = u and the closed terms t and u have the same value.

(ii ) F is A⇒ B and (A ∈ X)⇒ (B ∈ X).

(iii ) F is ∀xA and A[x← t] ∈ X for any closed term t.

(iv ) F is ∀XA and A[X ← D] ∈ X for any closed set definition D.
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Such a fixed point solution is not immediate to construct: Knaster–Tarski’s fixed

point theorem (Knaster 1928; Tarski 1955) allows us to build such sets only when

the operator (the function χ0) from sets to sets is increasing (or monotonic according

to the more usual terminology). In the present case χ0 is not increasing due to the

negative occurence of A ∈ X in condition (ii ). Elementary attempts to get rid of this

problem by a change of language, for instance by switching from the connnective ⇒
to the connectives (∧,¬) fail (in this last example due to the negative character of the

connective ¬). To overcome this difficulty, it seems necessary to build a language in

which the unavoidable ‘negative aspects’ have been made as positive as possible. In

this paper we propose such a language whose objects are called ‘formulas with atomic

negation’. These formulas are built with the (positive) connectives ∧̇ and ∨̇, and the

(positive) first and second-order quantifiers ∀̇ and ∃̇. No negative connective or quantifier

is included in these formulas but instead negation is ‘pushed to the atoms’, that is, we

include atomic formulas t=̇u (for equality) and t˙6=u (with the positive meaning that t

and u are ‘separated’) and membership/anti-membership atomic formulas t∈̇X and t˙6∈X.

At this point it is essential to see that any implicational formula can be translated

into a formula with atomic negation (such a translation will be detailed in Section

3).

At first sight we have not solved the problem of eliminating the negative aspects of the

language since the anti-membership atomic formula t˙6∈X is negative. The crucial remark

here is that such membership or anti-membership atomic formulas are never involved

in the case analysis of the expected definition of a syntactical truth predicate for this

language since we deal with closed formulas only: in conditions (i ) to (iv ) no membership

case is considered. This makes the language of formulas with atomic negation especially

attractive for constructing a syntactical truth predicate.

1.3. Contents of this paper

This paper is organized as follows: we first define formulas with atomic negation. Next

we introduce the ‘positive negation’ Ã of such a formula A by induction on A. This

allows us to define the second-order substitution in a formula with atomic negation.

Translations A 7→ A+ from implicational formulas to formulas with atomic negation

and A 7→ A⇒ from formulas with atomic negation to implicational formulas are defined

and elementary results concerning them are established. Next, a notion of syntacti-

cal truth predicate for formulas with atomic negation is defined in accordance with the

previous motivation. This allows us to prove in a ‘small’ formal system (second-order

arithmetic with arithmetic comprehension) that there exists a syntactical truth predicate

for implicational formulas if and only if there exists a syntactical truth for formulas

with atomic negation. Using the results of Colson and Grigorieff (1998), this measures

exactly the strength of the existence of such predicates for formulas with atomic nega-

tion.

The conclusion discusses the failure of some attempts to construct such objects using

the Knaster–Tarski fixed point result, in accordance with the initial motivations.
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2. The language of formulas with atomic negation

2.1. Formulas with atomic negation

Working from the motivation given above, we now introduce the notion of a formula with

atomic negation formally.

Definition 1. The set of formulas with atomic negation is defined inductively:

— When t and u are first-order terms, t=̇u is such a formula (with the obvious intended

meaning that t and u are equal)

— When t and u are first-order terms, t˙6=u is such a formula (with the obvious intended

meaning that t and u are distinct)

— If t is a first-order term and X a second-order variable, t∈̇X is such a formula

(membership statement)

— If t is a first-order term and X a second-order variable, t˙6∈X is such a formula

(anti-membership statement)

— When A and B are two such formulas, A∧̇B is such a formula (the conjunction of A

and B)

— When A and B are two such formulas, A∨̇B is such a formula (the disjunction of A

and B)

— When A is such a formula, ∀̇xA is such a formula (the first-order universal quantifica-

tion)

— When A is such a formula, ∃̇xA is such a formula (the first-order existential quantifi-

cation)

— When A is such a formula, ∀̇XA is such a formula (the second-order universal

quantification)

— When A is such a formula, ∃̇XA is such a formula (the second-order existential

quantification)

As with the case of implicational formulas, the notion of set definition with atomic negation

(or simply set definition) is defined as an expression λxA where A is a formula with atomic

negation. The intended meaning is the same as in the implicational case.

