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Abstract In a recent paper, Gross and Reeder study the arithmetic properties of discrete Langlands
parameters for semi-simple p-adic groups, and they conjecture that a special class of these – the simple

wild parameters – should correspond to L-packets consisting of simple supercuspidal representations. We

provide a construction of this correspondence, and show that the simple wild L-packets satisfy many
expected properties. In particular, they admit a description in terms of the Langlands dual group, and

contain a unique generic element for a fixed Whittaker datum. Moreover, we prove their stability on an

open subset of the regular semi-simple elements, and show that they satisfy a natural compatibility with
respect to unramified base-change.
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Introduction

The local Langlands correspondence predicts a relationship between the irreducible
smooth representations of a p-adic group G and the representations of the local
Weil–Deligne group into the L-group of G; these latter representations are usually
called Langlands parameters. While this relationship remains conjectural, a lot of
progress has been made recently towards establishing it. Led by the framework of
conjectures surrounding the local Langlands correspondence, in particular the formal
degree conjecture of Hiraga, Ichino, and Ikeda [18], Gross and Reeder, in their
recent paper [15], study the arithmetic properties of discrete Langlands parameters.
They single out a certain class of them, which they call simple wild parameters,
and determine much of their structure. Their study also points them to a certain
class of smooth irreducible representations of p-adic groups, which they call simple
supercuspidal representations, and for which they provide an explicit construction. The
authors then conjecture that the two classes – the simple wild parameters and the
simple supercuspidal representations – ought to correspond under the conjectural local
Langlands correspondence.

In this paper, under mild restrictions on the residual characteristic of F, we explicitly
realize the correspondence between simple wild parameters and simple supercuspidal
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representations. Starting from a simple wild parameter, we construct a finite set of
simple supercuspidal representations and then identify it with the group of characters
of the (finite) centralizer of the parameter, in accordance with the conjectural structure
of L-packets. Our construction is compatible with finite unramified extensions of the
base field. We are able to show the stability of these L-packets for an open subset of
regular semi-simple elements without further restrictions on the residue field of F. We
have learned from Stephen DeBacker that the stability of these L-packets for all regular
semi-simple elements follows from the recent character formulas of Adler and Spice,
under the assumption that the residual characteristic is sufficiently large. Furthermore,
one can show that, if G = SLn, the L-packets we obtain are the correct L-packets. The
general stability and the comparison with SLn will be pursued in a future paper.

An important motivation for studying simple supercuspidal representations and their
Langlands parameters and L-packets comes from the special role they play in global
applications. In [13], Gross studies the sum of multiplicities of cuspidal automorphic
representations of a simple algebraic group G which have a prescribed local behaviour
at a fixed finite set of places and are unramified elsewhere. The local components of
these representations at the finite places in the fixed finite set are required to be either
Steinberg or simple supercuspidal. Using the trace formula, Gross shows that the sum of
multiplicities of these cuspidal automorphic representations can be expressed by special
values of modified Artin L-functions of the motive attached to G. When G is simply
connected and defined over a global function field, Gross’ work implies that there should
be a unique cuspidal automorphic representation whose local components are unramified
except at two places, at one of which the component is Steinberg and at the other it is
simple supercuspidal. This was later proved by Heinloth, Ngo, and Yun, in [19], where
they use this representation to construct an interesting local system on Gm. The local
systems obtained in this way generalize the sheaves constructed by Deligne [11], which
geometrize Klooserman sums.

We will now briefly sketch the construction of the simple wild L-packets and describe
the contents of the paper. Let F be a p-adic field with Weil group WF, and let G be a
split simple simply connected group with complex dual group Ĝ. The notions of a simple
supercuspidal representation and a simple wild parameter are reviewed in ğ 2. Under the
assumption that the residual characteristic p of F does not divide the order of the Weyl
group of G, Gross and Reeder give a precise analysis of the structure of simple wild
parameters. Part of this analysis is summarized at the end of ğ 2. In this paper, we will
impose the weaker condition that p does not divide the Coxeter number of G, and work
with parameters which satisfy the conditions listed at the end of ğ 2. Starting from such
a parameter

φ :WF→ Ĝ,

we first construct a tamely ramified anisotropic torus S defined over F and a stable
conjugacy class of embeddings S→ G. These embeddings, which we call embeddings of
type (C), have very special properties. Their study is the backbone of the construction,
and it takes place in ğ 3. One of the properties of an embedding of type (C) is that the
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point in the building of G(F) associated to it is the barycentre of an alcove. This already
hints at a connection with simple supercuspidal representations, since barycentres of
alcoves play a central role in their construction. Further properties include a precise
description of the structure of the Moy–Prasad filtration of S(F) as well as a result on
the Galois cohomology of S, which implies that two stably conjugate embeddings of type
(C) are rationally conjugate under the adjoint group Gad of G.

The construction of simple supercuspidal L-packets is the subject of ğ 4. Dual to the
stable class of embeddings, S→ G is a Ĝ-conjugacy class of embeddings LS→ Ĝ, where
LS is the L-group of the torus S. The parameter φ then factors as

LS
Lj - Ĝ

WF

φS

6

φ

-

The parameter φS provides a character χ : S(F)→ C×. The Ĝ-class of Lj is not quite
canonical: its construction involves an auxiliary choice. However, the results on the
structure of S(F) established in ğ 3 allow us to conclude that the Gad(F)-conjugacy
class of pairs (j, χ) depends only on the parameter φ. Given such a pair, we consider
the quotient Z(F)G (F)x,1/h /G (F)x,2/h, where x is the point in the building associated
to j and h is the Coxeter number of G, and construct from χ an affine generic
character on that quotient. This is the input from which the construction of Gross
and Reeder produces a simple supercuspidal representation. In summary, we obtain from
the parameter φ a Gad(F)-conjugacy class of pairs (j, χ), and hence a Gad(F)-conjugacy
class of simple supercuspidal representations. This latter conjugacy class is the L-packet
anticipated by Gross and Reeder. We would like to remark that the construction of the
affine generic character from χ is influenced by the work of Adler [1]. In fact, the pair
(j, χ) can be used directly to produce a representation of G(F) via Adler’s construction.
We have chosen the path through affine generic characters instead in order to show that
the packets we obtain are the ones expected by Gross and Reeder.

In ğ 5, we study the internal structure of simple wild L-packets. More precisely,
given a parameter φ, we provide a bijection between the corresponding packet and
the Pontryagin dual of the finite abelian group Cent(φ, Ĝ). Such a bijection is not
unique: it depends on the choice of a Whittaker datum for G. The instrumental result
in this section is the fact that for a fixed Whittaker datum there is precisely one generic
representation in Πφ . This is the statement of the tempered L-packet conjecture of
Shahidi [34] – a property expected to hold for any tempered L-packet. After establishing
this property for our L-packets, we show that each choice of Whittaker datum provides a
canonical bijection between the Pontryagin dual of Cent(φ, Ĝ) and Πφ .

In ğ 6, we study the behaviour of our construction under finite unramified extensions
of the base field. Gross and Reeder conjecture a certain compatibility with respect to
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such an extension, and based on that compatibility deduce that simple wild parameters
and simple supercuspidal representations should correspond. The result of ğ 6 is that our
construction satisfies a compatibility of the expected kind.

The final section, ğ 7, deals with the stability of the simple wild L-packets. We prove,
without further restrictions on F, that the sum of characters in each L-packet is stable
on all regular semi-simple elements belonging to the image of any embedding of type
(C). Thus, we prove stability on an open subset of the regular semi-simple elements.
Moreover, we show that stability does not hold for any proper subset of a simple wild
L-packet.

1. Notation and preliminaries

Throughout the paper, F will denote a p-adic field, i.e., a finite extension of Qp. Its
ring of integers and residue field will be OF and kF. The characteristic of the finite
field kF will be denoted by p, and its cardinality by q. We will write Γ or ΓF for
the absolute Galois group of F, and WF ⊃ IF ⊃ PF for the Weil group and its inertia
and wild inertia subgroups. Similar notation will be used for any other p-adic field
E, with the appropriate subscript changed. If E/F is a finite extension, we will write
Γ (E/F), W(E/F), I(E/F) for the relative Galois, Weil, and inertia groups. We will write
v : F×→ Z for the normalized valuation of F, and we will write v : E×→ e (E/F)−1 Z for
its unique extension to E, where e(E/F) is the ramification degree of the extension E/F.

Given an algebraic group G defined over F, we will write G(R) for the set of points of
G with values in an F-algebra R. The letter Z will denote the centre of G. More generally,
given a subset S ⊂ G, we will write Cent(S,G) for the subgroup of G centralizing S
and N(S,G) for the subgroup normalizing S. The Lie algebra of G will be denoted by
the Fraktur letter g. When G is semi-simple, we will write B(G,F) for the Bruhat–Tits
building of G relative to F, and A(T,F) for the apartment of a given maximal torus T.
Given a point x ∈ B(G,F), we will write G (F)x for the full stabilizer of the point x for
the action of G(F) on B(G,F). Given a real number r > 0, we will write G (F)x,r for the
Moy–Prasad subgroup of G(F). In particular, G (F)x,0 is the parahoric subgroup of G(F)
associated to x, which is a subgroup of finite index in G (F)x. For any real number r, we
also have the Moy–Prasad lattices g (F)x,r.

Assume that G is split and that T is a split maximal torus. We will write Ω(T,G) for
the Weyl group N(T,G)/T. One has Ω(T,G)(F) = Ω(T,G). We will write Ωa(T,G) for
the affine Weyl group N(T,G)(F)/T (F)b, where T (F)b is the maximal bounded subgroup
of T(F). A hyperspecial vertex o ∈A(T,F) endows both T and G with smooth connected
OF-models. When such a vertex is chosen, we will assume this OF-structure understood,
i.e., we will reuse the letters T and G for the OF-models of T and G. We then have
T (F)b = T(OF). The subgroup of Ωa(T,G) which fixes o will be denoted by Ωa (T,G)o.
The composition

Ωa (T,G)o ↪→Ωa(T,G)�Ω(T,G)
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is an isomorphism. As usual, X∗(T) and X∗(T) will be the groups of characters and
cocharacters of T. We will write Q⊂ P⊂ X∗(T)⊗Q for the lattices of roots and weights,
and correspondingly Q∨ ⊂ P∨ ⊂ X∗(T) for the lattices of coroots and coweights.

We would like to recall the following well-known facts, which we will use.

