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Abstract
In this paper, we study the sphere packing problem in Euclidean space where we impose additional constraints on
the separations of the center points. We prove that any sphere packing in dimension 48, with spheres of radii r,
such that no two centers 𝑥1 and 𝑥2 satisfy

√
4
3 < 1

2𝑟 |𝑥1 − 𝑥2 | <
√

5
3 , has center density less or equal than (3/2)24.

Equality occurs for periodic packings if and only if the packing is given by a 48-dimensional even unimodular
extremal lattice. This shows that any of the lattices 𝑃48𝑝 , 𝑃48𝑞 , 𝑃48𝑚 and 𝑃48𝑛 are optimal for this constrained
packing problem, and gives evidence towards the conjecture that extremal lattices are optimal unconstrained sphere
packings in 48 dimensions. We also provide results for packings up to dimension 𝑑 ≤ 1200, where we impose
constraints on the distance between centers and on the minimal norm of the spectrum, showing that even unimodular
extremal lattices are again uniquely optimal. Moreover, in the one-dimensional case, where it is not at all clear that
periodic packings are among those with largest density, we nevertheless give a condition on the set of constraints
that allows this to happen, and we develop an algorithm to find these periodic configurations by relating the problem
to a question about dominos.
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2 F. Gonçalves and G. Vedana

1. Introduction

The notorious Sphere Packing Problem asks a simple question: What is the best way of stacking higher-
dimensional oranges1 in a higher-dimensional supermarket? It is not too surprising that in dimension
3, an optimal configuration arises when oranges (or cannonballs, which are not so juicy) are arranged
in a hexagonal close packing, where laminated layers of spheres are assembled according to a suitable
translation of the hexagonal lattice (fitting new spheres in the deep holes of the previous layer). What is
remarkable is that this problem was proposed by Kepler around 1611 and was only solved in 1998 by
Hales, in his famous large computer-assisted proof [18]. Recently, in 2016, the problem in dimensions 8
and 24 was solved by Viazovska et al. [10, 27], introducing a remarkable new construction using quasi-
modular forms to define certain smooth auxiliary functions 𝑓8 and 𝑓24 satisfying certain sign constraints
in physical and frequency space to solve the problem.2 To the best of our knowledge, there are only two
other instances where Viazovska’s technique was used to construct auxiliary functions that were indeed
used in the solution of some kind of optimization problem: (1) in the solution of a 12-dimensional
uncertainty principle by the Cohn and Gonçalves [9] (best constant and function); (2) in the proof of the
universality of the 𝐸8 and Leech lattices by Cohn, Kumar, Miller, Radchenko and Viazovska [11].

1.1. Motivation

In this paper, we systematically study a new type of constrained sphere packing problem, where we
forbid certain short distances between centers of spheres. We are then able to solve exactly this problem
when the forbidden set is the complement of a finite collection of square roots of even integers. The
main questions driving/inspiring the problems we study and solve in this manuscript are the following:

◦ What other ‘natural’ discrete geometry problems can be solved using Viazovska’s modular forms
construction technique?

◦ Can we embed the functions 𝑓8 and 𝑓24 found by Viazovska in a larger family of functions { 𝑓𝑑}8 |𝑑 in
such a way that these work as auxiliary functions that solve some kind of dual optimization problem
of the question above?

Our answer: Packings with forbidden distances and Theorems 3 and 4.
We now comment about our answer. First of all, the idea of creating a larger family of functions

{ 𝑓𝑑}8 |𝑑 that contains Viazovska’s functions was already explored in the interesting papers [25, 15].
However, in these two papers, no geometrical optimization problem was solved, and the functions they
generate are not related to ours. Also, it is worth pointing out that, as we shall see in the proof of
Theorem 4, there are several constraints our functions {𝐻𝑑}8 |𝑑 satisfy. The troublesome part is to show
that certain sign conditions are met, and these do not follow from positivity of Fourier coefficients
(as in [15], conjecturally), since they indeed change sign in our case. To overcome this, we came up
with a numerical procedure, inspired by the one in [10], and so our proof is unavoidably computer-
assisted. Secondly, at first glance, one might say that imposing additional constraints in a sphere
packing, such as forbidding certain distances, is esoteric or unnatural. However, from the coding theory
perceptive (sphere packings in F𝑚𝑞 ), this question has been asked already, studied to some extent and
has applications. To the best of our knowledge, we believe we were the first to consider this question
in Euclidean space; nevertheless, in coding theory, codes with forbidden distances have been the object
of study in many occasions. See, for instance, [1, 2, 14, 16]. In Euclidean space, a cousin problem of
the sphere packing problem is the chromatic number of R𝑑 , and in this venue, mathematicians have
considered already the version with forbidden distances; see, for instance, [4, 24, 21]. Thirdly, there are
a bunch of unexpected features coming from our study that might drive further research, such as the
following:

1The authors’ common favorite fruit.
2Viazovska received the Fields medal in 2022 for her accomplishments.
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♥ The functions {𝐻𝑑}8 |𝑑 we create in the proof of Theorem 4 have several curious properties that
we have verified with a computer up to 𝑑 = 1200, but they lack proper mathematical explanation.
Proving these properties propagate in every dimension 8|𝑑 would allow us to extend Theorem 4 to every
dimension;
♥ The one-dimensional case we study in Section 2.1 is a very intriguing combinatorial/geometric

problem that seems hard to analyze. The natural question here is to know when the best packing can be
taken to be periodic, and we do provide a partial answer when the complement of the forbidden set is
finite or has finitely many accumulation points (so to speak);
♥ Perhaps the most interesting contribution of our manuscript is Theorem 1, which we single out.

It turns out that in dimension 48, the constraints we need to impose are rather simple and nice, and we
show that extremal lattices are optimal. Moreover, it is conjectured that extremal lattices are optimal
unconstrained sphere packings in dimension 48, so one can also see Theorem 1 as further evidence to
Conjecture 1.
♥ Since the submission of this paper, there have been further results on this topic that we would

like to highlight. In [5], Boyvalenkov and Cherkashin find the largest kissing number with forbidden
distances in dimension 48 – a configuration avoiding the set (−1/3,−1/6) ∪ (1/6, 1/3). The related
energy problem is investigated in [7]. Moreover, and most surprisingly, in [6], Boyvalenkov, Cherkashin
and Dragnev find several types of distance avoiding optimal spherical codes in S15, S21, S22 and S23, via
the linear programming method.

1.2. Main results

As a prototype example of the kind of problem we will be concerned with, imagine that we are trying to
place solid disks of diameter 1 in R2, so to obtain the largest possible density. However, we require that
either two disks kiss each other or their centers are far apart, say, with a distance not smaller than 𝜆 > 1.
As 𝜆 slowly increases, we expect to see a transition between disks being allowed to ‘freely’ move around
and disks clumping together. Indeed, we show in Proposition 10 that as 𝜆 →∞, the best arrangement is
when three disks are placed on the vertices of an equilateral triangle of side length 1 (kissing each other)
and the circuncenters of these triangles are placed in a hexagonal lattice of side length approximately 𝜆.
In this paper, we study a generalized version of this problem, where an arbitrary set of distances may
be forbidden.

We say that a sphere packing 𝑃 = 𝑋 + 𝑟𝐵𝑑 (𝐵𝑑 is the unit ball in R𝑑 and X the set of centers) avoids
a set 𝐴 ⊂ (1,∞) if |𝑥1 − 𝑥2 | ∉ 2𝑟 𝐴 for all distinct 𝑥1, 𝑥2 ∈ 𝑋 (A is a set of forbidden distances). For
instance, for the problem described in the previous paragraph, the set A would be the interval (1, 𝜆). A
periodic sphere packing is one where 𝑋 = Λ+𝑌 , Λ is a lattice of minimal norm at least 2𝑟 and𝑌 ⊂ R𝑑/Λ
is a nonempty finite set. A lattice packing is when #𝑌 = 1. A lattice is even and unimodular if it has
even squared norms and determinant 1. Such lattice is said to be extremal if its minimal norm squared
is equal to 2 + 2	𝑑/24
 (see Section 2 for more information). We now state the first main result of this
paper.

Theorem 1. Any even unimodular extremal lattice in R48 achieves maximal sphere packing density

among all sphere packings that avoid the interval
(√

4
3 ,

√
5
3

)
. Moreover, we have uniqueness among all

periodic packings: if 𝑃 = Λ + 𝑌 + 𝑟𝐵𝑑 is some periodic sphere packing in R48 that avoids this interval
and has maximal density, then

√
6

2𝑟 (Λ + 𝑌 ) is an even unimodular extremal lattice.

Our result shows that any of the lattices 𝑃48𝑝 , 𝑃48𝑞 , 𝑃48𝑚 and 𝑃48𝑛 are optimal for this constrained
packing problem. The first two lattices have a canonical construction as 2-neighbors of code lattices of
extremal ternary codes (see [12, p. 195] and [22] for the other two).

Conjecture 1. Any extremal lattice in dimension 48 has maximal sphere packing density among all
possible sphere packings.
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This conjecture is backed by the fact that no other better configuration is known. Perhaps an ‘easier’
to prove conjecture is that extremal lattices in 48 dimensions are the best lattice packings. We believe
Theorem 1 could be used together with a computer-assisted method to reduce the amount of cases
needed to be checked and show that 𝑃48𝑝 produces the best lattice packing; however, new ideas are
needed here. Below, we state a bold conjecture, which serves more as a research direction, as we have
no numerical evidence towards it.

Conjecture 2. Let 𝐿 < R48 be a lattice with minimal norm
√

6. If there is 𝑥 ∈ 𝐿 with
√

8 < |𝑥 | <
√

10,
then L has covolume > 1.

This conjecture in conjunction with Theorem 1 implies that extremal lattices in R48 are the best
lattice sphere packings. To see this, given any lattice L, normalize it so it has minimal norm

√
6. If there

is no point 𝑥 ∈ 𝐿 such that
√

8 < |𝑥 | <
√

10, we then use Theorem 1; if such a point exists, we use the
conjecture.

Theorem 1 will follow from Theorems 3 and 4, where we develop a new linear programming method,
similar to the Cohn and Elkies linear programming bound [8, Theorem 3.1], and a generalization of
Viazovska’s modular function technique [10, 27] to find the desired ‘magic’ function. It turns out that if
we allow ourselves to impose an extra condition on the spectrum of a given periodic configuration, one
can prove a result similar to Theorem 1 in every dimension d multiple of 8 not congruent to 16 modulo
24 up to 𝑑 = 1200.

Define the forbidden set

𝐴𝑑 = (1,
√

1 + 2/𝑎𝑑) ∪ (
√

1 + 2/𝑎𝑑 ,
√

1 + 4/𝑎𝑑) ∪ . . . ∪ (
√
(𝑙𝑑 − 2)/𝑎𝑑 ,

√
𝑙𝑑/𝑎𝑑),

where

𝑎𝑑 = 2 + 2
⌊
𝑑

24

⌋
and 𝑙𝑑 = 𝑎𝑑 + 4

(⌊
𝑑 − 4

12

⌋
−

⌊
𝑑

24

⌋)
. (1)

Our second main result is the following.

Theorem 2. Let 8 ≤ 𝑑 ≤ 1200, where d is divisible by 8 but 𝑑 � 16mod 24. Let 𝑃 = Λ + 𝑌 + 𝑟𝐵𝑑 be
some periodic sphere packing that avoids the set 𝐴𝑑 and such that the minimal norm of Λ∗ is larger
than 2𝑟√𝑐𝑑 , where 𝑐𝑑 is given in Table 1. Then

dens(𝑃) ≤ vol(𝐵𝑑)
(√

𝑎𝑑

2

)𝑑
.

Moreover, in case #𝑌 = 1, then equality occurs if and only if
√
𝑎𝑑

2𝑟 Λ is an even unimodular extremal
lattice.

Indeed, Theorem 1 can be seen as a particular case of Theorem 2 since 𝑐48 = 0 (hence, we no longer
need to assume that P is periodic) and 𝐴48 = (1,

√
4/3) ∪ (

√
4/3,

√
5/3), but the first interval can be

removed because of a sign condition on the magic function of Theorem 4. Theorem 2 will follow from
Theorem 3 (new linear programming bounds), Theorem 4 (magic contructions with modular forms)
and Theorem 5 (equivalent to Theorem 2). As in dimension 48, one could reduce 𝐴𝑑 further for all d by
understanding the sign changes of the functions in Theorem 4. However, there seems to be no particular
interesting pattern, and the set 𝐴𝑑 would be rather complicated and given by a table other than a simple
formula. Appealing to simplicity, we decided for the above form. The dimensions 𝑑 ≡ 16 mod 24 had to
be excluded from our result since (for some unknown reason) the ‘magic’ function we construct in these
dimensions fails to satisfy some of the properties in Theorem 4; for instance, their Fourier transform is
nonpositive outside a neighborhood of the origin (although having positive mass). However, we believe it
is possible to fix these issues if we impose more forbidden distances (see the more general Conjecture 3).
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A classical result shows that extremal lattices may only exist up to dimension 𝑑 ≤ 2 × 105, but
extending our results to such high dimensions seems out of reach with the present computational power
on Earth, although we do believe they hold in all available dimensions (Conjecture 3). Indeed, 𝑑 ≤ 1200
is an artifact of the computer-assisted part in this paper, but we believe it can be improved a little bit
with cleverer/optimized algorithms.

Theorem 2 puts forward a general framework and gives some kind of explanation to why one is only
able to solve the sphere packing problem via linear programming in dimensions 8 and 24. We have
now constructed a family of constrained problems, all amenable to linear programming methods and
exact solutions via constructions with modular forms, which characterize extremal lattices as having
optimal density among sphere packings avoiding certain distances. It is worth pointing out that the
𝐸8 and Leech lattices are the only extremal latttices in dimensions 8 and 24, that 𝑐8 = 𝑐24 = 0 and
𝐴8 = 𝐴24 = ∅. Hence, all the constraints we impose disappear in these dimensions, and we recover
Viazovska’s results. Curiously, the same set of (unscaled) distances {

√
𝑚,
√
𝑚 + 1, . . . ,

√
𝑛} appeared in a

recent paper by Naslund on chromatic numbers ofR𝑑 [21]. Other remarks about our results are addressed
in Section 2.

2. Further main results

We say that the set 𝑃 = 𝑋 + 1
2 𝐵𝑑 is a sphere packing of R𝑑 (associated to a set 𝑋 ⊂ R𝑑) if |𝑥 − 𝑦 | ∈

{0} ∪ [1,∞) for all 𝑥, 𝑦 ∈ 𝑋 , where 𝐵𝑑 := {𝑦 ∈ R𝑑 : |𝑦 | ≤ 1} is the unit ball and | · | is the Euclidean
norm. For a sphere packing P, we define its density by

dens(𝑃) := lim sup
𝑡→+∞

vol(𝑃 ∩ 𝑡𝑄𝑑)
vol(𝑡𝑄𝑑)

,

where 𝑄𝑑 :=
[
− 1

2 ,
1
2
]𝑑 is the unit cube. The setup is as follows.

Main Problem. Let 𝐾 ⊂ [1, +∞) be a bounded subset such that 1 ∈ 𝐾 . Consider the following family
of sphere packings:

P𝑑 (𝐾) :=
{
𝑋 + 1

2 𝐵𝑑 : ∀𝑥, 𝑦 ∈ 𝑋 we have |𝑥 − 𝑦 | ∈ {0} ∪ 𝐾 ∪ (sup(𝐾),∞)
}
.

The role of 𝐾 here is to prescribe the short distances between the centers of a sphere packing. We say
a sphere packing 𝑃 is 𝐾-admissible if 𝑃 ∈ P𝑑 (𝐾). What are the properties of 𝐾-admissible sphere
packings 𝑃 that achieve maximal density? More precisely, if we let

Δ𝑑 (𝐾) := sup
𝑃∈P𝑑 (𝐾 )

dens(𝑃),

we then want to study 𝐾-admissible sphere packings 𝑃 such that dens(𝑃) = Δ𝑑 (𝐾). Alternatively,
letting 𝐴 = (1, sup(𝐾)] \ 𝐾 , we then want to find a sphere packing of maximal density that avoids 𝐴;
that is, no distance between centers belongs to 𝐴.

For now on, we will stick with the formulation using K rather than A (prescribing rather than
forbidding), as it fits better our scheme of results and constructions.

We now introduce some known facts about lattices. A (full rank) latticeΛ ⊂ R𝑑 is a discrete subgroup
of (R𝑑 , +) that contains d linear independent vectors. We let

ℓ(Λ) := {|𝜆 | : 𝜆 ∈ Λ \ {0}}
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denote the lengths of Λ and min ℓ(Λ) denote its minimal norm. Given a lattice Λ, one can associate a
sphere packing

𝑃Λ :=
1
𝑟
Λ + 1

2 𝐵𝑑 (with 𝑟 = min ℓ(Λ))

and show that

dens(Λ) := dens(𝑃Λ) =
vol( 𝑟2 𝐵𝑑)

vol(R𝑑/Λ)
.

We say that a lattice Λ is K-admissible if the packing 𝑃Λ above is K-admissible – that is, if

ℓ(Λ)
min ℓ(Λ) ⊂ 𝐾 ∪ (sup(𝐾),∞).

An even unimodular lattice Λ is one such that vol(R𝑑/Λ) = 1 and ℓ(Λ) ⊂ {
√

2𝑛 : 𝑛 ≥ 1} (such lattices
are integral and self-dual). These lattices have been widely studied and classified in the literature. It is
known that they can only exist in dimensions multiple of 8 and, due to a classical theorem of Voronoi,
that there are only finitely many of them in each dimension (modulo symmetries). It is known that (see
[12, p. 194, Cor. 21])

(min ℓ(Λ))2 ≤ 𝑎𝑑 := 2
⌊
𝑑

24

⌋
+ 2.

An even unimodular lattice attaining the above bound is called extremal. The 𝐸8, 𝐸2
8 , 𝐷

+
16 and Leech

lattices are the only even unimodular extremal lattices up to dimension 24. In dimensions 32 and
40, there are more than 107 and 1051 of such lattices, respectively; however, in dimension 48, there
are (so far) only 4 known lattices: 𝑃48𝑝 , 𝑃48𝑞 , 𝑃48𝑚 and 𝑃48𝑛 (see Nebe [22]). Moreover, it is known
that extremal lattices cannot exist in sufficiently large dimensions [20] (as modular forms with several
vanishing Fourier coefficients and very large weight necessarily have negative coefficients). The current
best bound is due to Jenkins and Rouse [19], and it states that

𝑑max := sup{rank(Λ) : Λ is an even unimodular extremal lattice} ≤ 163264.

Indeed, one can show that for any 𝛽 > 0, there exists D such that there is no even unimodular lattice of
rank 𝑑 > 𝐷 and minimal squared norm larger than 𝑎𝑑 − 𝛽. For more information on extremal lattices,
see [26].

We now state three other main results of this paper. The first is an analogue of the Cohn and Elkies
linear programming bound for Δ𝑑 (𝐾).

