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We explore the roles of subsidies in the Matsuyama model [K. Matsuyama, Econometrica
67 (1999), 335–347] of growth through cycles with a Solow investment phase and a
Romer innovation phase when innovation and intermediate goods production rely on
existing capital. We show that subsidies to R&D investment or to the purchase of new
intermediate goods can arbitrarily reduce the threshold level of capital per type of
intermediate good beyond which the economy moves to the innovation phase. Sufficient
subsidization can eventually eliminate cycles. For plausible parameterizations, optimal
subsidies can achieve significant welfare gains equivalent to as much as 10% rises in
consumption at all times.
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1. INTRODUCTION

One theme of the macroeconomic aspect of public policy analysis is exploration
of whether and how government policies can promote output growth and mitigate
output fluctuations for welfare gains. In this regard, different macroeconomic
models have different answers. The neoclassical growth model pioneered by Solow
(1956) may need no government intervention so long as consumers choose their
consumption path optimally, as in Cass (1965) and Koopmans (1965), according to
the welfare theorems. This policy implication remains valid even when exogenous
shocks are introduced into the neoclassical growth model for the creation of cycles,
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as in the real business cycle models led by Kydland and Prescott (1982) and Long
and Plosser (1983).

The R&D-based growth models developed in the last two decades generate
sustainable growth through costly innovations that create new varieties of interme-
diate goods or improve the quality of existing intermediate goods [see, e.g., Romer
(1990); Aghion and Howitt (1992)]. In these models, R&D activities intended for
a new variety or a quality improvement incur a fixed cost, whereas the production
of each intermediate good incurs a constant marginal cost, and both the innovation
and the intermediate goods production use labor or current final output. Patents
are granted to innovators to allow them to recoup their innovational costs. The
consequent monopoly pricing reduces the demand for new intermediate goods,
causing lower final output and slower growth than the socially optimal levels in the
Romer model. Such efficiency losses justify government subsidization either of
R&D investment or of the purchase of new intermediate goods in the Romer model,
as shown in Barro and Sala-i-Martin (1995) with inelastic labor and in Zeng and
Zhang (2007) with elastic labor, among others. In Aghion and Howitt (1992), with
vertical expansion arising from innovations, there is a business-stealing effect or
creative destruction, possibly leading to too much R&D activity and very different
implications of subsidization from those in the Romer model. In contrast to the
neoclassical growth models, however, the economy is always on the balanced
growth path in such innovation-driven growth models, which are known as the
AK model in essence.

Matsuyama (1996, 1999) unifies the Solow and Romer models by assuming that
R&D activities and intermediate goods production must use capital from previous
savings. Under this neoclassical-style assumption, innovation can break even to
recover the fixed cost only when capital per variety exceeds a critical level for a
profitable scale of the demand for newly invented intermediates. Once innovation
occurs, however, part of the capital stock must be used for the fixed innovation
cost and the amount of capital remaining for manufacturing intermediate goods
declines. Consequently, current innovation, if responding more elastically than
capital investment to initial abundance in capital per variety, can reduce capital
per variety to the extent such that future innovation becomes unprofitable until
enough capital is formed again through a neoclassical investment phase. It is
argued that this is an empirically plausible scenario: The balanced growth path
with innovation is unstable and the economy fluctuates perpetually between a
Solow investment phase and a Romer innovation phase.

In a different (new Keynesian) type of R&D growth model proposed by Fran-
cois and Shi (1999) and Haruyama (2009), labor is the sole input for innovations
and for intermediate goods production, as assumed in Grossman and Helpman
(1991), Segerstrom (1991), Aghion and Howitt (1992), Young (1993), Parente
(1994), and Fan (1995). Endogenous cycles can also arise in Francois and Shi
(1999) because of contemporaneous complementarities between investors de-
voting labor to innovation for temporary profits. Haruyama (2009) shows that
optimal steady-state R&D subsidization fails to eliminate cycles and should be
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state-dependent when labor is the only input for innovation and intermediate goods
production.

Using R&D for general purpose technologies (GPTs), Helpman and Trajten-
berg (1998), Freeman et al. (1999), Francois and Lloyd-Ellis (2003), Maliar and
Maliar (2004), and Walde (2002, 2005) also obtain sustainable growth through
endogenous cycles. Cycles arise from the reallocation of resources between pro-
duction and innovation as in Matsuyama (1999). However, the GPT cycle is often
driven by creative destruction and thus appears more suitable to characterize long-
wave fluctuations caused by drastic technology breakthroughs such as the “steam
engine age,” “electricity age,” and “information technology age.” In Bental and
Peled (1996), firms producing final goods engage in costly search for better tech-
nology from a known and fixed pool of technologies. By contrast, the Matsuyama
cycle captures industry-level innovations without creative destruction and thus is
generally shorter than the GPT cycle. The exact length of the Matsuyama cycle
depends on the nature of the industry, the applied terms of patents, and the length of
time-to-build for capital accumulation, likely in the range of medium-term cycles
(between 32 and 200 quarters), shown empirically and theoretically in Comin and
Gertler (2006).

The integration of factor accumulation and innovation in Matsuyama (1996,
1999) provides a new framework for the study of government policies with growth
through cycles, given the following source of market failures occurring at the heart
of the model. First, the fixed capital requirement to conduct innovation distorts
the relative prices of different types of intermediate goods used in production. The
subsequent uneven use of symmetric intermediates leads to static and dynamic
efficiency losses. Second, private innovators and investors fail to internalize in-
tertemporal spillovers of innovation and investment, leading to too little R&D, too
little investment, and hence slower growth. Third, the endogenous cyclical fluctu-
ations in consumption, investment, innovation, and growth represent another type
of efficiency loss, given diminishing marginal utility and diminishing marginal
products. This differs from the socially optimal fluctuation driven by exogenous
shocks in Long and Plosser (1983). An important macroeconomic question arises:
Can government policies mitigate such frictions and enhance social welfare?

To answer this question, we focus on subsidies to R&D activities or to the
purchase of new R&D products. Existing studies have focused on how such
subsidies mitigate efficiency losses on a stable balanced growth path. The only
work on subsidization in the unified model of Matsuyama (1999) is that of Aloi
and Lasselle (2007) using a lump-sum subsidy to innovators financed by a lump-
sum tax and finding that it can promote growth, stabilize innovation cycles, and
increase welfare. However, their subsidy adds directly to existing capital and thus
relaxes the capital constraint on innovation and on intermediate goods production.

In this paper, we explore whether flat-rate subsidization financed by consump-
tion taxation can promote growth and mitigate or eliminate cycles for welfare gains
using the Matsuyama model. The subsidies provide additional awards to innovators
without relaxing the constraint on available capital for innovation and intermediate
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goods production. We find that proportional subsidies to R&D investment or to
the purchase of new intermediate goods can arbitrarily reduce the threshold level
of capital per variety, beyond which the economy moves from the investment
phase to the innovation phase. Moreover, sufficient subsidization can stabilize
the balanced growth path and thus eliminate cycles. In numerical examples for
plausible parameterizations, optimal subsidy rates can achieve substantial welfare
gains (equivalent to about a 10% increase in consumption in every period) and lie
in the range that leads to convergence toward the stable balanced growth path.

Our results appear consistent with postwar experiences in some industrial na-
tions such as the United States, where substantial subsidies are provided to R&D
activities and to the purchase of new equipment: for example, a 50% immediate
writing-off of equipment investment, expensing of R&D expenditures, and accel-
erated depreciation allowances. [For these subsidies in the U.S. tax system, see
Gordon et al. (2004a, 2004b) and others.] Worldwide, 26 out of 34 OECD countries
and a number of non-OECD economies have R&D tax incentives in place [OECD
(2011)]. At the same time, these countries observe many more innovations but
dampened recessions compared to previous times on average. As found by Comin
and Mulani (2009) using cross-country data between 1979 and 1997, there exists
a large and statistically significant relationship between increments in R&D tax
credits and declines in aggregate volatility; however, the relationship between
R&D tax credits and growth is less pronounced (insignificant though positive),
perhaps because of the limitation of sample size or of not including subsidies on
the purchase of new products.

The rest of the paper proceeds as follows. Section 2 introduces the model
and characterizes the equilibrium. Section 3 analyzes the steady state in different
regimes as well as the global dynamics for different levels of subsidization. Sec-
tion 4 presents quantitative implications and optimal subsidy rates using numerical
simulations. Section 5 concludes the paper.

2. THE MODEL

The model is based on Matsuyama (1999, 2001), with discrete time extending from
period 1 to infinity (t = 1, 2, . . . ,∞), a constant population of identical, infinitely
lived agents of mass L, and a single consumption–investment good taken as a
numeraire. The economy comprises sectors of production, innovation, households,
and the government. To deal with the various efficiency losses mentioned earlier
in that model, we consider subsidies to R&D spending and to the purchase of
newly invented intermediate goods, financed by a consumption tax.

