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SUMMARY
This paper studies the effect of joint flexibility on the dynamic performance of a serial spatial robot
arm of rigid links. Three models are developed in this paper. The first and the third models are
developed using the multibody dynamics approach, while the second using the classical robotics
approach. A numerical algorithm and an experimental test-rig are developed to test the final model.
The links’ inertial parameters are estimated numerically. Empirical formulae with assumption models
are used to estimate the flexibility coefficients. The simulation results show that the joint damping is
a major source of inaccuracies, causing trajectory error without a proper feedback controller.

KEYWORDS: Flexible joint; Robot; Multibody; Modeling; Kinematically constrained dynamic
system simulation; Denavit–Hartenberg.

1. Introduction
As modern applications of robotics require a higher level of accuracy, the proper modeling of
joints’ flexibility is of utmost importance. Spong1 presented the basis for modeling joints flexibility;
however, the model neglects the effect of the dynamics of the preceding links and rotors, which limits
it to slow motion robotic aplications. Comparative to their work, Ciuca et al.2 represented the joint
flexibility as a linear torsional spring assuming that the kinetic energy of each rotor is only due to
its rotation. This assumption does not take the effect of the preceding links and rotors’ kinematics
into consideration. Correspondingly, both models of Spong1 and Ciuca et al.2 neglect the gyroscopic
effects adopted by many researches to deal with different control problems. Among the research work
that took the gyroscopic effect is that of Potkonjak3 and Jankowski and Van Brussel.4 Potkonjak3

presented the transmission system while including the gyroscopic effect of the flexible joint while
Jankowski and Van Brussel4 presented the gyroscopic effects resulting from the rotor rotation while
linearizing and decoupling the nonlinear-coupled dynamic system. Subudhi and Morris5 improved on
the complexity of the robotic models and considered the effects of flexibility in both links and joints.
In addition, they considered the payload and structural damping of the links using Euler–Lagrange
formulation and assumed modes discretization technique. However, the backlash in the reduction gear
and coulomb friction are neglected. Flores et al.6 focused on the joint model accuracy and studied
the dynamics of a mechanical system with revolute joint clearance considering the dry contact,
friction, and hydrodynamic lubrication effects using journal bearings as the revolute joint. Heidari
and Nikoobin7 combined the direction of work of Ciuca et al.2 and Subudhi and Morris.5 They
determined the maximum allowable dynamic load for flexible link–flexible joint manipulators along
a predefined trajectory while imposing the amplitude of residual vibration, actuator torque capacity,
and end-effector precision. They used the finite element method to model the flexible links, but used a
torsional spring to model joint flexibility. Le Tien et al.8 introduced a friction observer to increase the
positioning accuracy and the performance of torque control. The observer output corresponds to the
low-pass filtered friction torque which is used for friction compensation in conjunction with a MIMO
(multiple input, multiple output) controller designed for flexible joints. The friction compensation
has several advantages as avoiding saturation and/or overflow of the integrator in case of external
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disturbance torques. In addition, it can be used by impedance control in contact with the environment.
Melhem and Loria9 proposed a model for flexible joint robots, which is linear in the velocities instead
of quadratic in the generalized velocities, as an attempt to overcome the technical difficulties. However,
this proposed model is uncontrollable and unobservable in the Cartesian positions, orientations, and
velocities.

On the control algorithm side, Ott et al.10 proposed impedance controllers for flexible joint robots.
They considered the stiffness and damping without inertia shaping. They designed the controllers
separately for the stiffness and damping terms and the gravity compensation term. Their controller
is designed to include some extensions to be usable with viscoelastic joints. Ider and Korkmaz11