Remarks.

1 In this paper we shall use letters A, B, . . . to stand for such formulas with atomic

negation.

2 The usual questions of free and bound variables arise, we will not detail these problems

here since they can be treated with this language as in ordinary second-order language.

2.2. Positive negation

Definition 2. Let A be a formula with atomic negation. We define the positive negation

(or more simply the negation) Ã of A by induction on A:

— t̃=̇u is t˙6=u
— t̃˙6=u is t=̇u
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— t̃∈̇X is t˙6∈X
— t̃˙6∈X is t∈̇X
— Ã∧̇B is Ã∨̇B̃
— Ã∨̇B is Ã∧̇B̃
— ˜̇∀xA is ∃̇xÃ
—

˜̇∃xA is ∀̇xÃ
—

˜̇∀XA is ∃̇XÃ
—

˜̇∃XA is ∀̇XÃ

We have the following elementary lemma stating that positive negation is involutive.

Lemma 1. Let A be a formula with atomic negation. Then
˜̃
A = A

Proof. The proof is by induction on A.

2.3. Substitutions

The definition of first-order substitution A[x← t] of a term t for a first-order variable x in

a formula with atomic negation A is similar to the definition for implicational formulas:

the most interesting case is (u ∈ X)[x← t] defined as (u[x← t]) ∈ X. This and the notion

of positive negation allows us to give the following definition.

Definition 3. Let A be a formula with atomic negation, X be a second-order variable and

D = λxB be a set-definition. We define by induction on A the substitution A[X ← D] of

D for X in A:

— (t=̇u)[X ← D] is t=̇u.

— (t˙6=u)[X ← D] is t˙6=u.
— (t∈̇Y )[X ← D] is t∈̇Y when Y is different from X.

— The t˙6∈Y case is similar to the previous one.

— (t∈̇X)[X ← D] is B[x← t].

— (t˙6∈X)[X ← D] is B̃[x← t].

— (A∧̇B)[X ← D] is (A[X ← D])∧̇(B[X ← D]).

— (A∨̇B)[X ← D] is (A[X ← D])∨̇(B[X ← D]).

— (∀̇xA)[X ← D] is ∀̇x(A[X ← D]).

— The cases of ∃̇x, ∀̇Y and ∃̇Y are similar to the previous one.

Remarks.

1 The most interesting point in this definition is the t˙6∈X case since it involves positive

negation.

2 In the case of quantifiers, the usual precautions (renaming of bound variables) must

be taken to avoid free variable capture during the substitution.

https://doi.org/10.1017/S0960129501003449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129501003449


L. Colson 6

2.4. Negation and substitution

The reader may have noticed that, instead of B̃[x ← t] in the t˙6∈X case of the previous

definition, we could have chosen

˜︷ ︸︸ ︷
B[x← t].

In fact the two choices are equivalent, as stated by the following lemma.

Lemma 2. Let A be a formula with atomic negation, x be a first-order variable and t be

a first-order term. Then

(Ã)[x← t] =
˜︷ ︸︸ ︷
A[x← t].

Proof. The proof is an elementary induction on A.

We can give an analogous lemma for second-order substitution.

Lemma 3. Let A be a formula with atomic negation, X be a second-order variable and

D = λxC be a set definition. Then

˜︷ ︸︸ ︷
A[X ← D] = (Ã)[X ← D].

Proof. The proof is by induction on A.

3. From implicational formulas to formulas with atomic negation

In this section we define and study the natural translation from implicational formulas to

formulas with atomic negation. The translation is essentially straightforward but needs to

be written down precisely in order to prove the substitution lemmas required in sufficient

detail.

3.1. Translation

Definition 4. Let A be an implicational formula. We define by induction on A the formula

with atomic negation A+ corresponding to A:

— (t = u)+ is t=̇u.

— (t ∈ X)+ is t∈̇X.

— (A⇒ B)+ is (̃A+)∨̇(B+).

— (∀xA)+ is ∀̇x(A+).

— (∀XA)+ is ∀̇X(A+).

3.2. Substitution lemmas

In this paragraph we state the lemmas relating the previous translation with substitutions.

We first have a first-order substitution lemma.
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Lemma 4. Let A be an implicational formula, x be a first-order variable and t be a

first-order term. Then we have

(A[x← t])+ = (A+)[x← t].

