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Abstract
Adequate blood calcium (Ca) concentrations are a prerequisite to maintain several

physiological functions of mammals such as pig and ruminants. Thus, blood Ca levels have

to be regulated within very close limits. This is basically ensured through the coordinated

effects of the calcitropic hormones parathyroid hormone (PTH) and calcitriol (1,25-

dihydroxyvitamin D3). If plasma Ca decreases, one main effect of subsequently secreted PTH

is the stimulation of renal reabsorption of Ca from the glomerular filtrate to reduce urinary Ca

loss. Another important action of PTH is the induction of the renal enzyme 1a-hydroxylase,
which is responsible for the production of calcitriol. In most monogastric species, so far

investigated, one of the most important effects of calcitriol is to stimulate active absorption of

Ca from the gastrointestinal tract, particularly the upper small intestines, via a vitamin

D-receptor-mediated genomic action. Whether this concept can be transferred without any

constrictions to ruminants is still under discussion. Marked interspecies differences have to be

recognized with respect to ruminant or non-ruminant animals, particularly with respect to

individual segments along the gastrointestinal axis and with respect to vitamin D sensitivity of

Ca transport mechanisms. This review will elucidate some of the current concepts related to the

mechanisms and sites of Ca absorption in pigs and ruminants with special emphasis on dairy

cows where Ca homeostasis is occasionally compromised at the time of parturition.
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Introduction

The role of calcium (Ca) as an essential constituent of

many physiological processes is well documented.

Whereas, at least in adult animals, almost 99% of total

body Ca is localized within the bone (Flynn, 2003), the

remaining Ca within intra- and extracellular fluids is a

critical cation in numerous fundamental physiological

functions. For example, Ca plays an important role as a

second messenger in skeletal- and smooth-muscle

contraction (Wray et al., 2005; Rossi and Dirksen, 2006),

in blood clotting (Furie and Furie, 2005), in motor neuron

acetylcholine release into the neuromuscular junction

(Santafe et al., 2005) as well as in secretory tissues like

gastric, pancreatic and salivary glands (Melvin, 1999;

Puscas et al., 2001; Thevenod, 2002) or intestinal mucosa

cells (Schröder et al., 1996). Against this background it

appears self-explanatory that extra- and intracellular Ca

concentrations have to be regulated within very close

limits. In most mammalians, plasma Ca concentration is

maintained between 2.2 and 2.5 mmol l71 through the

coordinated effects of the calcitropic hormones parathy-

roid hormone (PTH) and calcitriol (1,25-dihydroxyvitamin*Corresponding author. Email: bernd.schroeder@tiho-hannover.de
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D3) (Horst et al., 2005). In case of decreased plasma Ca,

one main effect of secreted PTH is to stimulate renal

reabsorption of Ca from the glomerular filtrate to reduce

urinary Ca loss. Another important action of PTH is the

induction of the renal enzyme 1a-hydroxylase, which

results in increased calcitriol production (Fig. 1). In most

monogastric species, so far investigated, one of the most

important effects of calcitriol is to stimulate active

absorption of Ca from the intestinal tract via a vitamin D

receptor (VDR)-mediated genomic action (Anderson

et al., 2003). How far this concept can also be transferred

to ruminants will be discussed later.

The mechanisms and regulation of gastrointestinal Ca

absorption in pigs as a model for monogastric animals

and different ruminant species have been investigated for

many years and they have been more or less effectively

characterized (for reviews see Horst et al., 1994; Breves

et al., 1995, 1999; Schröder et al., 2002). In principle, in

both pigs and ruminants, Ca absorption from the

gastrointestinal tract may be active, via the transcellular

route, or passive, across paracellular pathways. Unfortu-

nately, there is only little information on respective

proportions of active and passive transport routes under

different conditions, i.e. amount of dietary Ca supply,

source of Ca, species, age, sex, and reproduction as well

as production state. A number of studies have demon-

strated that passive absorption of Ca at least in adult

individuals dominates when Ca intake is adequate or high

(Ireland and Fordtran, 1973; Bronner and Pansu, 1999),

whereas others have questioned this (McCormick, 2002).

Nevertheless, in growing piglets with adequate dietary Ca

supply, it was shown that the active Ca transport

component in the upper small intestines is necessary for

maintenance of Ca homeostasis (Schröder et al., 1993).

