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ABSTRACT. Precise radiocarbon (14C) dating of sedimentary sequences is important for developing robust
chronologies of environmental change, but sampling of suitable components can be challenging in highly dynamic
landscapes. Here we investigate radiocarbon determinations of different peat size fractions from six peat sites,
representing a range of geomorphological contexts on the South Atlantic subantarctic islands of the Falklands and
South Georgia. To investigate the most suitable fraction for dating, 112 measurements were obtained from three
components within selected horizons: a fine fraction <0.2 mm, a coarse fraction >0.2 mm, and bulk material. We
find site selection is critical, with locations surrounded by high-ground and/or relatively slowly accumulating sites
more susceptible to the translocation of older carbon. Importantly, in locations with reduced potential for
redeposition of material, our results show that there is no significant or systematic difference between ages derived
from bulk material, fine or coarse (plant macrofossil) material, providing confidence in the resulting age model.
Crucially, in areas comprising complex terrain with extreme relief, we recommend dating macrofossils or bulk
carbon rather than a fine fraction, or employing comprehensive dating of multiple sedimentary fractions to
determine the most reliable fraction(s) for developing a robust chronological framework.
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INTRODUCTION

Peat deposits are important natural archives for reconstructing past climate and environmental
change. This is of particular significance in the mid-to-high latitudes which are experiencing
increasing climate variability and long-term warming but where there is a relative paucity of
instrumental (observational) records (IPCC AR5 2013; Jones et al. 2016; Rainsley et al. 2019).
Despite the importance of peat for reconstructing palaeo-ecological and -climate change (e.g.
McGlone et al. 2010), its role as a major global carbon reservoir, including past changes in flux
(Turney et al. 2016a; Amesbury et al. 2017; Gallego-Sala et al. 2018), and even defining
geological epochs (Turney et al. 2018), there are a number of potential issues regarding precise
dating of sequences in remote, highly dynamic locations. These include the suitability of
available calibration curves (Scott et al. 2010; Reimer et al. 2013b), sedimentary material
selection and pretreatment (Nilsson et al. 2001; Brock et al. 2010; Piotrowska et al. 2011), and
site context for developing robust chronological frameworks.

A key consideration when selecting material for radiocarbon dating is whether the age assigned
to a peat sample truly reflects the time that the associated sediments were deposited. It is well
known that some sediments may incorporate carbon that is from the non-contemporaneous
environment. Peat sediments can comprise both “older” and “younger” carbon, through the
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mobility of various size/chemical fractions, deposition of reworked material from upslope, and
penetration of older peat by younger rootlets (McGlone et al. 2004). The most important issue,
therefore, is to identify the fraction that can provide a reliable radiocarbon determination (and
is present in sufficient quantity). Peat and macrofossils from bogs are thought to be least
susceptible to older or younger carbon contamination, while lakes and swamps can be subject
to redeposition of old carbon from the adjacent catchment, as well as hardwater effects (Olsson
1986). Some environments are more susceptible to the movement and redeposition of organic
components. A key concern is the vertical penetration of roots, resulting in inclusion of
“younger” carbon in the samples being dated (Kilian et al. 2000; Brock et al. 2011). For example,
root penetration can reach up to 2 m in depth and can therefore bias the radiocarbon
determination of the peat unit by several thousand years (Martin et al. 2018). When dating bulk
peat samples, removal of visible roots can reduce the influence of this “younger” carbon,
resulting in older ages. However, it should be noted that identification of these roots after
decomposition can be challenging, particularly in sediments of greater antiquity. Another
possibility is the downward vertical migration of microfossils by water movement/flow,
however, this is generally limited to the relatively unconsolidated upper sediments, limiting
the impact on age determinations (Ivanov 1981; Joosten and De Klerk 2007).

The dating of terrestrial plant macrofossils (e.g. seeds, wood, bark, leaves) has been suggested to
improve the accuracy of chronologies as, providing they are in situ and have not been reworked,
they are likely to be contemporaneous with the time of deposition and therefore reflect
atmospheric 14C (Lowe and Walker 1997; Turney et al. 2000; Blockley et al. 2012). Dating
short-lived terrestrial plant remains ensure that the assimilated atmospheric CO2 is likely to
be near-contemporaneous with the terrestrial environment. However, misidentification of
root material for plant macrofossils can result in significant errors (Martin et al. 2018), so
extreme caution must be taken. For highly humified peat, from which it is difficult to select
specific macrofossils, or in the absence of visible macrofossils, it is possible to date either the
whole peat sample (termed a “bulk” sample), or specific fractions of the peat, which may be
separated physically or chemically. For rapidly accumulating peats in ombrotrophic bogs in
particular, bulk 14C ages can directly reflect atmospheric radiocarbon (Blaauw et al. 2004).

