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Faltings extension and Hodge-Tate filtration
for abelian varieties over p-adic local fields
with imperfect residue fields

Tongmu He

Abstract. Let K be a complete discrete valuation field of characteristic 0, with not necessarily perfect
residue field of characteristic p > 0. We define a Faltings extension of OK over Zp , and we construct
a Hodge-Tate filtration for abelian varieties over K by generalizing Fontaine’s construction [Fon82]
where he treated the perfect residue field case.

1 Introduction

1.1 Let K be a complete discrete valuation field of characteristic 0, with residue field
k of characteristic p > 0. Let K be an algebraic closure ofK, letGK be the Galois group
ofK overK, letC be the p-adic completion ofK.We denote byC(r) the r-th Tate twist.
For an abelian varietyX overK, we denote its Tatemodule byTp(X).When k is perfect
andX has good reduction, Tate [Tat67] constructed a canonicalGK-equivariant exact
sequence

0Ð→ H1(X ,OX) ⊗K C(1) Ð→ HomZp
(Tp(X),C(1))(1.1.1)

Ð→ H0(X , Ω1
X/K) ⊗K C Ð→ 0.

In the same paper, Tate also computed the Galois cohomology groups of C(r). He
proved in particular that H1(GK ,C(r)) = 0 for any r ≠ 0, which implies that the
sequence (1.1.1) has a GK-equivariant splitting, and that H0(GK ,C(r)) = 0 for any
r ≠ 0, which implies that the splitting is unique. Tate conjectured that for any proper
smooth scheme X over K, there is a canonical GK-equivariant decomposition (called
the Hodge–Tate decomposition)

Hn
ét(XK ,Qp) ⊗Qp

C =
n

⊕
i=0

H i(X , Ωn−i
X/K) ⊗K C(i − n).

�en subsequently, Raynaud used the semistable reduction theorem to show that any
abelian variety over K admits a Hodge–Tate decomposition ([sga72, IX 3.6, 5.6]).
A�erwards, Fontaine [Fon82] gave a new proof for general abelian varieties. He con-
structed a canonical map H0(X , Ω1

X/K) → HomZp[GK](Tp(X),C(1)), by computing
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Ω1
O

K
/OK

and pulling back differentials. �e conjecture of Tate was finally settled by

Faltings [Fal88, Fal02] and Tsuji [Tsu99, Tsu02] independently.
When k is not necessarily perfect,Hyodo proved that there is still an exact sequence

(1.1.1) for abelian varieties with good reduction, following the same argument as in
[Tat67] ([Hyo86, Remark 1]). But the sequence does not split in general ([Hyo86,
�eorem 3]). In this paper, we will construct the exact sequence (1.1.1) for general
abelian varieties by generalizing Fontaine’s method to the imperfect residue field case.

We remark that Scholze [Sch13] has generalized the conjecture of Tate to any
proper smooth rigid-analytic variety X over C. He proved that there is a canonical
filtration (called the Hodge–Tate filtration) Fil● on Hn

ét(X ,Qp) ⊗Qp
C, such that

Fili(Hn
ét(X ,Qp) ⊗Qp

C)/Fili+1(Hn
ét(X ,Qp) ⊗Qp

C) = H i(X , Ωn−i
X/C) ⊗C C(i − n).

1.2 For any abelian groupM, we set

Tp(M) = HomZ(Z[1/p]/Z,M) and Vp(M) = HomZ(Z[1/p],M).

In Section 4, we construct a Faltings extension ofOK overZp . It is a canonical exact
sequence of C- GK-modules that splits as a sequence of C-modules (cf.�eorem 4.4),

0Ð→ C(1) ι
Ð→ Vp(Ω1

O
K
/OK
) ν
Ð→ C ⊗OC

(OK ⊗OK
Ω1

OK/Zp
)∧ Ð→ 0,(1.2.1)

where (−)∧ denotes the p-adic completion. Based on Hyodo’s computation of Galois
cohomology (cf. �eorem 3.8), we will show that the connecting map of the above
sequence

δ ∶ (C ⊗OC
(OK ⊗OK

Ω1
OK/Zp

)∧)GK Ð→ H1(GK ,C(1))(1.2.2)

is an isomorphism (cf. Corollary 4.5).
Following Fontaine, we deduce from the above sequence and its cohomological

properties a canonical K-linear injective homomorphism (cf. �eorem 5.6)

ρ ∶ H0(X , Ω1
X/K)Ð→ HomZp[GK](Tp(X),Vp(Ω1

O
K
/OK
)).(1.2.3)

�e arguments are essentially the same as in [Fon82].
Our main result can be stated as follows (cf. �eorem 7.4 and Paragraphs 7.5, 7.6).

�eorem 1.3 For any abelian variety X over K, there is a canonical exact sequence of
C- GK-modules

0Ð→ H1(X ,OX)⊗K C(1) ψ
Ð→ HomZp

(Tp(X),C(1))(1.3.1)

ϕ
Ð→ H0(X , Ω1

X/K)⊗K C Ð→ 0

satisfying the following properties:
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(i) AnyC-linear retraction of ι in (1.2.1) induces aC-linear section of ϕ.More precisely,
we have a commutative diagram

where ρ is induced by the map (1.2.3), and π is induced by any retraction of ι in
(1.2.1).

(ii) �e connecting map δ′ associated with (1.3.1) fits into a commutative diagram

where ρ is the map (1.2.3), π′ is induced by −ν of (1.2.1), and the unlabeled arrow
is induced by δ−1 (1.2.2) and ψ of (1.3.1).

Corollary 1.4 For any abelian variety X over K, sequence (1.3.1) splits if and only if the
image of ρ (1.2.3) lies in HomZp[GK](Tp(X),C(1)). In fact, when it splits, the splitting
is unique.

