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Statistics of joint spacing in rock layers
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Abstract – We show that spacing statistics can be obtained for all fracture densities by the same
equation. Using the simple ‘shear lag’ theory, it is demonstrated that the results adequately fit
experimental measurements. Theoretically, it is shown that two parameters are sufficient to characterize
all spacing distributions. It is found that no real spacing saturation exists. Rather, a very low increase
in joint densities occurs for a very high incremental stress increase. Moreover the transition to this kind
of saturation is gradual and not abrupt. In this way the high density distributions with very small inter-
joint distances, which pose a problem for saturation models, are directly explained. Correlation with
creep experiments is also established. Comparison of our method with Weibull statistics is performed.
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1. Introduction

Joints that are opening-mode fractures are the most
common geological structures in the Earth’s crust,
and their spacing is important for many applications.
Geologically, Naylor & Stephenson (2010) showed
that significant differences in joint spacing, persistence
of discontinuities and block size were correlated to
mesoscale erosion in Australian and Welsh study sites.
Stephenson & Naylor (2011) demonstrated that the
shape and size of boulders, liberated from layers
of Blue Lias Limestone in Wales, United Kingdom,
could be linked to the thickness of beds and joint
spacing. Joint spacing is important in rock mechanics,
as demonstrated by Storti et al. (2011), who found
that its variability is associated with the weakening
of bedding in chalk atop of the Krempe salt ridge
at Lägerdorf, NW Germany. Joint spacing is also
significant in engineering projects. Brown et al. (1999)
found that fluid circulation and production temperature
in engineered geothermal reservoirs, particularly the
Hot Dry Rock system, depends on the mean effective
joint spacing. For the construction of a breakwater
to be economical as well as effective, prediction of
in situ block sizes from joint spacing data is a vital
early design input (Latham, Meulen & Dupray, 2006).
In tunnel engineering, there are strong relationships
between geological parameters like joint spacing and
tunnel boring machine (TBM) performance parameters
(Hassanpour, Rostami & Zhao, 2011). Joint spacing
often provides basic information in hydrology, oil and
gas industries, material engineering and more (Bahat,
Rabinovitch & Frid, 2005).

Commonly, joint spacing is examined under condi-
tions of layer-parallel extension under constant layer-
normal stress. A good review can be found in Shöpfer
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et al. (2011). It is usually claimed that fracture spacing
increases with layer thickness (e.g. Ladeira & Price,
1981). A consequence of this scaling is sequential
infilling: new fractures forming between existing
fractures (Bai & Pollard, 2000b). Sequential infilling
by all shear lag models (Cox, 1952; Hobbs, 1967)
favours mid-way fracturing between existing fractures
(Ohsawa et al. 1978; Schöpfer et al. 2011). Fracture
saturation is assumed to occur when a critical ratio of
fracture spacing to thickness is reached (see Section
3.a below). A possible obstacle for joint propagation
and hence for saturation is suggested by Bai & Pollard
(2000a) to be a layer-parallel compressive normal stress
arising between existing joints. A typical outcrop of
intensively jointed sedimentary formation with a close-
up view of a fractured limestone bed is shown in
Figure 1. We use this exposure, by Becker & Gross
(1996), in our joint spacing analysis in Section 3.b
below. Jain, Guzina & Voller (2007) calculated the
stress profile in a competent layer as a function of the
distance from an existing joint. The calculation shows
that a one-dimensional approach (similar to that of Cox,
1952 and Hobbs, 1967) is quite sufficient in obtaining a
very accurate approximation to the more elaborate 2D
procedure (e.g. Bai & Pollard, 2000a,b). Jain, Guzina &
Voller (2007) included in their method the influence of
both the overburden and the possibility of slip between
the competent and the adjacent layers.