A potential source of older carbon being incorporated into a peat sequence, regardless of the
material type, is the translocation of older carbon from higher adjacent ground as a result of
erosion. A potentially important aspect at some locations is cryoturbation, which can distort
the stratigraphic integrity of a sequence through movement/mixing of material of different
coarseness in a profile. If the material is allogenic (i.e. transported from elsewhere) it is
essential that it has not been reworked/redeposited from older geological strata or soils, as
this could bias the 14C age determination towards older values. For example, old soil humics
and refractory soil organic material such as lignin can be several thousand years old at the
point of redeposition (McGlone and Wilmshurst 1999). This is particularly problematic in
organically lean sediments (Reimer et al. 2013a; Wilson et al. 2002). In addition, some
organic components such as wood or charcoal may have inbuilt ages due to their persistence
in a landscape on timescales of centuries or longer, before incorporation into a sediment unit
(Oswald et al. 2005; Kershaw et al. 2007; Howarth et al. 2013).

Different sedimentary environments have been shown to have varying susceptibilities to the
incorporation of non-contemporaneous carbon (McGlone and Wilmshurst 1999; Chu et al.
2016). As a result, there have been a number of studies investigating different size and
chemical fractions for radiocarbon dating of peat. For instance, some work has found that
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the incorporation of bulk peat dates appeared to introduce no significant systematic biases into
large datasets (Blaauw et al. 2004; Holmquist et al. 2016). A study fromAustralia found that 14C
dating of short-lived plant macrofossils resulted in consistently younger ages than from both
pollen concentrate material and charcoal, with the macrofossils thought to be potentially
closer to the age of the deposition of the sediment (Martin et al. 2018). In addition to separate
size fractions, different chemical fractionsmay also provide divergent age determinations (Shore
et al. 1995; Turetsky et al. 2004); vertical transport of humic acids in peat columns is potentially
variable due to site-specific conditions, andmay be arrested in acidic environments due to lower
humic acid solubility (Wüst et al. 2008).While Brock et al. (2011) demonstrated that humic acid
fractionswere significantly younger than their humin counterparts at a site in northernGermany,
it was difficult to conclude confidently that the date of one fraction was more reliable than any
other. In contrast, Hill et al. (2019) found no statistical difference between humic and humin
fractions in four out of five sample pairs derived from peat at Glastonbury, England—one
sample pair showed an older humin fraction, probably as a result of site disturbance.

The south Atlantic subantarctic islands of South Georgia and the Falklands are situated within
the core latitude of the westerly wind belt (51–54°S). These islands have long been recognized for
their potential for reconstructing regional and hemispheric climate and environmental changes
(Barrow 1978), and have been the focus of several recent studies (van der Putten et al. 2009;
Strother et al. 2015; Turney et al. 2016a, 2016b; Berg et al. 2019; Oppedal et al. 2018;
Thomas et al. 2018a; White et al. 2018). The geochronological basis for these reconstructions
has relied almost wholly on 14C. While both islands experience a generally cool, maritime
climate, the combination of extremes in altitude, climate, sea ice and glacial/periglacial
conditions (the latter notably on South Georgia), and limited vegetation cover, has created
landscapes that are highly dynamic across a range of timescales, with substantial potential
for remobilization of sediments (and associated 14C; Wilson et al. 2002; Oppedal et al. 2018).

This study compares 14C determinations from different depositional environments on the highly
dynamic subantarctic islands of the South Atlantic to investigate the most suitable fraction for
14C dating, and to investigate the influence of local geomorphology on the 14C inventory. We
report a study of six sites from a range of different depositional terrestrial environments on
two subantarctic islands in the South Atlantic: the Falkland Islands and South Georgia
(Figure 1). To investigate the most reliable fraction(s), a total of 112 14C ages were obtained,
comprising 24 pairs of bulk peat and macrofossils (coarse fraction, >0.2 mm), 21 pairs of
fine fraction (<0.2 mm) and macrofossils, and two triplets of all three fractions. Here we
explore different influences on the radiocarbon inventory in each sequence.