Proof. The proof is by induction on A.

Using the previous lemma we can establish a second-order substitution lemma.

Lemma 5. Let A be an implicational formula, X be a second-order variable and D = λxB

be a set definition. Then we have

(A[X ← D])+ = (A+)[X ← D+]

where D+ stands for λxB+.

Proof. The proof is by induction on A.

3.3. Translating the negation of a formula

In the following we borrow from Heyting Arithmetic the following definition of the

negation of an implicational formula.

Definition 5. Let A be an implicational formula. We define the (implicational) formula

¬A by the equation ¬A = (A⇒ (0 = 1)).

Operating the previous translation on the negation ¬A of some implicational formula A

one could expect to obtain (¬A)+ = (̃A+). However, this is not the case, as shown by the

following example: (¬(t = u))+ = ((t = u)⇒ (0 = 1))+ = ˜(t = u+)∨̇(0=̇1) = (t˙6=u)∨̇(0=̇1),

which is not equal to (t˙6=u). However, these two last formulas are ‘similar’ in the following

sense.

Definition 6. Let A and B be two formulas with atomic negation. We say that they are

+-similar and we write A ∼+ B iff they can be obtained starting from equal formulas by

means of substitutions of subformulas C by C∨̇(0=̇1).

Intuitively, such similar formulas have the same meaning.

4. From formulas with atomic negation to implicational formulas

In this section we define and study the converse translation A 7→ (A⇒) from formulas

with atomic negation to implicational formulas.

4.1. Translation

In the following definition remember that ¬A stands for A⇒ (0 = 1).

Definition 7. Let A be a formula with atomic negation. We define by induction on A the

implicational formula A⇒:

— (t=̇u)⇒ is t = u
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— (t˙6=u)⇒ is ¬(t = u)

— (t∈̇X)⇒ is t ∈ X
— (t˙6∈X)⇒ is ¬(t ∈ X)

— (A∨̇B)⇒ is (¬(A⇒))⇒ (B⇒)

— (A∧̇B)⇒ is ¬((A⇒)⇒ ¬(B⇒))

— (∀̇xA)⇒ is ∀x(A⇒)

— (∃̇xA)⇒ is ¬∀x¬(A⇒)

— The second-order quantifiers ∀̇X and ∃̇X are translated in the same way as the

first-order quantifiers

4.2. Translating the positive negation of a formula

In translating the positive negation Ã of a formula with positive negation A one could

expect to obtain (Ã)⇒ = ¬(A⇒). However, this is not the case, as is obvious from the

following example: (t̃˙6∈u)⇒ = (t∈̇u)⇒ = (t = u) is different from ¬((t˙6∈u)⇒) = ¬(¬(t ∈ u)).
However, as in the previous section, these two formulas are similar in the following sense.

Definition 8. Let A and B be two implicational formulas. We say that these formulas are

⇒-similar and we write A ∼⇒ B if and only if they can be obtained starting with equal

formulas by substitutions of some subformulas C by ¬(¬C).

When no ambiguity is possible we will just write A ∼ B and say that A and B are similar.

Intuitively again, two ⇒-similar formulas have the same meaning. It will turn out that

if T is a syntactical truth predicate for implicational formulas and if A and B are two

similar formulas, then T (A) is equivalent to T (B) (see Lemma 11).

We can now state the correct lemma concerning negation.

Lemma 6. Let A be a formula with atomic negation. Then (Ã)⇒ ∼ ¬(A⇒).

Proof. The proof is by induction on A.

4.3. Substitution lemmas

The following lemmas relate the previous translation to substitution.

Lemma 7. Let A be a formula with atomic negation, x be a first-order variable and t be

a first-order term. Then we have

(A[x← t])⇒ = (A⇒)[x← t].

Proof. The proof is by induction on A.

Lemma 8. Let A be a formula with atomic negation, X be a second-order variable and

D = λxB be a set definition. Then we have

(A[X ← D])⇒ ∼ (A⇒)[X ← D⇒]

where D⇒ stands for λx(B⇒).

Proof. The proof is by induction on A.
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5. Composing the translations

In this section we shall consider the compositions of the translations A 7→ (A⇒)+ and

A 7→ (A+)⇒. We will establish that they are equal to identity up to similarity. Let us

first remark that when A is an implicational formula then (¬A)+ is (̃A+)∨̇(0=̇1) which is

similar to (̃A+). We shall use this remark in a repeated way.