Remark 1.5 Caraiani and Scholze [CS17] constructed a relative version of Hodge–
Tate filtration for proper smooth morphisms of adic spaces. And recently, Abbes
and Gros [AG20] constructed a relative version of Hodge–Tate spectral sequence
for projective smooth morphisms of logarithmic schemes. Unlike these works that
rely on advanced theories and results, our proof for abelian varieties uses only basic
algebraic geometry and p-adic Galois cohomology computation of Tate and Hyodo.
For instance, we do not use Faltings’ almost purity theorem.

2 Notation

2.1 LetK be a complete discrete valuation field of characteristic 0, with residue field
k of characteristic p > 0. Let K be an algebraic closure ofK, letGK be the Galois group
of K over K. Let C be the p-adic completion of K, vp the valuation on C such that
vp(p) = 1, ∣ ∣p the absolute value on C such that ∣p∣p = 1/p. We fix a complete discrete
valuation subfield K0 of K such that OK0

/pOK0
= k (by Cohen structure theorem, cf.

[Gro64, 0IV 19.8.6] ). We remark that K/K0 is a totally ramified finite extension. We
fix elements (u i)i∈I of OK0

such that the reductions (u i)i∈I form a p-base of k. For
each i ∈ I, we fix elements (w im)m≥0 ofOK such thatw

p
i ,m+1 = w i ,m andw i ,0 = u i . We

denote by (e i)i∈I the standard basis of ⊕i∈IZ.
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2.2 For any discrete valuation field L of characteristic 0, with residue field of
characteristic p, we denote by

Ω̂1
OL
= (Ω1

OL/Zp
)∧

the p-adic completion of the module of differentials of OL over Zp .
For any algebraic extension L′ over L, we set

Ω̂1
OL
(OL′) = colim

L1/L
Ω̂1

OL1
,

where L1 runs through all finite subextensions of L′/L. We remark that Ω̂1
OL
(OL′) =

Ω̂1
OL1
(OL′) for any finite subextension L1 of L

′/L, and that Ω̂1
OL
(OL) = Ω̂1

OL
.

2.3 For any abelian groupM, we define

Tp(M) = lim←Ð
x↦px

M[pn] = HomZ(Z[1/p]/Z,M),

Vp(M) = lim←Ð
x↦px

M = HomZ(Z[1/p],M).

Being an inverse limit of Z-modules each killed by some power of p, Tp(M)
is a p-adically complete Zp-module ([Jan88, 4.4]). If M is p-primary torsion, then
Vp(M) = Tp(M)⊗Zp

Qp , and thus it has a natural Qp-module structure. If M is a
Zp-module, then Tp(M) = HomZp

(Qp/Zp ,M), Vp(M) = HomZp
(Qp ,M). We set

Zp(1) = Tp(O×K), a freeZp-module of rank 1 with continuousGK-action. For anyZp-

module M and r ∈ Z, we set M(r) = M ⊗Zp
Zp(1)⊗r , the r-th Tate twist of M. Let X

be an abelian variety over K. We set Tp(X) = Tp(X(K)) and Vp(X) = Vp(X(K)).

3 Review of Hyodo’s Computation of Galois Cohomology Groups
of C(r)

Lemma 3.1 Let B/A be a finite extension of discrete valuation rings, whose fraction
field extension and residue field extension are both separable. We assume that A is
henselian, or that B/A is totally ramified. Let R be a subring of A. �en the canonical
map B ⊗A Ω1

A/R → Ω1
B/R is injective.

Proof A�er replacing A by its maximal unramified extension in B, we can assume
that B is totally ramified over A. Hence, B is of the form A[X]/( f (X)) for some
irreducible polynomial f ∈ A[X]. Let x be the image of X in B. �en we have

Ω1
B/R = (B ⊗A Ω1

A/R ⊕ BdX)/B(dA f (x) + f ′(x)dX),

where dA f ∈ A[X]⊗A Ω1
A/R is obtained by differentiating the coefficients of f. Since

f ′(x) ≠ 0, the canonical map B ⊗A Ω1
A/R → Ω1

B/R is injective. ∎

Lemma 3.2 ([Hyo86, 4-4]) �ere is an isomorphism of OK0
-modules

(⊕i∈IOK0
)∧ ∼
Ð→ Ω̂1

OK0
, e i z→ d logu i , ∀i ∈ I.

https://doi.org/10.4153/S0008439520000399 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000399


Faltings Extension and Hodge-Tate Filtration for Abelian Varieties 251

Proof As (u i)i∈I form a p-base of the residue field of OK0
, we have Ω1

OK0
/Zp
⊗Zp

Zp/pZp = Ω1
k/Fp
= ⊕i∈Ik, where e i corresponds to d logu i . Since OK0

is flat over Zp

and k is formally smooth over Fp , OK0
/pnOK0

is formally smooth over Zp/pnZp for
each n ≥ 1 ([Gro64, 0IV 19.7.1], [Sta20, 031L]). In particular, Ω1

OK0
/Zp
⊗Zp/pnZp is a

projective OK0
/pnOK0

-module. Hence, we have an exact sequence

0Ð→ Ω1
OK0
/Zp
⊗Zp/pZp

⋅pn−1

Ð→ Ω1
OK0
/Zp
⊗Zp/pnZp

Ð→ Ω1
OK0
/Zp
⊗Zp/pn−1Zp Ð→ 0,

from which we get isomorphisms ⊕i∈IOK0
/pnOK0

∼
→ Ω1

OK0
/Zp
⊗Zp/pnZp by induc-

tion. �e conclusion follows by taking limit over n. ∎

Proposition 3.3 ([Hyo86, 4-2-1]) �ere is an exact sequence of OK-modules

0Ð→ (⊕i∈IOK)∧ θ
Ð→ Ω̂1

OK
Ð→ Ω1

OK/OK0
Ð→ 0,

where θ(e i) = d logu i for any i ∈ I.