Study Area

The Falkland Islands and SouthGeorgia lie in the SouthAtlantic at 52°S and 54°S, respectively.
The Falklands are 540 km east of the coast of South America and 1500 km west of subantarctic
SouthGeorgia (Figure 1). Three sites were investigated on the Falkland Islands in the immediate
area of Port Stanley (Figures 1 and 2). The first selected site was Canopus Hill, an Ericaceous-
grass dominated peatland situated above Port Stanley Airport (51.691°S, 57.785°W,
approximately 30 m above mean sea level (masl) (Figure 2A–E) from which a sediment
sequence 1.6 m long was cored. In addition, we investigated peat sequences from Memorial
Beach (51.70053°S, 57.78331°W, approximately 5 masl), and Silos (51.70224°S, 57.87939°W,
approximately 83 masl) where we recovered 1.6 m and 0.7 m of sediment, respectively. While
the site at Silos is located on a gentle slope approximately 0.7 km from a local topographic
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Figure 1 A) The South Atlantic sector of the Southern Ocean with the locations of the Falkland Islands (FI) and South Georgia (SG) (black boxes). Average positions of the
southern limb of the Antarctic Circumpolar Current (purple, solid line), the polar front (red, dashed line), subantarctic front (green, dotted line) and the subtropical front (orange,
dot-dash line) (Orsi et al. 1995). B) Falkland Islands (site locations at black X). C) South Georgia (site locations at black X, study discussed in text black circle). Maps produced
with GMT (Wessel et al. 2013). (Please see electronic version for color figures.)
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peak,MemorialBeach is locatedonanarrowcoastal isthmus, just above sea level (Figure 2A–E).
On South Georgia, three moss-dominated (Polytrichum strictum and Chorisodontium
aciphyllum) peat sites were investigated: a 0.8 m long record was obtained from King Edward
Cove Lower (54.293°S, 36.494°W, approximately 5 masl); 0.9 m from King Edward Cove
Upper (54.29396°S, 36.49642°W, approximately 23 masl) in Cumberland Bay; and a 0.7 m
sequence was collected from Junction Valley (54.298°S, 36.524°W, approximately 80 masl,
some 2 km farther inland from King Edward Cove). King Edward Cove Upper and Lower
have similar depositional environments, located on the low gradient slopes, while the site at
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Figure 2 Site location maps with contours showing terrain, and elevation profiles: A) Canopus Hill and Memorial
Beach contour map; B) Silos contour map; C, D, E) the respective elevation profiles of these 3 sites; F) King Edward
Cove Lower and Upper contour map; G) Junction Valley contour map; H) the respective elevation profiles from these 3
sites. Black dots denote site locations.
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Junction Valley is located on the toeslopes of the relatively wide valley (Figure 2F–I); all are
surrounded by vegetated slopes and rocky peaks.

The subantarctic islands of the South Atlantic have been the focus of considerable work. Prior
knowledge of radiocarbon chronologies from these regions can be extremely valuable when
undertaking a dating campaign on a peat sequence, particularly for identifying potential
accumulation rates. Following the Last Glacial Maximum, climate amelioration allowed
the establishment of blanket peat across large parts of the Falkland Islands from 16,500 yr
BP (Wilson et al. 2002). Today, the Falkland Islands are not glaciated, and are dominated
by extensive undulating lowlands (though with several upland areas in excess of 500 m
above sea level). The present climate of the Falkland Islands is characterized by a cool
temperate, maritime climate, with low seasonality. The Mount Pleasant Airport weather
station (Figure 1B), just a few hundred meters from the Canopus Hill site, records a mean
annual temperature of 5.5°C (with a range of −5°C to 25°C), and annual precipitation of
~600 mm, which is distributed uniformly throughout the year (Lister and Jones 2014). Peat
sequences across the islands have been used for studies of palaeovegetation (Barrow 1978;
Clark et al. 1998), as well as past changes in the Southern Hemisphere westerly winds
through the Holocene (Turney et al. 2016b; Thomas et al. 2018a).

South Georgia is a relatively small, mountainous island, down the axis of which are a series of
icefields, many of which descend and terminate as tidewater glaciers that have experienced
substantial retreat over recent decades (Bentley et al. 2007; Gordon et al. 2008; Cook et al.
2010; van der Bilt et al. 2017). At the Grytviken weather station (Figure 1C), a few km from
the three peat sequences sampled, mean annual temperatures are ~2°C (with a range of −8°C
to 20°C), with an annual precipitation over double that of the Falkland Islands at 1400 mm
(mostly the result of orographic rainfall; Thomas et al. 2018b). In exceptional winters, sea ice
can extend north of the island. Despite the large presence of ice over the island, the
promontory of land around Grytviken is not currently directly influenced by glacial activity.
However, recent work has suggested periods of glacial advance (and retreat) during the
Holocene (van der Bilt et al. 2017; Oppedal et al. 2018; Berg et al. 2019), which would likely
have directly impacted the higher ground around the sites investigated. Peat sequences dating
to ~9000 yr BP have been analyzed for palaeovegetation and palaeoenvironmental
reconstruction (van der Putten et al. 2004, 2009). The climate and environmental history of
the islands will be considered when assessing the comparability of the radiocarbon inventory
from each site.