Theorem 3. Let 𝐾 ⊂ [1, +∞) be bounded and such that 1 ∈ 𝐾 . Define

ΔLP
𝑑 (𝐾) := vol

(
1
2 𝐵𝑑

)
inf

𝐹 (0)
𝐹 (0)

,

where the infimum is taken over all nonzero functions 𝐹 ∈ 𝐿1 (R𝑑) ∩ 𝐶 (R𝑑) such that

𝐹 (𝑥) ≤ 0 for |𝑥 | ∈ 𝐾 ∪ (sup(𝐾),∞) and 𝐹 (𝑥) ≥ 0 for all 𝑥.

Then

Δ𝑑 (𝐾) ≤ ΔLP
𝑑 (𝐾).
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Table 1. Values of 𝑐𝑑 for 𝑑 = 8, 16, 24, . . . , 1200. One should read it left to right top to bottom. From dimension 𝑑 = 536 onwards,
computational time was too high, and we simply took 𝑐𝑑 = 𝑎𝑑 − 2, which can be verified much faster. For 𝑑 < 536, the numbers 𝑐𝑑
give a good rational approximation of the last sign change of the function 𝑠 ↦→ 𝐻 (

√
𝑠) from Theorem 4. These numbers can also be

found in the ancillary file cnumbers on the arXiv submission of this paper (arXiv.org:2308.03925)..

0 ∞ 0 1.5880 ∞ 0 3.5850 ∞ 1.4710 5.5790

∞ 3.3760 7.5720 ∞ 5.1550 9.5630 ∞ 5.4650 11.554 ∞
7.4160 13.543 ∞ 9.3400 15.530 ∞ 11.214 17.514 ∞ 11.462
19.495 ∞ 13.429 21.469 ∞ 15.384 23.426 ∞ 17.323 23.537
∞ 19.234 25.533 ∞ 19.458 27.530 ∞ 21.433 29.558 ∞
23.403 31.519 ∞ 25.358 33.515 ∞ 27.305 37.454 ∞ 29.244
39.891 ∞ 31.483 42.000 ∞ 39.277 44 ∞ 46 46
∞ 48 48 ∞ 50 50 ∞ 52 52 ∞
54 54 ∞ 56 56 ∞ 58 58 ∞ 60
60 ∞ 62 62 ∞ 64 64 ∞ 66 66
∞ 68 68 ∞ 70 70 ∞ 72 72 ∞
74 74 ∞ 76 76 ∞ 78 78 ∞ 80
80 ∞ 82 82 ∞ 84 84 ∞ 86 86
∞ 88 88 ∞ 90 90 ∞ 92 92 ∞
94 94 ∞ 96 96 ∞ 98 98 ∞ 100

Theorem 4. Let 8 ≤ 𝑑 ≤ 1200, where d is divisible by 8 but 𝑑 � 16mod 24. Define 𝑙𝑑 as in (1) and

𝐾𝑑 =
1
√
𝑎𝑑
{√𝑎𝑑 ,

√
𝑎𝑑 + 2,

√
𝑎𝑑 + 4, . . . ,

√
𝑙𝑑}.

Also let 𝑐𝑑 be given by Table 1 (𝑐𝑑 = 0 if 𝑑 = 8, 24, 48). Then there exists a nonzero radial function
𝐻 : R𝑑 → R of Schwartz class such that

◦ 𝐻 (𝑥) ≤ 0 if |𝑥 |2 > 𝑙𝑑;
◦ 𝐻 (𝑥) ≥ 0 if |𝑥 | > 𝑐𝑑;
◦ 𝐻 (𝑥) = 𝐻 (𝑥) = 0 if |𝑥 |2 ∈ {𝑎𝑑 , 𝑎𝑑 + 2, . . .};
◦ {|𝑥 |2 : 𝐻 (𝑥) = 0 and |𝑥 |2 > 𝑙−𝑑 } = {𝑙𝑑 , 𝑙𝑑 + 2, . . .};
◦ {|𝑥 |2 : 𝐻 (𝑥) = 0 and |𝑥 |2 > 𝑐𝑑} = {𝑎𝑑 , 𝑎𝑑 + 2, . . .}.

Moreover, if 𝑑 = 48 we additionally have that {|𝑥 |2 : 𝐻 (𝑥) < 0} ∩ (0, 10) = (6, 8).

In the theorem above, |𝑥 |2 > 𝑙−𝑑 means that |𝑥 |2 > 𝑙𝑑 − 𝜖𝑑 for some small 𝜖𝑑 > 0. We note that one
can indeed build functions H for all dimensions congruent to 16 modulo 24 using the same techniques
of Theorem 4. However, it turns out that 𝐻 (𝑥) ≤ 0 for |𝑥 | > 𝑜(𝑎𝑑) (numerically), although 𝐻 (𝑥) ≤ 0 for
|𝑥 |2 > 𝑙𝑑 and 𝐻 (0) = 𝐻 (0) > 0. One should also notice that the numbers 𝑐𝑑 seem to satisfy (for small d)

𝑐𝑑 = 𝑎𝑑 − 2 −𝑂 (1) if 𝑑 ≡ 8 mod 24 and 𝑐𝑑 = 𝑎𝑑 − 6 −𝑂 (1) if 𝑑 ≡ 0 mod 24.

Also, in fact, 𝑐𝑑 is an approximation from the right of the last simple root of 𝐻 (𝑥). All these facts give
a heuristic explanation why we only get results free from spectral conditions in dimensions 8, 24 and 48
(hence a result for all sphere packings, periodic or not). It goes as follows: Experimentally, the 𝑂 (1) in
𝑐𝑑 is less than 1 for small d and 𝑐𝑑 increases with d on each equivalence class modulo 24, which means
that if 𝑑 ≥ 72, then 𝑎𝑑 ≥ 8, and so 𝑐𝑑 ≥ 1. Thus, 𝐻 would never be nonnegative. For 𝑑 = 8, 24, 48, we
have 𝑐𝑑 = 0 −𝑂 (1) < 0. Thus, 𝐻 ≥ 0 (see Figure 1). For the remaining small dimensions not equal to
16 modulo 24, which are, 𝑑 = 32 and 𝑑 = 56, we have 𝑐32 = 2 − 𝑂 (1) and 𝑐56 = 4 − 𝑂 (1), which are
positive, and so 𝐻 is not nonnegative.
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Figure 1. This is a plot of the functions 𝑠 ↦→ 𝐻 (
√
𝑠)𝑒𝜋𝑠 for 𝑑 = 8 (black), 𝑑 = 24 (blue) and 𝑑 = 48

(red), normalized so 𝐻 (0) = 1.

Figure 2. This is a plot of the functions 𝑠 ↦→ 𝐻 (
√
𝑠)𝑒𝜋𝑠 for 𝑑 = 72 (red) and 𝑑 = 80 (blue), normalized

so 𝐻 (0) = 1. For 𝑑 = 80, we have multiplied the function by (𝑠 + 1)2 for aesthetic reasons.

Theorem 5. Let d, 𝑎𝑑 , 𝐾𝑑 and 𝑐𝑑 be as in Theorem 4. Let 𝑃 = Λ + 𝑌 + 1
2 𝐵𝑑 be some 𝐾𝑑-admissible

periodic sphere packing such that min ℓ(Λ∗) >
√
𝑐𝑑 . Then

dens(𝑃) ≤ vol(𝐵𝑑)
(√

𝑎𝑑

2

)𝑑
.

In case #𝑌 = 1, equality above occurs if and only if √𝑎𝑑Λ is an even unimodular extremal lattice. We
conclude that if 𝑑 ∈ {8, 24, 48}, then

Δ𝑑 (𝐾𝑑) = ΔLP
𝑑 (𝐾𝑑) = vol(𝐵𝑑)

(√
𝑎𝑑

2

)𝑑
.

Note that if 𝑑 ∈ {8, 24, 48}, then 𝑐𝑑 = 0, and this shows that even unimodular extremal lattices
maximize density for the among all 𝐾𝑑-admissible sphere packings (periodic or not). Since 𝐾8 =
𝐾24 = {1}, the packing problem in these dimensions is unconstrained, and the 𝐸8 and Leech lattices
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are the only extremal lattices in these dimensions, this shows they have maximal density. The above
theorem puts the results of [10, 27] in a larger family of packing problems that can be solved by linear
programming methods and construction via modular forms. The fact that for 𝑑 = 48 we have 𝐻 (𝑥) < 0
for 6 < |𝑥 |2 < 8, allows us to enlarge 𝐾48 to 1√

6
([
√

6,
√

8] ∪
√

10) and deduce Theorem 1. The same
enlargement is possible in every dimension d; that is, we could fill 𝐾𝑑 between a couple of its points
and prove a slightly stronger result. However, for simplicity, we left the statement as it is.

One could ask if it is possible to extend Theorems 4 and 5 to all dimensions 𝑑 ≤ 163264. For this,
one would need to greatly optimize the numerical procedure we explain in the proof of Theorem 4, and
use specialized software and several days of running time to increase 1200 to something of the order of
10000. Rough experimental estimations show that the running time we have for the proof of Theorem 4
is roughly 𝑂 (1.1𝑑/8)-secs, so it seems the complexity of our algorithm is increasing exponentially. Even
if one manages to reduce this ratio to (being generous) 1.001, reaching 𝑑 ≈ 170000 seems unreasonable.

One could also ask if we could prove Theorem 5 with no assumption on the minimal norm on Λ∗.
That might be possible, but we believe it to be impossible via the linear programming approach that we
use with the same set 𝐾𝑑 . The functions H computed in Theorem 4 are in a way unique, and one could
actually show they are by extending the interpolation formulas of [11] to all dimensions multiple of 8.
The issue is that the functions 𝐻 (𝑥) of Theorem 4 do have a simple zero very near |𝑥 |2 = 𝑐𝑑 and so have
negative values in the region 0 < |𝑥 |2 < 𝑐𝑑 . However, it might be possible to remove the condition on Λ∗

by enlarging 𝑙𝑑 and finding the corresponding ‘magic’ functions. We have tried this approach in small
dimensions, replacing 𝑙𝑑 by 𝑙𝑑 + 𝛿, for some small even 𝛿 > 0, although unsuccessfully. It might be the
case that 𝛿 needs to be very large; however, that greatly complicates the modular form constructions.
We leave this question for future work. Nevertheless, we expect this 𝛿 to exist because when 𝛿 = ∞, the
only 𝐾𝑑-admissible lattices with minimal norm √

𝑎𝑑 are integral even lattices, and such lattices are less
dense than extremal ones.
Conjecture 3. Let Λ ⊂ R𝑑 be an even unimodular lattice with minimal norm

√
𝑎, for some even integer

a. Then for some even 𝑙 > 𝑎, we have that Λ has maximal density among any 1√
𝑎
{
√
𝑎,
√
𝑎 + 2, . . . ,

√
𝑙}-

admissible sphere packing; that is,

Δ𝑑

(
1
√
𝑎
{
√
𝑎,
√
𝑎 + 2, . . . ,

√
𝑙}

)
= dens(Λ).

If this conjecture is true in dimension d, then for 2 ≤ 𝑎 ≤ 𝑎𝑑 , one could define 𝐿(𝑎, 𝑑) = 𝑙, where l is
the smallest such that Conjecture 3 is true. We already know that 𝐿(2, 8) = 2, 𝐿(4, 24) = 4, and we have
shown that 𝐿(6, 48) ≤ 10. We believe (and it is somewhat believed in the community) that 𝐿(6, 48) = 6
and that extremal lattices maximize density with no constraints in dimension 48. It would be also
interesting to find 𝐿(2, 16) and 𝐿(2, 24) and show that the lattices 𝐸2

8 , 𝐷
+
16 and all the 24-dimensional

Niemeier lattices with root are optimal.
Another curious question is: Is there a finite K such that Z2 is K-admissible and with maximal

density?3 If so, how small #𝐾 can be?

2.1. One-dimensional sphere packings

Unconstrained one-dimensional sphere packings are trivial to construct as unit intervals tile the line.
However, finding optimal one-dimensional K-admissible sphere packings for an arbitrary given set K
seems to be a difficult question. Here, we are concerned with periodicity: When can we make sure that
there exists some optimal one-dimensional packing which is periodic? Unfortunately, greedy choice
usually does not give an optimal construction. By greedy choice, we mean one starts with some
configuration ∪𝑁

𝑖=1 (𝑎𝑖 + 𝐼) for 𝑎1 < 𝑎2 < . . . < 𝑎𝑁 (with 𝐼 = [0, 1]) and then takes an interval 𝑎𝑁+1 + 𝐼

3This problem has a negative answer for dimensions 4 or higher because by the Four Squares Theorem and scale invariance,
the checkerboard lattice will always be K-admissible whenever Z𝑑 is, but it is a denser lattice.
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with 𝑎𝑁+1 ≥ 1 + 𝑎𝑁 as small as possible so that ∪𝑁+1
𝑖=1 (𝑎𝑖 + 𝐼) still is K-admissible. For example,

first consider the case where 𝐾 = {1, 𝛼} for some 𝛼 > 2. Then greedy choice gives the packing P
where one puts two unit intervals glued together, and then a gap of length 𝛼 − 1, and then repeats
this configuration periodically. One can see this is optimal by noting that, in any given K-admissible
packing, the distance between the centers of any unit interval and the second one after it must be at least
1 + 𝛼. This means that an interval of size 𝑁 (1 + 𝛼) contains at most 2𝑁 unit intervals, which shows
that Δ1 ({1, 𝛼}) ≤ 2/(1 + 𝛼), and this is attained by P. However, this strategy does not produce the best
packing in general. For instance, if 𝐾 = {1, 𝛼, 𝛽} with 2𝛼 ≥ 𝛽 > 2𝛼 − 1 > 𝛼, then greedy choice gives
the packing 𝑃𝛽 = 𝐼+ (1+𝛽)Z+{0, 1}, which has density 2/(1+𝛽). This is not optimal since 𝑃𝛼 = 𝐼+𝛼Z
has density 1/𝛼 > 2/(1+ 𝛽). In Lemma 15, we completely solve this problem for all choices of 𝛼 and 𝛽.

In Proposition 7, we show that when K is a compact set, then optimal packings for Δ𝑑 (𝐾) always
exist. However, it is not guaranteed that they are periodic, as this is not even known in the unconstrained
case. Nevertheless, we expect them to be periodic in the one-dimensional case. The following result
proves this in the ‘almost’ finite case.
Theorem 6. Let 𝐾 ⊂ [1,∞) be a compact set such that 1 ∈ 𝐾 . Assume that K has no accumulation
points from the left and only finitely many accumulation points from the right. Moreover, let 𝐾 ′ be its set
of accumulation points and assume that (𝐾 ′ + 𝐾 ′) ∩ 𝐾 ′ = ∅. Then there exists a K-admissible periodic
sphere packing P of R such that dens(𝑃) = Δ1 (𝐾).

In particular, optimal periodic K-admissible packings exist whenever K is finite. However, optimal
periodic packings will also exist in the (illustrative) case

𝐾 = {1,
√

2, 𝑒, 𝜋} + {10−𝑛}𝑛≥1.

Conjecture 4. Let 𝐾 ⊂ [1,∞) be a compact set such that 1 ∈ 𝐾 . Then there exists a K-admissible
periodic sphere packing of R with maximal density.

A compact set K can be classified by its sequence of derived sets; that is,

𝐾, 𝐾 ′, 𝐾 ′′, 𝐾 ′′′, . . . ,

where 𝑆′ is the set of points 𝑝 ∈ 𝑆 such that (𝑝− 𝜀, 𝑝 + 𝜀) ∩ 𝑆 \ {𝑝} ≠ ∅ for any 𝜀 > 0 (the accumulation
points of S). Theorem 6 solves the above conjecture for the case 𝐾 ′ = ∅ (i.e., K is finite) and deals with
the case 𝐾 ′′ = ∅ (i.e., 𝐾 ′ is finite) under the condition that points only accumulate from the right and
no accumulation point is a sum of two others.

We believe that Conjecture 4 could be very hard to prove, perhaps even false, as this is equivalent
to (when sup(𝐾) ∈ 𝐾) a generalization of Theorem 13 (which is about linear domino tilings) for an
infinite compact sets of symbols Σ and domino pieces D ⊂ Σ∗ × Σ∗.

3. Generalities

In this section, we establish some basic facts about sphere packing with forbidden distances. Throughout
this section, 𝐾 ⊂ [1,∞) will always be a bounded set such that 1 ∈ 𝐾 , and the word sphere will be used
to denote any 𝑥 + 1

2 𝐵𝑑 for some 𝑥 ∈ R𝑑 .
Proposition 7. Assume K is compact. Then there exists a packing 𝑃 ∈ P𝑑 (𝐾) such that dens(𝑃) =
Δ𝑑 (𝐾).
Proof. The proof is exactly the same as for unconstrained sphere packings [17]. Let (𝑃𝑛)𝑛≥1 be a
maximizing sequence of sphere packings such that dens(𝑃𝑛) is increasing and converges to Δ𝑑 (𝐾). By
Proposition 8, we can assume that each 𝑃𝑛 is 𝑘𝑛Z

𝑑 periodic for some integer 𝑘𝑛 > 0 such that 𝑘𝑛 ↗∞
and that 𝑃𝑛 maximizes the number of spheres one can put inside 𝑘𝑛𝑄𝑑 . Using Hausdorff’s topology for
compact sets and a standard Cantor’s diagonal argument, we can assume that (𝑃𝑛)𝑛≥1 converges locally
to some packing P, which is K-admissible since K is compact. By maximality, the number of spheres
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of 𝑃𝑛 inside 𝑘𝑚𝑄𝑑 must not be much smaller than that of 𝑃𝑚 (the error must be bounded by the surface
area of the boundary of 𝑘𝑚𝑄𝑑). We obtain

vol(𝑃𝑛 ∩ 𝑘𝑚𝑄𝑑)/vol(𝑘𝑚𝑄𝑑) > vol(𝑃𝑚 ∩ 𝑘𝑚𝑄𝑑)/vol(𝑘𝑚𝑄𝑑) +𝑂 (1/𝑘𝑚) = dens(𝑃𝑚) +𝑂 (1/𝑘𝑚)

for all 𝑛 > 𝑚, where 𝑂 (1/𝑘𝑚) comes from the spheres that touch the boundary of 𝑘𝑚𝑄𝑑 . Taking
𝑛 →∞, we obtain vol(𝑃 ∩ 𝑘𝑚𝑄𝑑)/vol(𝑘𝑚𝑄𝑑) ≥ dens(𝑃𝑚) +𝑂 (1/𝑘𝑚). Taking 𝑚 →∞, we conclude
that dens(𝑃) ≥ Δ𝑑 (𝐾), which finishes the proof. �

Proposition 8. Any K-admissible sphere packing can be approximated by a periodic one. In particular,
if 𝑁𝑡 denotes the maximum number of spheres one can put inside 𝑡𝑄𝑑 such that the configuration is
𝐾-admissible, then

lim
𝑡→∞

𝑁𝑡vol( 1
2 𝐵𝑑)

vol(𝑡𝑄𝑑)
= Δ𝑑 (𝐾).

