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Quinone reductase activity is widespread in lichens
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Abstract

In our earlier work, we demonstrated that the oxidases tyrosinase (TYR), laccase (LAC), and a heme peroxidase (POX) occur widely in
lichens. Here we report on the occurrence of another oxidoreductase enzyme, quinone reductase (QR) (EC 1.6.5.5). While QR has been
reported to occur widely in other organisms, there is currently no information on QR activities in lichens. Here we present a survey of
QR activity in 14 species of lichens. Results demonstrate that QR activity is readily detectable in all lichen species tested. However, activities
vary greatly, with ‘jelly’ lichens in the genera Collema and Leptogium having the highest activities. QR, LAC and POX are all believed to have
a role in extracellular hydroxyl radical production. However, in this study no correlation was found between the activities of these enzymes
and the rates at which hydroxyl radicals were produced. Possible roles for QR in lichen biology are discussed.
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Introduction

Recent studies have demonstrated that lichens contain a wide
variety of hydrolases and oxidoreductase enzymes such as cel-
lulases, tyrosinases (TYR), laccase (LAC), and heme peroxidases
(POX) (Beckett et al. 2013). While these enzymes probably play
a great variety of lichen biology roles, in free-living fungi their
main function is to participate in soil lignocellulose transforma-
tions (Andlar et al. 2018). These transformations, particularly
for refractive residues, require the production of reactive oxygen
species (ROS), with perhaps the most important being the
hydroxyl radical (Bissaro et al. 2018). We recently showed
that given a quinone and chelated ferric ions, many lichens
can readily produce hydroxyl radicals (Moyo et al. 2017).
While the precise mechanism of hydroxyl radical formation
remains unclear, it appears to involve a form of extracellular
quinone cycling. It has been proposed that chelated Fe3+ reacts
with hydroquinones producing Fe2+ and semiquinone radicals.
These radicals then spontaneously form quinones, reducing O2

to .OOH in the process; the .OOH radical dismutates to H2O2.
H2O2 and Fe2+ react together to give hydroxyl radicals, while
hydroquinones are regenerated from the quinones using a
reductase on the surface of the hyphae (Arantes & Goodell
2014). The whole process has been called ‘hydroquinone-redox
cycling’, and an essential aspect of this mechanism is that
potentially harmful hydroxyl radical production can occur at

a distance from the fungal hyphae. In white-rot fungi, evidence
has been presented that enzymes such as laccases and
peroxidases assist in the conversion of hydroquinones to
quinone radicals (Gómez-Toribio et al. 2009a, b). The com-
bined presence of cellulases, redox enzymes and extracellular
redox cycling may enable lichens to obtain carbon from
lignocellulosic residues in their substratum, supplementing
carbon obtained by photosynthesis, and thus facilitating a
partly saprotrophic existence (Beckett et al. 2015).

A requirement in all models of extracellular redox in free-
living fungi is that hydroquinones need to be regenerated from
quinones by the enzyme quinone reductase (QR, EC 1.6.5.5)
(Martinez et al. 2009). QR is a widely distributed flavin adenine
dinucleotide (FAD) -containing enzyme that can reduce a range
of quinones (e.g. menadione) but also azo dyes and nitro groups.
In addition to a role in extracellular redox cycling, it has been sug-
gested that QR could protect cells by reducing quinones to less
harmful hydroquinones, reducing the risk of oxidative stress
(Rao et al. 1992), and more generally play a role in stress tolerance
(Cohen et al. 2004). However, the occurrence and properties of
QR in lichens have not yet been studied.

The aim of the present study was to determine QR activity in a
range of lichen species and test factors that might affect quinone
reductase activity, such as the presence of exogenous quinones
and desiccation. To elucidate the role of QR and other redox
enzymes in hydroxyl radical formation, QR, LAC and POX activ-
ities were measured in all species surveyed and correlated with
hydroxyl radical production rates. Results suggest that while
high QR is common in many lichens, no simple correlation exists
between the rates of hydroxyl radical production and QR, LAC or
POX activities.
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Materials and Methods

Plant material

Collection localities for the 14 lichen species tested are given in
Table 1. In addition to the species used in the survey, some pre-
liminary experiments to determine the pH optima of QR were
carried out on Peltigera didactyla collected from the outskirts of
Zittau, Germany. If collected wet, material was air dried between
layers of filter paper. All material was kept refrigerated for a
maximum of four weeks before use. Unless the effect of
desiccation on enzyme activity was being studied, before each
experiment air-dried material was weighed into replicates, and
then rehydrated for 24 h on wet filter paper at 13 °C and a light
intensity of 30 μmol m−2 s−1. A small correction for the difference
between air-dry and oven-dry weight was applied when expres-
sing enzyme activities on a dry mass basis.