METHODS

The peat sequences investigated in this study were collected by a combination of monolith tins
(upper 50 cm) and at greater depth using aD-section corer with 8-cmdiameter and 50-cm length.
The sequences reported here comprise a uniform, humified, dark-brown peat. The material for
radiocarbon dating was sampled at designated intervals, and a 1-cm section was extracted from
the core using a scalpel. Where bulk peat samples were taken, any obvious woody rootlets were
removed. To separate the fine and coarse fractions, the sample material was wet-sieved at
0.2 mm. Sufficient micro- and macrofossil material for 14C dating was obtained for each
fraction after sieving.

The 14C samples were pretreated, combusted, and graphitized at the University of Waikato
Radiocarbon Laboratory. The 14C/12C measurement was undertaken at the University of
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California at Irvine (UCI). All samples were pretreated using an acid-base-acid (ABA) protocol
with multiple base extractions. Our routine procedure is 1MHCl at 80°C for 1 hr; 1MNaOH at
80°C for 30 min; 1MHCl at 80°C for 1 hr; 80°C, MilliQTM water for 5 min (pH>5), sonicated,
then dried at 80°C. The supernatant is removed after each step by pipette. The chemical
concentrations, number of NaOH treatments (which continues until the color is no longer
transferred from sample to the liquid), temperature and length of pretreatment will vary
depending on the quantity and condition of the sample. The pretreated samples were
converted to CO2 by combustion in sealed pre-baked quartz tubes, containing Cu and Ag
wire. The CO2 was then converted to graphite using H2 and an Fe catalyst, and loaded into
aluminum target holders for measurement at UCI on a NEC compact (1.5SDH) AMS
system (Southon et al. 2004).

A total of 112 14C ages were measured from 65 discrete depth horizons from six peat sequences
(three on the Falkland Islands, and three from South Georgia). To better understand the
radiocarbon inventory of the peat sequences, all sampled depths were measured for bulk
peat, with more detailed study of 26 subsamples measured from the coarse fraction
(macrofossils, identified here as >0.2 mm), and 23 samples from the fine fraction (<0.2 mm).
Some of these dates have been previously published in studies reporting synoptic atmospheric
circulation change and westerly wind periodicities (Turney et al. 2016a, 2016b; Thomas et al.
2018a). We report 14C measurements as percent modern carbon (pMC), since some of the
ages are younger CE 1950 (i.e. after the nuclear “bomb peak”), thus allowing systematic
graphing and comparison (though uncalibrated radiocarbon ages are also presented in
Table 1). We analyzed the uncalibrated pMC values to separate the effect of plateaus in the
calibration curve in the distribution of calibrated 14C dates. However, we also present a
selection of probability density functions to show the effect of radiocarbon calibration using
the Southern Hemisphere radiocarbon calibration curve (Hogg et al. 2013; SHCal13).

RESULTS AND DISCUSSION

The peat sequences from the two islands preserve a range of radiocarbon contents within
different components of the host sediments. Canopus Hill provides the most coherent age-
depth profile of the six sites investigated (Figure 3). The paired radiocarbon ages from the
macrofossil, fine and bulk components are all within error, and fall on the 1:1 regression line
in Figure 4, providing confidence that the age-depth relationship is robust, regardless of the
fraction dated. There is therefore limited evidence of vertical movement of any fraction
through the profile. Perhaps most importantly, the site is situated very near the top of a local
topographic peak (Figure 2), with no surrounding higher slopes, limiting the input of older
carbon into the site. Memorial Beach is situated on a short isthmus with no immediate
surrounding steep slopes (Figure 2), suggesting little opportunity for redeposition of older
carbon. While only bulk peat dating was undertaken, two duplicates were measured which
dated within uncertainties (Figure 3). As the characteristics of Memorial Bay resemble that
of Canopus Hill, we assume the age-depth profile also to be coherent.