showed that the acceleration level inverse dynamics equations of parallel robots with flexible joint
drives are singular as a result of the control torques delayed effect on the end-effector accelerations
due to the joint flexibility. They proposed a control law with position and velocity feedback to
decouple and linearize the system equations and achieve asymptotic stability. However, they did not
measure the joint accelerations and jerks and relied on their calculations from the dynamic equations.
Dahai and Xiaoping12 tracked and identified the joint physical parameters of their robot real time for
controlling vibration of their robot. They used an on-line identification method of frequencies and
mode shapes of time-varying structure system which is based on modern harmonic identification.
They computed the dynamic stiffness and dynamic damping by calculating the displacement and
force balance. Yang et al.13 presented a self-adapting robot arm control to attain natural adaptive
motions as a controller employing neural oscillators. They tested their controller by showing the
performance of a flexible joint robot arm coupled with neural oscillators through various tasks. Talole
et al.14 used feedback linearization to implement a state observer to track the trajectory of a single
link flexible joint robot. One drawback of this method is the loss of performance and accuracy in
the presence of modeling uncertainties. Akyuz et al.15 controlled a single link flexible joint robot
using proportional-integral-derivative (PID) and state feedback control algorithms. They compared
the advantages and disadvantages of both control strategies and showed that both strategies give out
similar results. Xue et al.16 proposed using a discrete-time sliding mode controller coupled with an
asynchronous sensor that estimates the future states. The proposed method seems to converge quickly
to the desired trajectory; however they did not discuss the implications on the dynamics of the system
or the sensitivity of the controller parameters.

Shabana17 developed a generalized model of n-link serial robot including a number of flexible joints
using multibody dynamics approach. A numerical algorithm is developed to simulate the obtained
dynamic models in which Lagrange multipliers and numerical integration methods are implemented.
Zaher17 studied the effect of joints’ flexibility on the dynamic performance of three-dimensional (3D)
robots. The robot joint flexibility is represented by two spring-damper sets between the stator and
the rotor of its drive and the rotor and the corresponding link. The contribution of this paper can be
summarized into two points. The first contribution is the analysis of the effect of joints’ flexibilities
on the dynamic performance of a serial spatial robot arm compared to previous work in literature that
utilizes either a single link robot or multilink planar robots. The second contribution is the development
of a new model for the joint flexibility using standard multibody dynamics approaches. The use of
this approach would enable the implementation of further flexibilities already researched in these
approaches like contact formulations, damping and friction models, as well as spring nonlinearities.
This paper is organized in six sections. After a literature survey in Section 1, Section 2 presents the
basics of mathematical modeling. Section 3 presents the identification of links’ inertial parameters
and the joints flexibility coefficients of a three-link articulated robot with three flexible revolute joints.
Section 4 presents the computation procedure and the simulation algorithm. Section 5 presents the
obtained results with a brief discussion. The paper ends with some conclusions and recommendations
in Section 6.

2. Mathematical Modeling of Constrained Dynamic Systems

2.1. Multibody dynamics approach
2.1.1. Equations of motion. Constrained dynamic systems are represented by (nb) bodies/links
and (nc) kinematic constraints.17,18 The Newtonian mechanics are used to develop the augmented
formulation of the joints’ kinematic constraint and the system dynamics can be represented in terms
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Fig. 1. General flexible joint.

of the Inverse Dynamic Model (IDM) as shown in Eq. (1) and the Direct Dynamic Model (DDM) as
shown in Eq. (2).
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where

M is the body mass matrix [6nb × 6nb],
q is the vector of body generalized coordinates [6nb × 1],
q̇ is the vector of body generalized velocities [6nb × 1],
q̈ is the vector of body generalized accelerations [6nb × 1],
λ is the vector of Lagrange multipliers [nc × 1],

Cq is the generalized Jacobian matrix of the kinematic constraints [nc × 1],
Qe is the vector of applied external generalized forces [6nb × 1],
Qd is the quadratic velocity vector that results from differentiation of the kinematic constraints

equation twice with respect to time [nc × 1],
Qv is the quadratic velocity vector that results from differentiating the kinetic energy with respect to

time and with respect to the generalized coordinates [6nb × 1],
nb is the number of bodies in the constrained system,
nc is the number of kinematic constraints’ equations.

2.1.2. Joints’ constraints. Serial robots with revolute joints have two types of joint constraints,
revolute and rigid joints constraints. The joints’ constraints Jacobian matrix Cq is dependent on the
type of the joint connection. The detailed formulation of the joint constraints equations are presented
in refs. [17, 18].