In this paper we deal with the statistical considera-
tions of the build-up of the joint spacing distribution,
which were not treated in Jain, Guzina & Voller (2007).
Since we are interested in presenting the basic features
of the phenomenon, we use here the simplest ‘shear
lag’ result, namely that of Hobbs (1967), for the stress
profile away from an existing joint. Inclusion of slip
and/or overburden or using other stress field models
(such as that of Bai & Pollard, 2000a,b) can easily be
accommodated in our approach by changing Eq. (2)
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Figure 1. The studied bed and the definitions of bed boundaries, bed thickness and spacings (adapted from Becker & Gross, 1996).

below or by using the appropriate model’s numerical
results in Eq. (2). The use of just the simple Hobbs
(1967) model is shown to be adequate to describe field
results of joint spacing quite reliably. Furthermore, the
overburden effect can sometimes be compensated for
by the ‘Secor effect’ (Secor, 1965, 1969).

We postulate here that the criterion for fracture for
the jointed layers is really based only on the level of
stress (σ) that they have endured during the elapsed
geological time. This is founded on the assumption
that the flaw distribution is unvarying across the bed.
It is conceivable that such a fracture criterion based
on σ alone is the prevailing one for sub-critical (below
KIc) extended-time fractures for all brittle materials.
This result is shown to be in line with results obtained

in experiments on ‘lengthy’ laboratory creep (Yoon,
Wiederhorn & Luecke, 2000). Note that we are dealing
only with joints that were formed quasi-statically, not
with joints cutting granites, which occasionally are
proven to be dynamic (above KIc). It is observed
that dynamic joints are relatively abundant in granites
whereas quasi-static ones are prevalent in sedimentary
rock layers (Bahat, Bankwitz & Bankwitz, 2003).

Joint spacing in layered rocks is considered to have
originated by two main processes, and possibly by
intermediate ones.

The first process envisages the layer denoted by A,
as being ‘sandwiched’ by two, ‘upper’ and ‘lower’,
neighbouring layers (see Fig. 1), each of which is made
of different material to that of A. The neighbouring
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layers, because of their higher compliance, are usually
less jointed than A. But they tend to stretch the latter
when they themselves are stretched, thus transferring
the stress to it. This process is referred to as the Cox–
Hobbs case after the two authors who analysed it (Cox,
1952; Hobbs, 1967). In this process the three layers are
treated as perfectly connected (glued) to each other,
and the shear stress transferred at the inter-layers is
transposed into tensile stress in the middle layer. The
Cox–Hobbs model can be divided into two parts. The
first part, based on Cox (1952), calculates the stress
transfer from the outer layers to A, and the second part
treats the process of joint ‘infilling’, i.e. the addition of
more and more fractures to the layer, as a function of
strain (or stress) increase.

The second process by which a layer is stretched
and jointed is when it is completely separated from its
neighbouring layers and is itself pulled upon, either by
remote tectonic stresses or by pore pressure, or both.
This process is called the Pollard–Segall model (Pollard
& Segall, 1987) after the two authors who analysed it.

These two end-member processes of layer fracturing
actually appear in nature, as do intermediate modes in
which the ‘gluing’ of the layers is less than absolute and
friction exists between the A layer and its neighbours,
thus transferring to A only part of the stress in them.
Jain, Guzina & Voller (2007) calculated a partial
transfer of stress by treating the possibility of slip
between the layers.

1.a. Basic terms

Shadow: An important physical term related to joint
spacing is the shadow zone (Rives et al. 1992;
Rabinovitch & Bahat, 1999). The term shadow zone
used in the literature describes a region around an
existing joint in which no new joints can occur (e.g.
Rives et al. 1992), generally also termed an opaque
shadow zone. A non-opaque shadow zone would
entail the possibility of additional joints appearing in
this region but only under very stringent conditions
(very high stresses, Rabinovitch & Bahat, 1999).
Figure 2 depicts (schematically) two joint spacing
distributions for an opaque and non-opaque shadow
zone, respectively.

Saturation: This is another term used to describe
the jointing phenomenon. Thus, in relation to opaque
shadow, there is a complete saturation in the total
number of fractures inside a layer (demonstrated, for
example, by the lack of joints in the first part of the
joint spacing of the opaque shadow part of Fig. 2);
whereas in relation to non-opaque shadow, saturation
is only an apparent saturation in which the addition of
joints to the layer requires larger and larger amounts of
additional strain.