Proof. Let 𝑃 = 𝑋 + 1
2 𝐵𝑑 be a K-admissible sphere packing. Then 𝑃𝑡 = 𝑋 ∩ 𝑡𝑄𝑑 + (𝑡 + sup(𝐾))Z𝑑 + 1

2 𝐵𝑑

is K-admissible, periodic and

dens(𝑃𝑡 ) =
vol(𝑃 ∩ 𝑡𝑄𝑑)

vol(𝑡𝑄𝑑)
(1 +𝑂 (1/𝑡)).

We obtain lim sup𝑡→∞ dens(𝑃𝑡 ) = dens(𝑃). Let 𝛿𝑡 =
𝑁𝑡vol( 1

2 𝐵𝑑)
vol(𝑡𝑄𝑑) . The same periodization argument

shows that lim sup𝑡→∞ 𝛿𝑡 ≤ Δ𝑑 (𝐾). However, if 𝑃 = 𝑋 + 𝑡Z𝑑 is a K-admissible periodic sphere packing,
by maximality, we must have that #(𝑋 ∩ 𝑡𝑄𝑑) ≤ 𝑁𝑡 ; hence,

𝛿𝑡 ≥ dens(𝑃) +𝑂 (1/𝑡),

where 𝑂 (1/𝑡) accounts for boundary intersections. We obtain lim inf𝑡→∞ 𝛿𝑡 ≥ Δ𝑑 (𝐾). This finishes the
lemma. �

Lemma 9. For any compact K, there is a countable set 𝐾 such that Δ𝑑 (𝐾) = Δ𝑑 (𝐾).
Proof. Since K is compact, there is a packing 𝑃 = 𝑋 + 1

2 𝐵𝑑 such that dens(𝑃) = Δ𝑑 (𝐾). Since X is
countable, we can write 𝑋 = {𝑥1, 𝑥2, . . .}. Define the set

𝐾0 = {𝛼 ∈ 𝐾 : |𝑥𝑖 − 𝑥 𝑗 | = 𝛼 for some 𝑖 < 𝑗}.

Define 𝐾 := 𝐾0 ∪ {1, max(𝐾)}. Then, 𝐾 ⊂ 𝐾 is a countable subset such that max(𝐾) = max(𝐾), and
by construction, P is 𝐾-admissible. We have

Δ𝑑 (𝐾) ≤ Δ𝑑 (𝐾) = dens(𝑃) ≤ Δ𝑑 (𝐾).

This concludes the proof. �

Define

𝑛𝑑 (𝐾) := max{#𝑋 : 𝑋 ⊂ R𝑑 and |𝑥 − 𝑦 | ∈ 𝐾 for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦}.

Since K is bounded, it is clear that X is finite and any maximal set X (which always exist) can be placed
inside a sphere of radii sup(𝐾). For instance, if 𝐾 = {1}, then 𝑛𝑑 (𝐾) = 𝑑 + 1, and this is realized by the
(𝑑 + 1)-simplex. Let kiss𝑑 denote the kissing number of R𝑑 – that is, the largest number of equal size
spheres that can touch a central sphere with no overlapping. Then it is easy to see that

𝑛𝑑 ([1, 2]) ≥ 1 + kiss𝑑 .
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Conjecture 5. For all d, we have 𝑛𝑑 ([1, 2]) = 1 + kiss𝑑 .

Trivially, this is attained for 𝑑 = 1. It seems to be the case for 𝑑 = 2 and unlikely to be false for
𝑑 = 3. It turns out that the number 𝑛𝑑 (𝐾) can be extracted from a constrained packing problem if one
sets 𝐾𝜆 = 𝐾 ∪ {𝜆} and sends 𝜆 →∞.

Proposition 10. Let 𝐾 ⊂ [1,∞) be bounded with 1 ∈ 𝐾 and let 𝐾𝜆 = 𝐾 ∪ {𝜆}. Then

lim
𝜆→∞

𝜆𝑑Δ𝑑 (𝐾𝜆) = 𝑛𝑑 (𝐾)Δ𝑑 .

Proof. First, we claim that Δ𝑑 (𝐾𝜆) ≥ 𝑛𝑑 (𝐾 ) ·Δ𝑑

(𝛽+𝜆)𝑑 , where 𝛽 = sup 𝐾 . In order to do that, we will construct

a packing 𝑃𝜆 that is 𝐾𝜆-admissible and show that dens(𝑃𝜆) ≥ 𝑛𝑑 (𝐾 ) ·Δ𝑑

(𝛽+𝜆)𝑑 . The packing 𝑃𝜆 will not
necessarily have maximal density; however, it will have a nice structure which makes it easy to estimate
its density. Let 𝑌 ⊂ 𝛽𝐵𝑑 be a maximal cluster of K-admissible points attaining #𝑌 = 𝑛𝑑 (𝐾). Let
𝑃𝜆 = 𝑋𝜆 + 𝛽+𝜆

2 𝐵𝑑 be an unconstrained periodic sphere packing (with spheres of diameter 𝛽 + 𝜆) such
that dens(𝑃𝜆) > Δ𝑑 − 𝜀. Define the packing

𝑃𝜆 = 𝑋𝜆 + 𝑌 + 1
2 𝐵𝑑 .

We claim 𝑃𝜆 is 𝐾𝜆 admissible. To see this note that if 𝑥𝜆 + 𝑦 and 𝑥 ′𝜆 + 𝑦′ are two points in 𝑋𝜆 + 𝑌 , then
their distance is ≥ 𝜆 if 𝑥𝜆 ≠ 𝑥 ′𝜆. If 𝑥𝜆 = 𝑥 ′𝜆, then their distance is |𝑦 − 𝑦′ | ∈ 𝐾 . We obtain

dens(𝑃𝜆) = lim
𝑡→∞

#((𝑋𝜆 + 𝑌 ) ∩ 𝑡𝑄𝑑)vol( 1
2 𝐵𝑑)

vol(𝑡𝑄𝑑)

= lim
𝑡→∞

#(𝑋𝜆 ∩ (𝑡 − 2𝛽 − 1)𝑄𝑑)𝑛𝑑 (𝐾)vol( 𝛽+𝜆2 𝐵𝑑)
(𝛽 + 𝜆)𝑑vol(𝑡𝑄𝑑)

=
𝑛𝑑 (𝐾)dens(𝑃𝜆)

(𝛽 + 𝜆)𝑑
>

𝑛𝑑 (𝐾) (Δ𝑑 − 𝜀)
(𝛽 + 𝜆)𝑑

.

Since both 𝑃𝜆 and 𝑃𝜆 are periodic, equality between limits above is justified. Letting 𝜀 → 0 proves our
claim.

Now we claim that Δ𝑑 (𝐾𝜆) ≤ 𝑛𝑑 (𝐾 ) ·Δ𝑑

𝜆𝑑 . Let 𝑌 + 1
2 𝐵𝑑 be a periodic 𝐾𝜆-admissible sphere packing

such that dens(𝑌𝜆) > Δ𝑑 (𝐾𝜆) − 𝜀. We can assume that 𝜆 > 2𝛽. Define an equivalence relation in Y by
saying that 𝑦1 ∼ 𝑦2 if |𝑦1 − 𝑦2 | ≤ 𝛽. This is an equivalence relation since if 𝑦1 ∼ 𝑦2 and 𝑦2 ∼ 𝑦3 but
|𝑦1 − 𝑦3 | > 𝛽, then |𝑦1 − 𝑦3 | ≥ 𝜆, but triangle inequality shows that |𝑦1 − 𝑦3 | ≤ 2𝛽 < 𝜆, a contradiction.
Let 𝑌 = {[𝑦1], [𝑦2], . . .} be these equivalence classes, where the 𝑦 𝑗 ’s are representatives of each class.
Observe that |𝑦𝑖 − 𝑦 𝑗 | ≥ 𝜆 if 𝑖 < 𝑗 , that the set [𝑦 𝑗 ] has only distances in K and is contained in 𝑦 𝑗 + 𝛽𝐵𝑑 .
Thus, #[𝑦 𝑗 ] ≤ 𝑛𝑑 (𝐾). We obtain

Δ𝑑 (𝐾𝜆) − 𝜀 < lim
𝑡→∞

#(𝑌 ∩ 𝑡𝑄𝑑)vol( 1
2 𝐵𝑑)

vol(𝑡𝑄𝑑)

≤ lim sup
𝑡→∞

vol( 1
2 𝐵𝑑)

∑
[𝑦 𝑗 ]∩𝑡𝑄𝑑≠∅ #[𝑦 𝑗 ]

vol(𝑡𝑄𝑑)

≤ 𝑛𝑑 (𝐾)
𝜆𝑑

lim sup
𝑡→∞

#({𝑦1, 𝑦2, . . .} ∩ (𝑡 + 2𝛽)𝑄𝑑)vol( 𝜆2 𝐵𝑑)
vol(𝑡𝑄𝑑)

≤ 𝑛𝑑 (𝐾)
𝜆𝑑

Δ𝑑 .

Letting 𝜀 → 0 finishes the proof. �
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Figure 3. Best configuration for 𝑑 = 2 and 𝐾 = [1, 2] ∪ {4}.

Observe that we have actually proven the stronger result

𝑛𝑑 (𝐾) · Δ𝑑

(𝛽 + 𝜆)𝑑
≤ Δ𝑑 (𝐾𝜆) ≤

𝑛𝑑 (𝐾) · Δ𝑑

𝜆𝑑
.

In particular, in conjunction with Theorem 3, we have the new linear program to produce upper bounds
for kissing numbers.

Corollary 11. Let 𝜆 ≥ 4. Let 𝐹 : R𝑑 → R be a continuous 𝐿1-function such that 𝐹 ≥ 0 and 𝐹 (𝑥) ≤ 0
if 1 < |𝑥 | < 2 or if |𝑥 | > 𝜆. Then

1 + kiss𝑑 ≤
(2 + 𝜆)𝑑

Δ𝑑

𝐹 (0)
𝐹 (0)

vol( 1
2 𝐵𝑑).

The structure of the best configuration for 𝑑 = 2, 𝐾 = [1, 2] ∪ {𝜆} and large 𝜆 will look like Figure 3.
As a proof of concept, we now prove that this linear program is sharp for 𝑑 = 1. In this case, we have

the inequality 3 ≤ (2 + 𝜆)𝐹 (0)/𝐹 (0). Define the following symmetric set

𝐸𝜆 =
𝑁⋃

𝑛=−𝑁
[3𝑛 − 1/2, 3𝑛 + 1/2]

with 𝑁 = 	(𝜆 − 1)/6
. Then it is easy to see that 𝐹𝜆 = 1𝐸𝜆 ★ 1𝐸𝜆 (where ★ is the convolution operator)
is positive definite and 𝐹𝜆 (𝑥) = 0 if |𝑥 | > 𝜆 or if 1 < |𝑥 | < 2, since 𝐸𝜆 + 𝐸𝜆 = ∪2𝑁

𝑛=−2𝑁 [3𝑛 −
1, 3𝑛 + 1]. Moreover, 𝐹𝜆 (0)/𝐹𝜆 (0) = 1/vol(𝐸𝜆) = 1/(1 + 2𝑁) ∼ 3/𝜆. We conclude that lim𝜆→∞(2 +
𝜆)𝐹𝜆(0)/𝐹𝜆 (0) = 3, proving the bound is sharp.
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14 F. Gonçalves and G. Vedana

3.1. Proof of Theorem 3

In view of Proposition 8, it suffices to consider just periodic sphere packings 𝑃 = 𝑌 +Λ + 1
2 𝐵𝑑 . Assume

first F is of Schwartz class. We apply Poisson summation to obtain

(#𝑌 )𝐹 (0) ≥
∑

𝑦,𝑦′ ∈𝑌

∑
𝜆∈Λ

𝐹 (𝜆 + 𝑦 − 𝑦′) = 1
vol(R𝑑/Λ)

∑
𝜉 ∈Λ∗

𝐹 (𝜉)

�����∑
𝑦∈𝑌

𝑒2𝜋𝑖𝑦 ·𝜉

�����
2

≥ (#𝑌 )2𝐹 (0)
vol(R𝑑/Λ)

.

Rearranging terms, we deduce that dens(𝑃) ≤ vol( 1
2 𝐵𝑑)𝐹 (0)/𝐹 (0). In the unconstrained packing

problem one could now, by a standard convolution approximation argument, show the same inequality
holds when F is only continuous and 𝐿1. However, this trick does not work for constrained sphere
packings, since convolutions destroy K-admissibility of functions. Instead, we give below a direct proof
based on a new trick involving the Féjer kernel.

Let A be a full rank matrix such that Λ = 𝐴 · Z𝑑 and let

𝑓Λ (𝑥) =
∑
𝜆∈Λ

𝐹 (𝑥 + 𝜆).

Then we see that 𝑓Λ is Λ−periodic, that the summation above converges a.e. and that 𝑓Λ ∈ 𝐿1 (R𝑑/Λ).
Note also that

𝑓Λ ◦ 𝐴(𝑥) =
∑
𝑘∈Z𝑑

𝐹 ◦ 𝐴(𝑥 + 𝑘).

Observe that 𝑓Λ ◦ 𝐴 ∈ 𝐿1 (R𝑑/Z𝑑) and ( 𝑓Λ ◦ 𝐴)∧(𝛼) = | det(𝐴) |−1𝐹 ◦ 𝐴−�(𝛼), where
vol(R𝑑/Λ) = | det(𝐴) | and we use � for transpose. For N a positive integer, consider the N-th
Féjer kernel

F𝑁 (𝑥) = 1𝑄𝑑 (𝑥)
∑
𝛼∈Z𝑑
|𝛼 |∞<𝑁

𝑑∏
𝑗=1

(
1 −

|𝛼 𝑗 |
𝑁

)
𝑒2𝜋𝑖𝛼 ·𝑥 = 𝑁𝑑

𝑑∏
𝑗=1

( sin(𝜋𝑁𝑥 𝑗 )
𝑁 sin(𝜋𝑥 𝑗 )

)2
1 |𝑥 𝑗 |<1/2.

Denote by ★ the convolution operator. It is well known that the F𝑁 is an approximate identity – that
is, F𝑁 ★𝐺 (𝑥) → 𝐺 (𝑥) as 𝑁 → ∞, for any x and any bounded continuous function G. The nice bit is
that if G is Z𝑑-periodic, then convolution simply multiplies Fourier coefficients. Routine computations
show that

( 𝑓Λ ◦ 𝐴) ★F𝑁 (𝑥) =
1

vol(R𝑑/Λ)

∑
𝛼∈Z𝑑
|𝛼 |∞<𝑁

𝐹 ◦ 𝐴−�(𝛼)
𝑑∏
𝑗=1

(
1 −

|𝛼 𝑗 |
𝑁

)
𝑒2𝜋𝑖𝛼 ·𝑥

is indeed a trigonometric polynomial. We conclude that

∑
𝑦,𝑦′ ∈𝑌

( 𝑓Λ ◦ 𝐴) ★F𝑁 (𝐴−1(𝑦 − 𝑦′)) ≥ (#𝑌 )2

vol(R𝑑/Λ)
𝐹 (0).
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However, letting 𝑚 := max𝑦≠𝑦′ |𝑦 − 𝑦′ | + sup(𝐾) +max𝑥∈R𝑑/Λ |𝑥 |, the left-hand side above is equal to

∑
𝑦,𝑦′ ∈𝑌

∫
𝑄𝑑

F𝑁 (𝑥) ( 𝑓Λ ◦ 𝐴)
(
𝐴−1(𝑦 − 𝑦′) − 𝑥

)
𝑑𝑥

=
1

| det(𝐴) |
∑

𝑦,𝑦′ ∈𝑌

∫
R𝑑/Λ

F𝑁 (𝐴−1𝑥) 𝑓Λ (𝑦 − 𝑦′ − 𝑥)𝑑𝑥

≤ 1
vol(R𝑑/Λ)

∑
𝑦,𝑦′ ∈𝑌

∑
𝜆∈Λ
|𝜆 | ≤𝑚

∫
R𝑑/Λ

F𝑁 (𝐴−1𝑥)𝐹 (𝑦 − 𝑦′ − 𝑥 + 𝜆)𝑑𝑥

=
∑

𝑦,𝑦′ ∈𝑌

∑
𝜆∈Λ
|𝜆 | ≤𝑚

F𝑁 ★ (𝐹 ◦ 𝐴) (𝐴−1(𝑦 − 𝑦′ + 𝜆))

𝑁→∞−−−−−→
∑

𝑦,𝑦′ ∈𝑌

∑
𝜆∈Λ
|𝜆 | ≤𝑚

(𝐹 ◦ 𝐴) (𝐴−1(𝑦 − 𝑦′ + 𝜆))

=
∑

𝑦,𝑦′ ∈𝑌

∑
𝜆∈Λ
|𝜆 | ≤𝑚

𝐹 (𝑦 − 𝑦′ + 𝜆)

≤ #𝑌 · 𝐹 (0).

The limit above is justified because we have a finite sum. The theorem follows.

4. One-dimensional packings and dominos

We now focus on the one-dimensional case, and we ask for the existence of periodic packings with the
maximal density. Let 𝐼 = [0, 1] be the unit interval. We begin with the observation that we can restrict
our attention to packings of the half-line [0,∞) only; that is,

Δ1(𝐾) = sup
𝑃∈P1 (𝐾 ) and 𝑃⊂[0,∞)

dens+(𝑃),

where dens+(𝑃) = lim sup𝑡→∞ vol(𝑃 ∩ [0, 𝑡])/𝑡. Indeed, if 𝑃 ⊂ (−∞,∞) is a K-admissible periodic
packing, then

dens(𝑃) ≤ max{dens+(𝑃 ∩ R+), dens+(𝑃 ∩ R−)}.

Now note that for any K-admissible packing of [0,∞), we can assume that I starts at 0 and so the
packing can be uniquely described as a sequence

𝑤 = 𝑎1𝑎2 . . . 𝑎𝑘 . . . ,

where 𝑎 𝑗 ∈ 𝐾 ∪ (sup(𝐾),∞) represent the distance between consecutive centers of intervals in the
packing. From now on, we assume that sup(𝐾) ∈ 𝐾 , and we set 𝑁 := �sup(𝐾)�. Hence, we can
always assume that 𝑎 𝑗 ∈ 𝐾 for all j since otherwise, we can reduce that distance without destroying K-
admissibility and obtain a denser packing. For simplicity, we just writeP+(𝐾) for K-admissible packings
of [0,∞) with distances between adjacent centers of intervals drawn from K that start with I touching 0.

A word will be a finite ordered sequence of elements of the alphabet Σ = 𝐾 . For instance, 𝑤 =
𝑎1𝑎2 . . . 𝑎𝑘 is a word of length #𝑤 = 𝑘 . It will be useful to consider the empty word, denoted by ∅,
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which has no elements and has length #∅ = 0. We can also define the norm of w by

|𝑤 | =
𝑘∑
𝑖=1

𝑎𝑖 .