2.1.3. Revolute joint flexibility model. The flexibility in a revolute joint exists at two locations (Fig. 1):
first between the stator and the rotor and second between the rotor and the link. In case of a perfect
revolute joint, cra = 0, crb = 0, kra = 0, and krb = ∞. Due to difficulty of estimation of all stiffness
and damping coefficients simultaneously, the coefficients, crb and krb will be set as crb = 0 and
krb = ∞ such that the joint flexibility is considered only between the stator and the rotor. Both values
of the stiffness and damping coefficients range between zero and ∞. However, the exact values are
unknown and need to be estimated:
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Fig. 2. Torsional spring damper actuator element.

� When kr is set to zero, no spring exists between the two bodies.
� When kr is set to infinity, the two bodies become one rigid body without relative rotation between

them (rigid joint).
� When cr is set to zero, no damping between the two bodies exists.
� When cr equals infinity, no relative motion is allowed between the bodies it connects.

This flexibility may be represented by the standard element called Torsional Spring Damper
Actuator (TSDA).17–19 The TSDA element connects two bodies i and j in the multibody system and
consists of three parts (Fig. 2):

1. torsional spring with stiffness coefficient kr ,
2. torsional damper with damping coefficient cr ,
3. actuator torque Ta .

Multibody dynamics approach deals only with forces acting on the bodies. The generalized external
forces acting on the bodies are function of the resultant torque (T ji) generated by the flexible joint.
The torque exerted upon body (i) by the TSDA as a result of the rotation can be defined by Eq. (3).

T ji = (
krβ

ji + cr β̇
ji + Ta

)
, (3)

where βji and β̇j iare respectively, the relative rotational displacement and relative velocity of body
jwith respect to body i about the ith joint axis.

It can be shown that the relation between the infinitesimal rotation vector δπi about the axes of
the global Cartesian coordinate system where ωi = δπi

/
δt and the virtual change in the generalized

orientation coordinates δβi is given by Eqs. (4) and (5):17–20

δπi = Giδβi, (4)

Gi =
⎡
⎣0 cos ϕi sin θ i sin ϕi

0 sin ϕi − sin θ i cos ϕi

1 0 cos θ i

⎤
⎦ . (5)

Let hij be a unit vector along the joint axis. The virtual change in the angle of rotation between bodies
i and j can be expressed in terms of the generalized orientation coordinates of the bodies i and j and
is given by Eq. (6).

δβji = hijT (δπj − δπi), (6)

with δπi = Giδβi and δπj = Gj δβj . Using the principle of virtual work in terms of the virtual
change in the generalized coordinates, as explained by Nada et al.,19 the expressions of the generalized
external forcesQi and Qj associated with the coordinates of the two jointed bodies i and j can be
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Table I. DH parameters and joint type indicator of the SRLFJ robot.

1 2 3

σ i 0 0 0
αi (rad) π /2 −π /2 0
ai (m) 0 0.29 0.29
θ i (rad) q1 (0) q2 (0) q3 (0)
ri (m) 0.577 0 0

Fig. 3. SRLFJ robot kinematic diagram according to DH parameters.

obtained (Eqs. (7)–(9)).

δW = T jiδβji = T jihijT (δπj − δπi), (7)

δW = QjT δqj − QiT δqi , (8)

Qi =
[

0
T jiGiT hij

]
, Qj =

[
0

T jiGjT hij

]
. (9)

2.2. Robotics approach
The classical robotics modeling approach is selected to develop a model for the robot with joint
damping as it proved its usefulness for many years. This section describes the basis of mathematical
modeling of robots. The spatial rigid link flexible joint (SRLFJ) robot kinematic model (Fig. 3) can
be represented by the Denavit–Hartenberg (DH) parameters with Euler angles (Z–X–Z; Table I).
While this kinematic model does not account for joint flexibility, it will be assumed that the joint
flexibility effects will take place in the dynamic model. The robot dynamic models can be obtained
using Euler–LaGrange and the Recursive Newton–Euler (RNE) formulations.

The inverse (IDM) and direct dynamic models (DDM) can be represented in Lagrangian
formulation by Eqs. (10) and (11), respectively.21

� (q, q̇, q̈, γ ) = Eaq̈ + 2Ebq̇q̇ + Ecq̇
2 − Eg + Ep, (10)
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Fig. 4. Computational procedure block diagram (from ref. [22]).

q̈ = E−1
a

(
� (q, q̇, q̈, γ ) − 2Ebq̇q̇ − Ecq̇

2 + Eg − Ep

)
, (11)

where

Ea is the kinetic energy symmetric matrix [6nb × 6nb],
Eb is a [6nb × 6nb (nb+1)/2] matrix representing Coriolis acceleration effects,
Ec is a [6nb × 6nb] matrix representing the centrifugal force effects,
Eg is a vector representing the gravity forces coefficients [6nb × 1],
Ep is the vector of perturbation forces [6nb × 1], and
nb is the number of links in the robot.