We describe each sector and determine the equilibrium path in turn, together
with the details of subsidies.

2.1. Production

Final-good production uses capital and labor. Labor supply is entirely inelastic
and normalized to one unit per worker (L in aggregate) in each period. Let Kt−1
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denote the aggregate capital stock available for production and innovation in period
t , given an initial capital stock K0 > 0. Capital must be converted into a CES
composite of intermediates. Let xt (z) denote the zth type of intermediate good
available in the range [0, Nt ] in period t . Labor and the composite of intermediates
are combined for final-good production through a Cobb–Douglas technology,

Yt = A (L)1/σ

{∫ Nt

0
[xt (z)]

1−1/σ dz

}
, (1)

where A > 0 is total factor productivity and σ > 1 the direct partial elasticity of
substitution between every pair of intermediate goods.

In each period t, old intermediates in the range z ∈ [0, Nt−1] are sold com-
petitively, starting with N0 > 0 in period 1. New intermediates in the range
z ∈ [Nt−1, Nt ] may be introduced and sold exclusively in period t under one-
period patent protection. By symmetry, let xt (z) ≡ xc

t for competitively supplied
old intermediate goods at a price pc

t and xt (z) ≡ xm
t for monopolistically supplied

new intermediate goods at a price pm
t .

The profit for a producer in the final-good sector is given by

�t = A (L)1/σ
[
Nt−1

(
xc

t

)1−1/σ + (Nt − Nt−1)
(
xm

t

)1−1/σ
]

−Nt−1p
c
t x

c
t − (1 − sx) (Nt − Nt−1) pm

t xm
t − wtL, 0 ≤ sx < 1, (2)

where sx is a time-invariant subsidy rate to the purchase of new intermediate goods
and wt is the wage rate. This subsidy, which is not considered in Aloi and Lasselle
(2007), reduces the user cost and thus has the potential to encourage demand for
new products in such a way as to mitigate the efficiency loss of unequal use of
symmetric intermediates in production.

The final-good sector is perfectly competitive, and factors are paid by their
marginal products:

pc
t = (1 − 1/σ)A (L)1/σ

(
xc

t

)−1/σ
, (3)

pm
t (1 − sx) = (1 − 1/σ)A (L)1/σ

(
xm

t

)−1/σ
, (4)

wt = (1/σ) Yt/L. (5)

Equations (3) and (4) determine the demand for old and new intermediate goods
as functions of the prices, respectively, leading to the relative demand xc

t /x
m
t =

{pc
t /[pm

t (1 − sx)]}−σ .

2.2. Innovation

One unit of an intermediate good is manufactured from one unit of capital. The
creation of a new intermediate good costs F (fixed) units of capital. Let rt denote
the price of capital. Thus, the one-period monopoly profit for innovation is equal
to πt = pm

t xm
t − rt [xm

t + (1 − sn)F ], where sn is a time-invariant subsidy rate
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to the R&D cost rtF . A lump-sum subsidy is used instead by Aloi and Lasselle
(2007), based on the Matsuyama model.

With a one-period patent, a new intermediate is priced to maximize profit,
knowing the demand function in (4) from final producers. This profit-maximization
problem yields the monopolistic price pm

t = [σ/(σ − 1)]rt . In contrast, the
competitive price of each old intermediate is just equal to the marginal cost pc

t = rt .
Obviously, the monopolistic price of new intermediates exceeds the competitive
price of old intermediates, pm

t > pc
t , by the markup factor σ/(σ − 1) > 1 on the

marginal cost rt . The markup 1/(σ −1) is independent of subsidies and decreasing
with the elasticity of substitution between any pair of intermediates. Substituting
the pricing rules into xc

t /x
m
t = {pc

t /[pm
t (1 − sx)]}−σ yields the ratio of an old to

a new intermediate in terms of equilibrium levels, as a decreasing function of the
subsidy on the purchase of a new intermediate:

xc
t

xm
t

=
(

1 − 1

σ

)−σ

(1 − sx)
σ . (6)

Absent subsidies, the higher price of new intermediates than of old intermediates
engenders a smaller equilibrium quantity of each new intermediate than of each
old intermediate: xm

t < xc
t . The lower equilibrium quantity for new than for old

intermediates must lead to static and dynamic efficiency losses. The dynamic effi-
ciency loss takes the form of decelerating the rate of innovation because it reduces
the profitability for innovators to recover the fixed R&D cost. The static efficiency
loss takes the form of decreasing final output because all intermediates enter final
goods production symmetrically and make diminishing marginal contributions to
final output.

Subsidizing the purchase of new intermediate goods strengthens the demand
for new relative to that for old intermediate goods by reducing the user cost of
new intermediate goods. From (6), when sx < 1/σ , xc > xm; when sx = 1/σ ,
xc = xm; when sx > 1/σ , xc < xm. Thus, the level of sx may affect the dynamic
system significantly in this model.

There is free entry into R&D activities, implying nonpositive profit for in-
novators. However, innovation cannot occur unless it can break even, meaning
nonnegative profit. We thus have

xm
t ≤ (σ − 1) (1 − sn) F, Nt ≥ Nt−1,[

xm
t − (σ − 1) (1 − sn) F

]
(Nt − Nt−1) = 0. (7)

By lowering the cost of innovation to virtually any level, the subsidy on the R&D
cost can reduce this break-even level of demand for a new intermediate to virtually
any level and may thus have significant effects on the dynamic system of the model.

Regardless of the value of the subsidy rates, intermediate goods production and
innovation in period t are constrained by available capital carried over from the
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previous period:

Kt−1 = Nt−1x
c
t + (Nt − Nt−1)

(
xm

t + F
)
. (8)

Without this constraint, the economy would always be on a unique balanced growth
path, as in the Romer model. In Aloi and Lasselle (2007), however, subsidies relax
this constraint.

Substituting (6) and (7) into (8) for xc
t and xm

t determines the rate of innovation,

Nt − Nt−1

Nt−1
= max

{
0,

Kt−1/Nt−1 − θσF (1 − sx)
σ (1 − sn)

[σ − sn (σ − 1)] F

}
, (9)

where

θ ≡
(

1 − 1

σ

)1−σ

, θ ∈ [1, e] , e = 2.71828 . . .

Here, θ is increasing with σ . Intuitively, for innovators to break even in period t ,
the amount of available capital Kt−1 must be abundant enough relative to available
variety Nt−1. According to (9), the ratio of capital to variety must exceed a critical
level, θσF (1 − sx)

σ (1 − sn), to induce new innovations. Clearly, increasing each
subsidy reduces the critical level for innovators to break even, given any initial state
Kt−1/Nt−1. Once innovators can break even, raising each subsidy also increases
the rate of innovation in (9) because a higher subsidy either strengthens the relative
demand for new products in (6) or reduces the cost of innovation in (7).

From (6), (8), and (9), the equilibrium level of each type of intermediate is
determined by

xc
t =

(
1 − 1

σ

)−σ

(1 − sx)
σ xm

t = min

{
Kt−1

Nt−1
, θσF (1 − sx)

σ (1 − sn)

}
.

(10)

In essence, all capital has to be converted into old intermediates until capital per
variety exceeds the critical level for innovators to break even. More clearly, from
(10), sufficient subsidies can reduce the break-even level of the capital/variety
ratio to induce innovations given any initial level of capital and variety. Also,
once innovators can break even, increasing the subsidy rate on the R&D cost
reduces the level of each old and each new intermediate because the increase in
variety makes capital thinner over all varieties. Given the same initial state that
allows innovation, however, increasing the subsidy rate on the purchase of new
intermediates only reduces the level of each old intermediate without changing
the level of each new intermediate according to (10).

We can now rewrite final output in (1) as

Yt = A (L)1/σ
[
Nt−1

(
xc

t

)1−1/σ + (Nt − Nt−1)
(
xm

t

)1−1/σ
]
. (11)
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Given any initial state that allows innovators to break even, the subsidies can
increase final output by promoting innovation, on one hand, but may reduce final
output by reducing the level of each intermediate, on the other. Also, the subsidy
on the purchase of new intermediates can increase final output by narrowing the
gap in the levels of new and old intermediates. To give more details in this regard,
let kt ≡ Kt/Nt be the capital–variety ratio and kc ≡ θσF (1 − sx)

σ (1 − sn) be its
critical level, above which innovation occurs. Then substituting (7)–(10) into (11)
gives

Yt = A (LNt−1)
1/σ (Kt−1)

1−1/σ , if kt−1 ≤ kc; (12)

Yt = A(L)1/σ

{
Kt−1

[(σ − 1) F (1 − sn)]
1−1/σ

[σ − sn (σ − 1)] F

+Nt−1 (1 − sx)
σ−1 [sn + sxσ (1 − sn)]

[σ − sn (σ − 1)]
[θσF (1 − sn)]

1−1/σ

}
, if kt−1 ≥ kc.