Fact 1.1. Let h be a positive integer coprime to p. The following are equivalent.

(1) F has a primitive hth root of unity.
(2) kF has a primitive hth root of unity.
(3) There exists a totally ramified Galois extension E/F of degree h.

In that case, E = F(ω), where ω is a uniformizer in E and σ(ω)
ω
∈ µh(F) for all

σ ∈ Γ (E/F).

Fact 1.2. Let R be a reduced irreducible root system. Then all bad primes, all torsion
primes, and all primes dividing the connection index of R also divide the Coxeter number
of R.

2. Simple wild parameters and simple supercuspidal representations

In this section, we would like to give a brief review of simple wild parameters and
simple supercuspidal representations, following the work of Gross and Reeder [15]. Let
G be a split, semi-simple, simply connected group defined over F, and let x ∈ B(G,F)
be the barycentre of some alcove C. Let h denote the Coxeter number of G. Assume
that p does not divide h. One consequence of this assumption is the following: if o is a
special vertex in B(G,F), then the natural OF-structure on the centre Z of G is étale and
Z(F)= Z(OF)= Z(kF).

The group G (F)x is an Iwahori subgroup of G(F), and G (F)x,1/h is its pro-unipotent
radical. Choose a maximal torus T whose apartment A(T,F) contains C. Then we have a
direct sum decomposition of kF-vector spaces

G (F)x, 1h
/G (F)x, 2h

=

⊕
Uα/Uα+1,

where α runs over the C-simple affine roots, and Uα ⊂ G(F) is the corresponding affine
root subgroup. Gross and Reeder [15, 9.2] define an affine generic character to be a
character

χ : Z(F)G (F)x, 1h
→ C×

whose restriction to each Uα is the inflation of a non-trivial character of Uα/Uα+1. Given
such a character χ , it is shown in [15, 9.3] that

π = c-IndG(F)
Z(F)G (F)

x, 1h

χ

is an irreducible supercuspidal representation of G(F). These are the simple
supercuspidal representations. In [15, ğ9.5], Gross and Reeder consider the orbits of
Gad(F) in the set of these representations. Each such orbit has order equal to that of
Z(F), and the authors conjecture that it should constitute an L-packet, and moreover
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that the parameter of this L-packet should be a simple wild parameter – an object we
will now describe.

Let φ :WF→ Ĝ be a continuous homomorphism whose image consists of semi-simple
elements. Composing φ with the adjoint representation, we obtain a representation of
WF on the Lie algebra ĝ of Ĝ. Let us restrict this representation to the inertia subgroup
IF. The image of IF in Aut( ĝ ) is a finite group D0, which is the Galois group of a finite
extension L of the maximal unramified extension Fu of F. This Galois group has the
lower ramification filtration

{1} = Dn ⊂ Dn−1 ⊂ · · · ⊂ D0.

The Swan conductor of the representation of WF on ĝ is defined to be the number

b(φ) :=
∑
j>0

dim( ĝ/ĝDj)
|Dj|

|D0|
.

The homomorphism φ is called a simple wild parameter if it satisfies the following two
conditions:

• φ(IF) has no non-trivial invariants in ĝ,
• b(φ)= rk(G).

Under the assumption that p does not divide the order of the Weyl group, Gross
and Reeder [15, Propositions 5.6 and 9.4] carry out a detailed study of the structure of
simple wild parameters. The information we are going to need is the following:

• D2 = {1},
• D1 lies in a unique maximal torus T̂ of Ĝ, in particular,
• D lies in N(T̂, Ĝ),
• the image of D0/D1 in Ω(T̂, Ĝ) is generated by a Coxeter element.

Note that a parameter satisfying this list of properties is a simple wild parameter.
This is because ĝD1 = t̂, and hence ĝD0 is the set of fixed points of a Coxeter element
acting on t̂= X∗(T̂)⊗ C, which is trivial; moreover, the Swan conductor of φ equals

dim( ĝ/̂t)
1
h
=
|R|

h
= rk(G),

where R is the root system of t̂ acting on ĝ.
The assertion of [15, Proposition 5.6] is that, conversely, if p does not divide the order

of the Weyl group, all simple wild parameters satisfy this list of properties.

3. Embeddings of type (C)

3.1. Definition and basic properties

Let S be a torus, G a reductive group, and j : S→ G an embedding such that j(S) is a
maximal torus of G. Assume that all these are defined over F. If j′ : S→ G is a second
such embedding, we call j and j′ stably conjugate if there exists g ∈ G(F) such that
j′ = Ad(g)j. The map j provides an embedding Z(G)→ S defined over F. This embedding
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is unchanged if we replace j by j′. We will call its image in S again Z(G) and we will write
Sad for S/Z(G). The map j also provides an embedding Ω(j(S),G)→ Aut(S) defined
over F. We will call its image Ω(S,G). When we replace j by j′, the subgroup Ω(S,G) of
Aut(S) remains unchanged. Note however that, if the images of j and j′ are the same, the
two identifications of Ω(j(S),G) = Ω(j′(S),G) with Ω(S,G) provided by j and j′ will in
general not be the same. They will differ by conjugation by an element of Ω(S,G)(F).

Let E be the splitting field of S, a finite Galois extension of F. We will call a map
j : S→ G an embedding of type (C) if the following conditions hold:

• S is tamely ramified, i.e., E/F is a tamely ramified extension,
• G is split, semi-simple, and simply connected,
• j is an embedding defined over F,
• j(S) is a maximal torus of G,
• the image of I(E/F) in Aut(X∗(S)) is a cyclic subgroup of Ω(S,G) generated by a

Coxeter element.

Following [30], we can associate to j a point in the Bruhat–Tits building B(G,F),
namely

A (j(S),E)Γ (E/F) ⊂ B (G,E)Γ (E/F) = B(G,F),

where the left-hand side is a singleton set because S is anisotropic.
Embeddings of type (C) behave well with respect to unramified extensions in the

following sense.

Fact 3.1. Let j : S→ G be an embedding of type ( C) defined over F, and let F̃/F be an
unramified extension. Then j × F̃ : S × F̃→ G × F̃ is an embedding of type ( C) defined
over F̃. The splitting field of S × F̃ is EF̃. The restriction map I(EF̃/F̃)→ I(E/F) is an
isomorphism, and it respects the inclusions of both groups into Aut(X∗(S)). Finally, the
vertices associated to j and j× F̃ coincide under the natural inclusion B(G,F)→ B(G, F̃).

Proof. Clear. �

Lemma 3.2. Let S→ G be an embedding of type ( C). Then the map H1(F, S)→
H1(F, Sad) is trivial.

Proof. By Tate–Nakayama duality, this is equivalent to the statement that the map
H1(A,Q)→ H1(A,P) is trivial, where Q ⊂ P are the root and weight lattices of the
root system of G, and A ⊂ A(R) is a subgroup containing a Coxeter element c. Let
B ⊂ A be the cyclic subgroup generated by c. Since PB

= 0, the restriction maps provide
isomorphisms

H1(A,Q)→ H1 (B,Q)A/B H1(A,P)→ H1 (B,P)A/B .

Hence it is enough to prove that the map H1(B,Q)→ H1(B,P) is trivial. This follows
from the fact that for any q ∈ Q there exists p ∈ P with q= p− cp. �

Corollary 3.3. Let j : S→ G be an embedding of type ( C). Then Gad(F) acts transitively
on the stable class of j.
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Proof. Let j′ be stably conjugate to j, and let g ∈ G(F) be such that j′ = Ad(g)j.
Then g−1σ(g) ∈ H1(F, j(S)). Applying Lemma 3.2, we can find t ∈ j(Sad)(F) such that
t−1σ(t)= g−1σ(g). Then gt−1

∈ Gad(F) and j′ =Ad(gt−1)j. �

3.2. Properties of the source of an embedding of type (C)
Let again S be an F-torus, and let E be its splitting field, which we assume to be tamely
ramified. In [7, ğ3], the authors introduce the so-called finite-type Neron model of S. It
is a smooth OF-group scheme of finite type with generic fibre equal to S, whose group
of OF-points equals the bounded subgroup of S(F). Since the generic fibre of the Neron
model of S coincides with S, it will cause no confusion to use the letter S both for the
torus and its Neron model. Let S0 be the connected component of the Neron model.
Then S0(OF) is the Iwahori subgroup of S(F).

We call S inertially anisotropic if there are no I(E/F)-fixed vectors in X∗(S). This is
the case in particular if S is the source of an embedding of type (C). By [5, 10.2.1], such
an S has a Neron model in the classical sense. In fact, all the following integral models
coincide for such a torus: the classical Neron model, the lft-Neron model, the ft-Neron
model, and the standard model.

The topological group S(F) comes equipped with a Moy–Prasad filtration (see [28, 3.2]
or [40, 4.2]), which is defined as follows:

S (F)r = {s ∈ S0(OF)|∀χ ∈ X∗(S) : v(χ(s)− 1)> r}.

Notice that, since the compact group S(OF) is mapped by any χ ∈ X∗(S) into O×E , the
condition v(χ(s)− 1)> 0 is vacuous, and we have

S (F)0 = S0(OF).

On the other hand, if we assume that E/F is tamely ramified, the argument of [40, 4.7.2]
shows that any s ∈ S(F) satisfying v(χ(s)−1) > 0 for all χ ∈ X∗(S) actually lies in S0(OF).
This shows that, for r > 0,

S (F)r = {s ∈ S(F)|∀χ ∈ X∗(S) : v(χ(s)− 1)> r}.

One also has a filtration on the Lie algebra s of S defined for all r ∈ R by

s (F)r = {X ∈ s(F)|∀χ ∈ X∗(S) : v(dχ(s))> r}.

Here, the Neron model does not play a role.

Proposition 3.4. Let S′ → G be an embedding of type ( C), and denote the Coxeter
number of G by h. Let S be a quotient of S′ by any subgroup of Z(G). Then the following
hold.

• S (F)0 = S (F) 1
h
.