On the other hand, plasma Ca could be normalized in

VDR- or 1a-hydroxylase knockout mice (Li et al., 1998;

Dardenne et al., 2003) by feeding a so-called ‘rescue diet’

(2% Ca and 20% lactose). With normal Ca supplementa-

tion, these animals would become hypocalcemic. In

cattle, oral administration of concentrated Ca supple-

ments was effective to increase serum Ca in normo- and

hypocalcemic animals within 30 min which was discussed

with respect to passive Ca absorption (Horst et al., 2005).

However, from these studies, no conclusion can be drawn

concerning the gastrointestinal site of Ca absorption.

Thus, marked interspecies differences have to be recog-

nized with respect to ruminant or non-ruminant animals,

with respect to individual segments along the gastro-

intestinal axis and with respect to vitamin D sensitivity of

Ca transport mechanisms.

Sites and mechanisms of gastrointestinal
Ca absorption

Pigs

From a number of studies with pigs which were fitted

with cannulae in the proximal duodenum and in the

terminal ileum (or proximal cecum), it is well known that

more than 90% of the daily Ca net absorption takes place

in the small intestines, particularly in the proximal part

(Partridge, 1978; Schröder, 1996). Other segments of the

gastrointestinal tract, such as the stomach, cecum or

colon, appear to be of minor relevance for Ca absorption

at least under normal feeding conditions.

In principle, Ca absorption in vivo occurs in its soluble

form via para- and/or transcellular pathways. Whereas,

the individual proportions of distinct pathways in overall

Ca net absorption in different intestinal segments are not

clear, it is obvious that at least in weaning piglets as well

adult pigs an intact vitamin D-hormone system is

obligatory (Schröder et al., 1993). This indicates that only

passive Ca net absorption would not be sufficient to keep

the animals in health (Schlumbohm and Harmeyer, 2004).

Vice versa, significant passive contribution may be

important as well. This implies potential roles of such

mechanisms which are involved in modulating the

paracellular permeability in Ca net absorption. The

principal possibility for such a process has recently been

demonstrated in human familial hypomagnesemia with

hypercalciuria and nephrocalcinosis (Kausalya et al.,

2006). Affected patients are lacking of functioning

claudin-16 as a tight junction protein of renal epithelial

Hypocalcemia

Parathyroid glands

PTH ↑

Kidneys 

Ca 
excretion ↓

Normocalcemia

Kidneys

Calcitriol ↑

Duodenum

Bone 

Ca- 
resorption ↑

Ca mobili-
zation ↑

Fig. 1. Mechanisms of the Ca homeostatic system during
hypocalcemia (for details see text; ", increase; #, decrease;
degrading line width of arrows symbolizes short-, middle-
and long-term events, respectively).
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cells of the thick ascending limb of Henle’s loop, where it

plays a central role in the reabsorption of divalent cations

and this contributes to impaired Ca homeostasis. Kaune

(1996) reported that the addition of lactose to the diet

increased the apparent digestibility of Ca in pig hindgut in

the order of 25%. Although the underlying mechanisms in

pig are so far unknown, theories that have been proposed

on the basis of similar results from other animals include,

among other effects such as Ca bioavailability, the

possibility of an increased permeability of the intercellular

junctions (Allen, 1982; Brommage et al., 1993).

Transcellular Ca transport in the proximal small

intestine in most vertebrate species so far investigated,

including the pig, represents an active, well-regulated

process which is stimulated by calcitriol, the biologically

active form of vitamin D3 (Favus, 1985; Bronner, 1992;

Kaune et al., 1992; Brommage et al., 1995; Bronner and

Pansu, 1999; Schröder et al., 2002). According to the

present concept, transcellular Ca transport is generally

envisaged as a three-step process, consisting of passive

entry of Ca along its electrochemical gradient across the

enterocyte’s apical brush-border membrane via two

closely related epithelial Ca channels, TRPV5 and TRPV6,

subsequent calbindin-D9k facilitated transcytosis of Ca

across the cytosol, and finally Ca pump-driven active Ca

extrusion across the opposite basolateral membrane

(Fig. 2, Table 1).