The critical value of the capital–variety ratio, kc, divides government action in
this model into policy-dormant and policy-active regions, respectively. As noted
earlier, increasing the rate of either subsidy can reduce the threshold level of the
capital–variety ratio, kc, virtually to anywhere above zero, enhancing the chance
for the economy to stay in the policy-active region with R&D activities. According
to (12), given an initial state (Nt−1,Kt−1) such that kt−1 ≥ kc, subsidizing either
the R&D cost or the purchase of new intermediates can increase final output
if the subsidy rates are sufficiently low so that their positive impact on variety
expansion dominates. The opposite occurs for further increases in the subsidy
rates if the subsidy rates are already high enough so that their negative impact on
the demand for intermediates dominates. To see this more clearly, we differentiate
final output with respect to one subsidy at a time for any initial state (Nt−1,Kt−1)

such that kt−1 ≥ kc. Focusing first on how sn affects Yt at sx = 0 and kt−1 ≥ kc,
dYt/dsn is signed by two parts additively. One part, containing the derivative of
(1 − sn)

1−1/σ /[σ − sn(σ − 1)] with respect to sn, is signed by −sn, and the other
part, containing the derivative of sn(1 − sn)

1−1/σ /[σ − sn(σ − 1)], is signed by
1 − sn(2 − 1/σ). Overall, dYt/dsn must be positive for very small sn (say zero),
but it becomes negative for large sn, at least when sn > 1/(2 − 1/σ).

Focusing on sx at sn = 0, dYt/dsx is signed by 1 − σsx through signing the
derivative of (1 − sx)

σ−1sx with respect to sx . Thus, final output increases with sx

when sx < 1/σ , under which xc > xm; final output peaks at sx = 1/σ , at which
xc = xm; any further increase in sx leads to xc < xm and thus reduces final output.
Therefore, a rise in subsidies may improve (worsen) static efficiency when it starts
from a low (high) enough subsidy level.

To economize on notation, we normalize L = 1 and F = 1/θσ without
affecting the essence of the results. Then, the critical value of k becomes kc ≡
(1 − sx)

σ (1 − sn). Given any initial state of capital and variety, the determination
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of innovation and output in (9) and (12) is simplified to

Nt

Nt−1
≡ ψ(kt−1, sx, sn) = max

{
1, 1 + θσ

σ − sn (σ − 1)
(kt−1 − kc)

}
, (13)

Yt

Kt−1
≡ φ(kt−1, sx, sn)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A (kt−1)
−1/σ , if kt−1 ≤ kc;

A (1 − sn)
1−1/σ

{
1 + (1 − sx)

σ−1

kt−1

[ sn

σ
+ sx (1 − sn)

]}
[

1 − sn

(
1 − 1

σ

)] , if kt−1 ≥ kc.

(14)

We now turn to capital accumulation through household savings.

2.3. Households

The infinitely lived representative agent derives utility from consumption accord-
ing to

U =
∞∑
t=1

βt ln (Ct ) , 0 < β < 1, (15)

where β is the discount factor. The logarithmic utility provides tractability.
In period t, the agent receives capital income, rtKt−1, and earns labor income,

wtL. He consumes Ct , faces a proportional consumption tax τc,t , and carries over
Kt to the next period. The flow budget constraint for the agent is

Kt = rtKt−1 + wtL − (1 + τc,t )Ct . (16)

Also, the consumer faces an intertemporal solvency restriction:

lim
t→∞

Kt∏t
s=1 rs

≥ 0. (17)

Relegating the derivation to Appendix A, we give the solution to the consumer
problem as follows:

Kt = β

(
1 − 1

σ

)
Yt ≡ sEYt , (18)

Ct = (1 − sE)Yt

1 + τc,t

. (19)
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From (18) and (19), the agent carries a constant fraction of income, sE =
β (1 − 1/σ), as capital into the next period and spends the remaining fraction
on consumption. The higher is the elasticity of substitution between intermediate
inputs σ , the greater is the saving rate sE . A higher tax rate on consumption
spending reduces consumption (for greater subsidies).

2.4. The Government

The government runs a balanced budget in every period between taxes and subsi-
dies:

τc,tCt = snF rt (Nt − Nt−1) + sxartσ/(σ − 1) (Nt − Nt−1) xm
t . (20)

Without innovation occurring (Nt = Nt−1), the tax/subsidy equals zero (the policy-
dormant regime).

Combining (18), (19), and (20), together with (7) and (10), determines the tax
rate as a function of the subsidy rates and the state:

τc,t = max⎧⎨
⎩ 0,

(kt−1 − kc) [sn + σsx (1 − sn)](
σ

σ − 1
− β

)
[σ − sn (σ − 1)] kt−1 − (kt−1 − kc) [sn + σsx (1 − sn)]

⎫⎬
⎭.

(21)

2.5. The Equilibrium Path

From (13), (14), and (18), the dynamic path of the economy can be uniquely
determined by the following system of first-order difference equations in K and
N:

Kt = sEφ (kt−1, sx, sn) Kt−1, (22)

Nt = Nt−1 + max

{
0,

θ

1 − sn (1 − 1/σ)

[
Kt−1 − (1 − sx)

σ (1 − sn) Nt−1
]}

,

(23)

starting from an initial state (K0, N0), given time-invariant subsidy rates, sx and
sn. Here, φ (kt−1, sx, sn) is the ratio of output to available capital stock, Yt/Kt−1,
in (14).
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From (21), (22), and (23), the law of motion for the capital–variety ratio, kt , can
be further converted into the following one-dimensional mapping, 
 : R+ → R+,

kt =
(kt−1)≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sEA (kt−1)
1−1/σ , if kt−1 ≤ kc;

sEA (1 − sn)
1−1/σ

{
kt−1 + (1 − sx)

σ−1 [sn/σ + sx (1 − sn)]
}

1 − sn (1 − 1/σ) + θ
[
kt−1 − (1 − sx)

σ (1 − sn)
] ,

if kt−1 ≥ kc, (24)
where kc = (1 − sx)

σ (1 − sn). The equilibrium path for an initial state k0 is
given by {
t(k0)}, where 
t(k) is defined iteratively by 
1(k) ≡ 
(k) and

t(k) ≡ 
(
t−1(k)).

3. THE STEADY STATE AND DYNAMICS WITH SUBSIDIES

This section explores how subsidization affects the steady state and the dynamics
of the equilibrium path in turn. A thorough analysis of a similar equilibrium path
is made in Matsuyama (1999, 2001) and Gardini et al. (2008) in the absence of
subsidization.

3.1. The Steady State

The dynamic system in (24) has a unique steady state where the ratio of capital to
variety, kt = Kt/Nt , stays constant over time for any time-invariant subsidy rates,
sx and sn. Even though the mapping kt = 
(kt−1) in (24) has two fixed points,
the first fixed point, k = 0, is repelling because 
′(0) > 1 (hence trivial). The
second fixed point corresponds to the unique steady state, which can be either k∗,
satisfying k∗ = 
(k∗), if k∗ ≤ kc (the Solow regime), as shown in Figure 1 or k∗∗,
satisfying k∗∗ = 
(k∗∗), if k∗∗ > kc (the Romer regime), as shown in Figure 2.

If k = k∗ ≤ kc in a steady state, then Nt = Nt−1 and Kt = Kt−1, from (13) and
from the definition of kt . In other words, in this steady state, there is no innovation;
all the intermediates are competitively supplied; and the economy does not grow
in the long run. From (24), on this neoclassical stationary path, k∗ ≡ (sEA)σ . The
existence of such a stationary path requires that sEA ≤ (kc)

1/σ .
If k = k∗∗ > kc holds in a steady state, then from (22) and (23) the balanced

growth path satisfies the following:

Kt

Kt−1
= Nt

Nt−1
= sEφ

(
k∗∗, sx, sn

) = 1 + θσ

σ − sn (σ − 1)

(
k∗∗ − kc

)
> 1.

In this steady state, the available capital stock of the economy is large enough
relative to the number of existing intermediates so that new intermediates
are introduced. The existence of such a balanced growth path requires that
sEφ(k∗∗, sx, sn) > 1.
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FIGURE 1. G < 1.

Relegating the proof to Appendix B, we give the results about the steady state
as follows.

PROPOSITION 1. Let G ≡ sEA/(k
1/σ
c ) with kc = (1 − sx)

σ (1 − sn), 0 ≤
sx < 1, and 0 ≤ sn < 1. The dynamic system has a unique steady state:

(i) If G ≤ 1, the steady state is a neoclassical stationary path k∗ = 
(k∗) with
k∗ = (sEA)σ ≤ kc.