Proof �e sequence of modules of differentials of OK/OK0
/Zp ,

0Ð→ OK ⊗OK0
Ω1

OK0
/Zp
Ð→ Ω1

OK/Zp
Ð→ Ω1

OK/OK0
Ð→ 0,

is exact by Lemma 3.1. Passing to p-adic completions, as Ω1
OK/OK0

is killed by a power

of p, we still get an exact sequence [Sta20, 0BNG]. �e conclusion follows from

Lemma 3.2, and the isomorphism OK ⊗OK0
(⊕i∈IOK0

)∧ ∼→ (⊕i∈IOK)∧ as OK is finite
free over OK0

. ∎

Lemma 3.4 ([Hyo86, 4-4]) Let M0 = ⋃i∈I ,m≥0 K0(w im) ⊆ K. �en there is an iso-
morphism of OM0

-modules

M0 ⊗OK0
(⊕i∈IOK0

)∧ ∼
Ð→ Ω̂1

OK0
(OM0

), p−m ⊗ e i z→ d logw im , ∀i ∈ I,m ∈ N.

Proof For an integer N > 0 and a finite subset J ⊆ I, let L0 = ⋃i∈J K0(w iN). �en

by Lemma 3.2, (⊕i∈IOL0
)∧ is isomorphic to Ω̂1

OL0
by sending e i to d logw iN if i ∈ J,

and to d logu i if i ∉ J. �e conclusion follows by taking colimit over J and N. ∎

Lemma 3.5 ([Hyo86, 4-7]) With the same notation as in Lemma 3.4, let M be a finite
extension of M0. �en there is a canonical exact sequence of OM-modules

0Ð→ OM ⊗OM0
Ω̂1

OK0
(OM0

)Ð→ Ω̂1
OK0
(OM)Ð→ Ω1

OM/OM0
Ð→ 0.

Proof We notice that OM0
is a henselian discrete valuation ring with perfect

residue field. Let Mur be the maximal unramified subextension of M/M0, and let
f ∈ OMur

[X] be the monic minimal polynomial of a uniformizer ϖ of OM . �en we
haveOM = OMur

[X]/( f (X)). For a sufficiently large finite subextension L1 ofMur/K0

such that f ∈ OL1
[X], L2 = L1(ϖ) is totally ramified over L1. �e same argument as in

https://doi.org/10.4153/S0008439520000399 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000399


252 T. He

Proposition 3.3 gives us a canonical exact sequence

0Ð→ OL2
⊗OL1

Ω̂1
OL1
Ð→ Ω̂1

OL2
Ð→ Ω1

OL2
/OL1
Ð→ 0.

By taking colimit over L1, we get an exact sequence

0Ð→ OM ⊗OMur
Ω̂1

OK0
(OMur

)Ð→ Ω̂1
OK0
(OM)Ð→ Ω1

OM/OMur
Ð→ 0.(3.5.1)

A similar colimit argument shows that Ω̂1
OK0
(OMur

) = OMur
⊗OM0

Ω̂1
OK0
(OM0

). �e

conclusion follows from (3.5.1). ∎

Proposition 3.6 ([Hyo86, 4-2-2]) �ere is an exact sequence ofOK- GK-modules that
splits as a sequence of OK-modules,

0Ð→ K/a(1) ϑ
Ð→ Ω̂1

OK
(OK)Ð→ K ⊗OK

(⊕i∈IOK)∧ Ð→ 0,(3.6.1)

where a = {x ∈ K ∣ vp(x) ≥ −1/(p − 1)}, and ϑ(p−k ⊗ (ζn)n) = d log ζk for any k ∈ N
and any (ζn)n ∈ Zp(1).�emap K ⊗OK

(⊕i∈IOK)∧ → Ω̂1
OK
(OK), sending p−m ⊗ e i to

d logw im for any i ∈ I and m ∈ N, gives a splitting of the sequence.

Proof With the same notation as in Lemma 3.4, let M run through all finite
subextensions of K/M0. We get from Lemma 3.5 an exact sequence of OK-modules

0Ð→ OK ⊗OM0
Ω̂1

OK0
(OM0

)Ð→ Ω̂1
OK
(OK)Ð→ Ω1

O
K
/OM0

Ð→ 0.(3.6.2)

We identify its first term with K ⊗OK
(⊕i∈IOK)∧ by Lemma 3.4. Let Qp be the

algebraic closure of Qp in K, Zp the integral closure of Zp in Qp . By Fontaine’s

computation [Fon82, �éorème 1′], we have an isomorphism of Zp-modules

Qp/a0(1) ∼
Ð→ Ω1

Zp/Zp
, p−k ⊗ (ζn)n z→ d log ζk , ∀k ∈ N, ∀(ζn)n ∈ Zp(1),

where a0 = {x ∈ Qp ∣ vp(x) ≥ −1/(p − 1)}, and we have an isomorphism of OK-
modules

K/a(1) ∼
Ð→ Ω1

O
K
/OM0

, p−k ⊗ (ζn)n z→ d log ζk , ∀k ∈ N, ∀(ζn)n ∈ Zp(1),

where a = {x ∈ K ∣ vp(x) ≥ −1/(p − 1)}. Hence, the composition of

K/a(1) ∼
Ð→ OK ⊗Zp

Ω1
Zp/Zp

Ð→ Ω1
O

K
/Zp
Ð→ Ω̂1

OK
(OK)

gives a splitting of (3.6.2). �us, we obtain the splitting sequence (3.6.1) of OK-

modules. We notice that the Galois conjugates of ζn ,w im are of the form ζan , ζ
b
mw im ,

respectively, which implies that (3.6.1) is GK-equivariant. ∎

3.7 As Ω̂1
OK
(OK) is p-divisible, we have an exact sequence 0→ Tp(Ω̂1

OK
(OK))

→ Vp(Ω̂1
OK
(OK))→ Ω̂1

OK
(OK)→ 0. A�er inverting p, we get an exact sequence

0Ð→ C(1)Ð→ K ⊗O
K
Vp(Ω̂1

OK
(OK))(3.7.1)

Ð→ K ⊗O
K
Ω̂1

OK
(OK)Ð→ 0,

where we identified K ⊗O
K
Tp(Ω̂1

OK
(OK)) with C(1) by (3.6.1).
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�eorem 3.8 ([Hyo86, �eorem 1 and Remark 3])

(i) �e composition of

K ⊗OK
Ω̂1

OK

εÐ→ (K ⊗O
K
Ω̂1

OK
(OK))GK

δ
Ð→ H1(GK ,C(1)),(3.8.1)

where ε is the canonical map and δ is the connecting map associated with (3.7.1),
is an isomorphism. Moreover, for any integer q, the cup product induces an
isomorphism

(∧qH1(GK ,C(1)))∧ ∼
Ð→ Hq(GK ,C(q)).