Slow phenomena: We are considering here very slow
phenomena, which no laboratory measurements can
exactly simulate. The experiments that have the closest
similarity to them are those related to creep or fatigue
(e.g. creep experiments can last up to ∼ 1 year). The

Figure 2. Schematic joint spacing distribution under opaque and
non-opaque shadow conditions. Each distribution contains zero
frequency at zero and a very high spacing and a peak at the most
frequent spacing. The opaque shadow distribution includes a
zero joint spacing region where no fractures appear.

durations of both experiment types are of course much
smaller than geological ones. Nevertheless, we shall use
results of a creep experiment to glean some information
about geological jointing.

Flaw distribution: There are several ways in which
to describe the flaws in the material, which, under
stress, lead to the development of joints. The simplest
one is to state the distributions of flaws according
to their size and to the angle to the existing stress
field. A different method is to directly state the flaw
cumulative distribution function according to their
strength, namely the probability that (under a specific
stress field) a flaw would turn into a joint at or above a
specific stress value. Note that for regular engineering
experiments this limiting value is connected with the
probability that the KI value at the tip of this flaw
reaches KIc; while for creep or subcritical experiments,
the attainment of a lower value of KI, denoted by KI0

(Wan, Lathabai & Lawn, 1990), is implied. That is, for
the latter experiments a shift of the distribution to lower
values of stress is indicated.

2. The model

The model consists of two components, the statistical
part and the value of the stress field around an existing
joint. The statistical part is similar to the one introduced
in Rabinovitch & Bahat (1999) but here, the stress field
used is the Cox–Hobbs ‘shear lag’ theory and an analyt-
ical solution is obtained. We use here an approximation,
strictly applied only to joint densities that are not too
large, since no account is taken of the lowering of the
inter-joint maximal stress value. On the other hand,
since it provides a good approximation to the fracturing
processes at short distances from existing fractures, it
can probably be used also for large joint densities.

2.a. The statistical part

The statistical part is based on the distinction between
two properties. The first, q(x)dx (see Fig. 3), is the
probability that a new fracture would occur in between
a distance x and a distance x+dx from an existing joint.
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Figure 3. The assumption that q(x) is proportional to σ. (a) σ(x)
according to the Cox–Hobbs model. σ0 – the remote stress. (b)
q(x) = γσ(x) (full line) and an opaque shadow q(x) (dashed line).

Figure 4. Division of � into N intervals of length dx each. p(�)
measures the probabilities that no fracture has occurred between
0 and �, and that the first new fracturing did take place at �.

The second, p(�)d� (Figs 2, 4, 5), is the probability that
an additional fracture would appear between distances
� and �+d� from an existing joint and no other fracture
has occurred up to distance �. This distinction is
analogous to the following two probabilities of coin
flipping. The first, q, is analogous to the probability
(1/2) of getting heads in the fifth, say, throw of the coin,
while the second, p, is analogous to the probability that
the outcome of the fifth throw would be heads when
all four previous throws were tails. Heads and tails
correspond to fracture and no-fracture, respectively.
Obviously, p < q. Note that the measured histograms
in the literature are proportional to p(�). Our approach
is compared to the Weibull distribution, based on the
weakest link theory, in Appendix 1.

2.b. The stress field part

Regarding the stress field, we concentrate here on the
‘shear lag’ Cox–Hobbs case, which is relevant, for
example, to the field observations by Becker & Gross
(1996). As mentioned in Section 1 above, other models,
such as that of Bai & Pollard (2000a, b) can be used
as well within the framework of the statistical part.
In the absence of slip (or debonding) between the
layers, the ‘shear lag’ theory predicts that the stress
‘recovery’, σ(x), in the fracturing layer as a function of
the distance x away from an existing fracture (Fig. 3),
behaves (Hobbs, 1967, eq. (7)) like:

σ(x) = σ0[1 − exp (− |x | /δ)] (1)

Where δ = (d/2)(E/GN)1/2, d is the joint layer thickness
(Fig. 1), E is the Young modulus, GN is the shear

modulus of the neighbouring bed and σ0 is the remote
stress.

Note that Eq. (1) is an approximation, valid when the
number of joints is not too large (see Section 5 below).