(ii) If G > 1, the steady state is a balanced growth path k∗∗ = 
(k∗∗) with

k∗∗ = [θkc + sn (1 − 1/σ) − 1 + β (1 − 1/σ)

A (1 − sn)
1−1/σ + �1/2

]
/ (2θ) > kc,

� = [
1 − sn (1 − 1/σ) − θkc − β (1 − 1/σ) A (1 − sn)

1−1/σ
]2

+ 4θβ (1 − 1/σ)A (1 − sn)
1−1/σ (1 − sx)

σ−1 [sn/σ + sx (1 − sn)] .
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FIGURE 2. G > 1, sx < 1/σ , and 
′ (k∗∗) < −1.

The balanced growth rate for (Nt ,Kt ) is given by

g = β (1 − 1/σ) φ
(
k∗∗, sx, sn

) = 1 + θσ

σ − sn (σ − 1)

(
k∗∗ − kc

)
.

Whether the economy grows or not in the steady state depends on the funda-
mentals (such as the discount factor, the total factor productivity, and the degree
of substitution between intermediates) as well as on the subsidy rates. Given the
fundamentals, the higher the rates of subsidies, the more likely the economy is to
move beyond the critical kc toward the balanced growth path.

For example, suppose that sEA = β (1 − 1/σ) A < 1. Then, starting from a
case without subsidies, sx = 0 and sn = 0, such that kc = 1, the low saving and
low total factor productivity yield no growth potential in the long run, G ≤ 1, and
the steady state is in the Solow regime.

Now, we use one type of subsidy at a time. Once the subsidy rates
are set in the range {sx, sf |sx = 0 ∩ sn ∈ (1 − (sEA)σ , 1)} or in the range
{sx, sn|sx ∈ (1 − sEA, 1) ∩ sn = 0}, the condition for long-run growth, G =
sEA/(kc)

1/σ > 1, is satisfied. That is, sufficient subsidization can rule out the
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FIGURE 3. G > 1, sx < 1/σ , and −1 < 
′ (k∗∗) < 0.

neoclassical steady state in the long run and replace it by the steady state with
balanced growth in capital and in the variety of intermediates.

3.2. The Dynamics

The asymptotic behavior of kt = Kt/Nt , from any initial state k0 = K0/N0 > 0,
is characterized by a continuous mapping kt = 
(kt−1) in equation (24). This
mapping is increasing in the range of (0, kc) and may be increasing or decreasing
in the range of (kc,∞), as illustrated in Figures 1–4.

When kt−1 ≤ kc, there is no innovation in period t; that is, Nt = Nt−1.
Consequently, the subsidies are nonoperative. When kt−1 > kc, new interme-
diates are introduced and the subsidies become operative. Economic growth in
this policy-active region is driven by both investment and innovation. Intuitively,
when the rate of capital accumulation exceeds the rate of variety expansion,
Kt/Kt−1 > Nt/Nt−1, the resultant ratio of capital per variety, kt = Kt/Nt ,
will increase; conversely, it will decrease. The slope of the transition curve of
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FIGURE 4. G > 1 and sx > 1/σ .

kt = 
(kt−1) in this Romer regime varies with subsidies and plays a crucial role in
determining the asymptotic behavior of kt . Thus, it deserves careful investigation.

Without the use of subsidies at sx = sn = 0, the dynamics of kt = 
(kt−1) in
(24) will become exactly the same as that in Matsuyama (1999), where kc = 1and
the mapping for kt is unimodal and always decreasing for kt−1 > kc, as in Figures
1–3. Under the empirically plausible conditions 1 < G < θ −1 in the Matsuyama
model, period-2 cycles prevail, with ktalternating between the Solow and Romer
regimes forever, as in Figure 2. It is important to ask how the subsidies can change
the slope of the transition equation kt = 
(kt−1) to mitigate or even eliminate the
cycles. Four scenarios of the asymptotic path of kt are summarized as follows (the
proof is relegated to Appendix C).

PROPOSITION 2. Suppose θ > 2. Define G0 ≡ β(1 − 1/σ)A and G ≡
β(1 − 1/σ)A/(k

1/σ
c ) with kc = (1 − sx)

σ (1 − sn) and 0 ≤ sn, sx < 1. For any
given k0 > 0, the distinct asymptotic dynamic behaviors are as follows:
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(i) If G ≤ 1, then the economy converges toward a stable neoclassical stationary path
with limt→∞ 
t (k) = k∗ in the policy-dormant region.

(ii) If G > 1, sx ≤ 1/σ , and the subsidy rates are low enough so that 
′ (k∗∗) < −1,
then period-2 cycles may exist forever.

(iii) If G > 1, sx ≤ 1/σ , and the subsidy rates are high enough, such as sn > σ(θ −
2)/[1 + σ(θ − 2)] at sx = 0 or sx → 1/σ at sn = 0, then −1 < 
′ (k∗∗) < 0.

The economy fluctuates around and eventually converges toward a stable balanced
growth path, limt→∞ 
t (k) = k∗∗.

(iv) If G > 1 and sx ≥ 1/σ , then 0 < 
′(k∗∗) < 1. The economy converges monotoni-
cally toward a stable balanced growth path, limt→∞ 
t(k) = k∗∗.

At the heart of period-2 cycles in the empirically plausible situation in Mat-
suyama (1999), the period of intense innovation can be associated with productivity
and growth slowdowns. It is only after the period of innovation that the innovated
good releases its full potential for faster growth of output. According to Propo-
sition 2 and illustrations in Figures 1–4, sufficiently high rates of subsidies can
eventually eliminate cycles by stabilizing the balanced growth path with innova-
tion. This is achieved either by strengthening the demand for new intermediates
(via a higher sx) or by reducing the innovation cost (via a higher sn) so that
R&D activities are profitable even at a low capital–variety ratio. By increasing
varieties, such subsidization can exert different impacts on final output and thus
on capital investment with a constant saving rate. First, it can directly increase
final output by increasing the number of varieties according to (11). Second, it
can indirectly reduce final output by reducing the equilibrium quantity of each
type of intermediate input, as the subsequent increase in the total fixed innova-
tion cost competes for the given amount of existing capital. For 0 ≤ sx < 1/σ , a
higher sx reduces the gap in the equilibrium quantity of old and new intermediates,
thereby mitigating the efficiency loss of unequal use of symmetric intermediates in
production.

It is convenient to look at the effects of subsidies on the stability of the dynamic
system by using a general expression for the slope of the transition curve kt =

(kt−1):


′(kt−1) = d(Kt/Nt)/dkt−1 = [Nt(dKt/dkt−1) − Kt(dNt/dkt−1)]/N
2
t .

Rewriting it in the following ways may help our interpretation:


′(kt−1) =
(

dKt

dkt−1
− dNt

dkt−1

kt

)
1

Nt

=
(

dKt

dkt−1

1

Kt

− dNt

dkt−1

1

Nt

)
Kt

Nt

=
(

dKt

dkt−1

kt−1

Kt

− dNt

dkt−1

kt−1

Nt

)
kt

kt−1

.
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The sign of 
′(kt−1) is positive (negative) if the ratio of the derivative of cap-
ital investment to the derivative of variety expansion with respect to the initial
abundance of capital, (dKt/dkt−1)/(dNt/dkt−1), is greater (smaller) than the re-
sultant capital–variety ratio, kt . The absolute value of 
′(kt−1) depends positively
on the difference between the two responses, as fractions of their new stocks,
[(dKt/dkt−1)/Kt − (dNt/dkt−1)/Nt ], as well as on the new capital–variety ratio,
Kt/Nt . In the Romer steady state with kt−1 = kt > kc, both the sign and the
magnitude of 
′(kt−1) will depend solely on the gap in the respective elasticity of
investment Kt and innovation Nt with respect to kt−1.

Note that G0 = sEA is the growth factor absent subsidization. Hold-
ing Nt−1 constant, if kt−1 > kc, then (14) and (22) lead to dKt/dkt−1 =
G0(1 − sn)

1−1/σ Nt−1/[1 − sn(1 − 1/σ)] > 0 and (23) leads to dNt/dkt−1 =
θNt−1/[1 − sn(1 − 1/σ)] > 0. That is, in the Romer regime, both capital in-
vestment and variety expansion respond positively to the initial abundance of
capital.

Under the assumption that 1 < G0 < θ − 1, however, in the absence of
subsidization, variety’s response to the initial abundance of capital is more elastic
than investment’s response, causing instability of the balanced growth path in the
original Matsuyama model. At the steady state k∗∗ on the balanced growth path
without subsidization, Proposition 1 and (23) lead to

k∗∗ = G0 − 1 + θ

θ
> 1 for G0 > 1 and sx = sn = 0; Nt/Nt−1 = G0.

So 
′(kt−1) = [(dKt/dkt−1) − kt (dNt/dkt−1)]/Nt at the steady state k∗∗ on the
balanced growth path becomes 
′(k∗∗) = (G0 − k∗∗θ)Nt−1/Nt = (1 − θ)/G0,
which is negative under 1 < θ and less than −1 under G0 < θ − 1 and 2 < θ . In
this case, period-2 cycles may exist, as in Matsuyama (1999).