5.1. First composition: (A⇒)+ ∼ A
Lemma 9. Let A be a formula with atomic negation. Then (A⇒)+ is +-similar to A.

Proof. The proof is by induction on A.

5.2. Second composition: (A+)⇒ ∼ A
Lemma 10. Let A be an implicational formula. Then (A+)⇒ is ⇒-similar to A.

Proof. The proof is by induction on A.

6. Syntactical truth predicates for formulas with atomic negation

As with the case of the implicational language, we can define a notion of syntactical truth

predicate for the language of formulas with atomic negation.

Definition 9. Let U be a set of closed formulas with atomic negation. We say that U is a

pre-syntactical truth predicate for formulas with atomic negation iff the following conditions

are fullfilled:

(i ) U(t=̇u) iff the closed terms t and u have the same value.

(ii ) U(t˙6=u) iff the closed terms t and u have different values.

(iii ) U(A∧̇B) iff (U(A) and U(B)).

(iv ) U(A∨̇B) iff (U(A) or U(B)).

(v ) U(∀̇xA) iff U(A[x← t]) holds for any closed term t.

(vi ) U(∃̇xA) iff U(A[x← t]) holds for some closed term t.

(vii ) U(∀̇XA) iff U(A[X ← D]) holds for any closed set definition D.

(viii ) U(∃̇XA) iff U(A[X ← D]) holds for some closed set definition D.

Remarks.

1 As in the case of implicational syntactical truth predicates, this definition is highly

circular since (for instance) substituting D for X in A in clause (vii ) one can meet A

again when ‘computing’ the syntactical truth of A[X ← D].

2 However, as opposed to the implicational case, we can see that clauses (i ) to (viii ) are

‘positive’ in a sense that we will make precise later. This makes possible the construction

by a fixpoint technique of a pre-syntactical truth predicate for formulas with atomic

negation, as will be done in Section 7.
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Definition 10. Let U be a set of formulas with atomic negation. We will write Ũ for the

set of formulas with atomic negation defined by

(A ∈ Ũ)⇐⇒ (Ã ∈ U).

Definition 11. Let U be a set of closed formulas with atomic negation.

— We say that U is coherent iff for any formula with atomic negation A we have

(A ∈ U)⇒ (Ã 6∈ U).

— We say that U is complete iff for any formula with atomic negation A we have

(A 6∈ U)⇒ (Ã ∈ U).

— We say that U is symmetrical iff U is coherent and complete.

Remarks.

1 With the previous notation U coherent means that U ⊂ Ũ (U stands for the set of

closed formulas A such that A 6∈ U).

2 U complete means Ũ ⊂ U.

3 U symmetrical means U = Ũ.

4 The previous point justifies the terminology ‘symmetrical’ since U is then invariant

under the transformation

U 7→ Ũ.

Another possible terminology is ‘U self-dual’.

We can now give the main definition of this paper.

Definition 12. Let U be a set of closed formulas with atomic negation. We say that U is

a syntactical truth predicate for formulas with atomic negation iff the following conditions

are fullfilled:

(i ) U is a pre-syntactical truth predicate for formulas with atomic negation

(ii ) U is symmetrical

We will now establish the existence of such a syntactical truth predicate starting with a

syntactical truth predicate for implicational formulas and using the previous translations.

In fact, we will prove predicatively that the existence of such objects are equivalent.

Examples of pre-syntactical truth predicates for formulas with atomic negation that are

not complete or not coherent will be given in Section 7.

6.1. Existence theorem

Lemma 11. Let T be a syntactical truth predicate for implicational formulas. Let A and

B be two ⇒-similar closed implicational formulas. Then T (A) is equivalent to T (B).

Proof. A and B are obtained one from the other by starting from equal formulas and

substituting subformulas C by ¬¬C . Hence the formula A⇐⇒ B is provable in classical

second-order logic. It follows from the Soundness Lemma of Colson and Grigorieff (1998)
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that T (A ⇐⇒ B) holds since T is a syntactical truth predicate. But in this way we can

see that T (A) is equivalent to T (B).

We can now start the construction of a syntactical truth predicate for formulas with

atomic negation.

Lemma 12. Let T be a syntactical truth predicate for implicational formulas. Then

A 7→ T (A⇒)

is a pre-syntactical truth predicate for formulas with atomic negation.