• for 0< i< h, the quotients

S (F) i
h
/S (F) i+1

h
and s (F) i

h
/s (F) i+1

h

are canonically isomorphic kF-vector spaces. Their dimension is equal to the
multiplicity with which i appears as an exponent of the root system of G.
• For i= 1 and i= h− 1, the above kF-vector spaces are one dimensional.
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Proof. Recall that E denotes the splitting field of S, and let ω be a uniformizer of E.
We begin with the first statement. Let s ∈ S0(OF) and χ ∈ X∗(S). A priori, we know

that χ(s) ∈ O×E . Using [29, Theorem 1.3] and [24, Theorem 2.2], we see that the special
fibre of S0 is a product of Witt groups. Thus there exists a power pn such that spn

has a
trivial image in S0(kF). It follows from [40, 4.7.3] that spn

∈ S (F)1; thus χ (s)p
n
∈ 1+ωOE.

In other words, the image of χ (s)p
n

in k×E is trivial, but then already the image of χ(s) in
k×E must be trivial. This is equivalent to v(χ(s)− 1)> v(ω)= e (E/F)−1

= h−1.
Turning to the second statement, fix 0< i< h, and consider the sequences

1→ 1+ ωi+1OE→ 1+ ωiOE→ kE→ 0,

and

0→ ωi+1OE→ ωiOE→ kE→ 0.

The map 1 + ωiOE→ kE is given by 1 + ωix 7→ [x], where [ ] : OE→ kE is the reduction
map. Similarly, the map ωiOE→ kE is given by ωix 7→ [x]. Let

f : Γ (E/F)→ k×E , γ 7→

[
γ (ω)

ω

]i

.

Then f ∈ Z1(Γ (E/F), k×E ), and after twisting the usual action of Γ (E/F) on kE via f
the above exact sequences become sequences of Γ (E/F)-modules. Tensoring with the
Γ (E/F)-module X∗(S) and taking Γ (E/F)-fixed points, we obtain the two sequences

1→ S (F) i+1
h
→ S (F) i

h
→ H0(Γ (E/F),X∗(S)⊗ kE)→ H1(Γ (E/F), S (E) i+1

h
),

0→ s (F) i+1
h
→ s (F) i

h
→ H0(Γ (E/F),X∗(S)⊗ kE)→ H1(Γ (E/F), s (E) i+1

h
),

where we have used that H0(Γ (E/F), S (E)r) = S (F)r for r > 0, according to [40, 4.7.2].
We will show that the maps

S (F) i
h
/S (F) i+1

h
→ H0(Γ (E/F),X∗(S)⊗ kE)← s (F) i

h
/s (F) i+1

h
(3.1)

are isomorphisms of kF-vector spaces and that the dimension of the middle space equals
the multiplicity of i as an exponent of the root system of G. Notice that, although i is
not present in the notation for the middle space, it influences it because we have taken a
twisted action of Γ (E/F) on kE, and the twist depends on i.

By construction, it is clear that the maps in (3.1) are kF-linear and injective. The
surjectivity of the first map will follow if we show that H1(Γ (E/F), S (E)r) is trivial. To
that end, consider the inflation–restriction sequence

H1(Γ (E/F)/I(E/F), S (F′)r)→ H1(Γ (E/F), S (E)r)→ H1(I(E/F), S (E)r),

where F′ := EI(E/F). The last group in that sequence is trivial, since I(E/F) is a finite
group whose order is prime to p, while S (E)r is an abelian pro-p group. The argument of
[8, 2.3.1] shows that the first group is also trivial. We have thus shown that the first map
in (3.1) is an isomorphism.

Next we consider the group H0(Γ (E/F),X∗(S) ⊗ kE). Let m be the multiplicity of i as
an exponent of R. We will first show that H0(I(E/F),X∗(S) ⊗ kE) is a kE-vector space of
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dimension m. Fix a generator σ ∈ I(E/F). Then σ(ω) = ζω, where ζ ∈ O×E is an element
whose E/F′-norm is 1. In fact, we may assume that ω is chosen so that ζ ∈ O×F′ is a
primitive hth root of unity, and then so is [ζ ] ∈ k×E . Furthermore, by assumption, σ
acts on X∗(S) via a Coxeter element c. With this notation, H0(I(E/F),X∗(S) ⊗ kE) is
the kE-subspace of X∗(S) ⊗ kE fixed by the action of c ⊗ [ζ ]i, which is the same as the
[ζ ]−i-eigenspace for the action of c on X∗(S) ⊗ kE. The dimension of this space is equal
to the highest power of (X − [ζ ]−i) dividing the image in kE[X] of the characteristic
polynomial Pc ∈ Z[X] of the action of c on X∗(S). By Hensel’s lemma, this is the same as
the highest power of (X − ζ−i) dividing the image of Pc in OF′ [X]. This power remains
the same when we consider divisibility in F[X] instead of OF′ [X]. We can choose a field
homomorphism F→ C which sends ζ−1 to exp(2π i

h ) and consider divisibility in C[X].
But the highest power of (X− exp(2π i

h )) which divides Pc in C[X] is by definition equal to
m; see [6, V.6].

We have shown that H0(I(E/F),X∗(S) ⊗ kE) is a kE-vector space of dimension m. It is
equipped with an action of Γ (E/F)/I(E/F) = Gal(kE/kF) which is compatible with the
natural action of this group on kE. Thus the set of fixed points is a kF-vector space of
dimension m.

To complete the proof of the second statement of the proposition, we have to show
that the second map in (3.1) is an isomorphism. Since we already know that it is
injective, it will be enough to compare the dimensions of its source and target. These are
both vector spaces over a finite field, so this is equivalent to comparing their orders as
abstract groups. By what we have just proved, it is the same as comparing the orders of
the first and third terms in (3.1). These are equal due to [40, 5.6].

The third statement is a direct corollary of the second and [6, VI.1.11.30]. �

Proposition 3.5. Let S→ G be an embedding of type ( C). Then

S(F)= S (F)0×Z(G)(F).

Proof. By assumption, p does not divide the Coxeter number of G. In particular, p does
not divide the order of the finite diagonalizable group Z(G). Thus Z(G)(F) is an abelian
group of order prime to p, while S (F)0 is a pro-p-group by Proposition 3.4. This shows
that

S (F)0 ∩ Z(G)(F)= {1}.

In particular, the projection S(F)→ S(F)/S (F)0 restricts to an injection

Z(G)(F)→ S(F)/S (F)0,

and we need to show that this injection is also surjective. Since both groups are finite, it
is enough to compare orders.

We begin by computing the order of Z(G)(F). We have Z(G)(F) = Z(G)(OF), with
respect to the OF-structure on G provided by the vertex o. The OF-group scheme Z(G) is
etale; thus Z(G)(OF)= Z(G)(kF). We know that

X∗(Z(G))= P/Q,
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where P and Q are the weight and root lattices for T in G. The quotient P/Q is a finite
abelian group, and we have the corresponding decompositions

P/Q=
∏

Z/niZ and Z(G)=
∏

µni

with all ni coprime to p. We conclude that

|Z(G)(F)| =
∏

i

gcd(q− 1, ni).

Next, we turn to the order of S(F)/S (F)0. We have the bijection

S(F)/S (F)0 = S(OF)/S
0(OF)→ S(kF)/S

0(kF)→ π0(S)(kF).

Let σ be the Frobenius automorphism of kF. Since π0(S) is an etale group scheme over
kF, the target of the above isomorphism equals π0(S) (kF)

σ . According to [39], we have

π0(S) (kF)
σ
=HomZ (H

1(I,X∗(S)),Q/Z)σ ,

and this group has the same order as H1 (I,X∗(S))σ . Choosing an admissible
isomorphism S→ T defined over F, we can identify X∗(S) with P, and under this
identification Γ acts on P through a finite subgroup of the Weyl group. The image
of I in this subgroup is a cyclic subgroup C generated by a Coxeter element c ∈ C. The
inflation map provides an isomorphism

H1(C,P)→ H1(I,X∗(S)).

We claim that the map

H1(C,P)→ H1(C,P/Q)

is also an isomorphism. The injectivity follows from the fact that H1(C,Q)→ H1(C,P) is
trivial, a fact we already used in the proof of Lemma 3.2. The surjectivity follows from
the fact that, by periodicity, H2(C,Q) = H0(C,Q), and the latter is trivial due to the
ellipticity of c.

Both isomorphisms are equivariant for the action of Γ . Now Γ acts trivially on P/Q,
while σ acts on C by c 7→ cq. It follows that the isomorphism of groups

H1(C,P/Q)=Hom(C,P/Q)→ P/Q, ξ 7→ ξ(c)

transports the action of σ on the left to multiplication by q−1. What we are looking for
is then the order of H0(q−1,P/Q). The group P/Q being finite, this is the same as the
order of

H0(q−1,P/Q)= H0(q,P/Q)=Ker(q− 1|P/Q),

and it is readily checked that the order of the latter is given by the same formula as the
formula for the order of Z(G)(F) provided earlier. �

3.3. A splitting

Proposition 3.6. Let j : S→ G be an embedding of type ( C). Then the associated point
in B(G,F) is the barycentre of an alcove.
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Proof. Fix a splitting (T,B, {Xα}) of G over Z, and let C ⊂ A(T,F) and o ∈ C be
the corresponding alcove and special vertex. Let x := A (j(S),E)Γ (E/F) be the point of
B(G,F) associated to the j. We may conjugate j under G(F) to achieve x ∈ C, which we
will henceforth assume. We will show that x is the barycentre of C.

Recall that E denotes the splitting field of S. According to Fact 3.1, we may, without
loss of generality, base change to the maximal unramified subextension of E/F and
henceforth assume that E/F is totally ramified. Choose a generator σ ∈ Γ (E/F). Let
p ∈ G(E) be such that Ad(p)T = S. The image of p−1σ(p) ∈ N(T,G)(E) in the affine
Weyl group Ωa(T,G) can be written as λw, with λ ∈ Q∨ and w ∈ Ωa (T,G)o. By
assumption, w projects to a Coxeter element in Ω(T,G); thus there exists µ ∈ P∨

with λ = wµ − µ. Put q := pµ(ω) ∈ Gad(E). A direct calculation reveals that the image
of q−1σ(q) ∈ N(T,Gad)(E) in the affine Weyl group Ωa(Tad,Gad) equals w. Being elliptic,
the unique fixed point of w in A(T,E) is o. Thus we have an element q ∈ Gad(E) with
Ad(q)T = S and qo= x.

Write q= th with t ∈ Tad(E) having the property to= x and h ∈ Gad (E)o. Consider the
exact sequence

1→ O×E → E×
−v
−→ e−1Z→ 1,

where e= [E : F]. Tensoring with P∨ = X∗(Tad), we obtain

1→ Tad(OE)→ Tad(E)→ e−1P∨→ 1.