The apical epithelial Ca channels are two members of

the super-family of transient receptor potential (TRP)

channels which have recently been reviewed elsewhere

(Ramsey et al., 2006). It is believed that these channels,

which are constitutively active, convey an important rate-

limiting step in active Ca transport and play, therefore, a

pivotal role in Ca homeostasis (Van Abel et al., 2005).

Thus, the findings in different animal models and cell

lines that the expression of TRPV5 and TRPV6 is

controlled by calcitriol appears to be logical. In addition,

in mice lacking a functional VDR, it was found that dietary

Ca levels can exert a regulatory effect on TRPV5 and

TRPV6 expression independent of calcitriol (Van Abel

et al., 2005). In pigs, low expression of TRPV5 and high

expression of TRPV6 in intestinal mucosa was demon-

strated by Northern analyses (Hinterding et al., 2002). In

detail, mRNA levels of both Ca channels were higher in

the duodenum than in the jejunum and could not be

detected in the ileum. Small but significant expression

levels were observed in the proximal and distal colon.

Respective data on the protein level are still missing and

the findings concerning calcitriol effects on apical Ca

channels are somehow contradictory. In a pig model with

inherited calcitriol deficiency, hypocalcemia and clinical

signs of rickets, apical Ca uptake into isolated duodenal

brush-border membrane vesicles was significantly

reduced indicating restricted function of apical Ca

transport components. This assumption was supported

by the finding that the dysfunction could be overcome by

treating the animals with either calcitriol or vitamin D3

(Kaune et al., 1992). In contrast, in normocalcemic piglets

which were treated with vitamin D3 neither Ca uptake

across the duodenal brush-border membrane nor TRPV5

or TRPV6 mRNA levels were affected (Brandenburger

et al., 2004). A reasonable explanation could be the

assumption of a somehow compensatory mechanism due

to the hypercalcemia which was found in response to

increased plasma calcitriol levels in vitamin D3-treated

animals.

It has been predicted from mathematical modeling that,

in addition to the apical Ca uptake process, cytosolic Ca

diffusion (Ca transcytosis) may present a second rate-

limiting step of epithelial Ca transport (Slepchenko and

Bronner, 2001; Bronner, 2003). Ca transcytosis implies the

presence of calbindin-D9k, a 9 kDa and vitamin D-

dependent cytosolic Ca-binding protein. This protein has

been proposed to facilitate the movement of Ca ions

across the cytosol from the apical to the basolateral side of

the enterocyte (Pansu et al., 1989; Bronner, 1992, 2003;

Feher et al., 1992; Kumar, 1995; Christakos et al., 1996).

Evidence for the contribution of similar cytosolic

processes has also been described for pigs (Hofmann

et al., 1979; Fox et al., 1985; Schröder et al., 1993, 1998).

In chick intestine, transcytotic vesicular Ca transport has

been proposed, which depends on adequate function of

the cytoskeleton (Nemere and Norman, 1988; Nemere,

1992). However, it has to be kept in mind that, although

discussed over nearly two decades, the exact mechanisms

that are involved in so-called Ca transcytosis have not yet

been completely clarified.

Fig. 2. Proposed model of transcellular active Ca absorption
in pig proximal small intestine. Effects of dietary Ca on gene
expression (van de Graaf et al., 2004) and of Ca and
calcitriol on tight junction permeability (Brown and Davis,
2002; Wassermann, 2004) are under discussion (for more
details see text; TRPV: epithelial Ca channels of the TRP
superfamily; 1,25(OH)2D3, calcitriol; NCX, Na+/Ca2+

exchanger; PMCA, plasma membrane Ca-ATPase; Calbin-
din, calbindin-D9k).
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Basolateral efflux of Ca occurs against a considerable

electrochemical gradient, which is mainly mediated via

Ca-ATPase activity (‘plasma membrane Ca-ATPase’,

PMCA1b; Sepulveda and Mata, 2004), with only a minor

contribution of the Na+/Ca2+ exchange mechanism at

least in pigs (Timmermans et al., 1991; Kaune, 1992;