In contrast to the above, the peat sequence at Silos has highly variable age components
(Figure 3). Importantly, the 70 cm record captures most, if not all, of the Holocene
(Table 1). The closest topographic high-point, only some 0.7 km distant, and the relatively
steep slope (Figure 2) may have been the origin for reworked carbon, resulting in
anomalously older ages for the fine fraction at any given depth (Figure 4). Here we find
differences of up to 16 pMC from the upper part of the record (Wk 33414 for the coarse and
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Table 1 Percent modern carbon and radiocarbon age and uncertainties for peat sequences on
the Falkland Islands and South Georgia.

Site and
laboratory
number (Wk-)

Mid-depth
(cm) δ13C Age BP 1σ PMC

PMC-
Error Component

Canopus Hill, Falkland Islands
34598 8.5 −25.2 116.965 0.328 Coarse
34598 8.5 −25.7 109.074 0.297 Fine
32994 11.5 −26.2 104.337 0.322 Bulk
32994 11.5 −25.1 107.824 0.329 Coarse
37007 18.5 −25.6 107.266 0.246 Coarse
33444 25.5 −26 204 25 97.494 0.305 Bulk
35146 25.5 −26.5 95 25 98.822 0.301 Coarse
32995 35.5 −26.6 648 25 92.253 0.285 Bulk
37008 35.5 −27.4 647 25 92.265 0.288 Coarse
33445 39.5 −26.4 900 25 89.401 0.272 Bulk
33445 39.5 −26 761 25 90.961 0.286 Coarse
32996 57.5 −26.5 1800 28 79.928 0.276 Bulk
32996 57.5 −26.5 1818 25 79.745 0.250 Coarse
32350 70.5 −25.4 2235 25 75.709 0.234 Coarse
32350 70.5 −26.4 2192 35 76.120 0.328 Fine
32997 97.5 −26.6 2771 30 70.825 0.267 Bulk
32997 97.5 −25.9 2749 25 71.022 0.222 Coarse
32998 107.5 −26.5 2889 29 69.789 0.245 Bulk
32998 107.5 −24.2 2914 26 69.573 0.220 Coarse
32351 141.5 −26.6 3955 32 61.115 0.239 Coarse
32351 141.5 −26.6 4054 35 60.373 0.262 Fine
Memorial Beach, Falkland Islands
39909 2.5 106.8 0.3 106.771 0.263 Bulk
39910 10.5 100.6 0.3 100.628 0.249 Bulk
32352 30.5 −25.7 322 42 96.074 0.502 Bulk
33021 30.5 −25.4 410 26 95.023 0.311 Bulk
33417 65.5 −24.6 888 25 89.539 0.278 Bulk
33418 90.5 −25.4 1389 25 84.122 0.261 Bulk
33419 120.5 −25.1 2053 25 77.443 0.234 Bulk
32353 145.5 −24.9 2501 31 73.244 0.282 Bulk
33022 145.5 −26.5 2561 38 72.698 0.337 Bulk
Silos, Falkland Islands
34841 5.5 −26.5 106.029 0.234 Coarse
33414 15.5 −24.4 108.924 0.317 Coarse
33414 15.5 −25.6 669 25 92.008 0.286 Fine
34838 15.5 −24.2 104.635 0.247 Coarse
32354 30.5 −26.1 2638 25 72.010 0.224 Coarse
32354 30.5 −25.7 6389 33 45.141 0.182 Fine
33019 30.5 −26.3 5471 28 50.606 0.175 Bulk
33415 40.5 −27.6 9644 34 30.104 0.129 Bulk
33415 40.5 1701 27 80.912 0.269 Coarse
34839 40.5 −24.6 101.757 0.240 Coarse

(Continued)
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Table 1 (Continued )

Site and
laboratory
number (Wk-)