The image of t in e−1P∨ is the translation of A(T,E) sending o to x. The proposition will
be proved once we show that this image is

ξ :=
∑
α∈∆

e−1ω̌α,

where ∆ is the set of simple roots for (T,B) and ω̌α is the fundamental coweight
corresponding to α. In fact, since we are already assuming that x ∈ C, it will be enough
to show that the image of t ∈ e−1P lies in the same Ωa(Tad,Gad)-orbit as ξ .

Taking Γ (E/F)-fixed points in the last exact sequence, we obtain an isomorphism

e−1P∨/P∨→ H1(E,Tad(OE)).

The kernel of the reduction map Tad(OE)→ Tad(kF) is an abelian pro-p-group, while
Γ (E/F) has prime-to-p order. It follows that H1(E,Tad(OE)) → H1(E,Tad(kF)) is
injective. The action of Γ (E/F) on Tad(kF) is trivial; hence evaluation at σ provides
an isomorphism

H1(E,Tad(kF))→ Tad(kF)[e],

the latter group being the group of e-torsion points of Tad(kF). Composing these maps,
we obtain the Ω(Tad,Gad)-equivariant injection

e−1P∨/P∨→ Tad(kF)[e].
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The image of ξ under this injection equals∑
α∈∆

w̌α

[
ω

σ(ω)

]
,

while the image of t under the composition of Tad(E)→ e−1P∨ with this injection equals
[t−1σ(t)]. We seek to show that those two elements of Tad(kF)[e] lie in the same Weyl
orbit. Let us call them ξ̄ and t̄. It is clear that ξ̄ , considered as an element of Gad(kF),
is regular. Its order is e, which is equal to the Coxeter number of Gad, since j is an
embedding of type (C). But it is known that there is a unique G(kF)-conjugacy class
of regular elements of that order [36, III.2.12]. Of course this class is semi-simple in
our case, as p and e are coprime. In particular, there is a unique Weyl orbit of regular
elements in Tad(kF)[e]. Hence our task is to show that t̄ is regular.

Recall that

q−1σ(q)= h−1t−1σ(t)σ (h)

belongs to N(Tad,Gad)(OE) and is a lift of a Coxeter element. The image of this element
under the reduction map Gad(OE)→ Gad(kF) is equal to h̄t̄h̄−1, where h̄ is the image of
h under the reduction map G̃ad(OE)→ G̃ad(kF), and G̃ad is the Bruhat–Tits OE-group
scheme whose OE-points are Gad (E)o. This is still a lift of a Coxeter element, and hence
a regular element [36, III.2.3]. �

Let j : S→ G be an embedding of type (C), x its associated point in B(G,F), and C the
alcove whose barycentre is x. Let dj : s→ g be the differential of j. By [1, 1.9.1], we have
dj(s (F)r)= dj (s(F))r for all r. Then, for r = 1

h ,
2
h , we have, by [1, 1.9.3],

g (F)r = dj (s(F))r⊕[dj (s(F))⊥]x,r, (3.2)

where ⊥ is taken with respect to the Killing form on g(F) and [ ]x,r means intersection
with g (F)x,r. It should be noted that the statement in [1, 1.9.3] refers not to the Killing
form, but to what is called there a ‘good’ bilinear form, which is a form constructed in
[3, ğ4]. Such a good bilinear form exists in our case, because the assumptions of [3, ğ4]
are implied by the existence of an embedding of type (C), as remarked in ğ 1. The group
G being simple, a good bilinear form is just a scalar multiple of the Killing form, and
hence provides the same notion of perpendicularity.

Projecting onto the first factor in the decomposition (3.2), and composing with dj−1,
we obtain a homomorphism of kF-vector spaces:

g (F)x, 1h
/g (F)x, 2h

→ s (F) 1
h
/s (F) 2

h
. (3.3)

Proposition 3.7. Let α be an affine simple root with respect to the alcove C. The
restriction of (3.3) to the subspace

gα (F)x, 1h
/gα (F)x, 2h

is non-trivial.
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Proof. Let o denote a special vertex contained in C, and let T be a split maximal torus
whose apartment contains C. Let B be a bilinear form on g(F) as constructed in [3, §4].
It restricts to a non-degenerate bilinear form

B̄ : g (F)x,− 1
h
/g (F)x,0×g (F)x, 1h

/g (F)x, 2h
→ kF.

The two arguments of B̄ have the following direct sum decompositions:

g (F)x, 1h
/g (F)x, 2h

= g−η (F)o,1 /g−η (F)o,2⊕
⊕
α∈∆

gα (F)o,0 /gα (F)o,1

g (F)x,− 1
h
/g (F)x,0 = gη (F)o,−1 /gη (F)o,0⊕

⊕
α∈−∆

gα (F)o,0 /gα (F)o,1, (3.4)

where ∆ is the set of simple roots and η is the highest root. Put Π = ∆ ∪ {−η}, and
for α ∈ Π let ḡα (respectively, ḡ−α) denote the corresponding constituents of the first
(respectively, second) decomposition in (3.4).

Inside the first argument of B̄ we have the subspace

s (F)
−

1
h
/s (F)0

embedded via dj. This subspace is one dimensional due to Proposition 3.4 and the fact
that multiplication by an uniformizer of F provides an isomorphism s (F)r→ s (F)r+1 for
any r ∈ R. The proof of the current proposition will be complete if we show that this
one-dimensional subspace is not B̄-orthogonal to ḡα for any α ∈ Π . But the orthogonal
complement of a given ḡα is precisely the direct sum of ḡβ for −β ∈ Π \ {α}. Hence it
will be enough to find an element of s (F)

−
1
h
/s (F)0 whose coordinate for each −β ∈Π is

non-trivial.
There are two reductions we need to make. First, notice that we are free to replace

F by any finite unramified extension. Second, we are going to show that we are free to
replace j with any stable conjugate as long as the associated point in B(G,F) remains
unchanged. To see why this is true, recall first that, by Corollary 3.3, this will replace
j by a conjugate under Gad (F)x. By the invariance of B, we may shift the conjugation
from the left argument of B̄ to its right argument. The action of Gad (F)x on the right
argument of B̄ factors through Gad (F)x /Gad (F)x, 1h

, and one easily sees that this action
preserves the decomposition (3.4).

With these reductions in place, we are now going to construct a certain finite
unramified extension F̃ of F, a certain stable conjugate j′ of j, and then proceed to
construct the sought element of s (F)

−
1
h
/s (F)0.

The unramified extension F̃ is constructed as follows. Let F′ ⊂ E be the maximal
unramified subextension of F, σ ∈ Γ (E/F′) a generator, and ω ∈ E a uniformizer such
that σ(ω)ω−1

= ζh is a root of unity in F′ of order h. Put

c̄s :=
∏
α∈∆

ω̌α(ζ
−1
h ) ∈ Tad(OF′).

There exists a lift cs ∈ T(OFu) of c̄s. Let F̃ be such that cs ∈ T(OF̃).
To ease notation, we now replace F by F̃. Then E is replaced by EF̃. The group

Γ (E/F) remains unchanged, and we keep the notation σ , ω, and ζh.
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Next, we construct the appropriate stable conjugate of j. Let c ∈ N(T,G)(OF) be a lift
of a Coxeter element. According to [36, III.2.12], the elements c and cs are conjugate
under G(F), and hence, by [21, 7.1], also under G(OF). Let h ∈ G(OF) be such that
Ad(h)c= cs. Put

t :=
∏
α∈∆

ω̌α(ω
−1) ∈ Tad(E).

Then t−1σ(t)= cs. Put p := th ∈ Gad(E). Then we have

p−1σ(p)= c, and Ad(p)c= cs.

We can choose an admissible isomorphism S→ T which transports the action of σ on
X∗(S) to the action of c on X∗(T). Composing this isomorphism with Ad(p), we obtain
an admissible embedding j′ : S→ G of type (C). The unique fixed point for the action
of Ad(c)σ on A(T,E) is o; hence the unique fixed point for the action of Γ (E/F) on
A(j′(S),E) is po = to = x. The embedding j′ is the stable conjugate of j that we were
looking for. Again, we ease notation by replacing j by j′.

Before we continue, recall the following simple fact: if

g= t⊕
⊕
α

gα

is the root decomposition of a semi-simple Lie algebra, ∆ is a set of simple roots, and Π
is the union of ∆ and the negative of the highest root, then an element

X ∈
⊕
α∈Π

gα

is semi-simple only if all of its coordinates are non-zero. This statement is [20, Lemma
7.2], where it is proved for complex Lie algebras, but the proof clearly does not depend
on the complex field.

We will now construct the special element X ∈ s (F)
−

1
h
\s (F)0. Let X̃0 ∈ t(F) be

any eigenvector of Ad(c) with eigenvalue ζh. Multiplying by an appropriate power of
a uniformizer of F, we may arrange that X̃0 ∈ t (F)0 \t (F)0+. Put X0 := ω

−1X̃0, so
X0 ∈ t (E)

−
1
h
\t (E)0. By construction, we have

Ad(c)X0 = ζhX0, and Ad(c)σ (X0)= X0,

so that X := Ad(p)X0 is an element of s (F)
−

1
h
\s (F)0 which is an eigenvector of Ad(cs)

with eigenvalue ζh. Recalling the explicit form of cs and the fact that the height of the
highest root is h − 1, the standard root decomposition of g(F) shows that X belongs to
the subspace ⊕

α∈−Π

gα(F).

We know that the projection of ωX0 to g (E)o,0 /g (E)o, 1h
is a semi-simple element in this

kE-Lie algebra; thus the projection of ωX to g (E)x,0 /g (E)x, 1h
is a semi-simple element as

well. The fact that we recalled above now implies that, for each α ∈ −∆, the coordinate
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of ωX in gα(E), which a priori belongs to gα (E)x,0 = gα (E)o, 1h
, does not belong to

gα (E)x, 1h
= gα (E)o, 2h

, while, for α being the highest root, the corresponding coordinate
belongs to gα (E)o, 1−h

h
\gα (E)o, 2−h

h
. Using the fact that X and each gα are defined over F,

we see that the image of X in g (F)x,− 1
h
/g (F)x,0 has non-zero coordinates (with respect

to the decomposition (3.4)) for all −α ∈Π . �

The following proposition can be proved by the very same argument. We will not need
it in this paper, but it may be of independent interest.