Proof. We prove that A 7→ T (A⇒) enjoys conditions (i ) to (viii ) of Definition 9 by cases

on A:

— T ((t=̇u)⇒) is equivalent to T (t = u): this holds iff t and u have the same value.

— T ((t˙6=u)⇒) is equivalent to T (¬(t = u)), which is equivalent to ¬T (t = u): this holds

iff t and u have different values.

— T ((A∧̇B)⇒) is T (¬((A⇒) ⇒ ¬(B⇒))), which is equivalent to ¬(T (A⇒) ⇒ ¬T (B⇒)),

which is equivalent to T (A⇒) ∧ T (B⇒).

— T ((A∨̇B)⇒) is T (¬(A⇒) ⇒ (B⇒)), which is equivalent to (¬T (A⇒)) ⇒ T (B⇒), which

is equivalent to T (A⇒) ∨ T (B⇒).

— T ((∀̇xA)⇒) is T (∀̇x(A⇒)), which is equivalent to ∀t closed T (A⇒[x ← t]), which is

equivalent to ∀t closed T ((A[x← t])⇒) by Lemma 7.

— T ((∃̇xA)⇒) is T (¬(∀x¬(A⇒))), which is equivalent to ¬∀t closed ¬T (A⇒[x ← t]),

which is equivalent to ∃t closed T (A⇒[x ← t]), which is equivalent to ∃t closed

T ((A[x← t])⇒).

— T ((∀̇XA)⇒) is T (∀X(A⇒)), which is equivalent to

∀D closed T (A⇒[X ← D]). (1)

We have to prove that this is equivalent to T (A[X ← E]⇒) for any closed set definition

E . But if (1) holds and if E is such a definition, then T (A⇒[X ← E⇒]) holds. Hence

T (A[X ← E]⇒) by the substitution lemma (Lemma 8) and the previous lemma.

Conversely, if T (A[X ← E]⇒) holds for any closed set definition E , let D be a set

definition like in (1). We then have T (A[X ← D+]⇒), and hence by the substitution

lemma T (A⇒[X ← D+⇒ ]. But, by the second composition lemma (Lemma 10), D and

D+⇒ are similar, hence A⇒[X ← D] and A⇒[X ← D+⇒ ] are also similar. Thus, by the

previous lemma, we get T (A⇒[X ← D])

— The second-order existential quantifier case is essentially similar to the previous one

(∀D and ∀E are replaced by ∃D and ∃E).

Hence the first condition to be a syntactical truth predicate for formulas with atomic

negation is fullfilled. Let us now examine the second condition.

Lemma 13. Let T be a syntactical truth predicate for implicational formulas. Then

A 7→ (A⇒) is symmetrical.
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Proof. Let A be a formula with atomic negation. We have to prove that T ((Ã)⇒) holds

if and only if ¬T (A⇒) holds. But, by Lemma 6, (Ã)⇒ is similar to ¬(A⇒), hence the result

follows by the definition of syntactical truth predicates for implicational formulas and by

Lemma 11.

We can now conclude our first existence result (remember that existence of syntacti-

cal truth predicates for implicational formulas was established in Colson and Grigori-

eff (1998)).

Proposition 1. Let T be a syntactical truth predicate for implicational formulas. Then

A 7→ (A⇒) is a syntactical truth predicate for formulas with atomic negation.

Proof. The proof follows from the last two lemmas.

Corollary 1. The existence of a syntactical truth predicate for formulas with atomic

negation follows from the existence of a syntactical truth predicate for implicational

formulas.

Remark. Notice that this last result was established by predicative means: most lemmas

are formalizable in first-order Peano arithmetic via a primitive recursive encoding of

terms and formulas by natural numbers. Only the definitions and lemmas of this section

involved second-order objects (sets of formulas, that is, sets of natural numbers). It is

essential at this point to recognize that arithmetic comprehension was enough for our

purpose: that is, for instance, passing from A[X ← D] to ∃XA in the last corollary in the

set definition D was without any second-order quantifiers.

6.2. From predicates for formulas with atomic negation to implicational syntactical truth

predicates

We now establish the converse result: from the existence of a syntactical truth predicate

for formulas with atomic negation we infer the existence of a syntactical truth predicate

for implicational formulas. This makes the existence of a syntactical truth predicate for

formulas with atomic negation ‘strong’ from a proof-theoretical point of view since such

a result easily entails the consistency of second-order arithmetic.