We denote by Σ∗ the set of all finite words. We will now construct a domino set D by

D𝐾 :=
{
(𝑤, 𝑤′) ∈ Σ∗ × Σ∗ :#𝑤 = #𝑤′ = 𝑁 and any subword 𝑠 of 𝑤𝑤′

satisfies |𝑠 | ∈ 𝐾 ∪ (sup(𝐾),∞)
}
.

Thus, D𝐾 ⊂ Σ∗ ×Σ∗. Here, 𝑤𝑤′ is the concatenated word. A linear domino tiling from D𝐾 is an infinite
word

𝛾 = 𝑤1𝑤2𝑤3 . . .

where (𝑤𝑖 , 𝑤𝑖+1) is a domino piece from D𝐾 . We let T (D𝐾 ) be the set of domino tiling built this way.
Given a tiling 𝛾 ∈ T (D𝐾 ), we let

dens(𝛾) = lim sup
𝑡→∞

#(𝑤1 . . . 𝑤𝑡 )
|𝑤1 . . . .𝑤𝑡 |

.

We say 𝛾 is periodic if for some n, we have 𝑤𝑖+𝑛 = 𝑤𝑖 for all i.

Proposition 12. There is a canonical bijection between P ∈ P+(𝐾) ↦→ 𝛾𝑃 ∈ T (D𝐾 ). This bijection
maps periodic to periodic and satisfies

dens+(𝑃) = dens(𝛾𝑃).

Proof. Indeed, given a packing 𝑃 ∈ P+(𝐾), we can write P as (infinite) sequence 𝑎1𝑎2 . . ., with 𝑎 𝑗 ∈ 𝐾 .
We then break this sequence into pieces of the form 𝑤𝑚+1 = 𝑎𝑚𝑁+1 . . . 𝑎 (𝑚+1)𝑁 , for 𝑚 ∈ Z≥0, which are
words belonging to Σ∗. By construction, the pairs (𝑤𝑚, 𝑤𝑚+1) ∈ D𝐾 , and then we can associate P to the
tiling 𝑤1𝑤2 . . . . ∈ T (𝐾). Clearly, this map is injective. To show it is surjective, let 𝛾 = 𝑤1𝑤2 . . . ∈ T (𝐾)
be any tiling. Then, by the choice of N, the packing P whose sequence of distances between consecutive
centers is given by the concatenation 𝑤1𝑤2𝑤3 . . . belongs to P+(𝐾), and its image is the tiling 𝛾. This
establishes a bijection between P+(𝐾) and T . Moreover, it is easy to check that P is periodic if and only
if 𝛾𝑃 is and that dens+(𝑃) = dens(𝛾𝑃) holds for any packing 𝑃 ∈ P+(𝐾). �

In general, we define a linear domino game as a tuple (Σ,D), where Σ is a set of symbols and
D ⊂ Σ∗ × Σ∗ are domino pieces, where Σ∗ is the set of all finite words in the alphabet Σ. The set of
linear domino tilings T (D) are those infinite words such that 𝛾 = 𝑤1𝑤2𝑤3 . . ., where (𝑤𝑖 , 𝑤𝑖+1) ∈ D
for all i. We say that a map 𝑓 : Σ∗ → R+ is a norm function when it satisfies the following properties:

(a) For any 𝑤1, 𝑤2, 𝑤3 ∈ Σ∗, the function 𝑘 ≥ 0 ↦→ #(𝑤1𝑤
𝑘
2 𝑤3)

𝑓 (𝑤1𝑤
𝑘
2 𝑤3)

is monotone;

(b) The function 𝑘 > 0 ↦→ #(𝑤𝑘
2 )

𝑓 (𝑤𝑘
2 )

is a positive constant;
(c) For any 𝜖 > 0, there is 𝛿 > 0 such that if 𝑤′ is a sub-word of w with #𝑤 − #𝑤′ ≤ 𝜖 , then

| 𝑓 (𝑤) − 𝑓 (𝑤′) | ≤ 𝛿.

Note that if f is a norm function, then

#(𝑤1𝑤
𝑘
2 𝑤3)

𝑓 (𝑤1𝑤
𝑘
2 𝑤3)

=
#(𝑤𝑘

2 ) +𝑂 (1)
𝑓 (𝑤𝑘

2 ) +𝑂 (1)
=

#(𝑤𝑘
2 ) +𝑂 (1)

𝑓 (𝑤2)
#𝑤2

#(𝑤𝑘
2 ) +𝑂 (1)

=
#𝑤2
𝑓 (𝑤2)

+𝑂 (1/𝑘)
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as 𝑘 →∞. For a norm function f and a linear domino tiling 𝛾 = 𝑤1𝑤2𝑤3 . . . ∈ T (D), we let

dens 𝑓 (𝛾) = lim sup
𝑡→∞

#(𝑤1 . . . .𝑤𝑡 )
𝑓 (𝑤1 . . . .𝑤𝑡 )

.

In particular, dens 𝑓 (𝛽𝛽𝛽 . . .) = #𝛽
𝑓 (𝛽) . This is a generalization of the scenario described before by taking

𝑓 = | · | and D = D𝐾 .

Theorem 13. Let Σ be a set of symbols and D ⊂ Σ∗ × Σ∗ be a finite domino set. Let 𝑓 : Σ∗ → R+ be a
norm function. Assume that sup𝛾∈T (D) dens 𝑓 (𝛾) ∈ (0,∞). Then there exists a periodic linear domino
tiling 𝛾 ∈ T (D), with period ≤ #D, such that

dens 𝑓 (𝛾) = sup
𝛼∈T (D)

dens 𝑓 (𝛼).

The following corollary is an immediate consequence of the above theorem by using Σ = 𝐾 and
𝑓 = | · |.

Corollary 14. If K is finite, then there exists a periodic K-admissible sphere packing of R of maximal
density.

In order to prove Theorem 13, we need to introduce some terminology. Let 𝑉 := {𝑤 ∈ Σ∗ :
∃𝑤′ 𝑠.𝑡. (𝑤, 𝑤′) ∈ D or (𝑤′, 𝑤) ∈ D}. We then can define a directed graph by G = (𝑉,D), with vertex
set V and directed edges D. From now on, in G, we only consider directed paths (i.e., finite sequences
of the form 𝛾 = 𝑤1 . . . 𝑤𝑚 such that (𝑤 𝑗 , 𝑤 𝑗+1) ∈ D for any j). We say that the path length of 𝛾 is m.
We also say that 𝛾 is a closed path when (𝑤𝑚, 𝑤1) ∈ D and open otherwise. An atom is a simple closed
path (closed and with no self-intersections).

Proof of Theorem 13. Since D is finite, then V is finite and the set of atoms A is also finite. First, we
claim that for any closed path 𝛽 = 𝑤1 . . . 𝑤𝑚 in G, it holds that

#𝛽

𝑓 (𝛽) ≤ max
𝛼∈A

#𝛼
𝑓 (𝛼) .

The inequality is trivial if 𝛽 is an atom. Assume by induction the claim is true if the path length of 𝛽
is ≤ 𝑀 . For 𝑚 = 𝑀 + 1 and 𝛽 not an atom, then 𝛽 must have some self-intersection (i.e., there exist
1 ≤ 𝑖 < 𝑗 ≤ 𝑀 + 1 such that 𝑤𝑖 = 𝑤 𝑗 ). Let 𝑣1 = 𝑤1 . . . 𝑤𝑖−1, 𝑣2 = 𝑤𝑖 . . . 𝑤 𝑗−1 and 𝑣3 = 𝑤 𝑗 . . . 𝑤𝑀+1.
Then 𝑣1, 𝑣2, 𝑣3 ∈ Σ∗, 𝑣1𝑣3 and 𝑣2 are closed paths in G with path lengths ≤ 𝑀 (note that we may have
𝑣1 or 𝑣3 the empty word, but not both at the same time). By monotonicity hypothesis and the induction
hypothesis, we deduce

#𝛽

𝑓 (𝛽) =
#(𝑣1𝑣2𝑣3)
𝑓 (𝑣1𝑣2𝑣3)

≤ max
{

#(𝑣1𝑣3)
𝑓 (𝑣1𝑣3)

,
#𝑣2
𝑓 (𝑣2)

}
≤ max

𝛼∈A

#𝛼
𝑓 (𝛼) ,

as desired. Let now 𝜀 > 0 be sufficiently small and 𝛾 = 𝑤1𝑤2𝑤3 . . . ∈ T (D) be such that dens 𝑓 (𝛾)+𝜀 >
sup𝛼∈T (D) dens 𝑓 (𝛼) > 𝜀. Let 𝑚𝑛 ↑ ∞ be a sequence such that

dens 𝑓 (𝛾) = lim
𝑛→∞

#(𝑤1 . . . 𝑤𝑚𝑛 )
𝑓 (𝑤1 . . . 𝑤𝑚𝑛 )

.

Since #D is finite, there exists a word w which appears infinitely many times in the sequence of 𝛾. We
may assume such word is 𝑤1 since the properties of f imply that

lim
𝑛→∞

#(𝑤1 . . . 𝑤𝑚𝑛 )
𝑓 (𝑤1 . . . 𝑤𝑚𝑛 )

= lim
𝑛→∞

#(𝑤𝑖 . . . 𝑤𝑚𝑛 )
𝑓 (𝑤𝑖 . . . 𝑤𝑚𝑛 )
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Figure 4. A visualization of the graph G for 𝐾 = {1, 2, 𝛽} and 3 < 𝛽 ≤ 4 via higher-dimensional
embedding.

for any i. For each n, we fix a path 𝛾(𝑤𝑚𝑛 ,𝑤) in G from 𝑤𝑚𝑛 to w (such a path exists since w appears
infinitely many times in 𝛾). By removing atoms, we may assume that 𝛾(𝑤𝑚𝑛 ,𝑤) is simple, so that 𝛾(𝑤𝑚𝑛 ,𝑤)
has path length at most the cardinality of D. Since D is finite, we have just finitely many simple paths
𝛾(𝑤𝑚𝑛 ,𝑤) , so #𝛾(𝑤𝑚𝑛 ,𝑤) = 𝑂 (1). Let 𝛾∗(𝑤𝑚𝑛 ,𝑤)

be the path 𝛾(𝑤𝑚𝑛 ,𝑤) without the endpoints 𝑤𝑚𝑛 and w,
so that 𝛾(𝑤𝑚𝑛 ,𝑤) = 𝑤𝑚𝑛𝛾

∗
(𝑤𝑚𝑛 ,𝑤)

𝑤1. Hence, 𝑤1 . . . 𝑤𝑚𝑛𝛾
∗
(𝑤𝑚𝑛 ,𝑤)

is a closed path. We can now use the
properties of f to conclude

lim
𝑛→∞

#(𝑤1 . . . 𝑤𝑚𝑛𝛾
∗
(𝑤𝑚𝑛 ,𝑤)

)
𝑓 (𝑤1 . . . 𝑤𝑚𝑛𝛾

∗
(𝑤𝑚𝑛 ,𝑤)

) = lim
𝑛→∞

#(𝑤1 . . . 𝑤𝑚𝑛 )
𝑓 (𝑤1 . . . 𝑤𝑚𝑛 )

= dens 𝑓 (𝛾).

However,
#(𝑤1...𝑤𝑚𝑛 𝛾

∗
(𝑤𝑚𝑛 ,𝑤 ) )

𝑓 (𝑤1...𝑤𝑚𝑛 𝛾
∗
(𝑤𝑚𝑛 ,𝑤 ) )

≤ max𝛼∈A #𝛼
𝑓 (𝛼) . This concludes the proof. �

The proof of Theorem 13 does not work for an arbitrary compact 1 ∈ 𝐾 ⊂ [1,∞) since it strongly
relied on the fact that the graph G (or the domino set D) was finite, so that any closed path could be
decomposed into atoms, and hence, in this case, the atoms control the value Δ1 (𝐾). Nevertheless, our
proof describes an algorithm to find optimal K-admissible sphere packings in the case K is finite.

We now analyse the case when K has 3 elements.

Lemma 15. Let 1 < 𝛼 < 𝛽 and 𝐾 = {1, 𝛼, 𝛽} with 1 < 𝛼 < 𝛽. If 𝛽 ≤ 2, the periodic packing 1111 . . .
has maximal density. If 𝛽 > 2, we have the following cases:

conditions on 𝛼, 𝛽 a periodic packing of maximal density

1 𝛼 = 2 and 𝛽 ≤ 3 1111 . . .
2 𝛼 = 2 and 3 < 𝛽 11𝛽11𝛽 . . .
3 𝛼 ≠ 2 and 𝛽 ≤ 1 + 𝛼 1𝛼1𝛼 . . .
4 𝛼 ≠ 2, 1 + 𝛼 < 𝛽 ≤ 2𝛼 and 2𝛼 ≤ 𝛽 + 1 𝛼𝛼 . . . (and 1𝛽1𝛽 . . . if 2𝛼 = 𝛽 + 1)
5 𝛼 ≠ 2, 1 + 𝛼 < 𝛽 ≤ 2𝛼 and 2𝛼 > 𝛽 + 1 1𝛽1𝛽 . . .
6 𝛼 ≠ 2 and 2𝛼 < 𝛽 1𝛽1𝛽 . . .

Proof of Lemma 15. Let 𝑃 ∈ P+(𝐾) be a K-admissible periodic packing and let 𝛾 be its sequence of
distances. We have two cases: the one in which 𝛽 does not appear in 𝛾 and the second one in which 𝛽
appears infinitely many times in 𝛾. In the second case, using the graph language, we break 𝛾 into simple
closed paths with endpoints 𝛽, and we try maximize the density of such paths.
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Case 1. It is trivial.
Case 2. If 𝛽 ≤ 4, in the first case (𝛽 does not appear in 𝛾), we must have 𝛾 = 222 . . . whose density

is 1/2. In the second case, the densest path is 𝛽11, with density 3/(2 + 𝛽) which gives the packing
𝛽11𝛽11 . . .. Since 3/(2 + 𝛽) ≥ 1/2, the result follows. Now, if 𝛽 > 4, for the first case, there is no
periodic packing, and for the second one, the densest path is again 𝛽11.

Case 3. For the first case, 1𝛼1𝛼 . . . is the densest possibility. For the second, the paths 𝛽(1𝛼1)𝑘 for
𝑘 → ∞ have increasing density, and they converge to 1𝛼1𝛼 . . ., which is the densest periodic packing
in this case.

Case 4. In this case, the pairs (1, 1) and (1, 𝛼) cannot be consecutive distances. For the first case, we
case the sequence 𝛼𝛼 . . . with density 1/𝛼. For the second case, we have the paths 𝛽𝛼𝑘 for 𝑘 ≥ 1 and
𝛽1. The densest packing is 𝛼𝛼 . . .. If 2𝛼 = 𝛽 + 1, then 1𝛽1𝛽 . . . has also maximal density.

Case 5. By the same arguments as in Case 4, we deduce that the densest packing is 1𝛽1𝛽 . . ..
Case 6. We have to consider just the second case. Since the pairs (1, 1), (1, 𝛼) and (𝛼, 𝛼) cannot be

consecutive distances, the densest path is 𝛽1, which provides the packing 𝛽1𝛽1 . . .. �

5. Proof of Theorem 6

Let 𝐾 ′ = {𝛼1, . . . , 𝛼𝑁 } the set of limit points of K. We can then write K as follows:

𝐾 = 𝐾 ∪
𝑁⋃
𝑗=1

{
𝛼 𝑗 + 𝜆

𝑗
𝑘 : 𝑘 ≥ 1

}
,

where 𝐾 := {𝛼1, . . . , 𝛼𝑁 , 𝛽1, . . . , 𝛽𝑀 }, with 1 ∈ 𝐾 , and such that

(i) 𝛼𝑖 + 𝛼 𝑗 ∉ {𝛼𝑟 : 1 ≤ 𝑟 ≤ 𝑁};
(ii) 0 < 𝜆

𝑗
𝑘 < 𝛿

2 for any 𝑗 , 𝑘 , where 𝛿 := min
1≤𝑖< 𝑗≤𝑁

��𝛼𝑖 − 𝛼 𝑗

��;
(iii) For any fixed j, we have 𝜆

𝑗
𝑘 ↓ 0 when 𝑘 →∞;

(iv) 𝛽𝑀 = max 𝐾 .

We will show that under such conditions, for every packing 𝑃 ∈ P+(𝐾), one can construct another one
𝑃 with dens+(𝑃) ≥ dens+(𝑃) and such that the set of distances of 𝑃 lies in a finite set 𝐾 ⊂ 𝐾 . Thus, by
Lemma 9 and Corollary 14, there exists a K-admissible periodic sphere packing of maximal density.

For 𝛾 ∈ 𝐾 and 1 ≤ 𝑖, 𝑟 ≤ 𝑁 , we set

𝐽 (𝛾, 𝛼𝑖 , 𝑟) :=
{
𝑠 ≥ 1 : 𝛾 + 𝛼𝑖 + 𝜆𝑟𝑠 ∈ 𝐾 ∪ (𝛽𝑀 ,∞)

}
and 𝑀 (𝛾, 𝛼𝑖 , 𝑟) := sup 𝐽 (𝛾, 𝛼𝑖 , 𝑟).

Observe that, for fixed 𝑖, 𝑗 , we may have 𝛼 𝑗 + 𝜆
𝑗
𝑘 + 𝛼𝑖 = 𝛼𝑤 for some w. In this case, the index k with

such property is unique because of (ii). Therefore, we may write 𝑘 ( 𝑗 , 𝑖) to denote precisely this index k,
whenever it exists. Observe also that if 𝑀 (𝛾, 𝛼𝑖 , 𝑟) = ∞, then 𝛾 +𝛼𝑖 is an accumulation point and either
𝛾 + 𝛼𝑖 = 𝛼𝑤 for some w or 𝛾 + 𝛼𝑖 ≥ 𝛽𝑀 . In particular, if 𝑘 ≠ 𝑘 (𝑖, 𝑗), then 𝑀

(
𝛼 𝑗 + 𝜆

𝑗
𝑘 , 𝛼𝑖 , 𝑟

)
= ∞ if and

only if 𝛼 𝑗 + 𝜆
𝑗
𝑘 + 𝛼𝑖 ≥ 𝛽𝑀 . Our first step is to ask how large 𝑀 (𝛾, 𝛼𝑖 , 𝑟) can be when it is finite.