Proposition 3.8. Let j : S→ G be an embedding of type ( C). Let C be the alcove
determined by j and o a hyperspecial vertex in C. Let dj : s→ g be the differential of
j. Then the image under dj of every element of s (F) 1

h
\s (F) 2

h
projects to a regular

unipotent element in g(kF).

3.4. Automorphisms of an alcove

Let j : S→ G be an embedding of type (C), and let x ∈ B(G,F) be the point associated to
it. By Proposition 3.6, x is the barycentre of some alcove C. Then the action of Sad(F)
on B(G,F) preserves C. On the other hand, there is a natural action of Gad(F) on C: for
any g ∈ Gad(F), we choose h ∈ G(F) such that hgC = C. Then hg is an automorphism of
C and does not depend on the choice of h, because any element of G(F) which preserves
C fixes it pointwise.

Proposition 3.9. Every automorphism of C coming from Gad(F) can be realized by an
element of Sad(F).

Before we can prove this proposition, we need some preparation. We begin by recalling
some basic facts about the Kottwitz homomorphism [22, ğ7]. Let T ⊂ G be a split
maximal torus whose apartment contains C. Let Q∨ and P∨ be its coroot and coweight
lattices, and put Λ = P∨/Q∨. The Kottwitz homomorphism for Gad is a surjective
homomorphism

Gad(F)→Λ

whose restriction to any parahoric subgroup is trivial, and whose restriction to Tad(F) is
given by

λ(π) 7→ λ, ∀λ ∈ P∨,

where π ∈ F is any uniformizer. The group Λ acts on the alcove C, and Kottwitz’s
homomorphism intertwines the actions of Gad(F) and Λ on C.

Lemma 3.10. There exists a bijection

Λ→ H1(I,Z)

whose composition with the Kottwitz homomorphism equals

Gad(F)→ H1(Γ,Z)→ H1(I,Z) (3.5)

which is the composition of the boundary homomorphism and the restriction map.
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Proof. Fix a hyperspecial vertex o ∈ C, and consider the Cartan decomposition

Gad(F)= Gad(OF)Tad(F)Gad(OF).

The Kottwitz homomorphism is the unique surjective map Gad(F)→ Λ which is trivial
on Gad(OF) and whose restriction to Tad(F) is given by

Tad(F)→ Tad(F)/Tad(OF)→ P∨→ P∨/Q∨.

We are going to show the following.

(1) The map (3.5) is trivial on Gad(OF).

(2) The restriction of (3.5) to Tad(F) is surjective and factors through Tad(F)→Λ.

(3) The finite groups Λ and H1(I,Z) have the same size.

First, consider the sequence of Γ (Fu/F)-modules

1→ Z(OFu)→ G(OFu)→ Gad(OFu)→ 1.

It is exact due to Lemma 3.11, and gives rise to the bottom row of the diagram

Gad(F) - H1(F,Z)

Gad(OF)

6

- H1(Fu/F,Z(OFu))

6

in which the left vertical map is the natural inclusion and the right vertical map is
the inflation map. Since the residual characteristic of F does not divide the exponent
of Z, we have Z(OFu) = Z, and from the inflation–restriction sequence we obtain that
(3.5) is indeed trivial on Gad(OF). This shows point 1, as well as the claim that (3.5)
factors through Tad(F)→ P∨. Since (3.5) also annihilates the image of T(F) in Tad(F),
we obtain that it factors through Tad(F)→Λ.

The surjectivity of (3.5) upon restriction to Tad(F) follows from the surjectivity of
the connecting homomorphism Tad(F)→ H1(F,Z), which is due to T being split, and
from the surjectivity of the restriction homomorphism H1(F,Z)→ H1(I,Z), which we
now argue. The group H2(Fu,Z) is trivial, because Z is a product of finitely many
µn for n prime to the residual characteristic of F. It follows that the image of the
restriction map is equal to the group of fixed points of Frobenius acting on H1(I,Z). If
It denotes the tame quotient of inertia, then the inflation map H1(It,Z)→ H1(I,Z) is a
Frobenius-equivariant bijection. Hence we are looking for the Frobenius-fixed points on
H1(It,Z)= Hom(It,Z). But Frobenius acts on both It and Z as multiplication by q (if we
think of It and Z additively for a moment), and so its action on Hom(It,Z) is trivial. This
shows point 2.

For point 3, we only need to observe that, since It is pro-cyclic and acts trivially on Z,
choosing any topological generator of It provides a bijection from H1(It,Z) to Z, but the
size of Z is equal to the size of Λ. �
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Lemma 3.11. Let J be any connected reductive group defined over OF. If p does not
divide |π0(Z(J))|, then J(OFu)→ Jad(OFu) is surjective.

Proof. Let Z be the centre of J. The morphism J→ Jad is surjective, and hence flat
[10, Expose 6b, 3.11]. Thus it is an fpqc-cover. On the other hand, the same morphism
is Z-invariant, and is in fact an fpqc-torsor under Z – to trivialize it, use it itself as
a trivializing cover. Our assumption implies that Z is smooth over OF [10, Expose
9,4.10]. Since smoothness descends over fpqc maps [12, 17.7.3], we conclude that J→ Jad

is smooth. The claim now follows from the variant of Hensel’s lemma for smooth
morphisms. Let x ∈ Jad(OFu). There exists a finite unramified extension E/F such that
x ∈ Jad(OE). Let xn be the image of x in Jad(OE/π

nOE). Enlarging E if necessary, we can
find a lift y0 ∈ J(kE) of x0 ∈ Jad(kE). Using the lifting property of smooth morphisms,
we can find, inductively for each integer n > 1, an element yn ∈ J(OE/π

nOE) which maps
to yn−1 ∈ J(OE/π

n−1OE) and to xn ∈ Jad(OE/π
nOE). Since OE is complete, there exists

y ∈ J(OE) whose image in J(OE/π
nOE) equals yn. By construction, the image of y in

Jad(OE) is x. �

We now proceed to proving Proposition 3.9.

Proof. We need to show that the restriction of the Kottwitz isomorphism to Sad(F) is
surjective. By Lemma 3.10, this is the same as showing that the restriction of (3.5) to
Sad(F) is surjective. Consider the diagram

S(F) - Sad(F) - H1(F,Z)

S(Fu)
?

- Sad(Fu)
?

- H1(I,Z)

Res

?

The restriction of S(F)→ Sad(F) to the 0+ filtration subgroups of both sides is
surjective. To see this, consider the map X∗(S)→ X∗(Sad). It is injective, and its cokernel
is torsion of exponent prime to p. Let E be the splitting field of S and ω a uniformizer.
Tensoring with the pro-p group (1 + ωOE), we obtain the bijection S (E)0+→ Sad (E)0+.
Taking Galois invariants, we arrive at the claim. Applying Proposition 3.5, we see that
Sad(F)/Sad (F)0+ injects into H1(F,Z).

One can upgrade this argument to show that Sad(Fu)/Sad (Fu)0+ injects into H1(I,Z)
– the bijectivity of S (Fu)0+ → Sad (Fu)0+ follows in the same way as before, and to
obtain the decomposition S(Fu) = Z(Fu) × S (Fu)0+ we just need to observe that S(Fu)

is the direct limit of S(F′) over all finite unramified extensions F′ of F, and then apply
Proposition 3.5 to each S(F′) (which is possible by Fact 3.1) and observe that the
inclusions between the various S(F′) respect these decompositions of S(F′) into its pro-p
part and its prime-to-p part. We note that the injection Sad(Fu)/Sad (Fu)0+→ H1(I,Z)
is in fact also surjective, because H1(I, S) is trivial due to [37, Theorem 1.9].
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It remains to show that the natural map

Sad(F)/Sad (F)0+→ Sad(F
u)/Sad (F

u)0+

is surjective. Applying Proposition 3.4 with F replaced by an arbitrary unramified
extension, we see that this map is the top horizontal map of the following diagram.

Sad(OF)/S◦ad(OF) - Sad(OFu)/S◦ad(OFu)

π0(Sad)(kF)
?

- π0(Sad)(kF)

?

We claim that the two vertical arrows are isomorphisms. To see this, consider the exact
sequence of etale sheaves over Spec(OF):

1→ S◦ad→ Sad→ π0(Sad)→ 1.

It gives us an exact sequence of Γ (Fu/F)-modules

1→ S◦ad(OFu)→ Sad(OFu)→ π0(Sad)(OFu)→ 1,

and using the fact that H1(Fu, S◦ad(OFu))= 1, we obtain the exact sequence

1→ S◦ad(OF)→ Sad(OF)→ π0(Sad)(OF)→ 1.

The claim now follows from the fact that the group scheme π0(Sad) is etale over OF.
To complete the proof of the proposition, it is enough to show that the action

of Γ (Fu/F) on π0(Sad)(kF) is trivial. According to [31], there is an isomorphism of
Γ (Fu/F)-modules

π0(Sad)(kF)→ X∗ (Sad)I .

We have X∗(Sad) = P∨, where P∨ is the coweight lattice of S in G. Let c ∈ AutZ(P∨) be
the image of a topological generator of I. By assumption, c is a Coxeter element. By the
theory of the Coxeter element, we have [P∨]I = P∨/Q∨, where Q∨ is the set of coroots
of S in G. Since Frobenius acts on P∨ through the Weyl group, and the Weyl group acts
trivially on P∨/Q∨, the proof is complete. �

4. From simple wild parameters to L-packets

Let G be a split, simple, simply connected group defined over F. Assume that the
residual characteristic of F does not divide the Coxeter number of G. Let φ : WF → Ĝ
be a Langlands parameter satisfying the conditions listed at the end of ğ 2. According to
[15, 5.6], these are all simple wild parameters if p does not divide the order of the Weyl
group of G. Then T̂ := Cent (φ(PF), Ĝ)

◦
is a maximal torus in Ĝ, and the image of φ is

contained in N(T̂, Ĝ). The composition of φ with the projection N(T̂, Ĝ)→Ω(T̂, Ĝ) is a
tamely ramified homomorphism

w :WF→Ω(T̂, Ĝ).
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Let LS := T̂owWF, and let S be the F-torus with L-group LS. There is a unique stable
conjugacy class [j] of embeddings j : S→ G. The conditions on G and φ imply that these
are embeddings of type (C).