As the presence of the damper causes energy losses, the equation representing the actual driving
torques in flexible joint robots needed to be modified to account for these losses as shown in Eq. (12).

� = � (q, q̇, q̈, γ ) − cr q̇, (12)

where

� is the generalized torque acting on the joint,
� (q, q̇, q̈, γ ) is the computed torque acting on the perfect joint,
γ is the term that includes the robot inertias and center of gravity coordinates,
cr is the rotational damping coefficient,
q is the joint angle,
q̇ is the joint angular velocity,
q̈ is the joint angular acceleration.

The obtained dynamic models are used to develop a numerical algorithm. The following steps are
used for simulating the dynamic behavior of any robot (Fig. 4):

1. planning and generation of the desired tool center point (TCP) trajectory (Xdesired),
2. inverse kinematics position model (IKPM),
3. IDM,
4. DDM,
5. integrating the joints’ angular accelerations and minimizing the integration error to get the angular

velocities and displacements,
6. direct kinematics position model (DKPM), and
7. comparing the desired trajectory with the actual one.

3. Estimation of Robot Inertial and Flexibility Parameters
The SRLFJ robot is developed using the computer-aided design (CAD) NX, taking into consideration
the practical data of the available materials and components (Fig. 5).22 Also, it is used to determine
the robot inertial parameters, locations of links’ centers of gravity and the joints’ coordinates data
(Table II). The mass is verified by weighing the SRLFJ robot. Since the identification of the accurate
values for the joints’ damping coefficients is not the focus of this paper, estimated values are used.
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Table II. Inertial parameters of the SRLFJ links.

Body Mass (kg) Ixx (kg m2 ) Iyy (kg m2 ) Izz (kg m2 ) Ixy (kg m2 ) Ixz (kg m2 ) Iyz (kg m2 )

Link 1 3.136 1.406E-1 2.01E-2 1.28E-1 −7.9E-3 −3.95E-3 2.04E-2
Link 2 6.202 2.51E-2 1.3E-1 1.13E-1 5.36E-5 1.21E-2 2.18E-5
Link 3 0.412 1.41E-4 4.05E-3 3.92E-3 −2.5E-5 −1.37E-5 2.45E-7

Table III. SRLFJ robot BFC position and orientation.

Body name Rxi (m) Ryi (m) Rzi (m) ϕi(rad) θ i(rad) ψi(rad)

Ground Body 1 0 0 0 0 0 0
Link 1 Body 2 −0.0185 0.043 0.376 0 π /2 0
Link 2 Body 3 0.00044 0.00323 0.5837 0 0 0
Link 3 Body 4 0.3895 0.0012 0.5713 0 0 0

Fig. 5. SRLFJ robot CAD model.

The first and the second links are made of acrylic, with the exception of the actuators and the joint
components. The second link has two counterbalance iron masses of 2.15 kg each to adjust the center
of mass of the second link closer to the joint center. This reduces the driving torques, hence decreasing
the power requirements to drive the robot. The third link is a steel beam.

Table III gives the SRLFJ robot bodies fixed coordinates (BFC) position and orientation using
Cartesian coordinates and Euler angles (Fig. 6). All body forces are neglected and the initial velocities
are equal to zero.

3.1. Estimation of joints’ flexibility coefficients
Estimation of the joints’ parameters is needed for the experimental verification process (Fig. 7).
A modified flexible joint model (Fig. 8) is developed based on the simulation results which will
be discussed in the paper. The joints’ flexibility is a direct result of many sources such as flexible
elements assumed rigid (shafts, gears), lubrication, friction, flux losses, gyroscopic effect, and other
miscellaneous sources. Among these sources are the gear teeth compliance and the motor shaft
stiffness which are considered in this section. Since the finite element analysis of helical gears to
evaluate their compliances is not within the scope of this work, a more basic approach is used to
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Fig. 6. SRLFJ robot kinematic diagram with multibody BFCs.