Step 1. We claim that there is 𝐶 > 0 such that for all 1 ≤ 𝑖, 𝑗 , 𝑟 ≤ 𝑁 and 𝑘 ≥ 1, with 𝑘 ≠ 𝑘 (𝑖, 𝑗),
we have 𝑀

(
𝛼 𝑗 + 𝜆

𝑗
𝑘 , 𝛼𝑖 , 𝑟

)
≤ 𝐶 whenever it is finite. Indeed, assume by contradiction this does not

happen. Then, for each 𝐶 ∈ Z+ there is 𝑠 = 𝑠(𝐶) ≥ 𝐶, 𝑘 ≥ 1 (𝑘 ≠ 𝑘 (𝑖, 𝑗)) and 1 ≤ 𝑖, 𝑗 , 𝑟 ≤ 𝑁

such that 𝛼 𝑗 + 𝜆
𝑗
𝑘 + 𝛼𝑖 + 𝜆𝑟𝑠 ∈ 𝐾 ∪ (𝛽𝑀 ,∞) but 𝑀

(
𝛼 𝑗 + 𝜆

𝑗
𝑘 , 𝛼𝑖 , 𝑟

)
< ∞. Thus, as 𝑠 → ∞, some

triple (𝑖, 𝑗 , 𝑟) is repeated infinitely often, and we choose such triple. If 𝑘 = 𝑘 (𝐶) = 𝑂 (1), then
for some 𝑘0 ≠ 𝑘 (𝑖, 𝑗), we have that 𝛼 𝑗 + 𝜆

𝑗
𝑘0
+ 𝛼𝑖 ∈ 𝐾 ∪ (𝛽𝑀 ,∞) is an accumulation point and

𝑀
(
𝛼 𝑗 + 𝜆

𝑗
𝑘0
, 𝛼𝑖 , 𝑟

)
< ∞. Since 𝑘0 ≠ 𝑘 (𝑖, 𝑗), we have that 𝛼 𝑗 + 𝜆

𝑗
𝑘0
+ 𝛼𝑖 ≥ 𝛽𝑀 , but this is absurd since
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we would have that 𝑀
(
𝛼 𝑗 + 𝜆

𝑗
𝑘0
, 𝛼𝑖 , 𝑟

)
= ∞, which is not the case. Thus, 𝑘 = 𝑘 (𝐶) is unbounded, and

so 𝛼 𝑗 + 𝛼𝑖 ∈ 𝐾 ∪ (𝛽𝑀 ,∞) is an accumulation point. Condition (i) implies that 𝛼 𝑗 + 𝛼𝑖 ≥ 𝛽𝑀 , and again
we reach a contradiction since this implies that 𝑀

(
𝛼 𝑗 + 𝜆

𝑗
𝑘 , 𝛼𝑖 , 𝑟

)
= ∞ for all k.

Step 2. Let 𝐶 > 0 be the constant from the previous step. Enlarge C if necessary so that we also have

𝐶 ≥ 𝑀 (𝛾, 𝛼𝑖 , 𝑟)

for all 𝛾 ∈ 𝐾 and 1 ≤ 𝑖, 𝑟 ≤ 𝑁 such that 𝑀 (𝛾, 𝛼𝑖 , 𝑟) < ∞. Define the set 𝐾 by

𝐾 := 𝐾 ∪
𝑁⋃
𝑗=1

{
𝛼 𝑗 + 𝜆

𝑗
𝑘 ; 1 ≤ 𝑘 ≤ 𝐶

}
⊂ 𝐾.

Let 𝑃 = 𝑑1𝑑2𝑑3 . . . ∈ P+(𝐾) be a packing where 𝑑𝑖 ∈ 𝐾 . By an inductive argument, we will replace 𝑑𝑖
by 𝑑𝑖 ≤ 𝑑𝑖 , with 𝑑𝑖 ∈ 𝐾 , in such a way that 𝑃 = 𝑑1𝑑2 . . . ∈ P+(𝐾) ⊂ P+(𝐾). This clearly implies that
dens+(𝑃) ≥ dens+(𝑃).

We start with the base case. If 𝑑1 ∈ 𝐾 , there is nothing to prove. Assume we have 𝑑1 ∉ 𝐾;
hence, 𝑑1 ∉ 𝐾 . Therefore, we have 𝑑1 = 𝛼𝑖 + 𝜆𝑖𝑠 for some 1 ≤ 𝑖 ≤ 𝑁 and 𝑠 > 𝐶. We claim that
𝑀 (𝑑2, 𝛼𝑖 , 𝑖) = ∞. Indeed, if it were finite, then 𝑀 (𝑑2, 𝛼𝑖 , 𝑖) ≤ 𝐶, and hence, 𝑠 ≤ 𝐶, a contradiction.
Therefore, 𝑀 (𝑑2, 𝛼𝑖 , 𝑖) = ∞; hence, 𝑑2 +𝛼𝑖 +𝜆𝑖𝑡 ∈ 𝐾 ∪ (𝛽𝑀 ,∞) for infinitely many indices t. Therefore,
we must have 𝑑2+𝛼𝑖 ∈ 𝐾∪(𝛽𝑀 ,∞). We now claim that we can replace 𝑑1 = 𝛼𝑖+𝜆𝑖𝑠 by 𝑑1 := 𝛼𝑖 . In other
words, we must verify that 𝑑1 is compatible with 𝑑2, . . . , 𝑑1+�𝛽𝑀 � . This is the reason why we considered
the more general sets 𝐽 (𝛾, 𝛼𝑖 , 𝑟) with 𝑟 ≠ 𝑖. Since 𝑑2+𝛼𝑖 ∈ 𝐾∪ (𝛽𝑀 ,∞), it follows that 𝑑1 is compatible
with 𝑑2. If 𝛼𝑖 + 𝑑2 ≥ 𝛽𝑀 , then 𝛼𝑖 + 𝑑2 + . . . + 𝑑𝑤 ≥ 𝛽𝑀 for any 𝑤 ≥ 3; hence, 𝑑1 satisfies all the
required compatibility conditions. Assume we have 𝛼𝑖 + 𝑑2 < 𝛽𝑀 . Since 𝛼𝑖 + 𝑑2 +𝜆𝑖𝑡 ∈ 𝐾 ∪ (𝛽𝑀 ,∞) for
infinitely many t, it must be the case in which 𝛼𝑖 + 𝑑2 = 𝛼𝑟 for some r. We claim that 𝑀 (𝑑3, 𝛼𝑟 , 𝑖) = ∞.
Indeed, if it were < ∞, then 𝑀 (𝑑3, 𝛼𝑟 , 𝑖) ≤ 𝐶, and, hence 𝑠 ≤ 𝐶, a contradiction. Therefore, we have
𝛼𝑟 + 𝑑3 + 𝜆𝑖𝑡 ∈ 𝐾 ∪ (𝛽𝑀 ,∞) for infinitely many t, and hence, 𝛼𝑖 + 𝑑2 + 𝑑3 = 𝛼𝑟 + 𝑑3 ∈ 𝐾 ∪ (𝛽𝑀 ,∞)
which proves 𝑑1 is also compatible with 𝑑3. If 𝛼𝑟 + 𝑑3 ≥ 𝛽𝑀 , then we are done. Otherwise, we apply
the same procedure to show that 𝑑1 is compatible with 𝑑4, and so on. By repeating this process at most
�𝛽𝑀 � times, we conclude that, indeed, it is possible to replace 𝑑1 by 𝑑1 = 𝛼𝑖 .

Assume that we have replaced 𝑑1, . . . , 𝑑𝑛 by 𝑑1, . . . , 𝑑̃𝑛 ∈ 𝐾 . If 𝑑𝑛+1 ∈ 𝐾 , then we are done. If not,
we repeat the same procedure as for 𝑑1, but now for both the right- and the left-hand side of 𝑑𝑛+1. This
completes the induction argument. Observe that 𝑑𝑛 ≠ 𝑑̃𝑛 precisely when 𝑑𝑛 = 𝛼𝑖 + 𝜆𝑖𝑘 , for 𝑘 > 𝐶, and
in this case, we took 𝑑̃𝑛 = 𝛼𝑖 < 𝑑𝑛. This process does not reduce the density of the packing.

Remark 1. The main idea of this proof was to take a packing of maximal density and reduce to the finite
case by replacing the distances close enough to an accumulation point by this point. Such technique
relies a lot on the structure of the set K (existence of left or right limit points and the arithmetic structure
of 𝐾 ′). As the complexity of K grows, such technique becomes very hard to implement. Nevertheless,
the above proof gives an algorithm to find the best packing in such a case.

6. Constructions via modular forms

In this section, we present some constructions via modular forms that generalize the ones in [9, 10, 27]
to all dimensions divisible by 4.

Throughout the rest of the paper, we will always use z for a variable in the upper-half plane H =
{𝑥+ 𝑖𝑡 : 𝑥 ∈ R, 𝑡 > 0}. We will use the convention 𝑞 = 𝑒2𝜋𝑖𝑧 and 𝑟 = 𝑒𝜋𝑖𝑧 for 𝑧 ∈ H. We will be handling
holomorphic modular forms 𝑓 : H→ C over the principal congruence subgroups

Γ(𝑁) = {𝛾 ∈ SL2 (Z) : 𝛾 ≡ Id (mod 𝑁)}
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(note Γ(1) = SL2 (Z)). A holomorphic modular form of weight k for a subgroup Γ < Γ(1) is a
holomorphic function 𝑓 : H→ C invariant by the slash operation

𝑓 |𝑘𝛾(𝑧) := (𝑐𝑧 + 𝑑)−𝑘 𝑓

(
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

)
= 𝑓 (𝑧), for all 𝑧 ∈ H and 𝛾 =

(
𝑎 𝑏
𝑐 𝑑

)
∈ Γ,

and such that

𝑓 |𝑘𝛾(𝑧) = 𝑂 (1) as Im 𝑧 →∞.

We denote by 𝑀𝑘 (Γ) for the space of holomorphic modular forms 𝑓 : H → C of weight k for Γ. We
simply write 𝑀𝑘 for 𝑀𝑘 (SL2(Z)). We let

𝑇 =

(
1 1
0 1

)
and 𝑆 =

(
0 −1
1 0

)
.

If 𝑇2 ∈ Γ, then any 𝑓 ∈ 𝑀𝑘 (Γ) has a Fourier r-series of the form

𝑓 (𝑧) =
∑
𝑛≥0

𝑎𝑛𝑟
𝑛.

The Eisenstein series

𝐸4 (𝑧) = 1 + 240
∑
𝑛≥1

𝜎3(𝑛)𝑞𝑛 and 𝐸6(𝑧) = 1 − 504
∑
𝑛≥1

𝜎5(𝑛)𝑞𝑛,

are classical examples of modular forms in 𝑀4 and 𝑀6, respectively. It is easy to see that 𝑀𝑘 is trivial
if k is odd or if 𝑘 < 4 is nonzero, while 𝑀0 contains only constants. Indeed, a fundamental result is that⊕

𝑗∈Z
𝑀 𝑗 = C[𝐸4, 𝐸6] .

We will also need Ramanujan’s cusp form of weight 12

Δ (𝑧) =
𝐸3

4 (𝑧) − 𝐸2
6 (𝑧)

1728
= 𝑞

∏
𝑛≥1
(1 − 𝑞𝑛)24 ∈ 𝑀12,

which clearly never vanishes for 𝑧 ∈ H. We will also need the Jacobi theta functions defined by

Θ00 (𝑧) =
∑
𝑛∈Z

𝑟𝑛
2
, Θ10 (𝑧) =

∑
𝑛∈Z

𝑟 (𝑛+1/2)2
and Θ01 (𝑧) =

∑
𝑛∈Z
(−1)𝑛𝑟𝑛2

.

We define their fourth powers by

𝑈 = Θ4
00, 𝑉 = Θ4

10 and 𝑊 = Θ4
01.

These are modular forms of weight 2 that satisfy the Jacobi identity

𝑈 = 𝑉 +𝑊

and the transformation laws

𝑈 |2𝑇 = 𝑊, 𝑉 |2𝑇 = −𝑉, 𝑊 |2𝑇 = 𝑈,

𝑈 |2𝑆 = −𝑈, 𝑉 |2𝑆 = −𝑊, 𝑊 |2𝑆 = −𝑉.
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The functions 𝑈,𝑉,𝑊 are examples of modular forms of weight 2 for Γ(2). Another fundamental result
is that ⊕

𝑗∈Z
𝑀 𝑗 (Γ(2)) = C[𝑈,𝑉,𝑊] .

Indeed, 𝑀𝑘 (Γ(2)), for even 𝑘 ≥ 2, coincides with the space of homogeneous polynomials of degree
𝑘/2 in any two of the 𝑈,𝑉,𝑊 . Finally, we let

𝐸2(𝑧) = 1 − 24
∑
𝑛≥1

𝜎1(𝑛)𝑞𝑛

be the quasimodular Eisenstein series of weight 2. It satisfies the transformation rules

𝐸2(𝑧 + 1) = 𝐸2(𝑧) and 𝐸2(−1/𝑧)𝑧−2 = 𝐸2(𝑧) +
6
𝜋𝑖𝑧

.

We define the space of holomorphic quasimodular forms of weight k and depth p over a subgroup Γ by

𝑀 ≤𝑝
𝑘 (Γ) =

𝑝⊕
𝑗=0

𝐸
𝑗
2 𝑀𝑘−2 𝑗 (Γ). (2)

We again omit Γ when Γ = SL2(Z). For more details about all these modular forms, we recommend [28].
The following proposition is key to build admissible functions for the linear programming bounds

we have developed.

Proposition 16. Let Λ ⊂ R be finite, with 0 ∈ Λ and such that −1/𝜆 ∈ Λ whenever 𝜆 ∈ Λ and 𝜆 ≠ 0. Let

𝑝(𝑠) =
∑
𝜆∈Λ

𝑎𝜆𝑒
𝜋𝑖𝑠𝜆

be a trigonometric polynomial. Let 𝜀 ∈ {−1, 1}, 𝑑 ≥ 1 be an integer and 𝑓 : H → C be analytic.
Suppose that

(a) We have ∫ 1

0
| 𝑓 (𝑖𝑡) |𝑡−𝑑/2d𝑡 < ∞;

(b) There is 𝛿 > 0 such that for any 𝑐 > 0, we have

𝑓 (𝑧) = 𝑂𝑐 (𝑒𝜋 𝛿 𝑧)

if  𝑧 > 𝑐 > |!𝑧 |;
(c) For all 𝜆 ∈ Λ \ {0} and 𝑧 ∈ H, we have

𝑎𝜆 𝑓 (𝑧 − 𝜆) = −𝜀𝑎−1/𝜆(𝑧/𝑖)𝑑/2−2 𝑓 (−1/𝑧 + 1/𝜆);

(d) For all 𝑧 ∈ H, we have ∑
𝜆∈Λ

𝑎𝜆 𝑓 (𝑧 − 𝜆) = 𝜀𝑎0 (𝑧/𝑖)𝑑/2−2 𝑓 (−1/𝑧).
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Then the function

ℎ(𝑠) = 𝑝(𝑠)
∫ ∞𝑖

0
𝑓 (𝑧)𝑒𝜋𝑖𝑧𝑠d𝑧

defines an analytic function for !𝑠 > 0 that extends to an continuous function in !𝑠 ≥ 0, and satisfies
the identity

ℎ(𝑠)

=
∑
𝜆∈Λ
𝜆>0

∫ 𝑖

𝜆
𝑎𝜆 𝑓 (𝑧 − 𝜆) (𝑒𝜋𝑖𝑧𝑠 + 𝜀(𝑖/𝑧)𝑑/2𝑒𝜋𝑖 (−1/𝑧)𝑠)d𝑧 + 𝑎0

∫ 𝑖

0
𝑓 (𝑧) (𝑒𝜋𝑖𝑧𝑠 + 𝜀(𝑖/𝑧)𝑑/2𝑒𝜋𝑖 (−1/𝑧)𝑠)d𝑧

(3)

if !𝑠 ≥ 0. In particular, the function 𝐹 (𝑥) = ℎ(|𝑥 |2) belongs to 𝐿1 (R𝑑) ∩𝐶∞(R𝑑) and 𝐹 (𝑥) = 𝜀𝐹 (𝑥).

Proof. Conditions (a) and (b) guarantee that ℎ(𝑠) is analytic in the region !𝑠 > 𝛿. The analyticity of
ℎ(𝑠) for 0 < !𝑠 < 2𝛿 and continuity of ℎ(𝑠) for !𝑠 = 0 follows straightforwardly by identity (3) and
condition (b). The fact that 𝐹 (𝑥) defines a radial 𝐿1-function and 𝐹 (𝑥) = 𝜀𝐹 (𝑥) follows by identity (3),
condition (a) and the fact that 𝑥 ∈ R𝑑 → (𝑒𝜋𝑖𝑧 |𝑥 |2 + 𝜀(𝑖/𝑧)𝑑/2𝑒𝜋𝑖 (−1/𝑧) |𝑥 |2) is a eigenfunction of the
Fourier transform in R𝑑 with eigenvalue 𝜀. It remains to prove identity (3). By analytic continuation
(and condition (b)), it is enough to prove it for !𝑠 > 𝛿. We then have

ℎ(𝑠) =
∑
𝜆∈Λ

𝑎𝜆

∫ 𝜆+∞𝑖

𝜆
𝑓 (𝑧 − 𝜆)𝑒𝜋𝑖𝑧𝑠d𝑧

=
∑
𝜆∈Λ
𝜆≠0

𝑎𝜆

∫ 𝑖

𝜆
𝑓 (𝑧 − 𝜆)𝑒𝜋𝑖𝑧𝑠d𝑧 +

∫ ∞𝑖

𝑖

( ∑
𝜆∈Λ

𝑎𝜆 𝑓 (𝑧 − 𝜆)
)
𝑒𝜋𝑖𝑧𝑠d𝑧 + 𝑎0

∫ 𝑖

0
𝑓 (𝑧)𝑒𝜋𝑖𝑧𝑠d𝑧,

where in the second line above, we applied condition (b) to split the integral from 𝜆 to i and i to∞𝑖. We
obtain

ℎ(𝑠)

=
∑
𝜆∈Λ
𝜆>0

(
𝑎𝜆

∫ 𝑖

𝜆
𝑓 (𝑧 − 𝜆)𝑒𝜋𝑖𝑧𝑠d𝑧 + 𝑎−1/𝜆

∫ 𝑖

−1/𝜆
𝑓 (𝑧 + 1/𝜆)𝑒𝜋𝑖𝑧𝑠d𝑧

)

+ 𝑎0

∫ ∞𝑖

𝑖
𝜀(𝑧/𝑖)𝑑/2−2 𝑓 (−1/𝑧)𝑒𝜋𝑖𝑧𝑠d𝑧 + 𝑎0

∫ 𝑖

0
𝑓 (𝑧)𝑒𝜋𝑖𝑧𝑠d𝑧

=
∑
𝜆∈Λ
𝜆>0

∫ 𝑖

𝜆

(
𝑎𝜆 𝑓 (𝑧 − 𝜆)𝑒𝜋𝑖𝑧𝑠d𝑧 + 𝑎−1/𝜆 𝑓 (−1/𝑧 + 1/𝜆)𝑒𝜋𝑖 (−1/𝑧)𝑠𝑧−2)d𝑧

+ 𝑎0

∫ 𝑖

0

(
𝜀(𝑖/𝑧)𝑑/2𝑒𝜋𝑖 (−1/𝑧)𝑠 + 𝑒𝜋𝑖𝑧𝑠

)
𝑓 (𝑧)d𝑧

=
∑
𝜆∈Λ
𝜆>0

∫ 𝑖

𝜆
𝑎𝜆 𝑓 (𝑧 − 𝜆)

(
𝑒𝜋𝑖𝑧𝑠 + 𝜀(𝑖/𝑧)𝑑/2𝑒𝜋𝑖 (−1/𝑧)𝑠 )d𝑧 + 𝑎0

∫ 𝑖

0

(
𝜀(𝑖/𝑧)𝑑/2𝑒𝜋𝑖 (−1/𝑧)𝑠 + 𝑒𝜋𝑖𝑧𝑠

)
𝑓 (𝑧)d𝑧,

where in the first equality, we have applied condition (d) and that Λ is closed by 𝜆 → −1/𝜆, in the second
equality, we used the change of variables 𝑧 → −1/𝑧, and in the last, we have applied condition (c). �
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Remark 2. It is straightforward to show that if we strengthen condition (a) to∫ 1

0
| 𝑓 (𝑖𝑡) |𝑡−𝑘d𝑡 < ∞;

for all 𝑘 > 0, then 𝜕𝛼
𝑥 𝐹 ∈ 𝐿1 (R𝑑) for all multi-indexes 𝛼 ∈ Z𝑑+ , and since 𝐹 = 𝜀𝐹, we conclude that F

is of Schwartz class.