Choose tamely ramified χ -data for LS, and let [Lj] : LS→ Ĝ be the Ĝ-conjugacy class
of L-embeddings corresponding to it [26, 2.6]. Choose one element Lj in this conjugacy
class with the properties that Lj(Ŝ)= T̂ and that the homomorphism

WF
Lj- N(T̂, Ĝ) -- Ω(T̂, Ĝ)

is equal to w. Then the image of φ is contained in the image of Lj, and we obtain a
factorization

φ :WF
φS- LS

Lj- Ĝ

of φ. Let χS : S(F)→ C× be the character corresponding to φS.

Lemma 4.1. Let S be a tamely ramified torus with splitting field E. Let

φ :WE/F→ Ŝ o WE/F, φ(w)= (φ0(w),w)

be a Langlands parameter, and let χ : S(F)→ C× be the corresponding character. Then,
for r > 0, we have

φ0|E×r
= 1 H⇒ χ |S (F)r = 1.

Proof. This argument is a strengthening of [16, §5]. We have the following commutative
diagram, where all cohomology and Hom groups are assumed continuous:

H1(WE/F, Ŝ)
Res - Hom(E×, Ŝ)

Hom(E×, Ŝ)Γ (E/F)

Cor

6

N - Hom(E×, Ŝ)

wwwwwwwww

Hom(S(E),C×)Γ (E/F)

wwwwwwwww
Hom(S(E),C×)

wwwwwwwww

Hom(S(F),C×)

Res

?

-

Here, Cor is the corestriction map H1(E×, Ŝ)→ H1(WE/F, Ŝ), which is surjective, and
whose kernel is the augmentation ideal for the action of Γ (E/F); the horizontal Res is
the restriction map on cohomology; N is the norm map for the action of Γ (E/F); the
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vertical Res is restriction of characters; and finally the diagonal map is composition with
the norm map S(E)→ S(F). We refer the reader to [25] for these statements, and in
particular to Proposition 5.6 and Corollary 5.7 there.

The left vertical isomorphism is the local Langlands correspondence for tori. The right
vertical isomorphism restricts to an isomorphism

Hom(E×r , Ŝ)∼=Hom(S (E)r,C×).

Our assumption thus implies that the restriction of χ ◦ NE/F to S (E)r is trivial. Let
F′ ⊂ E be the maximal unramified subextension. First, we claim that the restriction of
χ ◦ NF′/F to S (F′)r is trivial. In fact, since S (F′)r ⊂ S (E)r, we know that the restriction
of χ ◦ NE/F to S (F′)r is trivial. This restriction equals (χ ◦ NF′/F)

[E:F′]. But S (F′)r is a
pro-p-group, while [E : F′] is coprime to p, which implies that already χ ◦ NF′/F is trivial
on S (F′)r, as claimed. But this completes the proof, because, according to [32, 5.1], NF′/F

is a surjection S (F′)r→ S (F)r. �

Proposition 4.2. The Ω(S,G)(F)-orbit of χS is independent of all choices. Its
restriction to S (F) 2

h
is trivial.

Proof. Let us first prove independence. We need to examine the choices of χ-data
and of a representative Lj within its Ĝ-class. Keeping first the χ-data fixed, we have
the freedom of replacing Lj by Ad(g) ◦ Lj with g ∈ N(T̂, Ĝ) such that its image in
Ω(T̂, Ĝ) commutes with the image of w. But then there exists u ∈ Ω(S,G)(F) such
that Ad(g) ◦ Lj= Lj ◦ û. Thus replacing Lj by Ad(g) ◦ Lj replaces χS by χS ◦ u.

Now, we examine the influence of the χ-data. According to Proposition 3.5, it is
enough to show that the restrictions of χS to Z(G)(F) and S (F)0 remain unaffected
by any change of χ-data. By [26, 2.6.3], changing the χ -data results in changing
the L-embedding Lj to Lj′ = c ⊗ Lj, where c : WE/F → T̂ is the cocycle constructed in
[26, 2.5.B]. This has the effect of multiplying χS by the character of S(F) corresponding
to c, which we will call χc.

The restriction of χc to Z(G)(F) corresponds to the image of c under

H1(WF, T̂)→ H2(WF,Z(Ĝ)),

where on T̂ we have taken the action of WF provided via Lj. But, by construction, c takes
values in T̂sc; hence its image in H2(WF,Z(Ĝ)) is trivial.

Next, we will consider the restriction of χc to S (F)0. For x ∈ E×, the value of c(x) is
given by ∏

λ

∏
σ

ζλ (NE/F+λ(σx))σ
−1λ,

where λ runs over a set of representatives for the symmetric orbits of Γ in R∨(S,G),
σ runs over a set of representatives for the quotient ΓE/F/ΓE/F±λ , and ΓE/F+λ ⊂ ΓE/F±λ
are the subgroups of ΓE/F fixing λ or leaving invariant the set {λ,−λ}, respectively, and
ζλ is the character of E× which measures the difference between the two different
χ-data. What is important is that, since both χ -data are tamely ramified, so are
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the characters ζλ. It follows that the restriction of c to E×0+ is trivial, which by
Lemma 4.1 implies that the corresponding character is trivial on S (F)0+. According
to Proposition 3.4, we have S (F)0+ = S (F)0, and we conclude that the restriction of χS

to S (F)0 is unaffected by the change of χ-data.

Finally, we consider the restriction of φS to E×2
h
. Since the χ-data are tamely ramified,

the same argument as in the previous paragraph shows that this restriction equals the
restriction of the original parameter φ to E×2

h
. We claim that this restriction is trivial,

which again by Lemma 4.1 would complete the proof. Let L be the fixed field of the
kernel of φ. The subgroup WL/Wc

E of WE/F corresponds to the subgroup NL/E(L×) of E×.
The explicit knowledge of the lower numbering of Γ (L/E) allows us to conclude using
[33, V.6., Cor.3] that E×2

h
belongs to NL/E(L×), and the claim follows. �

Fix a representative j in the stable class [j] such that the associated point in B(G,F) is
the barycentre x of C. We obtain a homomorphism

Z(F)G (F)x, 1h
/G (F)x, 2h

∼= Z(F)g (F)x, 1h
/g (F)x, 2h

→ Z(F)s (F) 1
h
/s (F) 2

h

∼= S(F)/S (F) 2
h
, (4.1)

where the first isomorphism is the canonical Moy–Prasad isomorphism, the last
isomorphism is given by Propositions 3.5 and 3.4, and the middle homomorphism is
(3.3). Composing this homomorphism with χS, we obtain a character

χj : Z(F)G (F)x, 1h
/G (F)x, 2h

→ C×,

which, according to Proposition 3.7, is affine generic. Put

πχj := c-IndG(F)
Z(F)G (F)

x, 1h

χj.

This is a simple supercuspidal representation of G(F), as defined in [15, 9.3] and
reviewed in ğ 2. Define

Πφ :=Ad(Gad(F)) · πχj .

This is a finite set of representations with cardinality |Z(F)|. What remains to be shown
is that it only depends on φ. This follows from the next proposition.

Proposition 4.3. The Gad (F)x-conjugacy class of χj is independent of all choices.

Proof. The choices we need to examine are those of j and χS.

If we replace j by a stable conjugate j′ whose associated vertex is still x, then by
Corollary 3.3 the embeddings j and j′ are conjugate under Gad (F)x.
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According to Proposition 4.2, we may replace χS by a conjugate by an element of
Ω(S,G)(F). We have the diagram

1 - S(F) - N(S,G)(F) - Ω(S,G)(F) - H1(F, S)

1 - Sad(F)
?

- N(Sad,Gad)(F)
?

- Ω(Sad,Gad)(F)

wwwwwwwwww
- H1(F, Sad)

?

with exact rows, where we have identified S with its image under j. Lemma 3.2 implies
that the map

N(Sad,Gad)(F) - Ω(Sad,Gad)(F)

is surjective. But it is clear that N(Sad,Gad)(F)⊂ Gad (F)x. �

5. The internal structure of simple wild L-packets

In this section, we will establish a bijection

X∗(Cent(φ, Ĝ))→Πφ . (5.1)

This bijection will depend on the choice of a Whittaker datum (B, ψ) for G, and will
send the trivial character to a (B, ψ)-generic representation. It is one of the conjectural
properties of L-packets – the generic packet conjecture – that each tempered L-packet
should contain precisely one representations which is generic with respect to a fixed
Whittaker datum. We are going to verify this conjecture for our packets; that is, we are
going to prove the following.

Proposition 5.1. Without any assumptions on the residue field kF, each Gad(F)-orbit of
simple supercuspidal representations has a unique element π with

HomBu(F)(π, ψ) 6= 0.

In particular, this is true for the L-packets Πφ.

This proposition turns out to also be the key to the construction of the bijection
(5.1). Namely, we will construct a simply transitive action of X∗(Cent(φ, Ĝ)) on Πφ

which is independent of any choices. Then each Whittaker datum will provide, according
to Proposition 5.1, a unique base point in Πφ , and the bijection (5.1) will be the
corresponding orbit map.

To construct the action, write φ = Lj ◦ φS, as in the construction of Πφ . Then Lj
provides a bijection

Cent(φ, Ĝ)= Cent(Lj, Ĝ)→ ŜΓ ,
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and hence a bijection

X∗(Cent(φ, Ĝ))→ X∗(ŜΓ )= X∗ (S)Γ = H1(F, S). (5.2)

We claim that this bijection is independent of the choice of factorization φ = Lj ◦ φS.
Indeed, Lj is determined up to conjugation under Ω(S,G)(F). If c ∈ Ω(S,G) is a
generator for the image of inertia, then Ω(S,G)(F) ⊂ Cent(c,Ω(S,G)). But c is by
assumption a Coxeter element; hence it generates its own centralizer in Ω(S,G). It
follows that Ω(S,G)(F) acts trivially on X∗ (S)Γ .

Now, consider the maps

Gad(F)/G(F)→ H1(F,Z)→ H1(F, S). (5.3)

The first map is the boundary homomorphism associated to the obvious sequence. It is
an isomorphism of groups, surjectivity following from Kneser’s vanishing theorem. The
second map is induced from the inclusion Z→ S. It is surjective due to Lemma 3.2. Its
kernel is the image of Sad(F). Composing (5.2) and (5.3), we obtain an isomorphism of
abelian groups

X∗(Cent(φ, Ĝ))→ Gad(F)/G(F)Sad(F). (5.4)

Here, we have mapped Sad into Gad via j, but, since the Gad(F)-conjugacy class of j
is unique and the quotient Gad(F)/G(F) is abelian, this image does not depend on the
choice of j. Via this bijection, the group on the left acts in a natural way on Πφ , and the
action is transitive. It is also simple, due to the following lemma.