Fig. 7. Modular SRLFJ robot.
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Table IV. Data and computations for the first flexible joint.

Body D = 2r (mm) � (deg) b (mm) h (mm) L (mm) I (mm4) k (Nm/rad)

Gear 1 7 18 4 1.35 1.5 1.845 1340
Gear 2 32.5 18 4 1.35 1.5 1.845 28,871
Gear 3 11 9 6 1.35 1.5 1.23 2204
Gear 4 45 9 6 1.35 1.5 1.23 36,900
Shaft 10 – – – 62 981.75 1267

Fig. 8. Modified flexible joint.

approximately estimate the stiffness coefficients of helical gears and their contribution to the joint
stiffness. The gears and motor shaft parameters were obtained from the hardware components. Some
assumptions are made to assist in this stiffness estimation:

1. The flexible joint stiffness coefficients are results of the gears and shafts only.
2. Gear teeth are assumed to be cantilever beams.
3. The rotational stiffness of the gear tooth is equal to that of the cantilever beam multiplied by

square the gear radius. This basic approach is used for simplicity as a preliminary method of
estimation.

4. All gears and shafts are made of steel with E = 207 GPa and G = 84 GPa.
5. The system is a group of springs in series.

The gear stiffness coefficient values are estimated using traditional cantilever beam equation and
the mass moment of inertia of the rotor shafts. Table IV provides the data and the results for the first
flexible joint.

The estimation of joints’ damping coefficients is more complex. The lubricants’ viscosity varies
with changes in both temperature and speed. Eschmann et al.23 provided the empirical procedures
for the damping coefficients estimation in rolling contact bearings. To estimate the joints’ damping
coefficients the following assumptions are taken into consideration:

1. A flexible joint damping coefficient is a result of the bearings only.
2. All damping coefficients are motor referred.
3. The bearing holding the worm gear is not taken into consideration.
4. No power losses in the gearbox.
5. Gear traverse pressure angle is 20◦.

The detailed estimation process is presented in Zaher’s thesis,18 and the procedure is explained
in Eschmann et al.23 Video processing techniques via low resolution cameras are used to record the
experimental results. Tables V–XIII present the data used as inputs to the simplified model. The
driving torques are applied as moments on the rotors.
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Table V. SRLFJ robot local coordinates of the 1st point on the revolute joints’ axes.

Local coordinates of the 1st point on

Body i (m) Body j (m)

Joint # 1st body i 2nd body j Xi1 Yi1 Zi1 Xj 1 Yj 1 Zj 1

1 1 2 0 0 0 0.0185 −0.376 −0.043
2 2 3 0.0189 0.2007 –0.00528 0 0 0
3 3 4 0.29 0 0 −0.109 0 0

Table VI. SRLFJ robot local coordinates of the 2nd point on the revolute joints’ axes.

Local coordinates of the 2nd point on

Body i (m) Body j (m)

Joint # 1st body i 2nd body j Xi2 Yi2 Zi2 Xj 2 Yj 2 Zj 2

1 1 2 0 0 1 0.0185 0 −0.043
2 2 3 0.0189 0.2007 1 0 −1 0
3 3 4 0.29 0 1 −0.109 0 1

Table VII. TSDA’s axes coordinates of the SRLFJ robot.

Local coordinates of two points along the element
axis on Body i (m)

TSDA # 1st body i 2nd body j Xi1 Yi1 Zi1 Xi2 Yi2 Zi2

1 1 2 0 0 0 0 0 1
2 2 3 0.0189 0.2007 −0.00528 0.0189 0.207 1
3 3 4 0.29 0 0 0.29 0 1

Table VIII. Inertial parameters of the new model.