(ii) �e K-module H1(GK ,C) is free of rank 1. Moreover, for any integer q, the cup
product induces an isomorphism

H1(GK ,C) ⊗K (∧q−1H1(GK ,C(1)))∧ ∼
Ð→ Hq(GK ,C(q − 1)).

(iii) For any integers r and q such that r ≠ q or q − 1, we have Hq(GK ,C(r)) = 0.

Remark 3.9 By Proposition 3.3, we have an isomorphism

K ⊗OK
(⊕i∈IOK)∧ ∼

Ð→ K ⊗OK
Ω̂1

OK
, 1⊗ e i z→ 1⊗ d logu i , ∀i ∈ I.(3.9.1)

By composing it with (3.8.1), we get an isomorphism

K ⊗OK
(⊕i∈IOK)∧ ∼

Ð→ H1(GK ,C(1)), 1⊗ e i z→ [ f i],
where f i is a 1-cocycle sending each σ ∈ GK to σ(1⊗ (d logw im)m) − 1⊗ (d logw im)m
in view of (3.7.1).

4 Faltings Extension

Lemma 4.1 Let M = ⋃i∈I ,m≥0 K(w im) ⊆ K. �en there is an isomorphism of OM-
modules

⊕i∈IM/OM
∼
Ð→ Ω1

OM/OK
, p−me i z→ d logw im , ∀i ∈ I,m ∈ N.

Proof For any N ≥ 0, we set MN = ⋃i∈I K(w iN). Since (u i) form a p-base of the

residue field k, the elements of the form ∏i∈I w iN
k i where 0 ≤ k i < pN with finitely

many nonvanishing, are linearly independent over k. �erefore, OMN
= OK[Ti]i∈I/

(T pN

i − u i), where Ti maps to w iN . Hence,

Ω1
OMN

/OK
= ⊕i∈IOMN

/pNOMN
= ⊕i∈I p

−N
OMN
/OMN

,

where p−N e i corresponds to d logw iN . �e conclusion follows by taking colimit
over N. ∎

Proposition 4.2 With the same notation as in Lemma 4.1, there is an exact sequence
of OK-modules

0Ð→ ⊕i∈IK/OK

θ
Ð→ Ω1

O
K
/OK
Ð→ K/b(1)Ð→ 0,
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where θ(p−me i) = d logw im for any i ∈ I and m ∈ N, and b = {x ∈ K ∣ vp(x) ≥
−vp(DM/M1

) − 1/(p − 1)}, where M1 is the fraction field of the Witt ring with
coefficients in the residue field of M, andDM/M1

is the different ideal of M/M1.

Proof Wenotice thatOM is a henselian discrete valuation ring with perfect residue
field. �us, the sequence of modules of differentials of OK/OM/OK ,

0Ð→ OK ⊗OM
Ω1

OM/OK
Ð→ Ω1

O
K
/OK
Ð→ Ω1

O
K
/OM
Ð→ 0,(4.2.1)

is exact by Lemma 3.1. We identify its first term with ⊕i∈IK/OK by Lemma 4.1. By
Fontaine’s computation ([Fon82, �éorème 1′]), we have an isomorphism of OK-
modules

K/b(1) ∼
Ð→ Ω1

O
K
/OM

, p−k ⊗ (ζn)n z→ d log ζk , ∀k ∈ N, ∀(ζn)n ∈ Zp(1).

�e conclusion follows from (4.2.1). ∎

Lemma 4.3 �e canonical map

K ⊗OK
(⊕i∈IOK)∧ Ð→ (C ⊗OC

(⊕i∈IOC)∧)GK

is an isomorphism.

Proof It follows from the following descriptions

C ⊗OC
(⊕i∈IOC)∧

= {(x i) ∈ ∏
i∈I

C ∣ ∀N > 0, ∃ finite J ⊆ I, ∣x i ∣p < 1/N , ∀i ∉ J},(4.3.1)

K ⊗OK
(⊕i∈IOK)∧

= {(x i) ∈ ∏
i∈I

K ∣ ∀N > 0, ∃ finite J ⊆ I, ∣x i ∣p < 1/N , ∀i ∉ J}. ∎(4.3.2)

�eorem 4.4 �ere is a canonical exact sequence of C- GK-modules that splits as a
sequence of C-modules,

0Ð→ C(1) ι
Ð→ Vp(Ω1

O
K
/OK
) ν
Ð→ C ⊗OC

(OK ⊗OK
Ω1

OK/Zp
)∧ Ð→ 0,(4.4.1)

where ι(1⊗ (ζn)n) = (d log ζn)n for any (ζn)n ∈ Zp(1). �ere is an isomorphism of C-
GK-modules

C ⊗OC
(⊕i∈IOC)∧ ∼

Ð→ C ⊗OC
(OK ⊗OK

Ω1
OK/Zp

)∧,(4.4.2)

1⊗ e i z→ 1⊗ 1⊗ d logu i , ∀i ∈ I,

and themapC ⊗OC
(⊕i∈IOC)∧ → Vp(Ω1

O
K
/OK
), sending 1⊗ e i to (d logw im)m for any

i ∈ I, gives a C-linear section of ν.
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Proof We consider the sequence of modules of differentials of OL/OK/Zp , where

L/K is a finite subextension of K/K, and pass to p-adic completions. Since Ω1
OL/OK

is

killed by a power of p, we still get an exact sequence [Sta20, 0315, 0BNG]

OL ⊗OK
Ω̂1

OK
Ð→ Ω̂1

OL
Ð→ Ω1

OL/OK
Ð→ 0.