Measurement of enzyme activities

The activities of QR, LAC and POX were measured using three bio-
logical replicates, each comprising the equivalent of c. 0.5 g dry mass.
Material was ground in 10ml of 50mM phosphate buffer pH 7, cen-
trifuged at 5000 g for 20min, and the supernatant stored at −24 °C
until required. All chemicals were purchased from Sigma-Aldrich
(St Louis, USA). LAC activity was estimated by following the oxida-
tion of 0.3 mM 2, 2-azino-bis (3-ethylthiazoline-6-sulfonate) (ABTS)
(ε420 = 36mM−1 cm−1) in 50mM sodium acetate buffer pH 4.5
(Eggert et al. 1996). POX activity was estimated as the stimulation
of the rate of ABTS oxidation following the addition of 0.1 mM
H2O2 (Liers et al. 2011). QR activity was assayed by following the
rate of oxidation of 62.5 μM NADH (ε340 = 6.22mM−1 cm−1) in a
mixture of 20 μM flavin mononucleotide (FMN) and 30 μM 2,

6-dimethoxy-1, 4-benzoquinone (DMBQ) in phosphate buffer pH
7 (Bongard et al. 2011). This pH was chosen based on initial experi-
ments using repeat analytical replicates from a large volume of crude
extract derived from c. 10 g dry mass of Peltigera didactyla. Results
showed that the activity of QR from the lichen has a broad pH opti-
mum, with activity changing little from pH 5 to 8 (Fig. 1), similar to
QR activity in free-living fungi (Brock et al. 1995; Brock & Gold
1996).

Measurement of hydroxyl radical formation

Hydroxyl radical formation was estimated by measuring the oxi-
dation of deoxyribose (Moyo et al. 2017). Briefly, typically four
replicates comprising the equivalent of 0.2 g dry mass were gently
shaken in 20 ml of 20 mM phosphate buffer pH 5 containing
0.5 mM 6-dimethoxy-1, 4-benzoquinone (DMBQ), 0.1 mM
FeCl3, 0.6 mM oxalic acid and 2.8 mM deoxyribose. Samples
(990 μl) were taken at the start, and after 1, 2, 3 and 4 h, 10 μl
50% H3PO4 was added as a stop solution and then the samples
were frozen. Later, samples were thawed and 50 μl was mixed
with 250 μl of 2.5% trichloroacetic acid and 250 μl of 1% thiobar-
bituric acid in 50 mM NaOH, and the volume made up to 1 ml.
Samples were heated in water at 90 °C for 10 min. Blanks were
solutions lacking lichen material but otherwise treated in the
same way. Readings were converted to MDA equivalents (ε532 =
0.156 μM cm−1; Devasagayam et al. 2003), and rates of hydroxyl
radical production estimated by linear regression over 4 h.

Effect of desiccation and hydration on QR activity

To determine the effect of hydration and desiccation on QR activ-
ity in Leptogium furfuraceum, lichens were subjected to

Table 1. Collection localities, quinone reductase (QR) activity, rates of hydroxyl radical production and the activities of laccase (LAC), and heme peroxidase (POX)
activity in a range of lichen species. Values are given ± 1 SD, n = 4. ND = Not determined.

Species Collection locality

QR activity
(units g−1 dry

mass)

Hydroxyl radical
production

(μmol g−1 dry
mass h−1)

LAC activity
(units g−1 dry

mass)

POX activity
(units g−1 dry

mass)

Cetrelia cetrarioides (Delise ex Duby) W.L. Culb.
& C.F. Culb.

Fort Nottingham, RSA 2.27 ± 0.21 0.34 ± 0.07 0.86 ± 0.07 3.09 ± 0.32

Collema lactuca (Weber) F.H. Wigg. Fort Nottingham, RSA 73.87 ± 3.95 0.04 ± 0.01 4.38 ± 0.75 18.46 ± 3.32

Crocodia aurata (Ach.) Link Monks Cowl, RSA 4.57 ± 0.51 0.60 ± 0.23 3.58 ± 0.31 2.89 ± 0.22

Heterodermia leucomela (L.) Poelt Fort Nottingham, RSA 4.68 ± 0.54 0.54 ± 0.22 ND ND

H. speciosa (Wulfen) Trevis. Monks Cowl, RSA 5.83 ± 0.90 0.90 ± 0.23 0.12 ± 0.09 4.23 ± 1.65

Lasallia pustulata (L.) Mérat Rock, outskirts of Colmar,
France

0.60 ± 0.07 0.42 ± 0.04 0.2 ± 0.02 0.02 ± 0.01

Leptogium furfuraceum (Harm.) Sierk Fort Nottingham, RSA 39.22 ± 4.13 0.71 ± 0.04 0.1 ± 0.02 4.3 ± 0.52