Lemma 5.2. Let j : S→ G be an embedding of type ( C), χS : S(F)/S (F) 2
h
→ C× a

character, and χ the affine generic character obtained by composing χS with (4.1).
Then the stabilizer in Gad(F) of the isomorphism class of the representation c-Indχ is
precisely G(F)Sad(F).

Proof. Let x ∈ B(G,F) be the point associated to j. Let C be the alcove containing x,
o a hyperspecial vertex contained in C, and T a split maximal torus whose apartment
contains C.

Let g ∈ Gad(F) be such that π ◦ Ad(g) ∼= π , where π = c-IndG(F)
Z(F)G (F)

x, 1h

χ . We can

modify g by an element of G(F) to assume that it fixes the point x. Applying
[15, Proposition 9.3.(2)], we can modify g by an element of T(OF) and assume that it
now stabilizes the affine generic character χ . The group Sad(F) fixes both x and χ , and,
by Proposition 3.9, we can modify g by an element of Sad(F) to assume that it fixes all
of x, o, and χ . Hence g belongs to the stabilizer of χ in the Iwahori subgroup Gad (F)x,0.
The subgroup Gad (F)x,1/h acts trivially on χ , and Tad(OF)⊂ Gad (F)x,0 surjects onto the
quotient Gad (F)x,0 /Gad (F)x,1/h, so we may assume that g ∈ Tad(OF). But the genericity
of χ now implies that g= 1. �

5.1. Proof of Proposition 5.1 – existence

In this subsection only, we drop the requirement that char(kF) does not divide the
Coxeter number of G.
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We will now prove the existence statement in Proposition 5.1. Let π := c-Indχ ,
where χ : Z(F)G (F)x,1/h→ C× is affine generic. Let B be a Borel subgroup containing
a maximal torus whose apartment contains x, and let o be a hyperspecial vertex in
the closure of the unique alcove containing x. We endow G with the corresponding
OF-structure. We have Bu(F) ∩ G (F)x,1/h = Bu(OF). The character χ being affine
generic, the restriction of χ |Bu(OF) to each simple root subgroup is non-trivial, while
its restriction to each non-simple root subgroup is trivial. Thus there exists a generic
character ψ : Bu(F)→ C× with χ |Bu(OF) = ψ |Bu(OF). Consider the Whittaker datum
(B, ψ). Applying [23], we see that the non-trivial group HomBu(F)∩G (F)x,1/h(χ, ψ) is a
direct summand of HomBu(F)(π, ψ) – it corresponds to the image of 1 in

U(F) \ G(F)/G (F)x,1/h .

This shows that π is generic with respect to (B, ψ). Since Gad(F) acts transitively on the
set of Whittaker data, we conclude that for each Whittaker datum (B, ψ ′) there exists a
(B, ψ ′)-generic simple supercuspidal representation π ′ in the Gad(F)-orbit of π .

5.2. Proof of Proposition 5.1 – uniqueness

In this subsection only, we drop the requirement that char(kF) does not divide the
Coxeter number of G.

Let

π = c-Indχ and π ′ = c-Indχ ′

be two simple supercuspidal representations in the same orbit under Gad(F), where
χ, χ ′ : Z(F)G (F)x,1/h → C× are affine generic characters. Assume that π and π ′ are
generic with respect to the same fixed Whittaker datum (B, ψ). Conjugating by Gad(F),
we may assume that B contains a torus whose apartment contains x. Let o be a special
vertex contained in C. Let U = Bu. Conjugating further by Gad(F), we may assume that
ψ is non-trivial on Uo,0 = U(OF) but trivial on Uo,1.

Lemma 5.3. Let (T,B) be a Borel pair in G, and let w ∈ Ω(T,G) be an element which
preserves the set Π :=∆ ∪ {−η}, where η is the highest root. Then the following hold.

(1) w has a lift in N(Tad,Gad)(F) of the same order as w.

(2) Let N : Q→ Q be the norm map for the action of w on the root lattice, and let α ∈∆
belong to the w-orbit of −η. Then N(α) belongs to the Z-span of {N(β)|β ∈∆ \ O}.

Proof. The first statement is the content of [14, Lemma 6.1]. To prove the second
statement, one considers the matrix for the action on Q of the possible elements w, given
in the basis provided by the simple roots. This matrix can be obtained using the tables
in [6]. The statement can then be read off from the matrix of the norm N. �

Lemma 5.4.

HomU(F)(π, ψ)=
⊕

t∈T(kF)

HomU(OF)(χ,Ad(t)ψ).
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Proof. We apply [23], and examine the indexing set

Λ := U(F) \ G(F)/G (F)x, 1h
.

We claim that the map N(G,T)(F)→Λ is surjective. To that end, let g ∈ G(F). We can
write g = utk with u ∈ U(F), t ∈ T(F), and k ∈ G(OF). Using the Bruhat decomposition
for G(kF), we can write k = vnv′y, with v, v′ ∈ U(OF), n ∈ N(T,G)(OF), and y ∈ G (F)o,0+.
Thus

g= (uv)(tn)(v′y),

where uv ∈ U(F), tn ∈ N(T,G)(F), and vy′ ∈ G (F)x,0+. This proves the claim.
Next, we claim that, if n ∈ N(F) projects to a non-trivial element in the affine Weyl

group N(F)/T(OF), then the restrictions of the characters χ and Ad(n)ψ to the group

G (F)x,1/h ∩n−1U(F)n

cannot be equal. To that end, let α be a simple affine root with α(o) = 0. Then the
restriction of Ad(n)ψ to U (F)n−1α is non-trivial, while its restriction to U (F)n−1α+1 is
trivial. It follows that Ad(n)ψ and χ will not be equal if n−1α is not an affine simple
root. But, if n−1α is affine simple for every affine simple α with α(o) = 0, then n−1 must
preserve the alcove C. Since G is simply connected, this implies that the image of n−1 in
the affine Weyl group is trivial.

To complete the proof of the lemma, it is enough to observe that the restriction of
G(F)→Λ to T(OF) factors through an injection T(kF)→Λ. �

Lemma 5.5. Let χ, χ ′ : Z(F)G (F)x,1/h→ C× be two affine generic characters. Assume
that they are Gad (F)x-conjugate and have the same restriction to U(OF). Then they are
equal.

Proof. The restrictions of χ and χ ′ to Z(F) are clearly the same; hence it is enough to
focus on their restrictions to G (F)x,1/h. These factor through the quotient

G (F)x, 1h
/G (F)x, 2h

=

⊕
α∈Π

U (F)α /U (F)α+1, (5.5)

where α runs over the set Π of affine simple roots. This quotient is a kF-vector space.
The image of U(OF) in it is⊕

α∈∆

U (F)α /U (F)α+1, where ∆ := {α ∈Π |α(o)= 0}.

Thus, what we need to show is that the restrictions of χ and χ ′ to

U (F)1−η /U (F)2−η

are the same, where 1− η is the unique element of Π −∆.
Let h ∈ Gad (F)x be an element such that

χ ′ = χ ◦Ad(h−1). (5.6)
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Since G (F)x,0+ acts transitively on the set of apartments containing x, and at the same
time acts trivially on the above kF-vector space, we may assume that h preserves the
apartment of T, i.e., that h ∈ N (Tad,Gad)x. This element acts on Π . Let m be the size
of the orbit of 1 − η. Then hm preserves both the alcove C and the vertex o; thus
hm
∈ Tad(OF). This element acts on (5.5) through its image in Tad(kF), and preserves

each individual summand. Hence, for each α ∈Π , there is a scalar υα ∈ k×F by which hm

acts on U (F)α /U (F)α+1. The function α 7→ υα is constant on the orbits of h, and the
image of hm in Tad(kF) is equal to ∏

α∈∆

ω̌α(υα),

where ω̌α is the coweight of the gradient of α. We claim that this element is trivial.
Let O ⊂ Π be the unique orbit of Ad(h) which is not contained in ∆. Then (5.6)

implies that, for each α ∈ ∆ \ O, we have the following equality of characters of
U (F)α /U (F)α+1:

χ = χ ◦Ad(hm)= χ ◦ υα.

In other words, the endomorphism of U (F)α /U (F)α+1 given by multiplication by υα − 1
has its image inside the kernel of χ . Since χ is affine generic, this kernel is not the full
group U (F)α /U (F)α+1; hence the endomorphism υα − 1 is not bijective, and thus must
be zero. We have shown that υα = 1 for all α ∈∆ \ O.

To show that υα = 1 also for α ∈ O, we apply Lemma 5.3 to the element
w = Ad(h) ∈ Ω(T,G). Let n ∈ N(Tad,Gad)(F) be a lift of w of order m. Then h = nt,
for some t ∈ T(F), and hm

= Nw(t), where Nw(t) = t·wt· · ·w
m−1

t is the norm of t for the
action of w on T(F). For α ∈∆, we have

υα = α(h
m)= Nw(α)(t).

According to Lemma 5.3, if α ∈ ∆ ∩ O, then Nw(α) belongs to the Z-span of
{Nw(β)|β ∈ ∆ − O}, and thus υα is a product of integer powers of υβ . Since the latter
were shown to be equal to 1, the proof is complete. �

The uniqueness statement in Proposition 5.1 now follows easily from these lemmas – if
both π and π ′ are generic, then Lemma 5.4 implies that there exist t, t′ ∈ T(kF) such that

HomU(OF)(χ,Ad(t)ψ) 6= 0 and HomU(OF)(χ
′,Ad(t′)ψ) 6= 0.

Replacing χ by Ad(t−1)χ and χ ′ by Ad(t′−1
)χ ′ does not change π and π ′. But now

Lemma 5.5 implies that χ = χ ′.

6. Unramified extensions

The conjecture of Gross and Reeder that simple supercuspidal representations should
correspond to simple wild parameters [15, 9.5] has as an input the assumption of a
certain natural compatibility of this correspondence with unramified extensions of the
base field F. In this section, we are going to show that the correspondence we have just
constructed satisfies such a compatibility.
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Let φ : WF → Ĝ be a simple wild parameter. Given a finite unramified extension F̃
of F, we can restrict the parameter φ to WF̃. Call this restriction φ̃. It is still a simple
wild parameter. Consider the norm map

Cent(φ̃, Ĝ)→ Cent(φ, Ĝ), g 7→
∏

w∈WF/WF̃

Ad(φ(w))g.