Starting from stable period-2 cycles with 
′ (k∗∗) = (1 − θ)/G < −1, a
decrease in G toward 1 may eventually trigger a bifurcation and lead to chaotic
dynamics, as discussed in Matsuyama (1999) and shown in Gardini et al. (2008).
Following one numerical example in Gardini et al. (2008), given the parameteri-
zation of σ = 5 and sx = sn = 0, period-2 cycles lose stability when G enters the
chaotic region G ∈ (1, 1.0725), where the trajectory enters four chaotic intervals
in a few iterations.1 Such chaotic situations can be avoided if subsidies lift G above
the upper bound of the chaotic region.

Subsidizing the innovation cost strengthens the response of variety expansion
to the initial abundance of capital, dNt/dkt−1 = θNt−1/[1 − sn(1 − 1/σ)] > 0,
but weakens the response of investment, dKt/dkt−1 = G0(1− sn)

1−1/σ Nt−1/[1−
sn(1 − 1/σ)] > 0, setting sx = 0. From (24), if the subsidy sn is large enough,
at least for sn > 1/(2 − 1/σ) ∈ (0, 1), a further increase in sn will lead to lower
capital per variety kt as long as kt > kc and kt−1 > kc. This arises because beyond
the level sn = 1/(2 − 1/σ) ∈ (0, 1), a further rise in sn (at sx = 0) reduces output
(hence investment for a constant saving rate) on one hand, as mentioned earlier,

https://doi.org/10.1017/S1365100512000995 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100512000995


1368 BEI LI AND JIE ZHANG

and increases innovation, on the other hand. The sign of 
′(kt−1) = [G0(1 −
sn)

1−1/σ − ktθ ](Nt−1/Nt)/[1 − sn(1 − 1/σ)] is only determined by the factor
[G0(1 − sn)

1−1/σ − ktθ ], where both terms, G0(1 − sn)
1−1/σ and ktθ , eventually

decline with the subsidy rate on the innovation cost when the subsidy rate becomes
large enough. This helps to explain why the sign of 
′(kt−1) remains negative for
all levels of the subsidy rate in the Romer regime. The remaining factors, which
determine only the magnitude, not the sign, of 
′(kt−1) are decreasing with sn as
well:

(Nt−1/Nt)/[1−sn(1−1/σ)] = {1−sn(1−1/σ)+ θ [kt−1 − (1−sn)]}−1 for θ > 1.

This explains why the absolute value of 
′(kt−1) depends inversely on the
subsidy rate sn.

On the other hand, consider how the subsidy on the purchase of new interme-
diates affects the dynamic feature of the ratio of capital to variety. At sn = 0,

the sign of 
′(kt−1) = (G0 − θkt ) Nt−1/Nt is determined only by (G0 − ktθ),
which is initially negative under 1 < G0 < θ − 1 in the Romer regime when
the subsidy rate on the purchase of new intermediates is equal to zero. From
(14) and (22), a higher subsidy on the purchase of new intermediates exerts a
positive (zero, negative) effect on investment,Kt , if the subsidy rate is lower than
(equal to, higher than) 1/σ . From (23), a higher subsidy for the purchase of
new intermediates promotes innovation in the Romer regime and thus reduces
the reciprocal of the rate of innovation, Nt−1/Nt = {1 + θ [kt−1 − (1 − sx)

σ ]}−1,
tending to reduce the absolute value of 
′(kt−1). From (24), a higher subsidy rate
for the purchase of new intermediates reduces the amount of capital per variety
kt as long as kt > kc and kt−1 > kc in the Romer regime: dkt/dsx is signed by
[1 − σsx − θ(1 − sx)

σ − θkt−1(σ − 1)] < 0, in which 1 − σsx − θ(1 − sx)
σ < 0

attains a maximum 1/σ −1 < 0 at sx = 1/σ. By reducing kt , a higher subsidy rate
for the purchase of new intermediates increases the value of (G0 −θkt ). Overall, a
highersxreduces the absolute value of 
′(kt−1) when G0 − ktθ < 0. At sx = 1/σ

and sn = 0, G0 = k∗∗θ on the balanced growth path, implied by case (ii) of
Proposition 1, leading to 
′(kt−1) = 0 at the steady state. When sx is increased
further for sx > 1/σ , (G0 − k∗∗θ) > 0 must hold, leading to 
′(kt−1) > 0 on the
balanced growth path. Recall that subsidizing the purchase of new intermediates
at a rate sx > 1/σ leads to xc < xm, thereby creating a loss in final output. The
loss in final output, due to a higher sx beyondsx = 1/σ , will in turn lead to a
decline in investment for a constant saving rate given any initial kt−1, whereas
variety expansion is increasing with sx . Consequently, a higher sx with sx > 1/σ

will reduce k∗∗ to a level at which (G0 − k∗∗θ) > 0 and thus 
′(kt−1) > 0 in the
steady state. For sn = 0, the absolute value of 
′(kt−1) on the balanced growth
path is derived as


′(k∗∗) = G0 + 1 − θ(1 − sx)
σ − �1/2

G0 + 1 − θ(1 − sx)σ + �1/2
< 1.
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Therefore, the balanced growth path becomes stable once the subsidy rate on the
purchase of new intermediates is set high enough so that |
′(k∗∗)| < 1.

This combination of growth and cycles makes it difficult to derive a reduced-
form expression for welfare in this model. As a consequence, it is difficult to
derive optimal subsidy rates to maximize social welfare analytically. Intuitively,
however, there are several sources of efficiency losses in laissez-faire, which can
be mitigated by subsidies for welfare improvements.

First, the emergence of cycles or even chaos when the steady state in the
Romer regime loses stability is likely inefficient, given the desire for consumption
smoothing from decreasing marginal utility. From Proposition 2, sufficiently high
subsidies can change the slope of the mapping (24) for stability in the steady state
in the Romer regime to mitigate and eventually eliminate cycles. This implies a
possible welfare improvement arising from the subsidies.

Second, private innovators fail to attach any value to the benefits from current
innovation that accrue beyond the temporary patent protection. However, from a
social perspective, the gains from any invention will last forever, making future
invention less costly when based on more advanced current technology. Therefore,
the private rate of return to R&D is likely below the social rate. Consequently, too
little capital is allocated to R&D and too much capital is allocated to manufacturing
intermediates. The resultant quantity of each intermediate should be too high.
This intertemporal externality bears similarity to the results of Romer (1990) and
Aghion and Howitt (1992). Because in the Romer model there is no business-
stealing effect, there is always too little R&D and slower growth in the Romer
regime. By promoting innovation, both subsidies can be welfare-improving.

Further, the assumption of a fixed amount of capital necessary for innovation
distorts the relative price of intermediates, leading to the uneven use of old and new
intermediates in final production. This drives down the already lower marginal rate
of contribution, making it further from the social rate. The two types of subsidies
work to internalize the intertemporal spillover from innovation and mitigate the
static and dynamic inefficiencies, respectively. For example, the subsidy to R&D
investment, sn, induces more resources to the R&D sector; the subsidy to the
purchase of new inputs, sx , narrows the quantity gap between new and old varieties.

Third, as capital is accumulated in a neoclassical fashion in the Solow regime,
there is a friction in the model, because innovators take past accumulation as given
rather than using that information to optimally plan the amount of resources to
devote to R&D activity. Imposing a consumption tax to finance the subsidies can
reduce consumption for investment and innovation and can thus mitigate this type
of efficiency loss.

4. NUMERICAL SIMULATION RESULTS

We now gauge the quantitative implications and the welfare gains from the sub-
sidies and explore optimal subsidy rates by numerical simulations for plausible
parameterizations. Concerning the method, given any initial state (Nt−1,Kt−1),
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one can update it one period to obtain (Nt ,Kt ) by using (22) and (23). One can
then find the levels of intermediates in (10), final output in (11), consumption in
(19), and welfare in (15) in each period.

We set a benchmark parameterization as A = 2.5, β = 0.63, θ = 2.4414, and
σ = 5. The value of σ = 5 is in line with that in Matsuyama (1999), where it
plays dual roles: 1 − 1/σ = 0.8 is the share of capital (interpreted broadly as
both physical and human capital); 1/(σ − 1) = 0.25 is the markup enjoyed by
the innovator. When one period (the length of patent protection) corresponds to
15 years, an annual discount factor of 0.97 leads to β = (0.97)15 = 0.63. In the
WTO’s Agreement on Trade-Related Aspects of Intellectual Property Rights, the
term of patents is 20 years from the filing date of the application. However, many
countries have patent laws for shorter terms of 6 to10 years. Such patent lengths
are in the range for medium-term business cycles, as in Comin and Gertler (2006).
In our simulation, we take the average term of patents as 15 years. In fact, the
shorter the term of patents, the larger the discount factor, and thus the stronger the
effects of subsidization.