By taking colimit over all such L, we get an exact sequence

OK ⊗OK
Ω̂1

OK

α
Ð→ Ω̂1

OK
(OK)

β
Ð→ Ω1

O
K
/OK
Ð→ 0.(4.4.3)

Combining with Propositions 3.3, 3.6, and 4.2, we get a commutative diagram:

(4.4.4)

where the rows and columns are exact, and the middle column splits. We set D =
Ker(β) = Im(α). We see that OK ⊗OK

(⊕i∈IOK)∧ → D is injective, whose cokernel is
killed by a power of p. Now for any n > 0, by applyingHomZp

(Zp/pnZp ,−) to (4.4.3),
we get an exact sequence of OK/pnOK-modules

0Ð→ D[pn]Ð→ Ω̂1
OK
(OK)[pn]Ð→ Ω1

O
K
/OK
[pn]Ð→ D/pnD(4.4.5)

Ð→ Ω̂1
OK
(OK)/pnΩ̂1

OK
(OK) = 0.

We notice that the inverse system (D[pn])n is Artin–Rees null, and that (Ω̂1
OK
(OK)

[pn])n satisfies Mittag–Leffler condition. �erefore, by taking the inverse limit of
(4.4.5), we get an exact sequence of OC-modules

0Ð→ Tp(Ω̂1
OK
(OK))Ð→ Tp(Ω1

O
K
/OK
)Ð→ D∧ Ð→ 0.(4.4.6)

By applying Tp(−) to the middle column of (4.4.4), we get Tp(Ω̂1
OK
(OK)) = â(1). On

the other hand, we notice that ⊕i∈IK/OK is p-divisible, and that ((⊕i∈IK/OK)[pn])n
satisfies the Mittag–Leffler condition. �erefore, by applying Tp(−) to the right
column of (4.4.4), we get an exact sequence of OC-modules

0Ð→ (⊕i∈IOC)∧ Ð→ Tp(Ω1
O

K
/OK
)Ð→ b̂(1)Ð→ 0.(4.4.7)

As Ω1
OK/OK0

is killed by a power of p, the map (OK ⊗OK
Ω̂1

OK
)∧ → D∧ becomes

an isomorphism a�er inverting p. A�erwards, we get from (4.4.6) a canonical exact
sequence of C-modules

0Ð→ C(1)→ Vp(Ω1
O

K
/OK
)Ð→ C ⊗OC

(OK ⊗OK
Ω̂1

OK
)∧ Ð→ 0,(4.4.8)
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and from (4.4.7) an exact sequence of C-modules

0Ð→ C ⊗OC
(⊕i∈IOC)∧ Ð→ Vp(Ω1

O
K
/OK
)Ð→ C(1)Ð→ 0.(4.4.9)

�e latter gives a splitting of (4.4.8) and an isomorphism C ⊗OC
(⊕i∈IOC)∧ ∼→ C ⊗OC

(OK ⊗OK
Ω̂1

OK
)∧ by sending 1⊗ e i to 1⊗ 1⊗ d logu i by diagram chasing. We notice

that the Galois conjugates of ζn ,w im are of the form ζan , ζ
b
mw im respectively, which

implies that (4.4.8) is GK-equivariant. Hence, (4.4.8) gives us the exact sequence
(4.4.1) of C- GK-modules that splits as a sequence of C-modules. ∎

Corollary 4.5 �e canonical map K ⊗OK
Ω̂1

OK
→ (C ⊗OC

(OK ⊗OK
Ω1

OK/Zp
)∧)GK is

an isomorphism, and the connecting map of the sequence (4.4.1)

δ ∶ K ⊗OK
Ω̂1

OK
Ð→ H1(GK ,C(1))(4.5.1)

is an isomorphism that coincides with (3.8.1). In particular,

Vp(Ω1
O

K
/OK
)GK = 0.(4.5.2)

Proof By (3.9.1), (4.4.2), and 4.3, we see that the canonical map K ⊗OK
Ω̂1

OK
→

(C ⊗OC
(OK ⊗OK

Ω̂1
OK
)∧)GK is an isomorphism. Now (4.5.1) follows from �eorem

3.8(i) and Remark 3.9. And (4.5.2) follows from the fact that C(1)GK = 0. ∎

Definition 4.6. We call sequence (4.4.1) the Faltings extension of OK over Zp .

5 Fontaine’s Injection

5.1 For any proper model X of the abelian variety X over OK (i.e., a proper
OK-scheme whose generic fiber is X), we identify X(OK) with X(K) by valuative
criterion. Pullback of Kähler differentials defines a map

H0(X, Ω1
X/OK

)Ð→MapGK
(X(K), Ω1

O
K
/OK
), ω z→ (u z→ u∗ω).(5.1.1)

We notice that H0(X , Ω1
X/K) = K ⊗OK

H0(X, Ω1
X/OK

), and that any differential form
overX is invariant under translations. Hence, we can take an integer r > 0 big enough,
such that for any ω ∈ prH0(X, Ω1

X/OK
) and u1 , u2 ∈ X(OK), (u1 + u2)∗ω = u∗1 ω +

u∗2ω (cf. [Fon82, Proposition 3]). �erefore, (5.1.1) induces a homomorphism of OK-
modules

ρ1 ∶ prH0(X, Ω1
X/OK

)Ð→ HomZ[GK](X(K), Ω1
O

K
/OK
), ω z→ (u z→ u∗ω).

We can also assume that prH0(X, Ω1
X/OK

) has no p-torsion for further use.