This integral transform was used by Viazovska et al. in [10, 27] for 𝑝(𝑠) = sin2 (𝜋𝑠/2) to build
the magic functions for the packing problem, and also by Radchenko and Viazovska in [23], for
𝑝(𝑠) = sin(𝜋𝑠), to construct Fourier interpolation formulae with

√
𝑛-nodes. For our purposes, we wish

to investigate the case when 𝑝(𝑠) = sin2 (𝜋𝑠/2). The following lemmas generalize the constructions in
[10, 27] to all dimensions multiple of 4.

Remark 3. To make computations simpler we will, from now on, adopt the nonstandard notation that

𝑓𝑇 (𝑧) = 𝑓 |𝑘𝑇 (𝑧) = 𝑓 (𝑧 + 1) and 𝑓𝑆 (𝑧) = 𝑓 |𝑘𝑆(𝑧) = 𝑓 (−1/𝑧)𝑧−𝑘 ,

whenever it can be inferred from the context that f has weight k; that is, 𝑓 ∈ 𝑀 ≤𝑝
𝑘 (Γ), for some Γ, k

and p.

Lemma 17 (Γ(2)-construction). Let 𝑑 ≥ 4 be an integer divisible by 4. Let 𝑙 ≥ 𝑑/12 be an even integer
and set

𝑘 = 2 − 𝑑/2 + 6𝑙 and 𝜀 = (−1)𝑑/4+1.

Consider the following linear operator4

𝐿 : 𝜑 ∈ 𝑀𝑘 (Γ(2)) ↦→ (𝜑𝑇 + 𝜑𝑆 − 𝜑, [𝑟0]𝜑𝑆 , [𝑟]𝜑𝑆 , . . . , [𝑟 𝑙]𝜑𝑆).

Then any function in the vector space

F𝑑,𝑙 :=
1

Δ 𝑙/2 ker(𝐿)

satisfies all conditions in Proposition 16 for 𝜀, d and 𝑝(𝑠) = sin2 ( 𝜋2 𝑠). In particular, for any 𝑓 ∈ F𝑑,𝑙 ,
we have an associated radial Schwartz function 𝐹 𝑓 : R𝑑 → C such that 𝐹 𝑓 = 𝜀𝐹 𝑓 and

𝐹 𝑓 (𝑥) = sin2 ( 𝜋2 |𝑥 |
2)

∫ ∞𝑖

0
𝑓 (𝑧)𝑒𝜋𝑖𝑧 |𝑥 |2 d𝑧

𝑖

if |𝑥 |2 > 𝑙.

Proof. We will show that all conditions in Proposition 16 are satisfied for 𝑝(𝑠) = sin2 ( 𝜋2 𝑠). First,
observe that if 𝑓 ∈ F𝑑,𝑙 , then condition (a) in Proposition 16 is equivalent to∫ ∞𝑖

𝑖
| 𝑓 |𝑘𝑆(𝑧) | |𝑧 |6𝑙 |d𝑧 | < ∞.

This is true because 𝑓 = 𝜑/Δ 𝑙/2 and

𝑧6𝑙 𝑓 |𝑘𝑆 =
𝜑𝑆 (𝑧)
Δ 𝑙/2(𝑧)

,

4We recall the bracket notation for the coefficient of a power series: if 𝑓 (𝑥) =
∑

𝑛≥0 𝑎𝑛𝑥
𝑛, then [𝑥𝑛 ] 𝑓 = 𝑎𝑛 is the coefficient

of the term 𝑥𝑛.
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and so we conclude the Fourier expansion of 𝑧6𝑙 𝑓 |𝑘𝑆 starts at r. Condition (b) in Proposition 16 is
trivial since f is 2-periodic and has Fourier expansion starting at 𝑟−𝑙 . A simple computation shows that
condition (d) implies (c) under the 2-periodicity of f. Using the modular properties of Δ (𝑧), we see that
condition (d) in Proposition 16 is equivalent to

𝜑 = 𝜑𝑆 + 𝜑𝑇 ,

which holds true. �

Remark 4. It is worth pointing out that by the fact that (see [13, Remark after Theorem 8.4] and [11,
Equation (2.13)])

𝑀𝑘 (Γ(2)) = 𝑀𝑘 ⊕ 𝑈𝑀𝑘−2 ⊕ 𝑉𝑀𝑘−2 ⊕ 𝑈2𝑀𝑘−4 ⊕ 𝑉2𝑀𝑘−4 ⊕ 𝑈𝑉𝑊𝑀𝑘−6,

routine computations show that the kernel of 𝜑 ↦→ 𝜑𝑇 + 𝜑𝑆 − 𝜑 in 𝑀𝑘 (Γ(2)) coincides with

(𝑈 −𝑉)𝑀𝑘−2 ⊕ (𝑈2 −𝑉2)𝑀𝑘−4,

which has dimension �𝑘/6� for 𝑘 ≥ 6, but is trivial otherwise. One can also show that

dimF𝑑,𝑙 =

⌈
𝑘

6

⌉
− 𝑙

2
=

𝑙

2
−

⌊
𝑑 − 4

12

⌋
.

Lemma 18 (Γ(1)-construction). Let 𝑑 ≥ 4 be an integer divisible by 4. Let 𝑙 ≥ 𝑑/12 be an even integer
and set

𝑘 = 2 − 𝑑/2 + 6𝑙 and 𝜀 = (−1)𝑑/4.

Consider the following linear operator:

𝐿 : 𝜓 ∈ 𝑀 ≤2
𝑘+2 ↦→ ([𝑞0]𝜓, [𝑞1]𝜓, . . . , [𝑞𝑙/2]𝜓).

Then any function in the vector space

G𝑑,𝑙 :=
1

Δ 𝑙/2 (𝑧
2 ker(𝐿)𝑆),

where 𝑧2 ker(𝐿)𝑆 := {𝑧 ↦→ 𝑧2𝜓 |𝑘+2𝑆(𝑧) : 𝜓 ∈ ker(𝐿)}, satisfies all conditions in Proposition 16 for 𝜀,
d and 𝑝(𝑠) = sin2( 𝜋2 𝑠). In particular, for any 𝑔 ∈ G𝑑,𝑙 , we have an associated radial Schwartz function
𝐺𝑔 : R𝑑 → C such that 𝐺𝑔 = 𝜀𝐺𝑔 and

𝐺𝑔 (𝑥) = sin2( 𝜋2 |𝑥 |
2)

∫ ∞𝑖

0
𝑔(𝑧)𝑒𝜋𝑖𝑧 |𝑥 |2 d𝑧

𝑖

if |𝑥 |2 > 𝑙.

Proof. We will show that all conditions in Proposition 16 are satisfied for 𝑝(𝑠) = sin2 ( 𝜋2 𝑠). Conditions
(a) and (b) follow in a similar manner as in the proof of Lemma 17. Setting 𝑔 = 𝜓 |𝑘𝑆/Δ 𝑙/2, condition
(𝑐) for g is then equivalent to

𝜓 |𝑘𝑆𝑇−1 = 𝜀(−1)𝑑/4𝜓 |𝑘𝑆𝑇𝑆,
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which is true since 𝜓 is 1-periodic, 𝜀(−1)𝑑/4 = 1 and 𝑆𝑇−1 (𝑆𝑇𝑆)−1 = 𝑇 . Condition (𝑑) for g is
equivalent to

𝜓(𝑧) − 1
2 (𝜓(𝑧 + 1) + 𝜓(𝑧 − 1)) = 𝜓(𝑧),

where 𝜓(𝑧) = 𝜓 |𝑘𝑆(𝑧). However, simple computations show that this equation holds true for any
function 𝜓 ∈ 𝑀 ≤2

𝑘+2 using the characterization (2) and the functional equation of 𝐸2(𝑧). �

Remark 5. It is not hard to show any function 𝑔 ∈ G𝑑,𝑙 has an q-expansion of the form

𝑔 =
∞∑

𝑛=−𝑙/2
𝑎𝑛𝑞

𝑛,

where 𝑎𝑛 is a quadratic polynomial in z for 𝑛 ≥ 1, but affine for 𝑛 = −𝑙, . . . , 0.
The following lemma is reminiscent of the numerical method employed in [10].

Lemma 19 (Effective tail bounds). Let 𝑃(𝑋,𝑌, 𝑍) and 𝑄(𝑋,𝑌, 𝑍) be homogeneous polynomials of
degree 𝑘/2 and 𝑘 +2, respectively, where k is even. Let |𝑃 | and |𝑄 | denote the homogeneous polynomials
derived from P and Q, where each coefficient is replaced by its absolute value. Assume that Q has no
power of X larger than 2. Define the following holomorphic modular forms:

𝜑 = 𝑃(𝑈,𝑉,𝑊) and 𝜓 = 𝑄(𝐸2, 𝐸4, 𝐸6).

Let 𝜑𝑀 and 𝜓𝑀 denote the tail of their respective r-series and q-series from the (𝑀 + 1)-term onward.
Let

𝜑𝑆 = 𝑃(𝑈𝑆 , 𝑉𝑆 ,𝑊𝑆)

and (𝜑𝑆)𝑀 be the tail of the r-series of the above function from the 𝑟𝑀+1-term Furthermore, letting
𝑤 = −𝜋𝑖𝑧 and

𝑤2𝜓𝑆 = 𝑤2𝑄((𝐸2)𝑆 , 𝐸4, 𝐸6),

denote by (𝑤2𝜓𝑆)𝑀 the tail of the q-series above from the 𝑞𝑀+1-term. Finally, let

𝑅𝑀 (𝑝, 𝑗) =
∑
𝑛>𝑀

(𝑛 + 1) 𝑝𝑒−𝜋 (𝑛− 𝑗) and 𝑆𝑀 (𝑝, 𝑗) =
∑
𝑛>𝑀

(𝑛 + 1) 𝑝𝑒−2𝜋 (𝑛− 𝑗) .

Then for 𝑗 ≤ 𝑀 + 1, 𝑡 ≥ 1, 𝑟 = 𝑒−𝜋𝑡 and 𝑞 = 𝑟2, we have
(1) |𝜑𝑀 (𝑖𝑡) | ≤ |𝑃 | (8, 8, 8)𝑅𝑀 ( 3𝑘−2

2 , 𝑗)𝑟 𝑗 ;
(2) |𝜓𝑀 (𝑖𝑡) | ≤ |𝑄 | (24, 240, 504)𝑆𝑀 ( 5𝑘+10

4 , 𝑗)𝑞 𝑗 ;
(3) | (𝜑𝑆)𝑀 (𝑖𝑡) | ≤ |𝑃 | (8, 8, 8)𝑅𝑀 ( 3𝑘−2

2 , 𝑗)𝑟 𝑗 ;
(4) | (𝑤2𝜓𝑆)𝑀 (𝑖𝑡) | ≤ 13|𝑄 | (24, 240, 504) |𝑆𝑀 ( 5𝑘+10

4 , 𝑗)𝑞 𝑗 .
Proof. First we prove (1). Observe that by Jacobi’s four-square theorem, the coefficient of 𝑟𝑛 in the
r-series of each of the functions 𝑈,𝑉 and W is bounded by 8(𝑛 + 1)2. Also note that whenever we
multiply m power series

∑
𝑛≥0 (𝑛 + 1)𝑎 𝑗 𝑟𝑛 for 𝑗 = 1, . . . , 𝑚, the coefficient of 𝑟𝑛 in the product is

bounded by (𝑛 + 1)𝑎1+...+𝑎𝑚+𝑚−1. We deduce that the coefficient of 𝑟𝑛 in the r-series of 𝜑 is bounded by
|𝑃 | (8, 8, 8) (𝑛 + 1) (3𝑘−2)/2. Since 𝑡 ≥ 1, we have 0 ≤ 𝑟 ≤ 𝑒−𝜋 . This easily implies item (1). The same
argument shows item (3). Essentially the same argument shows item (2) by realizing that the coefficient
of 𝑞𝑛 in the q-series of each of the functions 𝐸2, 𝐸4 and 𝐸6 are bounded by 24(𝑛 + 1)2, 240(𝑛 + 1)4
and 504(𝑛 + 1)6, respectively. We deduce that the coefficient of 𝑞𝑛 in the q-series of 𝜓 is bounded by
|𝑄 | (24, 240, 504) (𝑛 + 1)𝑎+𝑏+𝑐+𝑘+1, where 𝑎 + 𝑏 + 𝑐 is maximal among nonnegative integers 𝑎, 𝑏 and
c such that 2𝑎 + 4𝑏 + 6𝑐 = 𝑘 + 2 and 0 ≤ 𝑎 ≤ 2. Greedy choice shows that the sum 𝑎 + 𝑏 + 𝑐 is
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maximized (or bounded by) when (𝑎, 𝑏, 𝑐) = (2, (𝑘 −2)/4, 0), and thus, the coefficient of 𝑞𝑛 is bounded
by |𝑄 | (24, 240, 504) (𝑛 + 1) (5𝑘+10)/4. This proves item (2). Finally, item (4) is more nuanced since we
have the presence of w. Let

𝑄(𝑋,𝑌, 𝑍) = 𝑄0(𝑌, 𝑍) + 𝑋𝑄1 (𝑌, 𝑍) + 𝑋2𝑄2 (𝑌, 𝑍),

so that |𝑄(24, 240, 504) | = |𝑄0 | (240, 504) + 24|𝑄1 | (240, 504) + 242 |𝑄2 | (240, 504) and

𝑤2𝜓𝑆 = 𝑤2𝑄0(𝐸4, 𝐸6) + (𝑤2𝐸2 − 6𝑤)𝑄1(𝐸4, 𝐸6) + (𝑤𝐸2 − 6)2𝑄2 (𝐸4, 𝐸6)
= 𝑄𝑤2 + (−12𝑄2𝐸2 − 6𝑄1)𝑤 + 36𝑄2.

For 𝑧 = 𝑖𝑡 and 𝑡 ≥ 1, we have 𝜋 ≤ 𝑤 = 𝜋𝑡 ≤ 1
7𝑟 , and we obtain

| (𝑤2𝜓𝑆)𝑀 (𝑖𝑡) | ≤ ( 1
7𝑟 )

2 |𝑄 | (24, 240, 504)𝑆𝑀 ( 5𝑘+10
4 , 𝑗 + 1)𝑞 𝑗+1

+ 1
7𝑟 (288|𝑄2 | (240, 504) + 6|𝑄1 | (240, 504))𝑆𝑀 ( 5𝑘

4 , 𝑗 + 1/2)𝑞 𝑗+1/2

+ 36|𝑄2 | (240, 504)𝑆𝑀 ( 5𝑘−10
4 , 𝑗)𝑞 𝑗

≤ ( 𝑒2𝜋

49 |𝑄 | (24, 240, 504) + 𝑒𝜋

7 (288|𝑄2 | (240, 504) + 6|𝑄1 | (240, 504))
+ 36|𝑄2 | (240, 504))𝑆𝑀 ( 5𝑘+10

4 , 𝑗)𝑞 𝑗

< (11|𝑄0 | (240, 504) + 283|𝑄1 | (240, 504) + 7283|𝑄2 | (240, 504))𝑆𝑀 ( 5𝑘+10
4 , 𝑗)𝑞 𝑗

< 13|𝑄 | (24, 240, 504)𝑆𝑀 ( 5𝑘+10
4 , 𝑗)𝑞 𝑗

This proves item (4). �

7. Proof of Theorem 1

We assume Theorem 4. Let 𝑑 = 48 and 𝐾 = 1√
6
([
√

6,
√

8] ∪ {
√

10}). Let Λ ⊂ R48 be an even
unimodular extremal lattice. In particular, Λ is self-dual and ℓ(Λ) = {

√
6,
√

8, . . .}. It is trivial to see Λ
is K-admissible and that

dens(Λ) = vol(𝐵48)
(√

6
2

)48

=
(3𝜋/2)24

24!
.

Consider 𝐹 (𝑥) = 𝐻 (
√

6𝑥), with H as in Theorem 4 for 𝑑 = 48. Poisson summation over Λ shows that
𝐻 (0) = 𝐻 (0) > 0. The properties of H imply that F satisfies all conditions of Theorem 3, and hence,

dens(Λ) ≤ Δ𝑑 (𝐾) ≤ vol( 1
2 𝐵48)

𝐹 (0)
𝐹 (0)

= vol(𝐵48)
(√

6
2

)48

.

This shows that equality above is attained and Λ is optimal; that is, Δ𝑑 (𝐾) = dens(Λ).
Now we prove uniqueness among all periodic packings. We follow the same strategy as in [8, Section

8]. Let 𝑃 = 𝐿 + 𝑌 + 1
2 𝐵𝑑 be an optimal admissible periodic packing for some lattice L and a set of

translations 𝑌 = {𝑣1, . . . , 𝑣𝑀 }. By Poisson Summation,

𝑀∑
𝑗 ,𝑙=1

∑
𝑥∈𝐿

𝐹 (𝑥 + 𝑣 𝑗 − 𝑣𝑙) =
1
|𝐿 |

∑
𝑦∈𝐿∗

𝐹 (𝑦)

������
𝑀∑
𝑗=1

𝑒2𝜋𝑖𝑦𝑣𝑗

������
2

,
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from which we derive

𝑀𝐹 (0) ≥ 1
|𝐿 | 𝐹 (0)𝑀

2.

Since P is optimal, we have equality above, from which we derive that |
√

6𝐿 | = 𝑀 and that {𝑥 + 𝑣 𝑗 −
𝑣𝑙 : 𝑥 ∈ 𝐿, 1 ≤ 𝑗 , 𝑙 ≤ 𝑀} is contained in the set of zeros of F. By Theorem 4, we deduce that
{
√

6|𝑥 + 𝑣 𝑗 − 𝑣𝑙 | : 𝑥 ∈ 𝐿, 1 ≤ 𝑗 , 𝑙 ≤ 𝑀} ⊂ {0,
√

6,
√

8,
√

10, . . .}. By [8, Lemma 8.2], we conclude that
the subgroup G ofR48 generated by the set

√
6(𝐿+𝑌 ) is an even integral lattice with minimal norm ≥

√
6.