All of our results are based on one assumption: the
probability of a crack forming at a distance x (q(x),
Fig. 3) from an existing fracture in a rock layer is
proportional to the tensile stress σ at x. We regard the
agreement between measured distributions in the field
and the results obtained here (see Section 3 below) to
be a good indication of the validity of our assumption.
Note that we do not assume any lower value of σ, such
as a rock strength, below which no fracture could occur,
since we consider the possibility of large enough flaws
that could have appeared during the geological times
discussed here, and would lead to fracture even at very
low stresses.

2.c. The combined model

Thus, let q(x)dx be the probability that an additional
fracture appears between x and x + dx (Fig. 3a). We
assume that q(x) = γσ(x) where γ is a proportionality
constant. This assumption is evidently based on the
presumption that the flaw density is unchanged along
the bed. Hence we posit (Fig. 3b), by Eq. (1),

q(x) = γσ0 [1 − exp (− |x | /δ)] (2)

This assumption means that the shadow, an area
around an existing crack preventing other fractures
from entering there (see Section 1.a), is not completely
opaque, i.e. a new crack is not completely prevented
from occurring in the close neighbourhood of an
existing crack (experimental examples are shown in
Fig. 7). This probability is obviously quite small but is
not zero, since there might be flaws of such a size that
even a small stress would lead to fracture. Such flaws
could appear at any time during the overall fracturing
process so that, owing to their previous absence, no
fracture has occurred earlier at this position. Note that
for an opaque shadow (Fig. 3b) q(x) = 0 for –b < x < b,
where b denotes the excluded area around an existing
crack, while q(x) = λ for x < −b or x > b, where λ

measures the crack density, i.e. the number of joints per
unit layer length.

Now define p(�)d� to be the probability that the
distance between neighbouring joints would reside
exactly in the interval between the distance � and the
distance �+d� (Rabinovitch & Bahat 1999, see also
Section 2.a). The probability p(�)d� is equal to the
product of two terms. First, the probability y(�) that
no fracture has occurred between x = 0 and x = �,
and second, the probability that it actually did occur
between x = � and x = �+d�. The second probability
is of course q(�)d�, while the first one is somewhat
more difficult to obtain. Let us divide � into N intervals
each of length dx = �/N (Fig. 4). As mentioned, the
probability of an additional fracture appearing in dx at a
distance x from the origin (where a crack resides) is just
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q(x)dx. Therefore, the probability that no crack appears
in dx is (1 − q(x)dx). Since the probabilities in all
intervals are mutually independent the probability that
no fracture has appeared in all N intervals is the product,
denoted by

∏N
i=1 , of the individual ones, namely

y(�) =
N∏

i=1

[1 − q(xi ) dx] (3)

Taking the logarithm of both sides we get

ln y(�) =
N∑

i=1

ln [1 − q(xi ) dx] (4)

where
∑N

i=1 denotes the sum between i = 1 and i = N.
Passing to the limit as dx → 0 we get

lim
dx→0
N→∞

ln y(�) = −
∫ �

0

q(x) dx (5)

where use has been made of the relation

lim

ε → 0
ln |1 − ε| = −ε (6)

Therefore y(�) = exp [ − ∫ �

0 q(x) dx]. Hence, the
product of probabilities mentioned before yields

p(�) = q(�) exp

{
−

∫ �

0

q(x) dx

}
. (7)

Eq. (7) states in fact that to obtain p(�) one has only
to know the probability q(x). A nice feature of Eq.
(7) is that it is normalized for any q(x). This feature
is proven as follows. Define u(�) = ∫ �

0 q(x)dx . Then,
q(�) = du(�)

d�

and ∫ ∞

0

p(�) d� =
∫ ∞

0

du(�)

d�
exp(−u) d�

=
∫ ∞

0

exp (−u) du = 1 (8)

We establish our proposed relation, q = γσ in two ways.
First, we assume this relation to hold, and calculate
the exact p(�) that should arise. This procedure is
carried out for the Cox–Hobbs case, and the results are
compared with the field data of Becker & Gross (1996).
Agreement between the model and the experimental
distributions obtained there is quite good. The model
also readily explains the ‘closely spaced fractures’
appearing in Becker & Gross (1996) for which Bai &
Pollard (2000b) invoked an additional mechanism (flaw
size, length and position distribution, possible pore
pressure). The second verification of the q(x) = γσ(x)
relation is derived from an extended creep experiment
of Yoon et al. (2000), which agrees with this relation
for low σ values.