Hoenderop et al., 2000). Controversy exists about the

influence of calcitriol on PMCA activity. Whereas van

Corven et al. (1987) and Kaune et al. (1990) were unable

to demonstrate calcitriol effects on duodenal PMCA in rats

and pigs, respectively, Wasserman et al. (1992) demon-

strated a 3-fold increase in Ca pump activity in the

duodenum of vitamin D-repleted chicks. This could later

be attributed to calcitriol-dependent PMCA gene upregu-

lation (Pannabecker et al., 1995). Studying coexpression

of basolateral PMCA, calbindin-D9k and apical Ca

channels in human duodenum, Barley et al. (2001) could

not demonstrate a relationship between plasma calcitriol

levels and respective gene expression but they found that

the expression of the Ca transport components were

tightly linked and this appears to be useful for an effective

directional Ca movement. A similar positive correlation

between TRPV6 and calbindin-D9k expression was also

shown for porcine proximal small intestine (Branden-

burger, 2004).

Beside its well-known long-term genomic effects,

calcitriol also initiates an acute enhancement of intestinal

Ca transport, at least in the chick (Norman et al., 1992).

This rapid non-genomic calcitriol effect has been called

‘transcaltachia’ and was attributed to a putative membrane

VDR (mVDR)-mediated event inducing transcytotic vesic-

ular Ca transport (Nemere and Farach-Carson, 1998).

However, from more recent work it was hypothesized

that the physiological function of the mVDR may be to

Table 1. Expression of genes for transepithelial calcium-transporting proteins in the ruminant gastrointestinal tract and in the
small intestine of laboratory animals and human

Species Segment VDR TRPV5 TRPV6 Calbindin-D9k PMCA

Goat Rumen n.d. n.d. n.d. n.d. n.d.
Small intestine +1,2 +4 +4 +3 n.d.
Colon +2 n.d. n.d. n.d. n.d.

Sheep Rumen +5 +6 +6 75 n.d.
Small intestine +5 +6 +6 +5 +10

Colon n.d. n.d. n.d. n.d. n.d.

Cattle Rumen n.d. n.d. n.d.
Small intestine +8 n.d. n.d. +7,8 +8

Colon +9 n.d. n.d. 77 n.d.

Mouse Small intestine +11 +12 +12 +12 +12

Rat Small intestine +13 +12 +12 +12,13 +12

Pig Small intestine +14 +15,16 +15,16 +17 +18,19

Human Small intestine +20 721

+22
+21 +20 +23

+, present; 7, not present; n.d., not determined; TRPV5 (ECaC1, CaT2), TRPV6 (ECaC2, CaT1), Ca channels of the TRP super
family; PMCA; plasma membrane Ca-ATPase.
1Schröder et al. (1990).
2Schröder et al. (1995).
3Rittmann (1996).
4K. Huber, personal communication; no differentiation between TRPV5 and TRPV6.
5Schröder et al. (2001).
6Wilkens et al. (2006).
7Yamagishi et al. (2002).
8Yamagishi et al. (2006).
9Goff et al. (1995).
10M. Wilkens and B. Schröder, unpublished data.
11Nakajima et al. (1992).
12Van Abel et al. (2003).
13Fukushima et al. (2005).
14Schröder et al. (1993).
15Hinterding et al. (2002).
16Brandenburger et al. (2004).
17Schröder et al. (1998).
18Timmermans et al. (1991).
19Brandenburger (2004).
20Delvin et al. (1996).
21Peng et al. (2001).
22Hoenderop et al. (2001).
23Howard et al. (1993).

34 B. Schröder and G. Breves

https://doi.org/10.1017/S1466252307001144 Published online by Cambridge University Press

https://doi.org/10.1017/S1466252307001144


provide relevant interaction with the classical nuclear

VDR (nVDR) to fine-tune intestinal Ca absorption rather

than to exert an alternative Ca transport mechanism

(Nemere, 2005; Sterling and Nemere, 2005; Rohe et al.,

2005).

Ruminants

Sheep and goats
In sheep the quantitative proportions of the individual

segments of the gastrointestinal tract in overall net Ca

absorption have been studied in various balance experi-

ments using single- or multi-fistulated animals (Pfeffer

et al., 1970; Grace et al., 1974; Ben-Ghedalia et al., 1975;

Dillon and Scott, 1979; Rayssiguier and Poncet, 1980;

Greene et al., 1983a; Wylie et al., 1985). The majority of

these experiments showed net absorption of Ca before

the duodenum in addition to the upper small intestines.