The value of A = 2.5 is chosen so that the benchmark parameterization without
subsidies (sx = 0,sn = 0) satisfies 1 < G0 < θ − 1 for period-2 cycles. This
is an empirically plausible assumption, as argued in Matsuyama (1999). Also,
we set K0 = 0.4 and N0 = 1. The benchmark case can be seen in Figure 5a,
which depicts the values of k for 100 periods, starting from k0 = 0.4. The dotted
line denotes the separation between the Solow and Romer regimes. The economy
fluctuates in the Romer regime for quite a while before eventually settling down
to period-2 cycles across the two regimes.

To better comprehend the change in welfare, we measure its equivalent variation
in consumption in every period. Define the equivalent variation in consumption
in each period by �, which allows the benchmark case without subsidization to
reach the same welfare level as that in a case with subsidization type i:

Uno-subsidization + β

1 − β
ln(1 + �) = Usi

.

This corresponds to adding
∑∞

t=1 βt ln(1 + �) = β[ln(1 + �)]/(1 − β) to wel-
fare in the case without subsidization. We use a large number of periods in each
case (say 1,000) so that any further increase in the number of periods has no impact
on welfare within ten decimal digits.

In Tables 1 and 2, we report simulation results for increasing sx and sn from
zero to reach and go beyond a peak of the welfare level, one at a time, respectively.
In Figure 5, we plot the value of the capital–variety ratio for 100 periods from the
initial state and compare the benchmark case with three selective cases of different
types and levels of subsidization. In Figures 6 and 7, we also depict the asymptotic
capital–variety ratios in the Solow and Romer regimes (ks, kr ) in the scenario of
period-2 cycles or the steady state capital variety ratio, k∗∗, on the balanced growth
path for increasing sx and sn from zero to sufficiently high rates. The subsequent
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FIGURE 5. The transitional paths of the capital–variety ratio kt .

welfare levels are plotted in the same figure to better illustrate the optimal rates of
subsidies that maximize welfare.

In Table 1, we set sn = 0 and examine the dynamic behavior, the asymptotic
capital–variety ratio, the balanced growth rate, the consumption tax rate, the
welfare level, and the consumption equivalent variation when sx is varied gradually
from 0 in the benchmark case to 40%. When sx is sufficiently small (e.g., sx =
0.01), the economy still alternates between ks = 0.945 and kr = 1.204 in the
Solow and Romer regimes, where both the growth rate and social welfare are
higher than in the benchmark case. When sx is increased further but still below
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FIGURE 5. Continued.

1/σ = 0.2, the steady state k∗∗ becomes stable and the economy converges toward
k∗∗, with fluctuations for some periods, as predicted in Proposition 2. As shown
in Figure 5b, when sx = 0.05, the fluctuations subside in magnitude and die off
within 20 periods before reaching k∗∗. As sx is increased beyond 1/σ = 0.2, the
convergence becomes monotonic, as shown by Figure 5c with sx = 0.25.

For a better view of the welfare effect of the subsidy on the purchase of new
products, we vary sx from 0 to 0.6 (sn = 0) in Figure 6 and find the subsequent
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TABLE 1. Results of changing the subsidy on the purchase of new intermediate
goods (parameterization: A = 2.5, β = 0.63, θ = 2.4414, σ = 5, K0 = 0.4,
N0 = 1, sn = 0)

Subsidy Mode of k∗∗ or Growth rate Tax rate Welfare Cequivalent
rate dynamics (ks , kr ) gross (annual %) (%) level variation (%)

sx = 0 Period-2 cycle (0.983, 1.243) 1.262 (1.56) 0.0, 0.0 −0.0811 0.0
sx = 0.01 Period-2 cycle (0.945, 1.204) 1.272 (1.62) 0.0, 0.34 −0.0716 0.56
sx = 0.02 O-convergence 1.020 1.283 (1.67) 0.37 −0.0626 1.09
sx = 0.05 O-convergence 0.904 1.317 (1.85) 1.17 −0.0292 3.10
sx = 0.10 O-convergence 0.743 1.371 (2.13) 3.42 0.0226 6.28
sx = 0.15 O-convergence 0.616 1.420 (2.37) 7.25 0.0631 8.84
s∗
x = 0.16 O-convergence 0.594 1.429 (2.41) 8.27 0.0643 8.91

sx = 0.20 M-convergence 0.516 1.460 (2.56) 13.35 0.0482 7.89
sx = 0.25 M-convergence 0.437 1.488 (2.68) 22.60 −0.0624 1.10
sx = 0.30 M-convergence 0.374 1.503 (2.75) 36.32 −0.2762 −12.14
sx = 0.35 M-convergence 0.323 1.504 (2.76) 56.60 −0.5908 −34.90
sx = 0.40 M-convergence 0.280 1.493 (2.71) 87.23 −1.0077 −72.32

Notes: (1) O-convergence and M-convergence refer to convergence with fluctuations and monotonic convergence
to steady states, respectively. (2) The growth rate in the period-2 cycle economy is calculated as the geometric
average of the corresponding growth rates in the two regions following Matsuyama (1999). (3) The values in the
brackets beside growth rates indicate the discounted annual rates. (4) The subsidy rates with ∗ indicate the optimal
rate maximizing the social welfare.

welfare levels. It is worth noting that the welfare level is a concave and smooth
curve, peaking at a unique point with sx = 0.16. This optimal rate lies in the range
where the subsidy eliminates the cycles. The resultant welfare level at the optimal
subsidy rate is 0.0643, compared to −0.0811 in the benchmark case without
subsidization. The corresponding consumption tax rate is equal to 8.27%. The
maximum welfare gain with this type of subsidy on the purchase of new products

TABLE 2. Results of changing the subsidy to the R&D investment (parameteriza-
tion: A = 2.5, β = 0.63, θ = 2.4414, σ = 5, K0 = 0.4, N0 = 1, sx = 0)

Subsidy Mode of k∗∗ or Growth rate Tax rate Welfare Cequivalent
rate dynamics (ks , kr ) gross (annual %) (%) level variation (%)

sn = 0 Period-2 cycle (0.983, 1.243) 1.262 (1.56) 0.0, 0.0 −0.0811 0.0
sn = 0.1 Period-2 cycle (0.888, 1.146) 1.286 (1.69) 0,0, 0.76 −0.0616 1.15
sn = 0.2 Period-2 cycle (0.794, 1.047) 1.311 (1.82) 0.0, 1.85 −0.0370 2.62
sn = 0.3 Period-2 cycle (0.700, 0.947) 1.339 (1.97) 0.0, 3.44 −0.0063 4.49
sn = 0.31 O-convergence 0.795 1.342 (1.98) 1.79 −0.0034 4.67
sn = 0.4 O-convergence 0.703 1.371 (2.13) 2.87 0.0210 6.18
sn = 0.5 O-convergence 0.600 1.407 (2.30) 4.69 0.0578 8.50
sn = 0.6 O-convergence 0.495 1.446 (2.49) 7.70 0.0665 9.06
s∗
n = 0.61 O-convergence 0.485 1.450 (2.51) 8.10 0.0668 9.07

sn = 0.7 O-convergence 0.388 1.486 (2.68) 13.15 0.0141 5.75
sn = 0.8 O-convergence 0.277 1.523 (2.85) 24.94 −0.2787 −12.31
sn = 0.9 O-convergence 0.159 1.518 (2.82) 63.02 −1.5241 −133.37
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FIGURE 6. The asymptotic capital–variety ratio and welfare levels with changing sx .
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FIGURE 7. The asymptotic capital–variety ratio and welfare levels with changing sn.

is equivalent to a significant 8.91% rise in consumption in every period from the
benchmark case.

In Table 2, we set sx = 0 and focus on the effects of the subsidy on the R&D
investment, sn. Period-2 cycles persist for a relatively wide range of sn. After that,
when it is high enough to satisfy the stability condition in Proposition 2, period-2
cycles are replaced by convergence to k∗∗ in the policy-active region. Figure 5d
illustrates this process of convergence when sn = 0.65.

In Figure 7, we vary sn from 0 to 90% (sx = 0) and find the subsequent welfare
levels. It is worth noting that the welfare curve is concave and smooth as well,
peaking at a unique point when s∗

n = 0.61 that achieves convergence toward the
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FIGURE 8. The welfare surface using both sx and sn.

steady state with balanced growth in capital and variety. The welfare curve is
flatter before peaking and takes longer to reach the optimal level of the subsidy
rate than in Figure 6, because sn does not change the price gap and therefore does
not create an additional gain or loss in static efficiency like those created by sx on
either side of sx = 1/σ . So the efficiency gain from faster variety expansion and
from convergence to the steady state at a higher subsidy rate to the R&D cost is
gradually offset by a loss from the subsequent decline in the equilibrium quantity
of each intermediate. Beyond this optimal subsidy rate, the welfare level declines
rapidly, because the efficiency loss from the declined use of each intermediate is
increasing at the margin. The maximized welfare level is 0.0668, as opposed to
−0.0811 in the benchmark case. The welfare change is equivalent to a significant
9.07% rise in consumption in every period. The corresponding consumption tax
rate of 8.1% also falls into the reasonable range.