3. Model implications

3.a. General

For the Cox–Hobbs case, we insert in Eq. (7) the form
of q(x) of Eq. (2) and obtain:

p(�) = (η/δ) [1 − exp (−z)] exp {−η [z − 1 + e−z]}
(9a)

where z = �/δ and η = γσ0δ. Eq. (9a) can also be written
(in full) as:

p(�) = γσ0[1 − exp(−�/δ)]

× exp{−γσ0[� − δ (1 − exp (−�/δ)]} (9b)

Eq. (9) is the joint spacing distribution for the
Cox–Hobbs case according to our assumption. Some
remarks regarding the different parameters that appear
in Eq. (9) are in order:

(1) Lengths are always measured in units of δ =
(d/2) (E/GN)1/2. The latter has units of length and, in a
sense, normalizes bed thicknesses. Normalized spacing
z = �/δ can then be compared between different beds.

(2) The proportionality constant, γ( = q/σ), has units
of length∗(stress)−1 or units of (surface tension)−1. It
can probably be deduced from creep experiments (see
Section 4 below) if the latter can be seen as applicable
to geological processes.

(3) The parameter η = γσ0δ is dimensionless.
A crude interpretation of it is that it provides the
approximate probability that a second crack would
appear within a distance δ of an existing fracture.
Higher η values therefore imply higher joint densities.

(4) The parameter γσ0( = η/δ) has dimensions of
(length)−1. It measures the probability per unit length
that a second crack appears a long distance away from
an existing fracture. As such it is a direct measure of
joint density.

(5) It is seen that the only genuine length-
normalizing coefficient is δ, being the inherent physical
variable of the Cox–Hobbs spacing. Nevertheless,
regarding the question of the addition of distributions
from different layer positions and different lithologies,
it is clear (from Fig. 5) that such a procedure is
not advisable. For example, an addition of two, even
normalized distributions of types 5a and 5c, say, would
create a ‘distribution’ having a fictitious double peak.

Eq. (9) can be viewed as the one and only joint
spacing distribution, both for low and (not too) high
densities of joints. It is thus not a transition between
exponential, log normal to normal distributions (Rives
et al. 1992). The exact distribution, Eq. (9), is shown
in Figure 5 for several joint densities. The latter are
represented by the parameter η. Note that the shapes of
these distributions could easily mislead one to assume
that the formerly mentioned transitions do occur.

At this point we derive some features of the
distribution (Eq. 9a) and discuss the significance of
the only two parameters that appear therein, namely
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Figure 5. (Colour online) Theoretical spacing distributions, p(z) (arbitrary units), for the Cox–Hobbs case (Eq. 1). Lengths z are
measured in dimensions of δ: z = �/δ. (a) For η = 0.1, (b) for η = 1.0, and (c) for η = 10.0. Note that η is proportional to the remote
stress in the layer and to δ. (d) For η = 0.5, 1, 3, 5, 10; here distributions are shown on the same scale to emphasize the fast change of
the peak with η between 0.5 and 3 and the slow change for η between 5 and 10.

δ and η. First, let us remark that since all lengths are
scaled by δ, any measured statistic such as the average
or the median should also be proportional to δ. We
next discuss the behaviour of the distribution median,
its peak and the related interesting question of joint
‘saturation’.

We start with the question of what ‘saturation’ is and
what is its origin. Saturation (see Section 1.a) arises
by the following two opposing influences. On the one
hand, a larger stress results in smaller joint spacing.
On the other hand, an opaque shadow prohibits spacing
from going to zero, namely there is a certain maximum
number of joints in a layer. Experimental results, how-
ever, show ‘closely spaced fractures’ (see e.g. Bai &
Pollard, 2000b). To understand the real solution of this
quandary, consider Eq. (9) and Figure 5d. It is seen that
the distribution becomes more and more concentrated
as η (or σ0) increases. Yet, the positions of the peak
and the mean of the distribution only slightly decrease
with η, and it seems that they would never become
zero. Actually, as σ increases, the additional amount
of stress needed for the same incremental decrease in
spacing greatly increases. It costs more, in terms of σ,
to create a new crack. To calculate the position of the
peak of the distribution as a function of η, we equate
to zero the derivative of p(�) with respect to �. This
yields exp (−z) − η(1 − exp (−z))2 = 0 or, denoting