Mid-depth
(cm) δ13C Age BP 1σ PMC

PMC-
Error Component

32355 48.5 −25.7 7775 34 37.987 0.159 Coarse
32355 48.5 −27.9 11930 45 22.647 0.126 Fine
33020 48.5 −26.4 9795 39 29.540 0.142 Bulk
33416 65.5 −25.8 10177 35 28.170 0.122 Coarse
33416 65.5 −27.6 12737 40 20.483 0.102 Fine
34840 65.5 −26.9 7879 45 37.498 0.207 Coarse
King Edward Cove Lower, South Georgia
34599 8.5 −22.9 115.222 0.391 Coarse
34599 8.5 −24 136 25 98.315 0.297 Fine
32999 13.5 −23.6 0.4 101.254 0.327 Bulk
34600 16.5 −21.5 103.866 0.279 Coarse
34600 16.5 −23.8 287 25 96.484 0.296 Fine
33000 27.5 −24 337 26 95.890 0.308 Bulk
33000 27.5 −21.6 100.310 0.292 Coarse
33446 35.5 −23.5 574 25 93.100 0.288 Bulk
33446 35.5 −22.6 103 25 98.723 0.306 Coarse
34601 40.5 −21.2 251 25 96.921 0.295 Coarse
34601 40.5 −24.2 941 25 88.950 0.277 Fine
32358 45.5 −21.4 446 26 94.600 0.312 Coarse
32358 45.5 −23.1 1078 37 87.443 0.403 Fine
33001 57.5 −22.5 1012 25 88.166 0.276 Bulk
37009 57.5 −22.3 729 25 91.325 0.284 Coarse
34602 64.5 −23.9 1193 25 86.195 0.264 Coarse
34602 64.5 −24.6 1351 24 84.524 0.261 Fine
32359 70.5 −22.4 983 26 88.477 0.280 Coarse
32359 70.5 −23.7 1577 31 82.175 0.315 Fine
37010 75.5 −23.8 1015 25 88.132 0.271 Coarse
33002 78.5 −29.6 1692 29 81.006 0.295 Bulk
33447 80.5 −26.3 1513 25 82.830 0.253 Bulk
35149 81.5 −26.8 1373 30 84.294 0.319 Coarse
King Edward Cove Upper, South Georgia
34603 8.5 103.479 0.396 Coarse
34603 8.5 521 25 93.716 0.287 Fine
33448 10.5 −25 526 25 93.658 0.289 Bulk
34604 11.5 539 26 93.505 0.300 Coarse
34604 11.5 −24.8 944 30 88.913 0.336 Fine
33003 13.5 −25.1 495 27 94.026 0.320 Bulk
33003 13.5 −23.3 82 25 98.990 0.317 Coarse
33449 20.5 −23.3 845 25 90.012 0.274 Bulk
33449 20.5 −23.5 113 26 98.601 0.315 Coarse
33450 25.5 −23.6 2002 25 77.936 0.240 Bulk
33450 25.5 −23.1 643 25 92.307 0.285 Coarse
33004 29.5 −27.3 2389 27 74.272 0.247 Bulk
34605 36.5 −25.3 3253 25 66.703 0.212 Coarse
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fine fraction at 15–16 cm; Table 1); a duplicate coarse sample from the same depth indicates a
4 pMC difference (Wk 34838). At 65–66 cm depth, two duplicate coarse fractions indicate a
difference of 11 pMC (Wk 33416 & 34840). Perhaps tellingly, the poor replication of
duplicate samples demonstrates that developing a robust chronology from slowly
accumulating sequences in areas surrounded by relatively steep slopes can be highly challenging.

To test the above interpretation, we sampled three sequences from South Georgia. Our
immediate focus was on two sites near the coast at King Edward Cove. The “Upper”
sequence was sampled from a peat-covered terrace towards the eastern base of Brown
Mountain (324 masl), while the “Lower” record was obtained at lower elevation (i.e. below
the terrace) closer to the coast (Figure 2). The two sites were selected to test whether the

Table 1 (Continued )

Site and
laboratory
number (Wk-)