In Figure 8, we jointly use the two subsidies at the same time and plot the
welfare surface when varying both sx and sn from zero to sufficiently high rates. It
turns out that the welfare surface is concave and smooth, peaking at a unique point
when sx = 0.1 and sn = 0.38. The capital–variety ratio will converge to the steady
state, k∗∗ = 0.4972, in the policy-active regime when the subsidies are financed
by a consumption tax at a rate 9.21%. The maximized welfare level is 0.0866,
higher than those in cases with one subsidy at a time, as expected. The welfare
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change from the benchmark case is now equivalent to a substantial 10.35% rise in
consumption in each period.

The respective optimal rates of subsidies mitigate and eventually eliminate the
cycles in all the reported cases. So part of the welfare gain comes from smoothing
consumption through subsidization.

5. CONCLUSION

We have examined the implications of two types of subsidies, one to the purchase
of new intermediate products and the other to R&D investment, in the model of
Matsuyama (1999, 2001) with growth through endogenous cycles. One contri-
bution of doing so is that the subsidization can reduce the critical level of the
capital–variety ratio substantially, enhancing the possibility for the economy to
stay in the policy-active region with sustainable innovation and growth. Sufficient
subsidization can rule out the neoclassical regime without innovation from the
steady state in the long run.

Another contribution is that we have characterized several possible scenarios
for the asymptotic paths of the representative agent economy from any initial
state, depending on the values of the economic fundamentals and subsidy rates. In
a novel yet empirically plausible scenario, sufficient subsidization stabilizes the
balanced growth path with nonmonotonic or even monotonic convergence. Also,
we have discussed the sources of market failures that give roles to subsidization
in enhancing social welfare.

In the end, we have used numerical examples to gauge the welfare gains from
the two types of subsidies, starting from an empirically plausible parameterization
for a period-2 cycle economy in the absence of subsidization. It turns out that both
types of subsidies can help enhance welfare significantly in terms of a 9–10% rise
in consumption for every period; and the optimal subsidy rates maximizing social
welfare are calculated in their plausible ranges, which eventually eliminate cycles
for consumption smoothing.

Our results in this paper appear consistent not only with substantial subsidization
to new investment and R&D spending but also with the combination of intensified
innovation and dampened cyclical fluctuations in many industrial nations in the
postwar era. This is consistent with the evidence in Comin and Gertler (2009).

Our results about R&D subsidies are different from those in Haruyama (2009),
which uses a model with cycles but without accumulation: optimal R&D subsi-
dies cannot eliminate cycles in Haruyama’s model but can do so in our model.
As mentioned earlier, the models are very different: intermediates production and
innovation must use accumulated capital in the present model, but only use labor
in Haruyama’s model. So our results concerning the R&D subsidies are comple-
mentary to Haruyama’s results. Comin and Mulani (2009) find a positive effect of
the R&D subsidy on R&D innovations but a negative effect of the R&D subsidy on
general innovations in a different model focusing on growth and volatility without
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cycles. Finally, our results about the subsidies to the purchase of new intermediates
are new in models with endogenous cycles and sustainable growth.

NOTE

1. For a thorough derivation of the sufficient and necessary conditions of the chaotic intervals for
the type of mapping in (24), see Devaney (1989) and Gardini et al. (2008).
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APPENDIX A: DERIVATION OF SOLUTION
TO THE CONSUMER PROBLEM

Taking the initial capital stock K0 > 0 and the sequences of prices and tax rates
(τc,t , rt , wt )

∞
t=1 as given, the agent chooses the sequence of allocations (Ct , Kt )

∞
t=1 to

maximize utility in (15) subject to (16) and (17). The optimal intertemporal condition is

1

(1 + τc,t )Ct

= βrt+1

(1 + τc,t+1)Ct+1
,

and the binding solvency (transversality) condition can be written as

lim
t→∞

Kt∏t
s=1 rs

= lim
t→∞

βt Kt

(1 + τc,t )Ct

= 0.

Production factors are compensated competitively according to wtL = (1/σ) Yt and
rtKt−1 = (1 − 1/σ) Yt . Combining them with (16) and the intertemporal condition yields
the optimal solution in (18) and (19). Q.E.D.

APPENDIX B: PROOF OF PROPOSITION 1
The solutions for the steady state k∗or k∗∗ follow the respective scenarios in (24). What
remains to show is that k∗∗ > kc for G > 1. First, let us rewrite the expression for � in
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case (ii) as

� = [1 − sn(1 − 1/σ) − θkc − β (1 − 1/σ) A(1 − sn)
1−1/σ ]2

+ 4θβ (1 − 1/σ)Akc(1 − sn)
−1/σ (1 − sx)

−1[sx(1 − sn) + sn/σ ]

= θ 2k2
c + [1 − sn(1 − 1/σ) − β (1 − 1/σ)A(1 − sn)

1−1/σ ]2

− 2θkc[1 − sn(1 − 1/σ) − β (1 − 1/σ) A(1 − sn)
1−1/σ ]

+ 4θβ (1 − 1/σ)Akc(1 − sn)
−1/σ (1 − sx)

−1[sx(1 − sn) + sn/σ ].

Here, 1 − sn(1 − 1/σ) − (1 − sx)(1 − sn) = sx(1 − sn) + sn/σ ≥ 0 and G > 1 implies that
β (1 − 1/σ)A(1 − sn)

1−1/σ > (1 − sx)(1 − sn). We can now rewrite the expression of � as

� = θ2k2
c + [1 − sn(1 − 1/σ) − β (1 − 1/σ) A(1 − sn)

1−1/σ ]2

+ 2θkc{2β (1 − 1/σ) A(1 − sn)
−1/σ (1 − sx)

−1[sx(1 − sn) + sn/σ ]

− 1 + sn(1 − 1/σ) + β (1 − 1/σ) A(1 − sn)
1−1/σ }

> θ 2k2
c + [1 − sn(1 − 1/σ) − β (1 − 1/σ)A(1 − sn)

1−1/σ ]2

+ 2θkc[1 − sn(1 − 1/σ) − (1 − sx)(1 − sn)]

× [2β (1 − 1/σ) A(1 − sn)
−1/σ (1 − sx)

−1 − 1]

> θ 2k2
c + [1 − sn(1 − 1/σ) − β (1 − 1/σ)A(1 − sn)

1−1/σ ]2

+ 2θkc[1 − sn(1 − 1/σ) − (1 − sx)(1 − sn)]

> θ 2k2
c + [1 − sn(1 − 1/σ) − β (1 − 1/σ)A(1 − sn)

1−1/σ ]2

+ 2θkc[1 − sn(1 − 1/σ) − β (1 − 1/σ) A(1 − sn)
1−1/σ ]

= [θkc + 1 − sn(1 − 1/σ) − β (1 − 1/σ) A(1 − sn)
1−1/σ ]2.

So k∗∗ = [θkc−1+sn(1−1/σ)+β (1 − 1/σ) A(1−sn)
1−1/σ +�1/2]/(2θ) > 2θkc/(2θ) =

kc. The other root,

k∗∗ = [θ(1 − sx)
σ (1 − sn) + sn(1 − 1/σ) − 1 + β (1 − 1/σ) A(1 − sn)

1−1/σ − �1/2]/(2θ),

is dropped for being inconsistent with k∗∗ > kc. Q.E.D.

APPENDIX C: PROOF OF PROPOSITION 2
In case (i), with k∗ = [β(1 − 1/σ)A]σ < kc = (1 − sx)

σ (1 − sn) and kt−1 < kc, the slope
of kt = 
(kt−1) = β(1 − 1/σ)A(kt−1)

1−1/σ in (24) is always positive, exceeding 1 at the
origin (kt−1 → 0) and falling below 1 in the steady state (k∗ = [β(1 − 1/σ)A]σ ) according
to 
′(k∗) = 1 − 1/σ , because σ > 1. The steady state k∗is thus globally stable and the
sequence {kt }∞

t=0 converges toward k∗ for any k0 > 0 as in the standard neoclassical growth
model. We illustrate case (i) in Figure 1.
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In cases (ii)–(iv) with k∗ = [β(1 − 1/σ)A]σ > kc = (1 − sx)
σ (1 − sn), the slope of the

transition equation kt = 
(kt−1) in (24) for kt−1 > kcis derived as


′(kt−1) = β (1 − 1/σ)A(1 − sn)
1−1/σ [1 − sn(1 − 1/σ)][1 − θ(1 − sx)

σ−1]

{1 − sn(1 − 1/σ) + θ [kt−1 − (1 − sx)σ (1 − sn)]}2
.