We obtain the following diagram:

X∗(Cent(φ, Ĝ)) - X∗(Cent(φ̃, Ĝ))

Πφ

?
Πφ̃

?

where the horizontal map is the dual of the norm map and the vertical maps are the
bijections constructed in ğ 5, each depending on the choice of a Whittaker datum. There
is an obvious way to make both choices coherent – if we have chosen a Whittaker datum
(B, ψ) for G, then we may take as a Whittaker datum for G× F̃ the pair (B× F̃, ψ ◦ N),
where N is the norm map for the action of Γ (F̃/F) on the quotient

U(F̃)/[U,U](F̃)∼=
⊕
α∈∆

Uα(F̃).

Given ρ ∈ X∗(Cent(φ, Ĝ)), let ρ̃ ∈ X∗(Cent(φ̃, Ĝ)) be its image under the dual norm
map. We can consider the simple supercuspidal representation π of G(F) corresponding
to the pair (φ, ρ), as well as the simple supercuspidal representation π̃ of G(F̃)
corresponding to the pair (φ̃, ρ̃).

Proposition 6.1. If we write π = c-Indχ , where χ : Z(F)G (F)x,1/h→ C× is an affine
generic character, then π̃ = c-Indχ̃ , where χ̃ : Z(F̃)G (F̃)x,1/h → C× is obtained by
composing χ with the norm map for the action of Γ (F̃/F) on the abelian group
Z(F̃)G (F̃)x,1/h /G (F̃)x,2/h.

Recall that the construction of the L-packet associated to φ in ğ 4 associates to φ a
Gad(F)-conjugacy class of affine generic characters, then constructs a simply transitive
action of X∗(Cent(φ, Ĝ)) on the set of representations induced from these characters,
and finally provides a base point of the set of these representations given by the choice
of a Whittaker datum. The proof of the proposition will follow this structure. We will
first show that, if χ is an affine generic character in the Gad(F)-orbit associated to φ,
then χ ◦ N is an affine generic character in the Gad(F̃)-orbit associated to φ̃. Next, we
will show that, if ρ · c-Indχ = c-Indχ ′, then ρ̃ · c-Ind[χ ◦ N] = c-Ind[χ ′ ◦ N], where ·
denotes the simple transitive actions we alluded to. Finally, we will show that c-Indχ
and c-Ind(χ ◦ N) are generic with respect to two choices of Whittaker data which are
coherent in the sense described above.

https://doi.org/10.1017/S1474748012000631 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748012000631


Simple wild L-packets 71

Proof. Let j : S→ G be an embedding of type (C) and χS : S(F)→ C× be a character,
such that the Gad(F)-conjugacy class of the pair (χS, j) is associated to φ by the
construction of § 4. Recall that χS was obtained from a factoring of φ as

WF
φS
−→

LS
Lj
−→ Ĝ,

where Lj was constructed from a choice of tamely ramified χ -data {χλ|λ ∈ R(S,G)}.
Each χλ is a character on the multiplicative group of F[ΓF]λ , where [ΓF]λ is the

stabilizer of λ for the action of ΓF on R(S,G). Let Nλ denote the norm map for the
extension

F[ΓF̃]λ/F[ΓF]λ .

Then one can check that the set {χλ ◦ Nλ|λ ∈ R(S,G)} satisfies the axioms of χ-data
for the action of ΓF̃ on R(S,G). This χ-data are again tamely ramified and can be
used to produce an embedding L j̃ : Ŝ o WF̃→ Ĝ. One checks that the following diagram
commutes:

WF
φS - Ŝ o WF

Lj - Ĝ

WF̃

∪

6

φ̃S - Ŝ o WF̃

∪

6

L j̃

-

In particular, φ̃ = L j̃ ◦ φ̃S. By the Langlands correspondence for tori, the character of
S(F̃) associated with φ̃S is χS ◦ N, where N : S(F̃)→ S(F) is the norm map for F̃/F. We
conclude that the Gad(F̃)-conjugacy class of the pair (χS ◦ N, j× F̃) is associated to φ̃.

Let x be the point in B(G,F) associated to j. It is also the point associated to j× F̃ by
Fact 3.1. It is easy to see that we have the commutative diagram

Z(F)G(F)x, 1h
/G(F)x, 2h

- S(F)/S(F) 2
h

Z(F̃)G(F̃)x, 1h
/G(F̃)x, 2h

?

∩

- S(F̃)/S(F̃) 2
h

?

∩

where the horizontal maps are the homomorphisms (4.1), the top one associated to j and
the bottom one associated to j × F̃. Moreover, the bottom one is Γ (F̃/F)-equivariant.
The affine generic character χ associated to the pair (χS, j) is the composition of χS and
the top map, while the affine generic character χ̃ associated to the pair (χS ◦ N, j × F̃)
is the composition of χS ◦ N and the bottom map. We conclude that, if the Gad(F)-orbit
of the affine generic character χ is associated to φ, then the Gad(F̃)-orbit of the affine
generic character χ ◦ N is associated to φ̃.
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To show that the simply transitive actions are compatible, consider the diagram

X∗(Cent(φ, Ĝ)) - X∗(Cent(φ̃, Ĝ))

X∗(S)ΓF

wwwwwwwwww
- X∗(S)ΓF̃

wwwwwwwwww

H1(F, S)

wwwwwwwww
- H1(F̃, S)

wwwwwwwww

Gad(F)
G(F)Sad(F)

wwwwwwwww
- Gad(F̃)

G(F̃)Sad(F̃)

wwwwwwwww
where the top vertical maps are induced by Lj and L j̃, the middle vertical maps are the
Tate–Nakayama isomorphisms, and the bottom vertical maps arise from the connecting
homomorphisms. The top horizontal map is the dual norm map, while the bottom
horizontal map is induced by the inclusion Gad(F)→ Gad(F̃). From this it follows that, if
ρ · c-Indχ = c-Indχ ′, then ρ̃ · c-Ind[χ ◦ N] = c-Ind[χ ′ ◦ N], which was to be shown.

To complete the proof of the proposition, choose a Borel subgroup B containing a
maximal torus whose apartment contains x, and let ψ be a character of Bu(F) whose
restriction to Bu(OF) coincides with χ . Then π = c-Indχ is (B, ψ) generic, and at the
same time π̃ = c-Indχ̃ is (B × F̃, ψ ◦ N)-generic. Thus π and π̃ correspond to the same
element of X∗(Cent(φ, Ĝ)). �

7. Stability

Let x ∈ B(G,F) be the barycentre of an alcove,

χ : Z(F)G (F)x, 1h
/G (F)x, 2h

→ C×

be an affine generic character, and π the corresponding simple supercuspidal
representation. We are going to denote its Harish–Chandra character function by Θπ .
Let Π be the L-packet containing π , and put

SΘΠ =
∑
π∈Π

Θπ .

One of the conjectural properties of L-packets is that the function SΘΠ should be stable.
That is, if γ, γ ′ ∈ G(F) are regular semi-simple elements for which there exists g ∈ G(F)
that conjugates the one to the other, then

SΘΠ (γ )= SΘΠ (γ
′).
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This function can be studied independently of our construction of the L-packet Π , if
one takes Π to simply be the orbit of π under Gad(F). We have learned from Stephen
DeBacker that one can use the results of Adler and Spice [4] to prove the stability of
SΘΠ under the assumption that the residue field kF has sufficiently large characteristic.
In this section, we are going to provide a different indication of stability. We will
show that, without additional assumptions on kF (beyond the standing assumption that
char(kF) does not divide the Coxeter number of G), one can show that, on a certain
open set of regular semi-simple elements, the function SΘΠ is atomically stable – i.e., it
is stable, and no sum of characters of a proper subset of Π is stable. This result is an
indication that the stability of ΘΠ (at all regular semi-simple elements) holds without
further restrictions on kF, but we have not been able to find a proof for this statement
yet.

Proposition 7.1. Let j : S′→ G be any embedding of type ( C), and let γ ∈ j(S′)(F) be a
regular element. If γ ′ ∈ G(F) is stably conjugate to γ , then SΘΠ (γ )= SΘΠ (γ ′).

Note that the embedding j need not be the one used in the construction of the packet Π .

Proof. Let χ̇ : G(F)→ C denote the function which equals χ on Z(F)G (F)x,1/h and
equals zero outside of this subgroup. This function is an element of the induced
representation π , and since the evaluation map f 7→ f (1) is a smooth functional on π , the
function χ̇ is also a matrix coefficient for π . According to [17, Lemma 22.1], we have

Θπ (γ )= deg(π; dx)
∫

G(F)/Z(F)
χ̇(xγ x−1)dx.

By construction, the finite abelian group Gad(F)/G(F) acts transitively on Π . It follows
that

SΘπ (γ )= C
∫

Gad(F)
χ̇(xγ x−1)dx,

where C is the positive constant given by the ratio of deg(π; dx) and the size of the
stabilizer of π in Gad(F)/G(F). The claim now follows from Corollary 3.3. �

The referee has pointed out that, given a collection (cπ )π∈Π of complex numbers,
a necessary condition for

∑
π∈Π cπΘπ to be stable is that all cπ be equal. Indeed,

let Stab(π) denote the subgroup of Gad(F) which leaves the isomorphism class of π
invariant under conjugation. Since this group contains G(F) and Gad(F)/G(F) is abelian,
this group is independent of the choice of π within Π . Then Λ = Gad(F)/Stab(π) acts
simply transitively on Π , and we will write πλ for the image of π ∈ Π under λ ∈ Λ.
If
∑
π∈Π cπΘπ were stable, then it would be invariant under the action of Gad(F) by

conjugation. This action descends to Λ, and we have∑
π∈Π

cπΘπ =
1
|Λ|

∑
λ∈Λ

∑
π∈Π

cπΘπλ =
∑
π∈Π

(
1
|Π |

∑
π ′∈Π

cπ ′

)
Θπ .

The linear independence of {Θπ |π ∈Π} now shows that all cπ are indeed equal.
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10. M. Demazure and A. Grothendieck, Schémas en groupes I, II, III, Lecture Notes in
Math., Volume 151–153. (Springer-Verlag, New York, 1970).

11. P. Deligne, Cohomologie étale, in Séminaire de Géométrie Algébrique du Bois-Marie
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