Controversial data exist on net Ca absorption from the

large intestines. From all balance studies cited above a

mean daily Ca intake of 5.4 g and a mean daily faecal Ca

excretion of 4.3 g can be calculated resulting in an overall

net Ca absorption of 1.1 g day71. On average, propor-

tions of about 50, 35 and 15% of this amount had been

absorbed before the duodenum, from the small intestines

and from the hindgut, respectively. In principle, the pre-

duodenal absorption still has to be corrected for salivary

Ca secretion and for the potential role of the abomasum,

which has not yet been studied in detail with respect to its

absorptive function for Ca. The potential role of the

reticulorumen has also been examined by applying the

washed rumen technique and a positive correlation

between ruminal Ca concentration and Ca net absorption

could be demonstrated (Höller et al., 1988).

Active mechanisms have been shown to make signifi-

cant contributions to Ca transport in caprine as well as

ovine rumen, by measuring Ca flux rates in Ussing

chambers (Schröder et al., 1997, 1999; Wadhwa and Care,

2000; Uppal et al., 2003). These mechanisms could only

be detected when short chain fatty acids (SCFAs) were

present in the luminal buffer solutions. This has been

explained by the assumption that a Ca/H+ exchange

mechanism could be involved in transepithelial Ca

transport as it has already been discussed for rat colon

(Lutz and Scharrer, 1991). Concerning this, it has been

proposed that non-dissociated SCFAs can easily pass the

apical membrane of the rumen epithelium via diffusion

into the cytosol where they may readily dissociate to

deliver protons which can be used for Ca/H+ exchange

(Schröder et al., 1999).

The contribution of classical vitamin D-dependent

components in ruminal Ca absorption appears to be a

matter of species affiliation. In goats, it was found that

ruminal net Ca flux rates were significantly stimulated by

more than 50% when the animals had been kept on a

long-term low Ca diet (Schröder et al., 1997). Due to this

procedure, plasma calcitriol concentrations were elevated

by about 80%, which suggests the presence of classical

vitamin D-dependent regulatory processes for active

Ca absorption from the rumen, the more so as net Ca

absorption could be significantly inhibited by the Ca

channel blocker verapamil. Thus, future experiments

should focus on structural identification of Ca transport

components in goat rumen. In contrast to the findings in

goats, dietary Ca depletion and increased plasma calcitriol

in sheep as well as pharmacological treatment of the

animals with vitamin D3 had no effect on ruminal net Ca

absorption (Schröder et al., 1999, 2001). In addition,

calbindin-D9k could not be detected in ovine ruminal

tissues indicating vitamin D insensitivity of active Ca

transport across the rumen wall of sheep (Table 1).

Concerning Ca transport in the intestinal segments, it

has often been suggested in the past and today from

several in vivo studies that in analogy to the situation in

pigs, Ca absorption is under the control of the vitamin

D-hormone system (for reviews see Horst, 1986;

Reinhardt et al., 1988; Horst et al., 2005; Goff, 2006).

Two relevant studies supporting this hypothesis may be

emphasized. Braithwaite (1978) treated lactating sheep

with high doses of 1a-hydroxyvitamin D3 and found an

increase of Ca net absorption from the gastrointestinal

tract of 40–90 mg per kg per day. Unfortunately, from the

experimental design no conclusion could be drawn as to

which segment might have been responsible for the

effect. Hove and Kristiansen (1984) could demonstrate an

approximately 3-fold increase of Ca net absorption from

the intestinal tract in goats receiving calcitriol per os in a

fatty acid matrix. Furthermore, the assumption of vitamin

D-sensitive Ca absorption is supported by the detection of

VDR and calbindin-D9k in goat small intestine (Schröder

et al., 1995; Rittmann, 1996). In addition, gene expression

of epithelial Ca channels was demonstrated for the

jejunum (Huber, unpublished observation). In sheep,

VDR as well as calbindin-D9k was found in the jejunum

(Schröder et al., 2001) and more recently, the presence

of TRPV5 and TRPV6 in duodenum and jejunum could

be demonstrated on mRNA level with an in situ

hybridization technique (Table 1; Wilkens et al., 2006).