ν = exp (−z) and solving for the quadratic equation,
we get

ν = 1 + 1/(2η) ± (1/η + 1/(4η2))1/2 (10)

hence, the distribution peak is:

zmax = −ln [1 + 1/(2η) − (1/η + 1/(4η2))1/2] (11)

where only the negative sign was chosen to agree
with the fact that exp(−zmax) should be less than one.
Figure 6 shows the change of zmax as a function of η. It
is seen that zmax tends to zero with η (e.g. with stress
increase), that is, no real saturation. This tendency is
very slow, logarithmic in fact (but not hyperbolic).
Therefore, although no real saturation occurs, zmax

presents an ‘effective saturation’ behaviour (which is
in line with experimental results quoted by Becker &
Gross, 1996, fig. 3) on polystyrene plates and cross-ply
glass where the mean fracture spacing was measured as
a function of stress (strain) and deemed to be hyperbolic
(Rives et al. 1992). In these experiments excessive
additional stresses are required for the attainment of
additional cracks. Note that the changes of zmax and
median values (see Fig. 6) are gradual and the transition
from the range of ‘easy’ crack density increase to the
range of ‘effective saturation’ also occurs gradually
(say, in the range η between 5 and 15 rather than
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Figure 6. (Colour online) Distribution peaks, Zmax, and medians
Z (both measured in dimensions of δ) as functions of η. Note
the fast change of Zmax and Z values for small η values, where
new cracks are relatively easy to form for even a small change of
stress, and the very slow (logarithmic) change of these values for
larger η (effective saturation) where increasing the crack density
becomes harder and harder.

through a threshold value of η(σ0), as suggested by
Bai & Pollard, 2000a).

The median of the distribution � = δZ can easily be
calculated numerically. Results are shown in Figure 6
where Z is shown as a function of η. It is seen that the
behaviour of the median is similar to that of the mean,
as expected. Since Z = �/δ, which is proportional to �/d,
Z is actually proportional to the FSR parameter (Gross,
1993) (called by Bai & Pollard (2000a, b) the ‘fracture
spacing to layer thickness ratio’). The parameter Z is
(within Cox–Hobbs’s model) the ‘correct’ normalized
fracture spacing ratio. If Z would have been a constant,
then the slope of � as a function of d (more accurately as
a function of δ) would have been constant, leading to a
constant value of the FSI (fracture spacing index; Narr
& Suppe, 1991), which is the slope of the best fit line for
points depicting � v. d for layers of different thicknesses.
According to Figure 6 this is not so. The median is
proportional to δ only as long as η does not change
significantly between different layers. This implies that
the straight line obtained for FSI measurements from
different layers (Narr & Suppe, 1991) is somewhat
fortuitous. For an ‘almost exact’ linear dependence,
both σ0 and δ would have to be the same for the different
layers, the spread of layer thickness for the different
layers should not be too large and should lie in the
larger η (‘effective saturation’) region.

This study shows that there are only two parameters
that can be obtained by the analysis of spacing
distributions, i.e. δ and η (or δ and γσ0). The value
of δ can also be calculated by the layer thickness and
the elastic properties of the rock; therefore, η becomes
the most important measurable parameter. Its value,
(a) determines the position of the fracture population

of a particular layer with respect to effective saturation,
and (b) on comparing different layers, can provide ratios
of remote stresses causing fracture in them. It is seen
(Figs 5, 6) that spacing distribution depends on the
maximum stress that has acted in the rock layer for a
significant period of time.

3.b. Comparison with jointing in nature

We now show that the distribution of Eq. (9) is
indeed compatible with the histograms of joint spacing
measured by Becker & Gross (1996, fig. 9; see our
Fig. 7) of the Turonian Gerofit Formation (Fig. 1),
southern Israel. The comparison is itemized here for
their section I, and calculated results of all sections are
given subsequently.