Here, 1−sn(1−1/σ) > 0 because sn ∈ [0, 1) and σ > 1. Also, kt−1 −(1−sx)
σ (1−sn) > 0

for kt−1 > kc. So the sign of 
′(kt−1) is the same as the sign of 1 − θ(1 − sx)
σ−1. Recalling

that θ = (1−1/σ)1−σ > 1 under σ > 1, we have 
′(kt−1) ≥ 0 if and only if 1 > sx ≥ 1/σ ,
because with sx ∈ [0, 1), 1 − θ(1 − sx)

σ−1 ≥ 0 corresponds to 1 > sx ≥ 1/σ. Accordingly,

′(kt−1) < 0 if and only if 0 ≤ sx < 1/σ , under which 1 − θ(1 − sx)

σ−1 < 0. Also, the
absolute value of 
′(kt−1) is monotonically decreasing in kt−1and approaches zero when
kt−1approaches infinity, implying that the dynamic system in (24) cannot diverge toward
infinity.

For kt−1 > kc, there are thus two possibilities, with either 
′(kt−1) < 0 or 
′(kt−1) ≥ 0.
If 0 ≤ sx < 1/σ and thus 
′(kt−1) < 0 beyond kc, then the economy may either fluctuate
forever with cycles or eventually converge toward the steady state of the balanced growth
path so that 
t (k) → k∗∗ as t → ∞, depending on whether |
′ (k∗∗)| ≥ 1or < 1. The
proof of cases (ii) and (iii) is the same as that in Matsuyama (1999). For the purposes of
our paper, we focus on how subsidies change the slopes of the transition equation in (24)
and switch the economy across cases.

Specifically, if the subsidy rates are low enough (say zero), then |
′ (k∗∗)| > 1 prevails
under θ > 2 and the economy behaves in the same way as in the original model of
Matsuyama (1999) with endogenous cycles forever once it enters the trapping region
denoted by the interval [
2(kc),
(kc)] in Figure 2. If the subsidy rates are high enough, then
we show that |
′ (k∗∗)| < 1 for 
′(kt−1) ≤ 0, as follows. First, the slope of kt = 
(kt−1)

at kt−1 = k∗∗ can be rewritten as


′ (k∗∗) = β (1 − 1/σ) A(1 − sn)
1−1/σ [1 − sn(1 − 1/σ)][1 − θ(1 − sx)

σ−1]

{1 − sn(1 − 1/σ) + θ [k∗∗ − (1 − sx)σ (1 − sn)]}2

= 4β (1 − 1/σ)A(1 − sn)
1−1/σ [1 − sn(1 − 1/σ)][1 − θ(1 − sx)

σ−1]{
1 − sn(1 − 1/σ) − θ(1 − sx)σ (1 − sn) + β (1 − 1/σ) A(1 − sn)1−1/σ + �1/2

}2 ,

using the expression for k∗∗ given in Proposition 1 for substitution.
For the special case without subsidies, we have G0 = β (1 − 1/σ)A and


′ (k∗∗) = 1 − θ

G
< 0, at sx = sn = 0.

The absolute value of this slope exceeds one (unstable k∗∗) if and only if 1 < G < θ−1as
in the original model of Matsuyama (1999). This condition applies under θ > 2.

For 0 ≤ sx ≤ 1/σ , showing that |
′ (k∗∗)| < 1 is equivalent to showing that

F(sn, sx)

≡ [
1 − sn(1 − 1/σ) − θ(1 − sx)

σ (1 − sn) + β (1 − 1/σ) A(1 − sn)
1−1/σ + �1/2

]2

+ 4β (1 − 1/σ) A(1 − sn)
1−1/σ [1 − sn(1 − 1/σ)][1 − θ(1 − sx)

σ−1] > 0,
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where 1 − θ(1 − sx)
σ−1 ≤ 0. Substituting the expression for �in Proposition 1

intoF(sn, sx)leads to

F(sn, sx) = [1 − sn(1 − 1/σ) − θ(1 − sx)
σ (1 − sn) + β (1 − 1/σ)A(1 − sn)

1−1/σ ]2

+ � + 2�1/2[1 − sn(1 − 1/σ) − θ(1 − sx)
σ (1 − sn) + β (1 − 1/σ) A(1 − sn)

1−1/σ ]

+ 4β (1 − 1/σ) A(1 − sn)
1−1/σ [1 − sn(1 − 1/σ)][1 − θ(1 − sx)

σ−1]

= 2[1 − sn(1 − 1/σ) − θ(1 − sx)
σ (1 − sn)]

2 + 2[β (1 − 1/σ)A(1 − sn)
1−1/σ ]2

+ 4β (1 − 1/σ) A(1 − sn)
1−1/σ {θ(1 − sx)

σ−1[sx(1 − sn) + sn/σ ]

+ [1 − sn(1 − 1/σ)][1 − θ(1 − sx)
σ−1]}

+ 2�1/2[1 − sn(1 − 1/σ) − θ(1 − sx)
σ (1 − sn)

+ β (1 − 1/σ)A(1 − sn)
1−1/σ ].

Here, {θ(1 − sx)
σ−1[sx(1 − sn) + sn/σ ] + [1 − sn(1 − 1/σ)][1 − θ(1 − sx)

σ−1]} can be
shown to be equal to [1 − sn(1 − 1/σ) − θ(1 − sx)

σ (1 − sn)]. Thus, we have

F(sn, sx) = 2[1 − sn(1 − 1/σ) − θ(1 − sx)
σ (1 − sn)]

2

+ 2[β (1 − 1/σ) A(1 − sn)
1−1/σ ]2

+ 4β (1 − 1/σ)A(1 − sn)
1−1/σ [1 − sn(1 − 1/σ) − θ(1 − sx)

σ (1 − sn)]

+ 2�1/2[1 − sn(1 − 1/σ) − θ(1 − sx)
σ (1 − sn) + β (1 − 1/σ) A(1 − sn)

1−1/σ ]

= 2[1 − sn(1 − 1/σ) − θ(1 − sx)
σ (1 − sn) + β (1 − 1/σ) A(1 − sn)

1−1/σ ]2

+ 2�1/2[1 − sn(1 − 1/σ) − θ(1 − sx)
σ (1 − sn) + β (1 − 1/σ) A(1 − sn)

1−1/σ ].

A sufficient yet unnecessary condition for F(sn, sx) > 0 is

[1 − sn(1 − 1/σ) − θ(1 − sx)
σ (1 − sn) + β (1 − 1/σ) A(1 − sn)

1−1/σ ]

> [1 − sn(1 − 1/σ) − θ(1 − sx)
σ (1 − sn) + (1 − sx)(1 − sn)] (under G > 1) > 0.

This condition is satisfied by the stated conditions on the subsidy rates:

sn > σ(θ − 2)/[1 + σ(θ − 2)] ∈ (0, 1) under θ> 2 at sx = 0; or sx → 1/σ at sn = 0.

That is, if the subsidy rates are sufficiently high so that |
′ (k∗∗)| < 1, then the economy
will eventually converge toward the stable steady state, or the stable balanced growth path.
We depict cases (ii) and (iii) in Figures 2 and 3, respectively.

Recall that 1 − θ(1 − sx)
σ−1 and 
′(kt−1) must have the same sign. For sx ≥ 1/σ in

(iv), we have 1 − θ(1 − sx)
σ−1 ≥ 0 and thus 
′(kt−1) ≥ 0. This is a new case compared to

those in Matsuyama (1999, 2001). Now, showing that 
′ (k∗∗) < 1 for a steady state k∗∗ is
equivalent to showing the following:[

1 − sn(1 − 1/σ) − θ(1 − sx)
σ (1 − sn) + β (1 − 1/σ)A(1 − sn)

1−1/σ + �1/2
]2

− 4β (1 − 1/σ)A(1 − sn)
1−1/σ [1 − sn(1 − 1/σ)][1 − θ(1 − sx)

σ−1] ≥ 0
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under 1 − θ(1 − sx)
σ−1 ≥ 0. The left-hand side of this inequality can be decomposed into[

1 − sn(1 − 1/σ) − β (1 − 1/σ) A(1 − sn)
1−1/σ

]2 + [θ(1 − sx)
σ (1 − sn)]

2 + �

+ 2�1/2
[
1 − sn(1 − 1/σ) − θ(1 − sx)

σ (1 − sn) + β (1 − 1/σ)A(1 − sn)
1−1/σ

]
+ 2θ [1 − sn(1 − 1/σ)] (1 − sn)

1−1/σ (1 − sx)
σ−1

× [
β (1 − 1/σ)A − (1 − sx)(1 − sn)

1/σ
]

+ 2θβ (1 − 1/σ) A(1 − sx)
σ−1(1 − sn)

1−1/σ [sn/σ + sx(1 − sn)] ,

which is nonnegative under G > 1, 0 ≤ sn < 1, and 1/σ ≤ sx < 1. As in case (i), it
suffices to establish stability and convergence for case (iv) graphically in Figure 4. Q.E.D.
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