Lobaria retigera (Bory) Trevis. Monks Cowl, RSA 8.70 ± 0.57 0.23 ± 0.19 1.01 ± 0.21 2.09 ± 0.16

Nephroma helveticum Ach. Monks Cowl, RSA 8.53 ± 0.19 0.19 ± 0.02 0.82 ± 0.34 2.14 ± 0.12

Peltigera membranacea (Ach.) Nyl. Outskirts of Kazan, Russia 21.10 ± 0.51 0.01 ± 0.00 8.7 ± 0.38 0.00 ± 0.00

Ramalina celastri (Spreng.) Krog. & Swinsc. Fort Nottingham, RSA 6.64 ± 0.35 0.86 ± 0.12 0.54 ± 0.04 0.74 ± 0.12

Roccella fuciformis (L.) DC. Beachwood Nature Reserve,
Durban, RSA

4.77 ± 0.20 0.37 ± 0.04 0.12 ± 0.02 0.05 ± 0.01

Sticta limbata (Sm.) Ach. Fort Nottingham, RSA 5.73 ± 0.56 0.76 ± 0.18 0.76 ± 0.25 0.01 ± 0.00

Usnea undulata Stirton Fort Nottingham, RSA 7.95 ± 0.59 0.76 ± 0.07 3.24 ± 0.84 1.67 ± 0.54
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continuous hydration and desiccation treatments. For QR activity,
each replicate comprised 1 g dry mass of the lichen material, and
there were three biological replicates in each treatment. For meas-
urement of changes in relative water content (RWC), four repli-
cates of c. 200 mg dry mass were used, and to determine turgid
weights, material was incubated in distilled water for 1 h and
weighed just before the start of the experiment as recommended
by Beckett (1995). In the continuous hydration treatment, dry
material was placed hydrated on wet filter paper in a growth cab-
inet at 13 °C and a light intensity of 30 μmol m−2 s−1. Samples
were measured for RWC and QR activity after 0, 1, 6, 24, 72
and 120 h. In the desiccation treatment, the material was first
hydrated for 24 h and then placed in Petri dishes and suspended
above a saturated solution of CaCl2 in a desiccator, which was
placed in the growth cabinet. At 13 °C, the CaCl2 solution gave
a relative humidity of c. 35% and allowed for a reasonably slow
drying (Fig. 2A). Samples were taken for RWC and QR activity
measurements after 0, 12, 24, 48, 72 and 120 h. At each point
RWC was estimated in replicate samples of material as (fresh
mass− dry mass) / (turgid mass − dry mass), with dry mass mea-
sured after drying replicate material for 48 h at 80 °C.

Effect of DMBQ on QR activity

Approximately 0.5 g (three biological replicates) of fresh mass of
Leptogium furfuraceum was gently shaken in flasks containing
0, 0.12, 1.2 mM and 12 mM DMBQ for 1 h, then placed on wet
filter paper at 13 °C, 30 μmol m−2 s−1 for 24 h. QR activity was
then assayed as above.

Data analysis

Correlations between the parameters measured were calculated
using SPSS version 25.

Results and Discussion

QR activity and correlation with other parameters

All lichens tested possessed at least some QR activity, although
activity varied significantly between species (Table 1). The highest
activity occurred in the ‘jelly’ lichens Collema lactuca and
Leptogium furfuraceum, with 74 and 39 units g−1 dry mass
respectively. By contrast, the lowest activity was found in

Lasallia pustulata with only 0.6 units g−1 dry mass. With the
exception of C. lactuca and Peltigera membranacea, all species
tested could produce hydroxyl radicals, and rates were similar
to those reported by Moyo et al. (2017). However, there were
no significant correlations between rates of hydroxyl formation
and QR, LAC or POX activity (Table 2). Similarly, QR activity
was not correlated with LAC activity, although there was a strong
positive correlation between POX and QR activity. As discussed in
the Introduction, all models of extracellular quinone redox cycling
in free-living fungi require the regeneration of hydroquinones
from quinones (Gómez-Toribio et al. 2009a, b; Arantes &
Goodell 2014). Intuitively, it could be predicted that possessing
higher QR activities would enable lichens to produce hydroxyl
radicals at higher rates. However, the absence of a correlation
between QR activity and hydroxyl radical formation rates found
here does not necessarily mean that the enzyme is not involved
in redox cycling. Possibly, rates of hydroxyl formation might be
limited by factors other than QR activity. Furthermore, our
extraction procedure and QR enzyme activity assay did not
allow us to distinguish between different QR isoforms.
Free-living fungi contain multiple isoforms and while some
drive a bio-degradative quinone redox cycle, others appear to be
more important in general stress tolerance (Cohen et al. 2004).
Future studies, probably at the molecular level, are needed to
determine the number and cellular location of different lichen

Fig. 1. Effect of pH on quinone reductase (QR) activity in Peltigera didactyla. Error
bars are not included as they were smaller than the symbols, n = 4.