3.b.1. Compatibility

The � axis for section I stretches between 0 and 80 cm,
in increments of 3 cm. The bars have heights (number
of points) as follows 1, 4, 9, 14 . . . (Fig. 7I). Since we
would like to treat unit length increments of 1 cm each,
each bar should actually appear three times and be of
one-third height. The sum of all bin heights is 110. In
order that the distribution be normalized (the sum of
all bin heights be equal to one) each number should be
divided by 3 × 110 = 330. The numbers thus obtained
(Fig. 8a) are compared to Eq. (9b) in a ‘least square’
fashion (such as ‘curve fit’ in Matlab). Here, the two
parameters sought are γσ0 and δ. Results for all four
sections are shown in Figure 8 and the values of γσ0, δ

and η = γσ0δ are summarized in Table 1.
As seen, the agreement of the data to Eq. (9b) is

very good, especially the shapes of the distributions.
Note that the existing scatter of points in Figure 8a
and 8d, is derived from the relatively small number of
measurements in these cases, 110 and 94, respectively,
and the spacing range over which these measurements
extended was relatively large (0–80 cm), compared
with Figure 8b,c, which shows far less scatter because
the number of measurements were 237 and 271,
respectively, and the spacing range covered only 0 to
∼ 40 cm. Moreover, the scatter in Figure 8a,d is very
evenly distributed around the computed distribution,
rendering it to be of a random error type rather than a
cause of doubt in the distribution shape itself.

The values of η obtained for sections I, III and IV
are all around 1.5, placing these sections deep inside
the ‘unsaturated’ region in Figure 6. The high η value
of section II indicates that this section has ‘suffered’ a
much higher stress (strain) during its history, bringing
it (or at least the IIb part) into the saturated region.

A simple test of the self-consistency of the results
can be carried out. Consider, for example, section III.
A direct measurement from the histogram yields the
median to be � ≈ 11.5 cm, hence, Z = �/δ ≈ 11.5/11.37
= 1.01. From Figure 6 this Z value leads to η ≈ 1.7,
which is close to the 1.41 obtained by the least square
method.
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Figure 7. Joint spacing distributions of the Turonian Gerofit Formation, South Israel (adapted from Becker & Gross, 1996, fig. 9).

Figure 8. Analysis of results of Becker & Gross (1996) spacing measurements. Sections I–IV are given in (a–d), respectively. ∗

are measurements and full lines are fits (Eq. (9)). Note that spacing (�, measured in centimetres) is not normalized to δ but p(�) is
normalized (see text).
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Table 1. Physical parameters of joint spacing (based on data
from Becker & Gross, 1996)

Section γσ0 (1/cm) δ (cm) η (dimensionless)

I 0.089 19.39 1.725
II 0.637 65.29 41.590
III 0.124 11.37 1.410
IV 0.091 14.15 1.288
IIa 0.276 27.76 6.312

We would like to stress that the main argument
against the saturation models is that in all parts of
Figures 7 and 8 there exist several closely spaced
fractures, i.e. fractures very close to existing ones,
whose spacings are much shorter than the layer thick-
ness, measured (18 cm) or normalized. The present
model adequately explains these fractures within its
own capacity.

3.b.2. Deviation from compatibility

The parameters γσ0, δ and η of section II are,
however, seen to be far off from all the rest. As
discussed by Becker & Gross (1996), this section
experienced extreme stress conditions and the data
thereof are therefore exceptional. Moreover, these
data are composed of several subsections and such a
composition is not advisable (see point (5) in Section
3a). Some remarks are in order:

(1) In order to better understand the results of
section II, the histogram of subsection IIa was analysed
separately in Figure 9 (the histogram of subsection IIb
is dubious since, (a) this is the section with the largest
spread of σ, and (b) the number of events does not
add up to the quoted 120). (2) As seen from Table 1,
even section IIa shows already much higher parameters
than the other three, suggesting unevenness of layer
thickness, stresses and/or elastic parameters.

4. Creep experiments: a close analogy to geological
fracture

We turn now to the experiments on creep (e.g. Poirier,
1985). These experiments are usually conducted at high
temperatures and low stresses. Owing to the limited
period of measurement, however, stresses are usually
not as low as those prevailing in geological layers.
In creep experiments the measured quantity is the
creep rate, measuring strain rate, r = ε̇, by a scanning
laser technique, i.e. the change in length per unit time
divided by the original length. Three stages of creep
are usually discerned (primary, secondary and tertiary)
by the magnitudes of r.