5.2 �e functor Vp(−) gives us an injective homomorphism

ρ2 ∶ HomZ[GK](X(K), Ω1
O

K
/OK
)Ð→ HomZ[GK] (Vp(X),Vp(Ω1

O
K
/OK
)),(5.2.1)

since X(K) is p-divisible (cf. [Fon82, 3.5, Lemme 1]).
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5.3 �e composition ρ2 ○ ρ1 induces a homomorphism of K-modules

H0(X , Ω1
X/K) = K ⊗OK

prH0(X, Ω1
X/OK

)(5.3.1)

Ð→ HomZ[GK](Vp(X),Vp(Ω1
O

K
/OK
)).

As the category of OK-proper models of X is connected, this composition does not
depend on the choice of the model and number r (cf. [Fon82, Proposition 4]). We
conclude by the following lemma that (5.3.1) is injective.

Lemma 5.4 ([Fon82, 3.5, Lemme 1]) �ere is a proper model X of X such that ρ1 is
injective.

Proof We follow closely the proof of [Fon82, 3.5, Lemme 1], which does not
essentially use the assumption that the residue field k is perfect. We briefly sketch
how to adapt Fontaine’s proof.

(a) Let u be the origin of X and let d be the dimension of X. We first take a closed
immersion X → Pn

K , and then we take an open immersion Pn
K → Pn

OK
described

later (all the morphisms are over OK). Let X be the scheme theoretic image
of the composition X → Pn

OK
, which is thus a proper model of X. Let u be

the special point of the scheme theoretic image of u. It is a k-point. A�er a
linear transformation of coordinates, we can at first choose an open immersion
Pn
K → Pn

OK
such thatOX,u is a (d + 1)-dimensional regular local ring (cf. [Fon82,

3.6, Lemme 3]).
(b) �e mX,u-adic completion of the local ring OX,u is isomorphic to OK

[[T1 , . . . , Td]], denoted by ÔX,u . �emX,u-adic completion of Ω1
OX,u/OK

is a free

ÔX,u-module of rank d, denoted by Ω̂1
OX,u/OK

. �e invariance of differential

forms over X and the fact that prH0(X, Ω1
X/OK
) ⊆ H0(X , Ω1

X/K) imply that the

canonical map prH0(X, Ω1
X/OK
)→ Ω1

OX,u/OK
is injective (cf. [Fon82, 3.7]). We

remark that the canonical map Ω1
OX,u/OK

→ Ω̂1
OX,u/OK

is injective, as Ω1
OX,u/OK

is of finite type over the Noetherian local ring OX,u .
(c) We have the following commutative diagram

where we identify the set of continuousOK-algebra homomorphisms from ÔX,u

to OK with a subset of X(OK) = X(K). To show the injectivity of ρ1 , it suffices
to show that of ρ′1. More precisely, we need to show that for any nonzero formal

differential form ∑d
i=1 α i(T1 , . . . , Td)dTi where α i ∈ OK[[T1 , . . . , Td]], there are

x1 , . . . , xd ∈ mK such that∑d
i=1 α i(x1 , . . . , xd)dx i is not zero in Ω1

O
K
/OK

.

(d) For d = 1, suppose α(T) = ∑k≥0 akT
k where ak ∈ OK not all zero. Let k0 be the

minimal number such that vp(ak0) is minimal. For a sufficiently large integerN,
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we take x = ϖ1/pN ∈ mK , where ϖ is a uniformizer ofOK , such that vp(ak0xk0) <
vp(akxk) for any k ≠ k0. Let M = ⋃i∈I ,m≥0 K(w im) ⊆ K. �e annihilator of dx

in Ω1
OM(x)/OM

is generated by pNx pN−1. As OM is a henselian discrete valuation

ring with perfect residue field, Lemma 3.1 implies that the annihilator of dx in

Ω1
O

K
/OM

is also generated by pNx pN−1. When N is big enough, α(x)dx is not

zero in Ω1
O

K
/OK

(cf. [Fon82, 3.7, Lemme 4]).

(e) As OK is an infinite domain, there are formal series β1 , . . . , βd ∈ OK[[T]] with-
out constant term, such that ∑d

i=1 α i(β1 , . . . , βd) ⋅ β′i ∈ OK[[T]] is still nonzero.
Hence, the general case reduces to the case d = 1 (cf. [Fon82, 3.7, Lemme 5]). ∎

5.5 As X(K) is p-divisible, we have a canonical exact sequence
0Ð→ Tp(X)Ð→ Vp(X)Ð→ X(K)Ð→ 0.

A�er applying the functor HomZ[GK](−,Vp(Ω1
O

K
/OK
)), we get an exact sequence

0Ð→ HomZ[GK] (X(K),Vp(Ω1
O

K
/OK
))Ð→ HomZ[GK] (Vp(X),Vp(Ω1

O
K
/OK
))

Ð→ HomZ[GK] (Tp(X),Vp(Ω1
O

K
/OK
)).

Let f ∶ X(K)→ Vp(Ω1
O

K
/OK
) be a GK-equivariant homomorphism. For any finite

extension L/K, we denote by GL = Gal(K/L) the absolute Galois group of L. �en f
maps X(L) to Vp(Ω1

O
K
/OK
)GL . We notice that the kernel of the surjection Ω1

O
K
/OK
→

Ω1
O

K
/OL

is killed by a power of p, which indicates that the map Vp(Ω1
O

K
/OK
)→

Vp(Ω1
O

K
/OL
) is an isomorphism. Now, by applying (4.5.2) to L, we get

Vp(Ω1
O

K
/OK
)GL = Vp(Ω1

O
K
/OL
)GL = 0.

Hence, f (X(K)) = ⋃L/K f (X(L)) = 0, which indicates that we have an injective map
(cf. [Fon82, 3.5, Lemme 2])

ρ3 ∶ HomZ[GK] (Vp(X),Vp(Ω1
O

K
/OK
))Ð→ HomZ[GK] (Tp(X),Vp(Ω1

O
K
/OK
)).