It also follows that the volume |𝐺 | =
√
𝑁 , for some integer N, and hence, G has at most one point per unit

of volume in R48. However, since |
√

6𝐿 | = 𝑀 , the packing
√

6(𝐿 +𝑌 ) +
√

6
2 𝐵𝑑 has one sphere per unit of

volume. Therefore, G has exactly one point per unit volume, which implies that 𝑁 = 1, G is unimodular
and 𝐺 =

√
6(𝐿 + 𝑌 ). Therefore, G must be an extremal lattice. This finishes the proof of Theorem 1.

8. Proof of Theorem 4

Let 8 ≤ 𝑑 ≤ 1200 be a multiple of 8, 𝑎 = 𝑎𝑑 , 𝑙 = 𝑙𝑑 , 𝑐 = 𝑐𝑑 and 𝐾 = 𝐾𝑑 = 1√
𝑎
{
√
𝑎,
√
𝑎 + 2, . . . ,

√
𝑙}. In

what follows, we set 𝑘 = 2 − 𝑑/2 + 6𝑙 (which is congruent to 2 modulo 4), 𝜀 = −1,

𝔟 =
𝑙

2
−

⌊
𝑑 − 4

12

⌋
,

𝑤 = −𝜋𝑖𝑧, 𝑟 = 𝑒𝜋𝑖𝑧 and 𝑞 = 𝑟2. We will abuse notation and write 𝑢(𝑧) = 𝑂 (𝑟𝑘 ) if for some 𝐶 > 0, we
have |𝑢(𝑧) | ≤ 𝐶 |𝑧 |𝐶𝑒−𝜋𝑘 𝑧 for  𝑧 > 𝐶.

The assertions below were done with rational arithmetic via PARI/GP [3] computer algebra system.
Below, we will make certain claims, and we will indicate precisely how to prove them. This proof is
computer assisted; hence, the necessary ancillary files can be found with the arXiv submission of this
paper (arXiv:2308.03925).

Step 1. We apply Lemma 17 and compute a basis for the vector space F𝑑,𝑙 collected as a row vector
of functions

[ 𝑓1, . . . , 𝑓𝔟] = Δ−𝑙/2 [𝜑1, 𝜑2, . . . , 𝜑𝔟],

where dimF𝑑,𝑙 = 𝔟 and

Φ = [𝜑1, 𝜑2, . . . , 𝜑𝔟] = 𝑊 𝑙+1(M𝜑𝚯
�)�,

M𝜑 ∈ Q𝔟×(𝑘/2−𝑙) ,

𝚯 = [𝑊 𝑗−1𝑉 𝑘/2−𝑙− 𝑗 ] 𝑗=1,...,𝑘/2−𝑙 .

We use the symbol � for transpose. Θ is a row vector of basis functions for 𝑀𝑘−2𝑙−2 (Γ(2)). It is easy
to show that any function in Δ 𝑙/2F𝑑,𝑙 must be divisible by 𝑊 𝑙+1, and this is the reason why we have
isolated it in Φ. To make sure Φ is uniquely defined (and so M𝜑), we normalize 𝜑 𝑗 so that

𝜑 𝑗 = 𝑟2( 𝑗−1) +𝑂 (𝑟2𝔟).

Step 2. We apply Lemma 18 and then proceed to find a basis

[𝑔1, . . . , 𝑔𝔠] = Δ−𝑙/2 [𝑤2 (𝜓1)𝑆 , . . . , 𝑤2 (𝜓𝔠)𝑆],

collected as a row vector, for the subspace of functions 𝑔 ∈ G𝑑,𝑙 , with 𝑔 = 𝑤2𝜓𝑆/Δ 𝑙/2, and such that

[𝑤𝑟 𝑗 ] (𝑤2Δ−𝑙/2𝜓𝑆) = 0
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for 𝑗 ∈ {−𝑙, . . . ,−𝑎}. By the choice of l and a, it turns out that 𝔠 = 𝔟 for all cases, we have computed
(the proof that these dimensions coincide for all d is lengthy and not worth to include here since we are
doing this numerically anyways). Here, we set

Ψ = [𝜓1, 𝜓2, . . . , 𝜓𝔟] = (M𝜓E�)�,
M𝜓 ∈ Q𝔟×(𝑘+6)/4,

E = [𝐸 𝑖
2𝐸

𝑗
4 𝐸

𝑛
6 ] 2𝑖+4 𝑗+6𝑛=𝑘+2

𝑗=0,..., (𝑘+2)/4
.

E is a row vector of size (𝑘 +6)/4 that contains the basis functions for 𝑀𝑘+2 (for each 𝑗 = 0, .., (𝑘 +2)/4,
the tuple (𝑖, 𝑛) is given by 𝑖 = ((𝑘 + 2)/2 − 2 𝑗) mod 3 and 𝑛 = (𝑘 + 2 − 2𝑖 − 4 𝑗)/6). To make sure that
Ψ is uniquely defined, we impose that

𝑤2 (𝜓 𝑗 )𝑆 = 𝑟2( 𝑗−1) +𝑂 (𝑟2𝔟)

for 𝑗 = 1, . . . , 𝔟.
Step 3. We now solve a linear system of homogeneous equations and set

𝜑 = V𝜑M𝜑𝚯
� and 𝜓 = V𝜓M𝜓E�,

where V𝜑 and V𝜓 are row vectors of size 𝔟 (the solutions) that enforce the following r-expansion shapes:

−𝑤2𝜓𝑆 − 𝜑 =
𝑙−𝑎∑
𝑛=0

𝛼𝑛𝑟
𝑛 +

𝑙∑
𝑛=𝑙−𝑎+1

(𝛼𝑛 + 𝛼′𝑛𝑤)𝑟𝑛 +𝑂 (𝑟 𝑙+1),

−𝑤2𝜓𝑆 + 𝜑 =
𝑙∑

𝑛=𝑙−𝑎+1
(𝛽𝑛 + 𝛽′𝑛𝑤)𝑟𝑛 +𝑂 (𝑟 𝑙+1),

for some 𝛼𝑛, 𝛼
′
𝑛, 𝛽𝑛, 𝛽

′
𝑛 ∈ Q. Recall that by Remark 5, [𝑤2𝑟 𝑗 ] (−𝑤2𝜓𝑆) = 0 for 𝑗 ≤ 0. Note also that,

by construction, we already have that 𝛼𝑛, 𝛼
′
𝑛, 𝛽𝑛, 𝛽

′
𝑛 vanish for odd n in the range 0 ≤ 𝑛 ≤ 𝑙. More

precisely, given all the previous constraints, V𝜑 and V𝜓 are solutions of the homogeneous equations

[𝑤0𝑟 𝑗 ] (−𝑤2𝜓𝑆 + 𝜑) = 0

for 𝑗 ∈ {0, 2, . . . , 𝑙 − 𝑎}. It turns out that V𝜑 and V𝜓 are uniquely defined modulo scaling. We then
define the row vectors

𝐶𝜑 = 𝑛V𝜑M𝜑 and 𝐶𝜓 = 𝑛V𝜓M𝜓 ,

where we choose 𝑛 ∈ Z so that 𝐶𝜑 and 𝐶𝜓 are vectors of integers where gcd(𝐶𝜑 ∪ 𝐶𝜓) = 1 and the
first nonzero coordinate of 𝐶𝜑 is positive. In this way, 𝐶𝜑 and 𝐶𝜓 are uniquely defined. For instance,
for 𝑑 = 48, we have

𝐶𝜑 = 27 × 38 × [29393, 117572, 307819, 511955, 539410, 362729, 152114, 36480, 3840]
𝐶𝜓 = [565675, 7394933,−38880096, 44550063, 41316945,−107522880, 39169185,

40077567,−32756064, 5294597, 790075] .

These vectors cannot be simplified much further nor have some easy to guess combinatorial formula
since, for instance, the 8th entry of 𝐶𝜓 is divisible by the large prime 4453063 and 7th entry of 𝐶𝜑 is
divisible by the prime 4003. Experimentally, large primes are often found in the vectors 𝐶𝜑 and 𝐶𝜓 as
dimension grows. A list of all vectors 𝐶𝜑 and 𝐶𝜓 for each dimension 𝑑 ≤ 1200 multiple of 8 can be
found on the ancillary files in the arXiv submission of this paper (a file named Cvectors).
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Step 4. We use Lemmas 17 and 18 to create a radial Schwartz function 𝐻 : R𝑑 → R and obtain the
integral representations

𝐻 (𝑥) = sin2( 𝜋2 |𝑥 |
2)

∫ ∞

0

−𝜋2𝑡2𝜓𝑆 (𝑖𝑡) − 𝜑(𝑖𝑡)
Δ 𝑙/2 (𝑖𝑡)

𝑒−𝜋𝑡 |𝑥 |
2
d𝑡

𝐻 (𝑥) = sin2( 𝜋2 |𝑥 |
2)

∫ ∞

0

−𝜋2𝑡2𝜓𝑆 (𝑖𝑡) + 𝜑(𝑖𝑡)
Δ 𝑙/2 (𝑖𝑡)

𝑒−𝜋𝑡 |𝑥 |
2
d𝑡,

that hold for |𝑥 |2 > 𝑙. This shows that

𝐻 (𝑥) = 𝐻 (𝑥) = 0 for |𝑥 |2 ∈ {𝑙 + 2, 𝑙 + 4, . . .}.

However, if we let 𝑔 = −Δ−𝑙/2𝑤2𝜓𝑆 and 𝑓 = Δ−𝑙/2𝜑, then, by construction, the 𝑟 𝑗 -coefficient of
𝑔 − 𝑓 is a rational number for 𝑗 = −𝑙, . . . ,−𝑎. Similarly, by construction, the 𝑟 𝑗 -coefficient of 𝑔 + 𝑓
vanishes for 𝑗 = −𝑙, . . . ,−𝑎. A straightforward computation shows also that 𝐻 (𝑥) = 𝐻 (𝑥) = 0 for
|𝑥 |2 ∈ {𝑎, 𝑎 + 2, . . .}, and the integral representation of 𝐻 (𝑥) above converges for |𝑥 |2 > 𝑎 − 2.

Step 5. From now on, we assume that 𝑑 � 16 mod 24. We claim that

(i) |𝜋2𝜓(𝑖𝑡) | < −𝜑𝑆 (𝑖𝑡) for 𝑡 ≥ 1;
(ii) |𝜋2𝑡2𝜓𝑆 (𝑖𝑡) | < 𝜑(𝑖𝑡) for 𝑡 ≥ 1.

Notice that for |𝑥 |2 > 𝑎 − 2, we have

𝐻 (𝑥)
sin2( 𝜋2 |𝑥 |2)

=
∫ ∞

1

−𝜋2𝑡2𝜓𝑆 (𝑖𝑡) + 𝜑(𝑖𝑡)
Δ 𝑙/2 (𝑖𝑡)

𝑒−𝜋𝑡 |𝑥 |
2
d𝑡 +

∫ ∞

1

−𝜋2𝜓(𝑖𝑡) − 𝜑𝑆 (𝑖𝑡)
Δ 𝑙/2 (𝑖𝑡)

𝑒−𝜋 |𝑥 |
2/𝑡 d𝑡

𝑡𝑑/2
> 0,

by conditions (i) and (ii). This implies that 𝐻 (𝑥) ≥ 0 for |𝑥 |2 > 𝑎 − 2 and vanishes exactly at
|𝑥 |2 ∈ {𝑎, 𝑎 + 2, 𝑎 + 4, . . .} if |𝑥 |2 > 𝑎 − 2. Similarly, for |𝑥 |2 > 𝑙, we have

𝐻 (𝑥)
sin2( 𝜋2 |𝑥 |2)

=
∫ ∞

1

−𝜋2𝑡2𝜓𝑆 (𝑖𝑡) − 𝜑(𝑖𝑡)
Δ 𝑙/2(𝑖𝑡)

𝑒−𝜋𝑡 |𝑥 |
2
d𝑡 +

∫ ∞

1

−𝜋2𝜓(𝑖𝑡) + 𝜑𝑆 (𝑖𝑡)
Δ 𝑙/2(𝑖𝑡)

𝑒−𝜋 |𝑥 |
2/𝑡 d𝑡

𝑡𝑑/2
< 0,

and so 𝐻 (𝑥) ≤ 0 for |𝑥 |2 > 𝑙 and vanishes exactly at |𝑥 |2 ∈ {𝑙, 𝑙 + 2, 𝑙 + 4, . . .} if |𝑥 |2 > 𝑙 − 𝜀, for some
small 𝜀 > 0.

Step 6. To prove the claims (i) and (ii) in Step 5, we introduce the following notation: For a given
𝑢 =

∑
𝑛≥0 𝑎𝑛 (𝑤)𝑟𝑛, we write

(𝑢)trunc =
𝑁∑
𝑛=0

𝑎𝑛 (𝑤)𝑟𝑛 + 𝑟 𝑙+10 and (𝑢)trunc =
𝑁∑
𝑛=0

𝑎𝑛 (𝑤)𝑟𝑛 − 𝑟 𝑙+10.

Recall from Lemma 19 that 𝑅𝑁 and 𝑆𝑁 /2 are the corresponding tail sums. We will choose 𝑁 ≥ 𝑙 + 10𝑛,
with 𝑛 ≥ 1, to be the first integer such that the quantity

max
{
abs(𝐶𝜑)𝚯�|𝑟=0𝑅𝑁 ((3𝑘 − 2)/2, 𝑙 + 10), 13abs(𝐶𝜓)E�|𝑞=0𝑆𝑁 /2((5𝑘 + 10)/4, 𝑙/2 + 5)

}
is less than 1. Above, abs(𝑣), for a vector v, is simply the same vector with each coordinate replaced by
its absolute value. By Lemma 19, this guarantees that

(𝜑)trunc ≤ 𝜑 ≤ (𝜑)trunc, (𝜑𝑆)trunc ≤ 𝜑𝑆 ≤ (𝜑𝑆)trunc,

(𝜓)trunc ≤ 𝜓 ≤ (𝜓)trunc, (𝑤2𝜓𝑆)trunc ≤ 𝑤2𝜓𝑆 ≤ (𝑤2𝜓𝑆)trunc,
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for 𝑧 = 𝑖𝑡, 𝑤 = 𝜋𝑡 and 𝑡 ≥ 1. A list of all N’s for each dimension d can be found on the ancillary files in
the arXiv version of this paper (a file named Nnumbers). For instance, for 𝑑 = 48, we have 𝑁 = 130.

To prove that condition (i) is satisfied, first we verify that5
(I) 𝐶𝜑 ≥ 0,
since it directly shows that 𝜑(𝑖𝑡) > 0 for 𝑡 > 0, which implies that (since 𝑘/2 is odd) 𝜑𝑆 (𝑖𝑡) < 0 for
𝑡 > 0. Next, we show that6
(II) (𝜓)trunc has only nonnegative coefficents in its q-expansion,
which proves that 𝜓(𝑖𝑡) > 0 for 𝑡 ≥ 1 and that −𝜋2𝜓(𝑖𝑡) < −𝜑𝑆 (𝑖𝑡) for 𝑡 ≥ 1. Next, we use Sturm’s
method (which can be done via exact rational arithmetic evaluations) on the variable r to show that the
polynomial
(III) −𝜋2

2 (𝜓)
trunc − (𝜑𝑆)trunc > 0 for 0 < 𝑟 < 𝛾2,

where we use 𝜋2 = �𝜋10𝑚�10−𝑚 for 𝑚 = 20, 40, . . . , 100 and 𝛾2 = �𝑒−𝜋10𝑚′ �10−𝑚′ for 𝑚′ = 2, 5, 8, 11,
where we select (𝑚, 𝑚′) according to necessity (for large dimensions, more precision is sometimes
required). From now on, whenever we apply Sturm’s method in the range 0 < 𝑟 < 𝛾2, we will select 𝛾2
as before. This shows that 𝜋2𝜓(𝑖𝑡) < −𝜑𝑆 (𝑖𝑡) for 𝑡 ≥ 1, and proves that condition (i) holds.

Step 7. For condition (ii), we write

(𝑤2𝜓𝑆)trunc + (𝜑)trunc = [1, 𝑤, 𝑤2] [𝑃0 (𝑒−𝑤 ), 𝑃1 (𝑒−𝑤 ), 𝑃2 (𝑒−𝑤 )]�

−(𝑤2𝜓𝑆)trunc + (𝜑)trunc = [1, 𝑤, 𝑤2] [𝑄0 (𝑒−𝑤 ), 𝑄1(𝑒−𝑤 ), 𝑄2 (𝑒−𝑤 )]�,

where the 𝑃𝑖’s and 𝑄𝑖’s are polynomials with integer coefficients and degree at most N. Note that
𝑃2 (𝑒−𝑤 ) = (𝜓)trunc(𝑖𝑡) and 𝑄2 (𝑒−𝑤 ) = −(𝜓)trunc(𝑖𝑡) − 𝑒−𝑤 (𝑙+10) , so −𝑄2 and 𝑃2 have only positive
coefficients. We then set 𝑥 = 𝑒−𝑤 and

𝑤1 (𝑥) =
𝑁∑
𝑛=1

(1 − 𝑥)𝑛
𝑛

and 𝑤2 (𝑥) =
𝑁∑
𝑛=1

(1 − 𝑥)𝑛
𝑛

+ (1 − 𝑥)𝑁+1

(𝑁 + 1)𝑥 ,

and note that 𝑤1 (𝑥) < 𝑤 < 𝑤2 (𝑥) for 0 < 𝑥 < 1. We then conclude that condition (ii) is implied by the
two conditions below:

(IV) [1, 𝑤 𝑗 (𝑥), 𝑤1 (𝑥)2] [𝑃0 (𝑥), 𝑃1 (𝑥), 𝑃2 (𝑥)]� > 0 for all 𝑗 ∈ {1, 2} and 0 < 𝑥 < 𝛾2;
(V) [1, 𝑤 𝑗 (𝑥), 𝑤2 (𝑥)2] [𝑄0 (𝑥), 𝑄1 (𝑥), 𝑄2 (𝑥)]� > 0 for all 𝑗 ∈ {1, 2} and 0 < 𝑥 < 𝛾2.