Fig. 2. A, effect of desiccation over a saturated solution of CaCl2 (corresponding to a
relative humidity of 35%) on the relative water content (RWC) of Leptogium furfura-
ceum. B, effect of hydration from the desiccated state (open circles), and slow desic-
cation (closed circles, above saturated CaCl2) from the hydrated state on quinone
reductase (QR) activity in L. furfuraceum. Values are given ± 1 SD, n = 4.
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QR isoforms. The absence of correlations between rates of
hydroxyl production and the activities of LAC and POX is con-
sistent with our earlier findings in Usnea undulata (Beckett
et al. 2015) and later surveys of a range of lichen species (Moyo
et al. 2017), and suggests that hydroxyl radical production in
lichens does not require redox enzymes to facilitate the oxidation
of hydroquinones. Extracellular redox cycling in lichens therefore
more closely resembles that in brown- rather than white-rot fungi
(Gómez-Toribio et al. 2009a, b; Arantes & Goodell 2014).

Effect of desiccation and pretreatment with DMBQ on QR
activity

The effect of hydration and slow desiccation on QR activity is
shown in Fig. 2B. During the hydration of dry material, QR activ-
ity progressively increased for 48 h, but longer periods of hydra-
tion reduced QR activity. In other lichens, prolonged moist
storage has been found to cause similar reductions in the activities
of other redox enzymes (LAC, TYR and POX) (Beckett et al.
2014), probably as a result of the well-known stresses caused by
continuous hydration (Farrar 1976). Relatively slow desiccation
did not induce QR activity, rather activity progressively decreased
(Fig. 2B). It has been suggested that QR activity is involved in the
stress tolerance of fungi (Cohen et al. 2004). While possibly under
conditions of even slower desiccation some increases in activity
may occur, drying rates were lower than those that have been
observed for lichens in the field (e.g. Leisner et al. 1997).
Therefore, results from the present study suggest that the enzyme
plays little role in desiccation tolerance.

In free-living fungi, QR activity is strongly induced by quinones
and vanillic and ferulic acids, by-products of delignification, sug-
gesting that they may be involved in the metabolism of the break-
down of toxic soil compounds (Brock et al. 1995; Akileswaran et al.
1999). However, unlike free-living fungi, pretreatment of Leptogium
furfuraceum with DMBQ in the present study had very little effect
on QR activity (Fig. 3). The absence of an induction of QR by
exogenous quinones may mean that in this lichen QR activity is
not involved in quinone detoxification.

Conclusions

Taken together, the results presented here show that, as for free-
living Ascomycetes (Espagne et al. 2008), QR activity is

widespread in lichens. Activity varies greatly between species
and is notably high in jelly lichens from the Collemataceae, but
there are no clear reasons for large variations in activity. While
all models of extracellular redox cycling proposed for fungi sug-
gest that the enzyme is essential, in the present study QR activity
was not correlated with rates of hydroxyl radical production.
Presumably, factors other than QR activity limit rates of hydroxyl
radical production. However, QR probably plays other roles in
lichen biology. In Leptogium furfuraceum, QR activity was not
induced by desiccation (Fig. 2B) or the exogenous application
of a quinone (Fig. 3), suggesting that the enzyme might not be
involved in tolerance to these stresses. However, in future it
would be desirable to test the effects on activity of treatment
with other quinones, and more generally subjecting thalli to
other stresses. Such studies will enable us to understand in
more detail the regulation and physiological functions of QR
activity in lichens.
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Fig. 3. The effect of incubating Leptogium furfuraceum with different concentrations
of 6-Dimethoxy-1, 4-benzoquinone (DMBQ) on quinone reductase (QR) activity after
24 h. Values are given ± 1 SD, n = 4.

Table 2. Pearson correlations between quinone reductase (QR) activity, rates of hydroxyl radical formation, and the activities of laccase (LAC) and heme peroxidase
(POX) in the lichens surveyed.

Activity Hydroxyl radical production LAC POX

QR Pearson Correlation −0.403 0.362 0.876**

Sig. (2-tailed) 0.173 0.224 0.000

n 13 13 13

Hydroxyl radical
production

Pearson Correlation −0.537 −0.328

Sig. (2-tailed) 0.072 0.298

n 13 13

LAC Pearson Correlation 0.203

Sig. (2-tailed) 0.505

n 13

** = correlation is significant at P≤ 0.05 (2-tailed).
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