Mid-depth
(cm) δ13C Age BP 1σ PMC

PMC-
Error Component

34605 36.5 −25.1 3521 25 64.515 0.205 Fine
32360 45.5 −26.8 2821 27 70.388 0.237 Coarse
32360 45.5 −25.4 3958 33 61.098 0.252 Fine
33005 57.5 −27.7 3876 30 61.721 0.231 Bulk
33005 57.5 2133 28 76.678 0.267 Coarse
34606 64.5 −25.8 4224 25 59.104 0.180 Coarse
34606 64.5 −25.8 4472 27 57.307 0.190 Fine
33006 73.5 −26.5 4625 32 56.228 0.224 Bulk
33006 73.5 −24.6 2269 26 75.389 0.237 Coarse
32361 90.5 −27.5 6658 29 43.657 0.160 Coarse
32361 90.5 −26.6 7065 42 41.500 0.216 Fine
Junction Valley, South Georgia
33451 7.25 −23.6 0.4 124.714 0.389 Bulk
35147 7.25 −27 Infinite 0.107 0.080 Coarse
37011 10.5 −26.5 121.690 0.377 Coarse
37012 12.5 −26.8 107.245 0.234 Coarse
33452 14.5 −25.5 240 25 97.052 0.292 Bulk
35148 14.5 −27.8 144 25 98.217 0.301 Coarse
32356 20.5 −27.4 737 25 91.233 0.286 Coarse
32356 20.5 −26.1 1374 31 84.273 0.321 Fine
37013 22.5 −29 545 25 93.435 0.289 Coarse
33007 33.5 −27.2 3229 33 66.902 0.279 Bulk
37014 33.5 −27.4 1821 25 79.716 0.247 Coarse
34607 36.5 −25.6 3714 25 62.981 0.198 Coarse
34607 36.5 −25.6 Infinite — 0.024 0.053 Fine
33008 43.5 −26.4 4518 31 56.983 0.219 Bulk
33009 53.5 −27.1 4428 30 57.626 0.215 Bulk
34608 58.5 −25.7 4858 25 54.621 0.171 Coarse
34608 58.5 −25.7 5234 28 52.124 0.180 Fine
32357 64.5 −28 5071 30 53.193 0.198 Coarse
32357 64.5 −27.6 5692 33 49.235 0.202 Fine
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Figure 3 pMC vs. depth plot for each site on the Falkland Islands and South Georgia, with the coarse, fine, and bulk peat fraction pMC plotted.
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(upper) terrace sitemight bemore vulnerable to the input of older carbon fromBrownMountain.
In theUpper sequence we find that none of the components provide an internally coherent series
of ages, although the coarse (macrofossil) samples are consistently younger than the other
fractions (Figures 3 and 4). In contrast, the Lower sequence (farther from Brown Mountain)
displays a striking consistent offset in 14C measurements between the three fractions, with the
coarse macrofossils the youngest component, and the fine the oldest. The implication of these
two series is that close to mountain slopes, the coarse macrofossil fraction cannot necessarily
be considered reliable, and that the fine fraction may be vertically mobile, resulting in older
ages at depth.

Importantly, these findings do not preclude dating of sequences at relatively high elevations, as
long as the site is surrounded by open, low gradient terrain as found at Junction Valley
(Figure 2). The area is characterised by a succession of small peat terraces higher up that
are stepped down through Junction Valley, allowing the opportunity to capture the (re)
deposition of material from the upper slopes before it reaches the lower slopes. Here we
sampled a peat sequence on the base of the hillslope, distant from the steeper upper slopes,
that is relatively slowly accumulating (arguably similar to Silos on the Falkland Islands;
Table 1). The sequence exhibits a surprising coherence between the different size fractions
(Figure 3). However, two “infinitely-old” ages were measured from near the surface
(macrofossils from 7–7.5 cm; Wk 35147) and at depth (the fine fraction at 36–37 cm;
Wk 34607), suggesting that there is still potential for redeposition of significantly older
carbon from eroding deposits upslope near Minden Peak (677 masl).

The calibration of 14C ages relies on the construction of an appropriate calibration curve (e.g.
IntCal13 (Reimer et al. 2013a) for Northern Hemisphere samples, and SHCal13 (Hogg et al.
2013) for Southern Hemisphere samples). However, a characteristic feature of calibration curves
is that radiocarbon age is not precisely linear with calendar age, as evidenced by the presence of
radiocarbon plateaux, where single 14C ages correspond to multiple calendar ages, and
“wiggles,” where 14C ages fluctuate rapidly. As a result, a single 14C date may correspond to
more than one calendar age, or a large time interval with a corresponding large uncertainty.
Conversely, in periods containing 14C “wiggles,” a surprisingly precise chronology can be
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fraction separated. Solid line indicates a 1:1 regression, dashed line is a simple linear regression.
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determined, andBayesian age-modeling software such asOxCal (BronkRamsey andLee 2013) and
Bacon (Blaauw and Christen 2011) can significantly reduce chronological uncertainties within a
sequence.

In the CanopusHill peat sequence, calibration of the paired 14C ages from the different fractions
results in virtually identical probability distribution functions for the calendar age ranges,
although the exact degree of overlap depends somewhat on the structure of the calibration
curve (Figure 5). Both the 57.5 cm and the 35.5 cm dated horizon in this sequence display a
bimodal distribution as a result of the complex structure of the calibration curve, making the
calendar age range estimation larger than a comparable unimodal distribution. However, in
the Silos sequence, the difference in age determination between the three fractions is
exacerbated when ages are calibrated, with individual horizons displaying a range of several
millennia (Figure 6).