Body Mass (kg) Ixx (kg m2 ) Iyy (kg m2 ) Izz (kg m2 ) Ixy (kg m2 ) Ixz (kg m2 ) Iyz (kg m2 )

Ground 100 100 100 100 100 100 100
Rotor 1 0.656 1.053E-3 6.94E-5 1.05E-3 1.16E-5 −1.3E-7 −1.12E
Link 1 2.289 6.916E-2 2.20E-2 5.02E-2 3.63E-4 −7.17E-5 1.47E-2
Rotor 2 0.656 1.053E-3 6.94E-5 1.05E-3 1.25E-5 −1.4E-7 −1.13E-5
Link 2 6.24 2.5495E-2 1.34E-1 1.12E-1 −1.2E-3 1.04E-2 8.36E-5
Rotor 3 0.005 3.9E-7 3.9E-7 1.5E-8 5.0E-11 4.0E-9 4.0E-9
Link 3 0.411 1.337E-4 4.02E-3 3.90E-3 −7.68E-5 −3.54E-5 2.03E-6

Table IX. Position and orientation of the reference frames.

Body name Rxi (m) Ryi (m) Rzi (m) ϕi(rad) θ i(rad) ψi(rad)

Ground Body 1 0 0 0 0 0 0
Rotor 1 Body 2 0.00077 0.001733 0.06469 0 π /2 0
Link 1 Body 3 0.00478 −0.05534 0.47136 0 π /2 0
Rotor 2 Body 4 0.00478 −0.15272 0.57875 0 0 0
Link 2 Body 5 0.00918 0.01032 0.5832 0 0 0
Rotor3 Body 6 0.29729 0.0073 0.615 0 0 0
Link 3 Body 7 0.4049 0.00354 0.57109 0 0 0
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Table X. TSDA’s damping and stiffness coefficients.

Joint 1 2 3

TSDA # 1 2 3 4 5 6

cr 2.36E-5 0 1.325E-5 0 6.5E-6 0
kr 0 488 0 503 0 67

Table XI. Local coordinates of the 1st point on each body for revolute joints axes.

Local coordinates of the 1st point on

Body i (m) Body j (m)

Joint # 1st body i 2nd body j Xi1 Yi1 Zi1 Xj 1 Yj 1 Zj 1

1 1 2 5E-5 1.03E-3 2.99E-3 −7.2E-4 −0.0617 7E-4
2 2 3 1.48E-3 0.1253 −1.42E-3 −2.53E-3 −0.2814 −0.0585
3 3 4 −7.9E-4 0.1081 0.1591 −7.9E-4 −0.0617 7.1E-4
4 4 5 1.58E-3 0.1253 −1.44E-3 −2.82E-3 −0.0377 −5.9E-3
5 5 6 0.2892 −2.0E-3 0.1223 1.06E-3 1.03E-3 9.05E-2
6 6 7 −1.9E-4 −1.8E-4 −0.0155 −0.1078 3.59E-3 2.84E-2

Table XII. Local coordinates of the 2nd point on each body for revolute joints axes.

Local coordinates of the 2nd point on

Body i (m) Body j (m)

Joint # 1st body i 2nd body j Xi2 Yi2 Zi2 Xj 2 Yj 2 Zj 2

1 1 2 2.25E-3 3.15E-3 0.190 1.48E-3 0.1253 −1.42E-3
2 2 3 5.7E-4 4.83E-2 −5.5E-4 −3.44E-3 −0.3584 00.0576
3 3 4 6.1E-4 0.1068 0.0491 6.1E-4 0.0483 −5.5E-4
4 4 5 6.1E-4 4.83E-2 −5.5E-4 −0.0038 −0.1148 −5E-3
5 5 6 0.2882 −2.9E-3 0.0423 1.2E-4 1.2E-4 0.0105
6 6 7 1.2E-4 1.2E-4 0.0105 −0.1075 3.88E-3 0.05441

Table XIII. TSDAs axes coordinates.

Local coordinates of two points along the element
axis on body i (m)

TSDA # 1st body i 2nd body j Xi1 Yi1 Zi1 Xi2 Yi2 Zi2

1 1 2 5E-5 1.03E-3 2.99E-3 2.25E-3 3.15E-3 0.190
2 2 3 1.48E-3 0.1253 −1.42E-3 5.7E-4 4.83E-2 −5.5E-4
3 3 4 −7.9E-4 0.1081 0.1591 6.1E-4 0.1068 0.0491
4 4 5 1.58E-3 0.1253 −1.44E-3 6.1E-4 4.83E-2 −5.5E-4
5 5 6 0.2892 −2.0E-3 0.1223 0.2882 −2.9E-3 0.0423
6 6 7 −1.9E-4 −1.8E-4 −0.0155 1.2E-4 1.2E-4 0.0105