We start with a result similar to Lemma 11.

Lemma 14. Let U be a syntactical truth predicate for formulas with atomic negation. Let

A and B be two +-similar closed formulas with atomic negation. Then U(A) is equivalent

to U(B).

Proof. We will not develop either a proof system for the language of formulas with

atomic negation or a soundness lemma analogous to the one we used in the proof of

Lemma 11. We will do the proof ‘by hand’ instead. A and B are similar formulas, hence

they are obtained one from the other by means of substitutions of subformulas C by

C∨̇(0=̇1). Without loss of generality, we can assume that only one such substitution has

been performed. So, let us assume that B has been obtained from A by substituting a
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subformula C by C∨̇(0=̇1). Here we shall use some intuition about syntactical truth

predicates. The ‘computation’ of the syntactical truth U(A) and U(B) will start with the

same steps until we meet C and C∨̇(0=̇1). At this point some substitutions of x by a

closed term t or of X by a closed definition D in C may have been performed when going

through a quantifier ∀̇x, ∃̇x or ∀̇X, ∃̇X. Hence C may have been transformed into C ′ and

we have to ‘compute’ the syntactical truth of C ′ and C ′∨̇(0=̇1). But U is a syntactical

truth predicate, thus we have U(C ′∨̇(0=̇1))⇔ U(C ′), and hence U(A)⇔ U(B).

The precise formalization of this proof is as follows.

Lemma 15. Let U be a syntactical truth predicate for formulas with atomic negation. Let

A and B be two +-similar formulas with atomic negation with variables among ~x and ~X.

Let~t and ~D be sequences of closed terms and set definitions adapted for ~x and ~X. Then

U(A[~x←~t, ~X ← ~D]) is equivalent to U(B[~x←~t, ~X ← ~D]).

Proof. The proof is by a simultaneous induction on A and B.

We can now construct a syntactical truth predicate for implicational formulas from a

syntactical truth predicate for formulas with atomic negation.

Proposition 2. Let U be a syntactical truth predicate for formulas with atomic negation.

Then A 7→ U(A+) is a syntactical truth predicate for implicational formulas.

Proof. The proof is by cases on A:

— U((t = u)+) is U(t=̇u), which holds iff t and u have the same value

— U((A ⇒ B)+) is U(Ã∨̇B), which is equivalent to U(Ã) ∨ U(B) (since U is a pre-

syntactical truth predicate), which is equivalent to ¬U(A) ∨U(B) (since U is symmet-

rical), which is equivalent to U(A)⇒ U(B)

— U((∀xA)+) is U(∀̇x(A+)), which is equivalent to ∀t closed U(A+[x ← t]), which is

equivalent to U((A[x← t])+) by Lemma 4

— U((∀XA)+) is U(∀̇X(A+)), which is equivalent to

∀D closed U(A+[X ← D]) (1)

We have to prove that this is equivalent to ∀E U((A[X ← E])+). But if E is such

a definition, then, taking E+ for D, one gets by (1) that U(A+[X ← E+]), that

is, U((A[X ← E])+) by Lemma 5. Conversely, if ∀E U((A[X ← E])+) holds and

if D is a definition like in (1), we have U((A[X ← D⇒])+), which is equivalent to

U(A+[X ← D⇒+]). But D⇒+ is similar to D by Lemma 9, and hence, by the previous

lemma, we get U(A+[X ← D])

7. Syntactical truth predicates as fixpoints

In this section we discuss some naive attempts to build syntactical truth predicates for

formulas with atomic negation by means of the Knaster–Tarski fixed point theorem, and

why they fail.
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7.1. An increasing operator on sets of closed formulas

Definition 13. Let X be a set of closed formulas with atomic negation. We define the set

of closed fomulas with atomic negation ϕ0(X) by A ∈ ϕ0(X) if and only if one of the

following conditions is fullfilled:

(i ) A is t=̇u and the closed terms t and u have the same value.

(ii ) A is t˙6=u and the closed terms t and u have different values.

(iii ) A is B∧̇C and (X(A) and X(B)).

(iv ) A is B∨̇C and (X(A) or X(B)).

(v ) A is ∀̇xB and X(B[x← t]) holds for any closed term t.

(vi ) A is ∃̇xB and X(B[x← t]) holds for some closed term t.

(vii ) A is ∀̇Y B and X(A[Y ← D]) holds for any closed set definition D.