Certain climatic or environmental conditions may influence the radiocarbon inventory of different
sizes and/or fractions. For example, cold environments (particularly those that are high latitude or
high elevation) are generally characterized by low sedimentation rates. This increases the likelihood
of higher proportions of redepositedolder carbonbeing incorporated into the sediment sequence. In
the Falkland Islands sites, both Canopus Hill and Memorial Beach have relatively high average
sedimentation rates at 28.5 14C yr/cm and 17.5 14C yr/cm and display coherent age-depth
profiles. Conversely, the site at Silos has a much lower sedimentation rate (119.4 14C yr/cm),
with a less consistent age-depth profile, suggesting that the rates of sedimentation may play an
important role in the comparability of different size fractions dated (Figure 3). However, this
relationship does not hold in South Georgia, where average sedimentation rates range from
16.7 14C yr/cm (King Edward Cove Lower) to 77.6 14C yr/cm (King Edward Cover Upper) to
87.6 14C yr/cm (Junction Valley), and where Junction Valley displays the most coherent age-
depth profile of the three sites, but with the slowest rate of sedimentation. This therefore suggests
that while sedimentation rate is likely influential, it is not the most important factor affecting the
reliability of 14C dating of peat sequences. Another possible factor affecting the 14C inventory is
the contamination of marine carbon from bird droppings. Seabird colonies are common
throughout the both islands though the site locations reported here were far from large colonies
and beyond the direct influence of birds. While we found no physical or chemical evidence to
suggest the incorporation of marine carbon, we cannot totally exclude this as a possibility.

To investigate any systematic differences in the sediment radiocarbon inventory arising from
Holocene and Late Glacial environmental changes, we compared glacier and palaeoclimate
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reconstructions from selected sites in the Falklands and South Georgia with 14C profiles.
Environmental changes, such as periods of glacier advance, seasonal snow-cover, and/or wetter
conditions, can impact surface processes, potentially resulting in non-contemporaneous carbon
being remobilized and incorporated into sedimentary sequences. The latter includes the
migration of fine-sized material through sedimentary profiles. Although we found no evidence
of cryoturbation in our sequences, it is possible that previously freezing period(s) may have
impacted the stratigraphic record and left no visible evidence. For instance, several Holocene
glacial advances have been recently identified in the Olsen Valley to the immediate west of
Grytviken in South Georgia (Figures 1 and 7). These include an early Holocene advance
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(between 7200 ± 400 to 4800 ± 200 cal yr BP), a late Holocene advance (between 2700 ± 150 to
2000 ± 200 cal yr BP) and a more recent advance (500 ± 150 to 300 ± 100 cal yr BP) (Oppedal
et al. 2018). Other reconstructions have suggested different periods of relatively wet and dry
conditions throughout the Holocene (van der Putten et al. 2004, 2009). While the glacial
advance between 2700 ± 150 to 2000 ± 200 cal yr BP coincides with a range of 14C
determinations over different fractions, similar 14C distributions do not occur during other two
reported glacial advances, suggesting there is limited support for strong environmental influence.
In the Falkland Islands, there appears to have been a shift toward drier conditions over the last
~3000 years (Wilson et al. 2002; Thomas et al. 2018a). While Canopus Hill and Memorial
Beach both display coherent age-depth profiles over this period, the site at Silos has a complex
age-depth relationship, which does not appear to correlate with any published records of
climate/environmental change (Figure 7). More detailed high-resolution climate reconstructions
across the two islands are needed to clarify these relationships. Our results therefore suggest that
while periods of environmental change can result in sediment (and 14C) remobilization, site
location remains a critical factor in what are inherently highly dynamic landscapes.

CONCLUSIONS

We conclude that site location is the primary factor for producing robust chronologies in highly
dynamic landscapes. The most desirable situations are sites with limited opportunities for
redeposition from higher adjacent areas, reducing the range of 14C content within a sample.
However, in situations where this is not possible, this study suggests that a coarse fraction
(macrofossils) offers the best potential for ages that are more likely contemporaneous with
the period of sediment accumulation. Bulk peat does not appear to introduce systematic
bias and should not be excluded, a finding which supports previous studies (Blaauw et al.
2004; Holmquist et al. 2016). However, since most of the oldest ages were measured from
the fine component, this fraction should be discouraged from use in the development of
chronologies. Ideally, a large number of 14C age determinations should be used to construct
a robust chronology in highly dynamic landscapes, with dating of duplicate fractions to
determine the extent of potential incorporation of non-contemporaneous carbon. However,
the cost of such an approach is typically too expensive for most studies. It is therefore
crucial that a thorough understanding of the depositional context and the potential for
reworking is attained for radiocarbon dating of such deposits to be most successful. This is
particularly important if natural archives in the mid to high latitudes are to be fully
exploited for understanding past and future climate variability and impacts (Thomas 2016).
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