But the relatively low net flux rates of Ca in the proximal

small intestine of sheep and goats obtained from in vitro

measurements in Using chambers, and the lack of

significant stimulation of duodenal Ca transport by

increased plasma calcitriol during dietary Ca depletion

may argue against the ‘monogastric concept’ (Schröder

et al., 1997; Vössing 1997).

Cattle
In analogy to the studies in fistulated sheep, considerable

efforts have been made to characterize the quantitative

proportions of the individual segments of the gastro-

intestinal tract in overall net Ca absorption in cattle.

Similar to the situation in sheep, the pre-duodenal

proportion seems to become more prominent if the daily
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dietary Ca intake exceeds a certain amount. From the

analysis shown in Fig. 3, which is based on nine

comparable studies, this ‘set-point’ may be in the order

of a daily dietary Ca intake of 120 g. Concerning this, it

should be noticed that Lean et al. (2006) demonstrated in

a recent meta-analysis of data from 137 published trials

involving 2545 calvings that prevention of milk fever

appears to be possible at high Ca intake. This could mean

that the absorption of Ca from the pre-duodenal

compartments may play a significant role in prevention

of milk fever at high Ca intake.

Although the presence of active mechanisms for Ca

transport could also be verified for bovine rumen (Ricken,

2005), it is unknown at present to what extent passive

and active pathways may contribute to overall Ca net

absorption from pre-duodenal compartments. In another

diagram, the proportion of the intestines in Ca net

absorption as a function of the pre-duodenal proportion

is evaluated (Fig. 4). It appears, that there is a negative

correlation between pre-duodenal and intestinal Ca net

absorption. This means that if there is Ca net secretion

into the forestomachs/abomasum compartment, this will

be at minimum compensated by respective intestinal Ca

uptake resulting in a positive Ca balance in most of those

experiments. On the other hand, if there is already

relevant Ca net absorption from the forestomachs, Ca

absorption from the intestines was lowered. This again

implies the contribution of regulatory mechanisms. As in

small ruminants, this may be mediated by components of

the vitamin D-hormone system, since expression of genes

for transepithelial Ca-transporting proteins (VDR, calbin-

din-D9k and PMCA; Table 1) in bovine duodenum could

be demonstrated (Yamagishi et al., 2006). In addition, this

assumption is supported by the findings that intramus-

cular application of calcitriol in cows could increase Ca

levels in plasma of dairy cows (Gang et al., 1979; Hove

et al., 1983; Yamagishi et al., 2005).

Conclusions

In summary, in the rumen, active Ca absorption may be

exerted via vitamin D-sensitive and/or -insensitive

mechanisms, and this appears to be species-dependent.

Marked contribution of Ca net absorption via passive

pathways particularly in the situation of a high daily
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dietary Ca intake has to be kept in mind, and for principal

reasons this is also true for the abomasum and particularly

for the ‘leaky’ intestinal segments. Whether passive Ca

uptake is a matter of regulation has to be investigated.

With respect to the intestines, it is still a matter of debate

whether the proximal small intestines are a major site for

controlled active Ca absorption as it is in monogastric

species. But from recent molecular studies, it now

becomes stepwise clearer that at least the single

components which are proposed to be involved in

transcellular Ca movement are also present in ruminants.

With these molecular tools, it appears to be more than

promising to examine in comprehensive future studies

the potential regulation of gastrointestinal Ca absorption

in pigs and ruminants and the factors that may be

involved.

Role of the gastrointestinal tract in Ca homeostasis
during the periparturient period in dairy cows