Both can now be verified using Sturm’s method.
Step 8. The proof that 𝐻 (𝑥) > 0 for 𝑐 < |𝑥 |2 < 𝑎 − 2 is more involved. Let 𝑣(𝑤) = −𝑤2𝜓𝑆 + 𝜑 and

Δ−𝑙/2 =
∑
𝑛≥−𝑙 𝛿𝑙,𝑛𝑟

𝑛. For 𝑠 = |𝑥 |2 > 𝑎 − 2, we have

𝐻 (𝑥)
sin2( 𝜋2 |𝑥 |2)

=
∫ ∞

1

𝑣(𝜋𝑡)
Δ 𝑙/2 (𝑖𝑡)

𝑒−𝜋𝑡𝑠d𝑡 +
∫ ∞

1

−𝜋2𝜓(𝑖𝑡) − 𝜑𝑆 (𝑖𝑡)
Δ 𝑙/2(𝑖𝑡)

𝑒−𝜋 |𝑥 |
2/𝑡 𝑡−𝑑/2d𝑡

=
∫ ∞

1
𝑣(𝜋𝑡)

( 𝑁∑
𝑛=−𝑙

𝛿𝑙,𝑛𝑒
−𝑛𝜋𝑡

)
𝑒−𝜋𝑡𝑠d𝑡 +

∫ ∞

1
𝑣(𝜋𝑡)

( ∑
𝑛>𝑁

𝛿𝑙,𝑛𝑒
−𝑛𝜋𝑡

)
𝑒−𝜋𝑡𝑠d𝑡

+
∫ ∞

1

−𝜋2𝜓(𝑖𝑡) − 𝜑𝑆 (𝑖𝑡)
Δ 𝑙/2(𝑖𝑡)

𝑒−𝜋𝑠/𝑡 𝑡−𝑑/2d𝑡.

In this way, the last two integrals above converge absolutely for 𝑠 = |𝑥 |2 > 0, while the first integral
extends to a meromorphic function of 𝑠 ∈ C with possible poles 𝑠 = 𝑎 − 2, 𝑎 − 4, . . . , 2, 0. Since 𝐻 (𝑥) is

5We still do not fully know why this happens, but it is true for every case we have computed.
6Another mystery, but it is true for every case we have computed.
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entire in the variable s, the above representation now holds in the region!𝑠 ∈ (0,∞)\{2, 4, . . . , , 𝑎−2}.
In particular, since 𝛿𝑙,𝑛 ≥ 0, 𝑣(𝜋𝑡) > 0 and −𝜋2𝜓(𝑖𝑡) − 𝜑𝑆 (𝑖𝑡) > 0 for 𝑡 ≥ 1, we obtain the following
inequality in the range 𝑠 > 0:

𝐻 (𝑥)
sin2( 𝜋2 |𝑥 |2)

>

∫̃ ∞

1
𝑣(𝜋𝑡)

( 𝑁−𝑙−2∑
𝑛=−𝑙

𝛿𝑙,𝑛𝑒
−𝑛𝜋𝑡

)
𝑒−𝜋𝑡𝑠d𝑡,

where by
∫̃

we mean the meromorphic extension of the function defined by this integral. Now let 𝐴(𝑤)
be such that 𝑣(𝑤) − 𝐴(𝑤) = 𝑂 (𝑟 𝑙). Then the right-hand side above is

∫̃ ∞

1
𝐴(𝜋𝑡)

( 𝑁−𝑙−2∑
𝑛=−𝑙

𝛿𝑙,𝑛𝑒
−𝑛𝜋𝑡

)
𝑒−𝜋𝑡𝑠d𝑡 +

∫ ∞

1
(𝑣(𝜋𝑡) − 𝐴(𝜋𝑡))

( 𝑁−𝑙−2∑
𝑛=−𝑙

𝛿𝑙,𝑛𝑒
−𝑛𝜋𝑡

)
𝑒−𝜋𝑡𝑠d𝑡

>

∫̃ ∞

1
𝐴(𝜋𝑡)

( 𝑁−𝑙−2∑
𝑛=−𝑙

𝛿𝑙,𝑛𝑒
−𝑛𝜋𝑡

)
𝑒−𝜋𝑡𝑠d𝑡

+
∫ ∞

1
(−(𝑤2𝜓𝑆)trunc(𝑖𝑡) + (𝜑)trunc(𝑖𝑡) − 𝐴(𝜋𝑡))

( 𝑁−𝑙−2∑
𝑛=−𝑙

𝛿𝑙,𝑛𝑒
−𝑛𝜋𝑡

)
𝑒−𝜋𝑡𝑠d𝑡

=
∫̃ ∞

1
(−(𝑤2𝜓𝑆)trunc(𝑖𝑡) + (𝜑)trunc(𝑖𝑡))

( 𝑁−𝑙−2∑
𝑛=−𝑙

𝛿𝑙,𝑛𝑒
−𝑛𝜋𝑡

)
𝑒−𝜋𝑡𝑠d𝑡,

for 𝑠 > 0. After a change of variables 𝑤 = 𝜋𝑡, we conclude that

𝜋𝐻 (𝑥)
sin2 ( 𝜋2 |𝑥 |2)

>

∫̃ ∞

𝜋

( 2𝑁−𝑙−2∑
𝑚=−𝑎+2

𝑝𝑚 (𝑤)𝑒−𝑚𝑤

)
𝑒−𝑤𝑠d𝑤

for 𝑠 > 0, where

(−(𝑤2𝜓𝑆)trunc(𝑖𝑡) + (𝜑)trunc(𝑖𝑡))
( 𝑁−𝑙−2∑

𝑛=−𝑙
𝛿𝑙,𝑛𝑒

−𝑛𝜋𝑡
)
=:

2𝑁−𝑙−2∑
𝑚=−𝑎+2

𝑝𝑚(𝑤)𝑒−𝑚𝑤 .

Let now 𝑀 = 	(2𝑁 − 𝑙 − 2)/2𝑚
 with 𝑚 = 4, 3, 2, 1, 0 (depending on precision). Let

𝐴1(𝑤) =
𝑀−1∑

𝑚=−𝑎+2
𝑝𝑚(𝑤)𝑒−𝑚𝑤 + 𝑒−𝑀𝑤𝑤2 [𝑤2] (𝑝𝑀 (𝑤))

𝐴2(𝑤) = −𝐴1(𝑤) +
2𝑁−𝑙−2∑
𝑚=−𝑎+2

𝑝𝑚 (𝑤)𝑒−𝑚𝑤 .

Let 𝑥 = 𝑒−𝑤 . We then show that

(VI) [1, 𝑤 𝑗 (𝑥), 𝑤2 (𝑥)2] [[𝑤0]𝐴2, [𝑤1]𝐴2, [𝑤2]𝐴2]� > 0 for all 𝑗 ∈ {1, 2} and 0 < 𝑥 < 𝛾2.

This proves that

𝜋𝐻 (𝑥)
sin2( 𝜋2 |𝑥 |2)

>

∫̃ ∞

𝜋
𝐴1(𝑤)𝑒−𝑤𝑠d𝑤. (4)
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Let now R be the following ‘rationalization’ operator

𝑃(𝑠) =
∑

𝑐𝑖, 𝑗 ,𝑛𝜋
𝑖𝑒−𝜋 𝑗 𝑠𝑛 ↦→ R(𝑃) (𝑠) :=

∑
𝑐̃𝑖, 𝑗 ,𝑛𝑠

𝑛,

where 𝑐̃𝑖, 𝑗 ,𝑛 = min𝛼,𝛽∈{1,2}{𝑐𝑖, 𝑗 ,𝑛𝜋𝑖𝛼𝛾
𝑗
𝛽} and 𝜋1, 𝜋2, 𝛾1, 𝛾2 are rational approximations of 𝜋 and 𝛾 = 𝑒−𝜋

such that

𝜋1 < 𝜋 < 𝜋2 and 𝛾1 < 𝛾 < 𝛾2.

Usually these rational approximations are taken to be m-digit truncations (in base 10) from below and
above, with 𝑚 ∈ {10, 15, 20, . . . , 50} depending on the required precision. Observe now that if 𝑝(𝑤) is
a quadratic polynomial with coefficients in Q[𝜋], then we obtain that

𝑒𝜋𝑠
∫ ∞

𝜋
𝑝(𝑤)𝑒−𝑚𝑤𝑒−𝑠𝑤d𝑤

= 𝑒−𝜋𝑚
∫ ∞

0
𝑝(𝑤 + 𝜋)𝑒−(𝑠+𝑚)𝑤d𝑤

= 𝑒−𝜋𝑚
2∑
𝑗=0

𝑗![𝑤 𝑗 ] (𝑝(𝑤 + 𝜋))
(𝑠 + 𝑚) 𝑗+1

= 𝑒−𝜋𝑚
(𝑠 + 𝑚)3 [𝑤0] (𝑝(𝑤 + 𝜋)) + (𝑠 + 𝑚)2 [𝑤1] (𝑝(𝑤 + 𝜋)) + 2(𝑠 + 𝑚) [𝑤2] (𝑝(𝑤 + 𝜋))

(𝑠 + 𝑚)4

≥ R(𝑒−𝜋𝑚 (𝑠 + 𝑚) [𝑤0] (𝑝(𝑤 + 𝜋)))
(𝑠 + 𝑚)2

+ R(𝑒−𝜋𝑚 [𝑤1] (𝑝(𝑤 + 𝜋)))
(𝑠 + 𝑚)2

+ R(2𝑒−𝜋𝑚 (𝑠 + 𝑚) [𝑤2] (𝑝(𝑤 + 𝜋)))
(𝑠 + 𝑚)4

=: 𝐵𝑚 [𝑝] (𝑠).

We deduce that (4) is bounded from below by

𝑒−𝜋𝑠
( 𝑀−1∑
𝑚=−𝑎+2

𝐵𝑚(𝑝𝑚) (𝑠) + 𝐵𝑀 (𝑤2 [𝑤2] (𝑝𝑀 (𝑤)))
)
=: 𝑒−𝜋𝑠𝑄(𝑠),

where 𝑄(𝑠) is a rational function with rational coefficients. Finally, we write 𝑄 = 𝑄𝑛𝑢𝑚/𝑄𝑑𝑒𝑛, for
polynomials 𝑄𝑛𝑢𝑚 and 𝑄𝑑𝑒𝑛 and obtain that 𝐻 (𝑥) > 0 for 𝑐 < |𝑥 |2 < 𝑎 − 2 holds true if the following
condition is satisfied

(VII) 𝑄𝑑𝑒𝑛 (𝑠)
∏𝑎/2−1

𝑗=0 (𝑠 − 2 𝑗)−2 has only nonnegative coefficients and 𝑄𝑛𝑢𝑚 (𝑠) > 0 for 𝑐 < 𝑠 < 𝑎 − 2.

This can be checked by Sturm’s method again. Notice that since we have used only strict inequalities,
this shows that {|𝑥 |2 : 𝐻 (𝑥) = 0 and |𝑥 | > 𝑐𝑑} = {𝑎𝑑 , 𝑎𝑑 + 2, . . .}.

We then check that conditions (I), (II), (III), (IV), (V), (VI) and (VII) are satisfied using rational
arithmetic only, producing in this way a mathematical proof. The necessary algorithm to check this
positivity conditions can be found in the ancillary files in the arXiv submission of this paper (a file
named Postest; please also read the file Readme).

Step 9. Finally, for 𝑑 = 48, it remains to show the claim that {|𝑥 |2 : 𝐻 (𝑥) < 0}∩ (0, 10) = (6, 8). The
method is exactly the same as the one employed on Step 8, except we start from 𝐻 (𝑥) and −𝑤2𝜓𝑆 − 𝜑
and show, after essentially the same procedure, that the resulting rational function 𝑄(𝑠) divided by
(𝑠 − 6) (𝑠 − 8) is positive in the interval 0 < 𝑠 < 10.

This finishes the proof of Theorem 4.
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9. Proof of Theorems 2 and 5

Noting that 𝐴𝑑 = (1, sup(𝐾𝑑)] \𝐾𝑑 , we conclude that a packing P is K-admissible if and only if it avoids
𝐴𝑑 . Thus, Theorems 2 and 5 are equivalent. The proof of Theorem 5 follows directly from Theorem 4.
Let 𝑃 = Λ + 𝑌 + 1

2 𝐵𝑑 be a 𝐾𝑑-admissible periodic sphere packing. Poisson summation over Λ + 𝑌 − 𝑌
with the function 𝐹 (𝑥) = 𝐻 (√𝑎𝑑𝑥) and H as in Theorem 4 shows that

𝐻 (0)#𝑌 ≥
∑

𝑦,𝑦′ ∈𝑌

∑
𝑥∈𝐿

𝐹 (𝑥 + 𝑦 − 𝑦′) = 1
vol(R𝑑/𝐿)

∑
𝑥∗ ∈𝐿∗

𝐹 (𝑥∗)
���� ∑
𝑦∈𝑌

𝑒2𝜋𝑖𝑦 ·𝑥∗
����2 ≥ 𝐻 (0)𝑎−𝑑/2𝑑 (#𝑌 )2

vol(R𝑑/𝐿)
;

hence, dens(𝑃) ≤ vol(𝐵𝑑)
(√

𝑎𝑑
2

)𝑑
, which is attained by any even unimodular extremal lattice. Poisson

summation implies that equality is attained for a lattice packing (#𝑌 = 1) if and only if for every 𝑣 ∈ Λ∗,
we have |𝑣 |2 ∈ {𝑎𝑑 , 𝑎𝑑 + 2, . . .}. Then, as in the proof of Theorem 1, one shows that √𝑎𝑑Λ is an even
unimodular extremal lattice.

Acknowledgements. The authors thank João P. Ramos, Henry Cohn and Danlyo Radchenko for fruitful discussions on the
elaboration of this paper. The first author acknowledges support from the following funding agencies: The Office of Naval Re-
search GRANT14201749 (award number N629092412126), The Serrapilheira Institute (Serra-2211-41824), FAPERJ \hbox{(E-
26/200.209/2023)} and CNPq (309910/2023-4). The second author acknowledges the support of CNPq (141446/2023-4) and
FAPERJ (E-26/202.492/2022) scholarships.

Competing interest. The authors have no competing interest to declare.

Data availability statement. Ancillary files with code and data are available in the arXiv submission of this paper:
arXiv:2308.03925 [math.NT].

References

[1] L. Bassalygo, G. Cohen and Zémor, ‘Codes with forbidden distances’, Discrete Math. 213 (2000), 3–11.
[2] L. A. Bassalygo, V. A. Zinoviev, V. V. Zyablov, M. S. Pinsker and G. Sh. Poltyrev, ‘Bounds for codes with unequal protection

of two message sets’, Problemy Peredachi Informatsii 15(3) (1979), 40–49.
[3] C. Batut, K. Belabas, D. Benardi, H. Cohen and M. Olivier, User’s Guide to PARI-GP, version 2.11.1 (2018).
[4] A. V. Berdnikov, ‘Estimate for the chromatic number of euclidean space with several forbidden distances’, Math. Notes 99(5)

(2016), 774–778.
[5] P. Boyvalenkov and D. Cherkashin, ‘The kissing number in 48 dimensions for codes with certain forbidden distances is 52

416 000’, Results in Mathematics 8(3) (2025).
[6] P. Boyvalenkov, D. Cherkashin and P. Dragnev, ‘Universal optimality of T-avoiding spherical codes and designs’, Preprint,

2025, arXiv: 2501.13906.
[7] P. Boyvalenkov and P. Dragnev, ‘Energy of codes with forbidden distances in 48 dimensions’, Preprint, 2024,

arXiv:2412.07577.
[8] H. Cohn and N. Elkies, ‘New upper bounds on sphere packings I’, Ann. of Math. (2) 157(2) (2003), 689–714.
[9] H. Cohn and F. Gonçalves, ‘An optimal uncertainty principle in twelve dimensions via modular forms’, Invent. Math. 217(3)

(2019), 799–831.
[10] H. Cohn, A. Kumar, S. Miller, D. Radchenko and M. Viazovska, ‘The sphere packing problem in dimension 24’, Ann. of

Math. (2) 185(3) (2017), 1017–1033.
[11] H. Cohn, A. Kumar, S. Miller, D. Radchenko and M. Viazovska, ‘Universal optimality of the 𝐸8 and Leech lattices and

interpolation formulas’, Ann. of Math. (to appear).
[12] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups (Springer New York, 1999).
[13] M. Eichler and D. Zagier, The Theory of Jacobi Forms (Progress in Mathematics) vol. 55 (Birkhäuser Boston, Inc., Boston,

1985).
[14] H. Enomoto, P. Frankl, N. Ito and K. Nomura, ‘Codes with given distances’, Graphs Combin. 3 (1987), 25–38.
[15] A. S. Feigenbaum, P. J. Grabner and D. P. Hardin, ‘Eigenfunctions of the Fourier transform with specified zeros’, Math.

Proc. Cambridge Philos. Soc. 171(2) (2021), 329–367.
[16] P. Frankl, ‘Orthogonal vectors in the n-dimensional cube and codes with missing distances’, Combinatorica 6 (1986), 279–

285.
[17] H. Groemer, ‘Existenzsätze für Lagerungen im Euklidischen Raum’, Math. Z. 81 (1963), 260–278.
[18] T. C. Hales, ‘A proof of the Kepler conjecture’, Ann. of Math. 162(3), (2005), 1065–1185.

https://doi.org/10.1017/fms.2025.9 Published online by Cambridge University Press

https://arxiv.org/abs/2501.13906
https://arxiv.org/abs/2412.07577
https://doi.org/10.1017/fms.2025.9


Forum of Mathematics, Sigma 35

[19] P. Jenkins and J. Rouse, ‘Bounds for coefficients of cusp forms and extremal lattices’, Bull. London Math. Soc. 43(5) (2011),
927–938.

[20] C. L. Mallows, A. M. Odlyzko and N. J. A. Sloane, ‘Upper bounds for modular forms, lattices, and codes’, J. Algebra 36
(1975), 68–76.

[21] E. Naslund, ‘The chromatic number of with multiple forbidden distances’, Mathematika 69(3) (2023), 692–718.
[22] G. Nebe, ‘A fourth extremal even unimodular lattice of dimension 48’, Discrete Math. 331 (2014), 133–136.
[23] D. Radchenko and M. Viazovska, ‘Fourier interpolation on the real line’, Publ. Math. IHES 129 ((2019). 51–81.
[24] A. M. Raigorodskii, ‘The Borsuk problem and the chromatic numbers of some metric spaces’, Uspekhi Mat. Nauk 56 (2001),

no. 1(337), 107–146.
[25] L. Rolen and I. Wagner, ‘A note on Schwartz functions and modular forms’, Archiv der Mathematik 115 (2020), 35–51.
[26] R. Scharlau and R. Schulze-Pillot, ‘Extremal lattices’, in Algorithmic Algebra and Number Theory (Springer, Berlin,

Heidelberg, 1999), 139–170.
[27] M. Viazovska, ‘The sphere packing problem in dimension 8’, Ann. of Math. (2) 185(3) (2017), 991–1015.
[28] D. Zagier, ‘Elliptic modular forms and their applications’, in The 1-2-3 of Modular Forms (Universitext, Springer-Verlag,

New York, 2008), 1–103.

https://doi.org/10.1017/fms.2025.9 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.9

	1 Introduction
	1.1 Motivation
	1.2 Main results

	2 Further main results
	2.1 One-dimensional sphere packings

	3 Generalities
	3.1 Proof of Theorem 3

	4 One-dimensional packings and dominos
	5 Proof of Theorem 6
	6 Constructions via modular forms
	7 Proof of Theorem 1
	8 Proof of Theorem 4
	9 Proof of Theorems 2 and 5
	References