4. Computation Procedure and Simulation Algorithm
Robots are used to perform certain tasks in a certain time span. To perform these tasks, the TCP of
a robot end-effector must follow a certain path or trajectory in space. Hence, a trajectory generation
technique using spline functions is used by Megahed22 to determine the global coordinates, velocities,
and accelerations of the robot TCP along the desired path for the desired time span. Hence, the joints’
angles coordinates can be calculated using the inverse kinematics as explained by Zaher18 and
Megahed.22 The orientations of the links are chosen such that the joint angle coincides with one of
the Euler angles of the link driven by the joint. Selecting the orientations in such manner allows for
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Fig. 9. Flowchart of the multibody Code.

the calculation of the generalized forces and coordinates using the IDM and the DDM (Eqs. (1) and
(2)) respectively (Fig. 9). Through comparison and solving, it can be shown that actual orientation of
the TCP of the SRLFJ robot using Euler angles (Z–X–Z) can be written in terms of the joints’ angles
(Eq. (13)).

φ = q1 − π

2
θ = q2

ψ = q3 + π

2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (13)

The robot TCP desired trajectory is selected as a straight line based on the ideal case robot. A
spline trajectory is outlined in analytical form22 such that all velocities and accelerations start and
end to rest. The initial and final positions of the robot’s TCP are:

� Initial positions robot joints angles (0◦, 0◦, 0◦) and the Cartesian global coordinates of the TCP
adjacent to these joint angles are (0.58, 0, 0.577) meters.

� Final positions of robot joints angles (–145◦, 45◦, 80◦) and the adjacent Cartesian global coordinates
of the TCP of these angles are (–0.0333, –0.3720, 0.8177) meters.

� The desired execution time is set to be 5 s.

Figures 10–12 show the joints states for the desired trajectory of the ideal robot. Figures 13 and
14 show the desired trajectory coordinates and orientations of the ideal robot. The driving torques
are obtained using the robotics methodology. Using curve fitting code, the torque polynomials can
be obtained. Figures 15–17 show the smoothed driving torques curves for the desired trajectory. The
Newton–Raphson iterations are used with a limit of 1000 iterations. The absolute error tolerance is
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Fig. 10. Trajectory joints angles of the SRLFJ robot.

Fig. 11. Trajectory joints angular velocities of the SRLFJ robot.

set to 1E-6. Adams integrator and the fixed step integrator Explicit Runge–Kutta (Dormand–Prince)
methods are used with this model.

5. Simulation and Experimentation
The simulations are conducted in three phases. In the first phase, the modified generalized joint model
is used. This phase resulted in the elimination of the joint stiffness between the stator and the rotor. In
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Fig. 12. Trajectory joints angular accelerations of the SRLFJ robot.

Fig. 13. SRLFJ robot TCP desired trajectory coordinates.

the second phase, a parametric study was conducted over a random logarithmic range for the effect
of the damping on the positioning error. The third and final phase used the modified model deducted
from the results of the previous phases and the estimated empirical parameters were used. The results
from the third phase and the experimental setup have been compared.
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Fig. 14. SRLFJ robot TCP desired trajectory orientations.

Fig. 15. Driving torque of the first joint.

5.1. Elimination of the stator-rotor stiffness
The absolute difference of the TCP position from the ideal case is obtained by the calculating the
norm of total Cartesian deviations. For this reason, the coefficients’ values are selected via trial and
error such that the maximum absolute TCP error from the ideal case does not exceed ±1 mm which
is a high accuracy specification for industrial robots. Through random iterations over the log scale;
the values of the coefficients have been tested. Figure 18 demonstrates that for very small values of
spring stiffness coefficients between the stator and the rotor, the SRLFJ robot’s TCP will miss its
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Fig. 16. Driving torque of the second joint.

Fig. 17. Driving torque of the third joint.

desired location by over 30 mm. Because real joint stiffness coefficients are of much higher values,
It is concluded that the spring stiffness between the stator and the rotor cannot physically exist (i.e.
kr = 0 Nm/rad). Hence, spring stiffness can only exist between the rotor and the link. This allows for
the development of the new modified model containing only stiffness between the rotor and the link
and a damping between the stator and the rotor (Fig. 8).
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Fig. 18. Effect of joint stiffness between the stator and the rotor on the TCP position.