(viii ) A is ∃̇Y A and X(A[Y ← D]) holds for some closed set definition D.

Lemma 16. Let U be a set of closed formulas with atomic negation. Then U is a

pre-syntactical truth predicate if and only if U is a fixed point of ϕ0 (that is, ϕ0(U) = U).

Proof. The proof is immediate from the definitions.

Lemma 17. The operator ϕ0 is increasing, that is, for any sets X,Y of closed formulas

with atomic negation X ⊆ Y implies ϕ0(X) ⊆ ϕ0(Y ).

Proof. The proof is immediate from the shape of the definition of ϕ0: all occurences of

X in this definition are positive.

As a corollary, observe that one can build in such a situation a pre-syntactical truth

predicate by means of the Knaster–Tarski fixed point theorem. We shall now focus on

two such solutions: the least and the greatest fixed point of ϕ0.

7.2. Two fixed point solutions

Definition 14. Let δ be an operator (that is, a function from sets of closed formulas to

sets of closed formulas). We define the sets fixXδ(X) and FixY δ(Y ) by the equations:

— fixXδ(X) =
⋂{X|δ(X) ⊆ X}.

— FixY δ(Y ) =
⋃{Y |Y ⊆ δ(Y )}.

We recall the following classical results.

Proposition 3. (Tarski) Let δ be an increasing operator. Then fixXδ(X) and FixY δ(Y ) are

fixed points of δ. Furthermore, fixXδ(X) is the least fixed point of δ and FixY δ(Y ) is the

greatest fixed point of δ.

Proof. Consider the complete lattice of sets of closed formulas (ordered by inclusion)

and apply the results of Tarski (1955).

Definition 15. In the following X0 will stand for fixXϕ0(X) and Y0 for FixY ϕ0(Y ).
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Using the previous results, it is clear that X0 and Y0 are pre-syntactical truth predicates.

In order to build a syntactical truth predicate, a symmetry condition is required, which

we shall examine now.

The following lemma is part of the folklore of fixed point theory.

Lemma 18. Let δ be an increasing operator on sets of closed formulas with atomic

negation. Then

fixXδ(X) = FixXδ(X)

The following is another easy lemma.

Lemma 19. Let δ be an increasing operator on sets of closed formulas with atomic

negation. Let Xδ be the set fixXδ(X). Then

X̃δ = fixX
˜
δ(X̃)

Proof. We have Xδ =
⋂{X|δ(X) ⊆ X}. By definition of X 7→ X̃, it is easy to see that

X̃δ =
⋂{X̃|δ(X) ⊆ X}. But the transformation X 7→ X̃ is involutive (that is,

˜̃
X = X),

hence we have, by putting X ′ = X̃,

X̃δ =
⋂{X ′|δ(X̃ ′) ⊆ X̃ ′}.

But clearly δ(X̃ ′) ⊆ X̃ ′ is equivalent to

︷̃ ︸︸ ︷
δ(X̃ ′) ⊆ X ′, which gives the result.

Similarly, we can prove the following lemma.

Lemma 20. Let δ be an increasing operator. Let Yδ be the set FixY δ(Y ). Then

Ỹδ = FixY δ̃(Ỹ )

Plugging the last two results together we get the following lemma.

Lemma 21. X̃0 = FixX
˜(
ϕ0(X̃)

)
and Ỹ0 = fixY

˜(
ϕ0(Ỹ )

)
Proof. The proof follows immediately from the last two lemmas.

Definition 16. Let ϕ be an operator on sets of closed formulas with atomic negation. We

say that ϕ is 1-symmetrical iff ϕ(X̃) = ϕ̃(X).

Lemma 22. The operator ϕ0 is 1-symmetrical.

Proof. The proof is by a case analysis on the formulas. For instance, for the conjunctive

case, (A∧̇B) ∈ ϕ0(X̃) is equivalent to (A ∈ X̃ and B ∈ X̃), which is equivalent to

(Ã 6∈ X and B̃ 6∈ X), which is equivalent to ¬(Ã ∈ X or B̃ ∈ X), which is equivalent

to ¬((Ã∨̇B̃) ∈ ϕ0(X)), which is equivalent to ˜(A∧̇B) 6∈ ϕ0(X), which is equivalent to

(A∧̇B) ∈ ϕ̃0(X)

Corollary 2. The sets X0 and Y0 enjoy the equation X̃0 = Y0.