Remark that any element in the image of ρ3 ○ ρ2 ○ ρ1 is Zp-linear. All in all, we have
generalized Fontaine’s injection ([Fon82,�éorème 2′] ) to the imperfect residue field
case.

�eorem 5.6 �ere is a canonical K-linear injective homomorphism

ρ ∶ H0(X , Ω1
X/K)Ð→ HomZp[GK] (Tp(X),Vp(Ω1

O
K
/OK
)).(5.6.1)

6 Weak Hodge–Tate Representations

Definition 6.1 For any C- GK-module V of finite dimension, let

0 = V0 ⊊ V1 ⊊ V2 ⊊ ⋯ ⊊ Vn = V(6.1.1)
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be a composition series of V, i.e., Vi+1/Vi is an irreducible C- GK-module for any i.
�e set of factors {Vi+1/Vi}0≤i<n does not depend on the choice of the composition
series by Schreier refinement theorem. We call the multiset

wt(V) = {r i ∣ Vi+1/Vi ≅ C(r i), 0 ≤ i < n}(6.1.2)

the multiset of weak Hodge–Tate weights of V. If all the factors are Tate twists of
C, i.e., dimC V equals the cardinality of wt(V), then we call V a weak Hodge–Tate
C-representation of GK . We denote by C the full subcategory of finite-dimensional C-
GK-modules formed by weak Hodge–Tate representations.

Proposition 6.2 Let V be a finite-dimensional C- GK-module.

(i) For any short exact sequence of finite-dimensional C- GK-modules 0→ V ′ →
V → V ′′ → 0, we have wt(V) = wt(V ′) ⊔wt(V ′′). In particular, C is a closed
under taking subrepresentation, quotient and extension.

(ii) For the dual representation V∗ = HomC(V ,C), we have wt(V∗) = −wt(V).

Proof �e first assertion follows from the basic properties of composition series.
�e second assertion follows from the basic fact C(r)∗ = C(−r). ∎

Proposition 6.3 For s ∈ N and r ∈ Z, the subrepresentations and quotients of C(r)⊕s
in C are direct summands of C(r)⊕s of the form C(r)⊕t for some t ∈ N.

Proof A�er twisting by −r, we can assume that r = 0. For any subrepresentation V
of C⊕s , we setW = C⊕s/V . Consider the following commutative diagram

We see that the first and third vertical maps are injective, because K-linearly inde-
pendent GK-invariant elements are also C-linearly independent. But the middle map
is identity, which shows that V = VGK ⊗K C, W =WGK ⊗K C. �en any splitting of
0→ VGK → K⊕s →WGK → 0 induces a splitting of 0→ V → C⊕s →W → 0, which
completes our proof. ∎

Proposition 6.4 For s, t ∈ N and integers r1 , r2 such that r1 − r2 ≠ 1 or 0, any extension
of C(r2)⊕s by C(r1)⊕t in C is trivial.

Proof A�er twisting by −r2, we can assume that r2 = 0 and r1 = r ≠ 1 or 0. Given
an exact sequence 0→ C(r)⊕t → V → C⊕s → 0, take GK-invariants; then we obtain
an exact sequence

0 = (C(r)⊕t)GK Ð→ VGK Ð→ K⊕s Ð→ H1(GK ,C(r)⊕t) = 0,

from which we get an isomorphism VGK
∼
→ K⊕s . Hence, V = C(r)⊕t ⊕ C⊕s . ∎
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7 Hodge–Tate Filtration for Abelian Varieties

7.1 We keep the following simplified notation in this section:

G = GK , Ω = Ω1
O

K
/OK

;

KI = K ⊗OK
Ω̂1

OK

∼←Ð K ⊗OK
(⊕i∈IOK)∧ (by (3.9.1));

CI = C ⊗OC
(OK ⊗OK

Ω1
OK/Zp

)∧ ∼←Ð C ⊗OC
(⊕i∈IOC)∧ (by (4.4.2));

E = HomZp
(Tp(X),C), EG(1) = HomZp[G](Tp(X),C)⊗K C(1) ⊆ E(1).

We remark that the Tate module Tp(X) of the abelian variety X is a finite free
Zp-module. By applying the functor HomZp

(Tp(X),−) = E ⊗C − to the Faltings
extension (4.4.1), we get an exact sequence of C- GK-modules

0Ð→ HomZp
(Tp(X),C(1))Ð→ HomZp

(Tp(X),Vp(Ω))(7.1.1)

Ð→ HomZp
(Tp(X),CI)Ð→ 0.

We also write it as 0→ E(1)→ E ⊗C Vp(Ω)→ E ⊗C CI → 0.
We choose a C-linear retraction of ι in (4.4.1) and denote by

π ∶ HomZp
(Tp(X),Vp(Ω))Ð→ HomZp

(Tp(X),C(1))(7.1.2)

the induced C-linear homomorphism.
We denote by ρ̃ the composition of

H0(X , Ω1
X/K)

ρ
Ð→ HomZp[G](Tp(X),Vp(Ω)) π

Ð→ E(1)Ð→ E(1)/EG(1),
where ρ is the Fontaine’s injection (5.6.1).

Lemma 7.2 �e canonical map

EG ⊗K KI Ð→ (E ⊗C CI)G

is an isomorphism.