5.2. Parametric study on the damping effect
Figure 19 presents the effect of the damping coefficient of the first joint on the absolute TCP position
deviation relative to that of the ideal case. The damping of the first joint causes the TCP to deviate
accumulatively from the perfect case. It is noticed that for the highest selected value of cr 1, the error
decreases when cr 3 is set to a value other than zero. This implies that it is possible to use the other
joints to compensate for the deviation caused by the first joint. From Figs. 19–21, it can be deduced
that the effect of the joint damping coefficients cr 1, cr 2 and cr 3 on the robot TCP positioning is
dependent on both the value and the location of the damping. It can be noted that the effect of cr 1 is
the highest; and that effect of cr 3 on the deviation is higher than cr 2. Figure 22a shows that for low
values of cr 1, the damping effect on the TCP position tends to be negligible as the other damping
values act as the dominant parameters. However, when cr 1 is set to a higher value, it starts to affect the
TCP position leading it to become closer to the ideal target point, even though the trajectory tends to
be wavy around that caused by the other damping coefficients. Figure 22b shows that for low values
of cr 2, the damping effect on the TCP position tends to be negligible as the other damping values act
as the dominant parameters. However, when cr 2 is set with a higher value, it starts to affect the TCP
position leading it to become closer to the ideal target point. Also, it decreases the overall deviation
at all points along the selected trajectory. Figure 22c shows that for low values of cr 3, the damping
effect on the TCP position tends to be relatively small, while the other damping values act as the
dominant parameters. However, the higher the value of cr 3, the closer the TCP follows the trajectory
of the ideal case.

Also, for the high value of cr 3, an overcrossing between curves occurs which can be related to
the individual coordinates’ deviations occurring as seen from Fig. 23. While the deviation in some
coordinates is large for certain damping coefficient values, for these same values the deviation could
be small.

5.3. Experimental verification
The experimental results give TCP coordinates similar to that of the perfect joint robot (Fig. 24),
however, the simulation with the new model provides entirely different results. For instance it is
noticeable that the Z-axis of the simulated results moves in the opposite direction to the expected
results. This is attributed to the presence of multiple possible solutions for an IDM model which
cannot be controlled without adding geometrical constraints on the motion. It is noticed that the
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Fig. 19. Parametric study of the effect of cr 1 on the TCP position.

Fig. 20. Parametric study of the effect of cr 2 on the TCP position.
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Fig. 21. Parametric study of the effect of cr 3 on the TCP position.

Fig. 22. Effect of the high damping coefficient values on the TCP.
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Fig. 23. Study of the overcrossing in coordinates with variable cr 3.

Fig. 24. TCP Cartesian coordinates.
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Fig. 25. Absolute TCP positional deviation.

experimental results give high deviation from that estimated via the simulation codes. However,
the fluctuation of the absolute deviation (Fig. 25) suggests that low resolution cameras, and image
processing mathematical errors contribution to the deviation is high. Also, the accumulative error
of the physical system, poor quality rapidly deteriorating motors, as well as the contribution of the
flexible joint itself contribute to the deviation.

6. Conclusions
This paper studies the effect of joints flexibilities on the dynamic performance of a serial robot arm of
rigid links. Generalized dynamic models of n-link serial robot including a number of flexible joints
is developed using multibody dynamics approach. A numerical algorithm and experimental test-rig
are developed to simulate the obtained dynamic models in which Lagrange multipliers and numerical
integration methods are implemented and applied to a three-link robot arm test-rig (SRLFJ) of type
RRR. The approximate values of the joints’ flexibility coefficients are estimated empirically. The
obtained simulation results are compared with those of the ideal case of perfect geometry joints. The
results show the significant contribution of joint damping to the robot inaccuracies A new model
for flexible robot joints is developed. The experimental results agree to a large extent with the final
developed model simulations. The experimental results show that the test-rig needs to be enhanced
using more accurate equipment, and that the model neglects the unmodeled dynamics and errors
in the parameter estimations. Further work to be done is to enhance upon the multibody model in
order to improve on the flexibility model, improve the experimental setup to allow for more advanced
control algorithms to be researched, and design a robust feedback controller for flexible joint robots.
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