Proof. The proof follows from the last two lemmas.
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Corollary 3. X0 is coherent and Y0 is complete.

Proof. The least fixed point of an operator is always included in the greatest fixed point

of this operator, hence we have X0 = fixXϕ0(X) ⊆ FixY ϕ0(Y ) = Y0 = X̃0 (this shows that

X0 is coherent), and, similarly, Ỹ0 = X0 ⊆ X̃0 = Y0 (hence Y0 is complete).

We shall now show, however, that X0 and Y0 are not syntactical truth predicates for

formulas with atomic negation.

Definition 17. Let ⊥⊥ and >> be the formulas defined by:

— ⊥⊥= ∃̇X∃̇x(x∈̇X)∧̇(x˙6∈X).

— >> = ∀̇X∀̇x(x∈̇X)∨̇(x˙6∈X).

Remark. ⊥⊥ and >> are a definition of falsity and truth by means of pure second-order

formulas with atomic negation, that is, without an equality statement.

Lemma 23. Let U be a syntactical truth predicate for formulas with atomic negation.

Then U(>>) holds and U(⊥⊥) does not hold.

Proof. We show, for instance, that U(>>) holds (the other proof can be obtained by

duality). U(>>) is

U(∀̇X∀̇x(x∈̇X)∨̇(x˙6∈X)),

which is equivalent to

∀DU(∀̇xD(x)∨̇D̃(x))

(where D(x) stands for A[y ← x] when D is λyA), which is equivalent to

∀D∀tU(D(t)∨̇D̃(t)),

which is equivalent to

∀D∀tU(D(t)) ∨U(D̃(t)),

which holds since U is symmetrical.

However, we have the following for X0 and Y0.

Lemma 24. X0(>>) does not hold, but Y0(⊥⊥) holds.

Proof. Let X ′0 = X0 − {>>, ∀̇x(>>∨̇ ⊥⊥),>>∨̇ ⊥⊥}. We claim that ϕ0(X ′0) ⊆ X ′0 (this will

establish that X0 ⊆ X ′0 by definition of X0 and hence that >> 6∈ X0). We already know

that X ′0 ⊆ X0, and hence that ϕ0(X ′0) ⊆ ϕ0(X0) ⊆ X0. We thus have to check that

>>, ∀̇x(>>∨̇ ⊥⊥),>>∨̇ ⊥⊥ do not belong to ϕ0(X ′0).

— Assume that >> ∈ ϕ0(X ′0), that is,

(∀̇X∀̇x(x∈̇X)∨̇(x˙6∈X)) ∈ ϕ0(X ′0).

By definition of ϕ0 we must have for a particular closed set definition D that

(∀̇xD(x)∨̇D̃(x)) ∈ X ′0.
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Taking D = λx>>, we see that we must have

(∀̇x(>>∨̇ ⊥⊥)) ∈ X ′0,
which is impossible by definition of X ′0.

— Assume that

(∀̇x(>>∨̇ ⊥⊥)) ∈ ϕ0(X ′0).

We must then have

(>>∨̇ ⊥⊥) ∈ X ′0,
which is impossible by definition of X ′0.

— Assume that

(>>∨̇ ⊥⊥)) ∈ ϕ0(X ′0).

We must then have >> ∈ X ′0 or ⊥⊥∈ X ′0. We already know by the previous corollary

that X0 is coherent and that X0 is a fixed point of ϕ0. It is then easy to see that

⊥⊥ cannot belong to X0 and hence to X ′0. In this way we get that >> ∈ X ′0, which is

impossible by definition of X ′0.

Conclusion

We have defined the language of formulas with atomic negation, which eliminates as far as

possible the negative aspects of the ordinary second-order language. We have next defined

syntactical truth predicates for this language as fixed points of an increasing operator

having some symmetry property. The existence of such truth predicates has the same

strength as the corresponding notion for the more ordinary language of implicational

formulas.

We have shown how the most elementary attempts to build such a syntactical truth

predicate by a fixed point technique fail. These attempts are, however, quite natural and

suggest that this approach could succeed using more sophisticated fixed points theorems

needing some higher-order arithmetic. Our experience of this problem is that one difficulty

in this direction is the weakly mathematical aspect of the notion of formula: proofs and

definitions concerning them are usually tedious inductions or case analyses. A more

mathematical notion of formula than the one considered in this paper could then perhaps

lead to the construction of a symmetrical fixed point.
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