Proof Since E is a finite-dimensional C-vector space, the complete absolute value
on C extends to a complete absolute value on E uniquely up to equivalence. We fix
such an absolute value and still denote it by ∣ ∣p . Following (4.3.2) and (4.3.3), the
conclusion follows from the following descriptions

E ⊗C CI = {(x i) ∈ ∏
i∈I

E ∣ ∀N > 0, ∃ finite J ⊆ I, ∣x i ∣p < 1/N , ∀i ∉ J},

EG ⊗K KI = {(x i) ∈ ∏
i∈I

EG ∣ ∀N > 0, ∃ finite J ⊆ I, ∣x i ∣p < 1/N , ∀i ∉ J}. ∎

Lemma 7.3 �e map ρ̃ is injective, and its image lies in the G-invariants of
E(1)/EG(1). Moreover, ρ̃ does not depend on the choice of π. Hence, we have a canonical
K-linear injective homomorphism

ρ̃ ∶ H0(X , Ω1
X/K)Ð→ (E(1)/EG(1))G .
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Proof We take a K-basis {h l} of EG . For any ω ∈ H0(X , Ω1
X/K), thanks to

Lemma 7.2, we denote by∑ h l ⊗ α l ∈ EG ⊗K KI the image ofω inHomZp
(Tp(X),CI)

via Fontaine’s injection ρ (5.6.1) and (7.1.1). Take any li�ing β l ∈ Vp(Ω) of α l in the
Faltings extension (4.4.1). Consider the element

ρ(ω) −∑ h l ⊗ β l ∈ HomZp
(Tp(X),Vp(Ω)) = E ⊗C Vp(Ω).

In fact, it lies in E(1). For any σ ∈ G,
σ(ρ(ω) −∑ h l ⊗ β l) − (ρ(ω) −∑ h l ⊗ β l) = ∑ h l ⊗ (β l − σ(β l)) ∈ EG(1).

�erefore, ρ(ω) −∑ h l ⊗ β l is G-invariant modulo EG(1); i.e., it defines an element
in (E(1)/EG(1))G .Moreover, this element does not depend on the choice of the li�ing
β l . Indeed, suppose β l and β

′

l two li�ings of α l , then β′l − β l ∈ C(1), which shows that
(ρ(ω) −∑ h l ⊗ β l) − (ρ(ω) −∑ h l ⊗ β′l) ∈ EG(1). In particular, ρ̃ does not depend
on the choice of π.

Now we show the injectivity of ρ̃. Suppose that ρ(ω) −∑ h l ⊗ β l = ∑ h l ⊗ γ l ∈
EG(1). �en for any σ ∈ G,

∑ h l ⊗ (σ(β l + γ l) − (β l + γ l)) = 0,
which implies that β l + γ l ∈ Vp(Ω)G=0 by (4.5.2). Hence, ρ(ω) = 0, which forces ω
to be zero, since ρ is injective. ∎

�eorem 7.4 �ere is a canonical exact sequence of C- GK-modules

0Ð→ H1(X ,OX)⊗K C(1) ψ
Ð→ HomZp

(Tp(X),C(1))
ϕ
Ð→ H0(X , Ω1

X/K)⊗K C Ð→ 0.

(7.4.1)

Proof We set d = dimX = dimK H0(X , Ω1
X/K).�en Tp(X) is a freeZp-module of

rank 2d. Lemma 7.3 implies that the weak Hodge–Tate weight 0 of E(1) has multiplic-
ity ≥ d. Let X′ be the dual abelian variety of X, and we set E′ = HomZp

(Tp(X′),C).
Due to the fact that E′ = E(1)∗ (by Weil pairing) and Proposition 6.2, the weak
Hodge–Tate weight 1 of E(1) has multiplicity ≥ d. But dimC E(1) = 2d, which forces
these inequalities to be equalities. In particular, ρ̃ ∶ H0(X , Ω1

X/K)→ (E(1)/EG(1))G
is an isomorphism. Since C(1) has only trivial extension by C⊕d (Proposition 6.4), we
see that C⊕d is a quotient representation of E(1). By duality again, we see that C(1)⊕d
is a subrepresentation of E(1), and thus the canonical injection (E(1)/EG(1))G ⊗K

C → E(1)/EG(1) is an isomorphism. �erefore, we have a canonical surjection

E(1)Ð→ H0(X , Ω1
X/K)⊗K C .

By duality, H1(X ,OX)⊗K C(1) = H0(X′ , Ω1
X′/K)∗ ⊗K C(1) canonically identifies

with a subrepresentation of E(1). Now (7.4.1) follows from the avoidance of C(1)⊕d
and C⊕d . ∎

7.5 Let us complete the proof of the Main �eorem 1.3. We choose a retraction
of ι in the Faltings extension (4.4.1). By our construction, we have the following
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commutative diagram

(7.5.1)

where ϕ is the surjection in the Hodge–Tate filtration (7.4.1), π is induced by the
chosen retraction, and ρ is the Fontaine’s injection (5.6.1). Consider the following
diagram:

(7.5.2)

where δ′ is the connecting map associated to (7.4.1), where −π′ is the surjection in
(7.1.1), and where we identify H1(X ,OX) with HomZp[G](Tp(X),C) by (7.4.1) and

identify H1(G ,C(1))with KI by (4.5.1), which gives the right vertical arrow. Let {h l}
be a K-basis of H1(X ,OX). For any ω ∈ H0(X , Ω1

X/K), we write −π′(ρ(ω)) = ∑ h l ⊗
α l by 7.2, where α l ∈ KI . Let β l ∈ Vp(Ω) be the li�ing of α l via the chosen splitting of
the Faltings extension. We see by the diagram (7.5.1) that ρ(ω) −∑ h l ⊗ β l is a li�ing
of ω via ϕ. �us, δ′(ω) is represented by the following 1-cocycle:

σ z→∑ h l ⊗ (β l − σ(β l)), ∀σ ∈ G .

We notice that α l ∈ KI corresponds to a class in H1(G ,C(1)) represented by the
following 1-cocycle:

σ z→ σ(β l) − β l , ∀σ ∈ G .

In conclusion, diagram (7.5.2) is commutative.
7.6 Now we can prove Corollary 1.4 to the main theorem. If the sequence (7.4.1)
splits, then the ϕ in (7.5.2) is surjective. Hence, δ′ is zero map, and so is π′ ○ ρ. �us,
the image of the Fontaine’s injection ρ lies inHomZp

(Tp(X),C(1)).We easily see that,
conversely, if the image of the Fontaine’s injection ρ lies inHomZp

(Tp(X),C(1)), then
sequence (7.4.1) splits. Moreover, the splitting is unique by the avoidance of C(1)⊕d
and C⊕d .
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