Provided an adequate dietary Ca supply, mechanisms for

maintaining physiological plasma Ca concentrations in

dairy cows function adequately most of the time,

particularly during the dry period when the Ca homeo-

static system is not further compromised (Horst et al.,

1994). The processes involved in maintaining Ca homeo-

stasis may principally be assigned to short- (within

minutes), middle- (within hours) and long-term (within

days) events (Kurbel et al., 2003). Small decreases of

plasma Ca levels would be answered rather rapidly by an

adequate increase of PTH secretion by the parathyroid

glands (Fig. 1). PTH works as a kind of ‘Ca saver’ by

stimulating renal Ca reabsorption which may restore the

Ca homeostasis, subsequently PTH concentrations return

to former low levels. If the Ca demand is more

pronounced, PTH levels would remain elevated over a

longer time, thereby leading to an increased activation of

calcitriol synthesis in the kidneys. Main function of

calcitriol is the stimulation (hours to days) of active Ca

absorption across the small intestinal mucosa via a

complex mechanism (Fig. 2). Another important function

of PTH and calcitriol is their concerted action on Ca

mobilization from bone which may take a few days. This

may be concluded from the time courses of bone

resorption markers in hypocalcemic dairy cows (Liese-

gang et al., 1998). With respect to the PTH action on bone

and kidneys, it appears worth mentioning that some

evidence exists that the respective PTH receptor sensitiv-

ity is pH-sensitive. Lowering pH, as it can be induced by

feeding low dietary cation anion difference (DCAD) diets

during the prepartum period can increase the target tissue

responsiveness to PTH thereby allowing stimulation of

renal calcitriol production and bone Ca resorption (Horst

et al., 2005). This may permit the cow to successfully

adapt to the Ca stress associated with the onset of

lactation.

In principle, the Ca saving mechanisms hold even true

for the non-lactating, pregnant dairy cow when daily fetal

Ca transfer increases up to �80 mg kg0.75 by drain to

the fetus in late pregnancy (Horst et al., 2005). Although

this for sure exhibits an additional stress for the Ca

homeostatic system, the animals are normally able to

adapt to the increasing requirements during gestation.

Concerning this, it has to be kept in mind, that

irrespective of their Ca intake, the animals are unable to

absorb enough dietary Ca at least in late pregnancy (and

early lactation) to meet the growing demands, and

skeletal stores of Ca have to be mobilized to make good

the deficit (Braithwaite, 1983; Liesegang et al., 2005). At

parturition, Ca homeostasis is abruptly burdened addi-

tionally by the need to provide huge amounts of Ca for

lactation (Neville, 2005) which leads to daily Ca losses of

�500 mg kg0.75 (Horst et al., 2005). Particularly colos-

trum contains 1.5–2 g Ca per liter milk (Bojkovski et al.,

2005). To meet this demand, remarkable adaptive

processes must occur. Regarding this, no quantitatively

relevant effect of the kidneys can be expected since

renal Ca losses between 0.5 and 2 g day71 are already

relatively low in cows under normocalcemic conditions

(Horst et al., 2005), and in addition renal Ca excretion is

already further restricted during late gestation (Ulutas

et al., 2003). Thus, the only Ca stores which can be

recruited are Ca mobilization from bone and increased Ca

absorption from the gastrointestinal tract. However, both

these mechanisms are already stressed during late

gestation and particularly stimulation of gastrointestinal

Ca absorption seemed to be somehow restricted. From

this, it is not surprising that even under the physiological

condition most of the cows develop an acute hypocalce-

mia during the first hours after parturition, which,

however, is normally recovered by the Ca homeostatic

system during the first week of lactation (Tucker et al.,

1992; Andersen et al., 2005). If animals fail to adapt they

develop strong hypocalcemia, which is referred to as milk

fever. Milk fever generally occurs 12–24 h after parturition

and is a metabolic disease almost exclusively in rumi-

nants, particularly in dairy cows (Horst et al., 2005).

The pathophysiology of this disease and current

concepts for the prevention of milk fever have been

described intensively elsewhere in the past and shall

therefore not be recapitulated here (i.e. Horst, 1986; Horst

et al., 1994, 2005; Thilsing-Hansen et al., 2002). From a

physiological viewpoint as was the intention of this

review, it appears to be worthwhile in future studies to

focus on the conditions and factors which determine and

fine regulate Ca absorption in different compartments

of the gastrointestinal tract of ruminants. This includes

also such factors that may determine Ca bioavailability,

which is often rather low, i.e. <50% (Martz et al., 1999),

particularly in ruminants. This represents marked dietary

Ca resources which potentially could be used more

efficiently by the animals in case Ca homeostasis is

impaired.
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Schröder B, Schlumbohm C, Kaune R and Breves G (1996). Role
of calbindin-D9k in buffering cytosolic free Ca2+ ions in pig
duodenal enterocytes. Journal of Physiology 492: 715–722.
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