But since in geological processes the stresses
generally involved in single-layer jointing are assumed
to be small (see discussion following Eq. (13) below)
we restrict ourselves here to the primary stage. Usually,
for creep in ceramics, the dependence of creep rate on
stress and temperature is represented by the so-called

Norton equation

∂ε

∂t
= ε̇ = B σn exp{−Q/RT} (12)

where B is an empirical constant, Q the activation
energy and n the stress exponent (which normally
ranges between 1 and 2). As was pointed out, however,
by Yoon et al. (2000), this empirical formula is
inadequate to describe low stress creep both in tension
and in compression. Although the experiments of Yoon
et al. (2000) were carried out only for silicon nitride,
we assume that they hold for other ceramic materials
as well as for polycrystalline rocks. Yoon et al. (2000)
obtained the result that although the creep processes
within a material under compression were different
from those operating under tension, in both cases the
first part of ε̇ (i.e. for small strains, in the ‘primary’
stage) behaved in a similar way with respect to stress:
ε̇ was in fact proportional to the stress σ. Note that the
obtained behaviour for tension was actually

ε̇ = A σ exp (ασ) exp {−Q/RT}, (13)

but for low stresses, exp (ασ) ≈ 1 and ε̇ is again
proportional only to σ.

To recapitulate, according to Yoon et al. (2000),
for a brittle material both under tension and under
compression the response to creep is that ε̇, the rate of
change of strain, is proportional to the stress σ, for small
σ values. Since for many layers, fracture processes
have continued for very long times, it is conceivable
that the stresses present were quite small, otherwise all
jointing would have been in the ‘extreme saturation’
state (see Section 3.a above) which is not the case. We
therefore assume that the layer creep rate is given by

ε̇ = ασ (14)

where a is a constant. Consider now a layer in which
a single joint exists and is under a stress σ(t), which is
quite small but can change with time. Hence, after long
geological times, T, have passed, the present strain in
the layer is given by

ε =
∫ T

o

ε̇dt = a

∫ T

o

σ(t) = bσ (15)

where σ is the average stress that occurred in the layer.
This relation should also be true for each segment

�l around the point x. Now, the strain in the vicinity of
x, ε(x), can be approximated by

ε(x) = �N (x)(�/�l) (16)

where �N(x) is the number of fractures in the segment
�l, � is the opening of a crack, and it is assumed that
the increase in length of the segment is due only to
crack openings. Measuring x from an existing joint,
q(x) is evidently proportional to �N(x)/�l and hence
proportional to ε(x), which is in turn proportional to
σ(x).

https://doi.org/10.1017/S0016756812000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756812000180


1074 A . R A B I N OV I T C H A N D OT H E R S

Figure 9. Section IIa of Becker & Gross (1996). Symbols as for Figure 8.

This argument is obviously somewhat crude, since
we have neglected the changes in σ by the newly added
joints. If, however, the density of cracks is not very
high, this approximation is reasonable.

5. Discussion

Our results are based on the assumption that the
probability, q(x), of a crack to form at a distance x
from an existing fracture in a rock layer is proportional
to the tensile stress σ at x.

The first indication for the assumption that q(x) is
proportional only to σ was acquired from our results
in Rabinovitch & Bahat (1999). In that work several
possible shadow distributions (see Section 1.b, and
paragraph following Eq. (2)) were considered. These
were:

q(x) =
⎧⎨
⎩

λxα 0 ≤ x < μ

λ [1 (2μx)α] μ ≤ x ≤ 2μ

λ x ≥ 2μ

(17)

These possibilities of q(x) were applied to several
pure experimental distributions (‘pure’ here means that
no addition of distributions from different positions was
carried out; each distribution originated from a specific
layer, which went through the same stress history). The
results (Rabinovitch & Bahat, 1999) showed that only
two types of shadow distributions appeared, one with
α = 1 and one with α = 3. Note that q(x) of Eq. (2) here
has essentially the same shape as that of Eq. (17) with
α = 1. The fact that to all intents only two shadow types
were found, reminded us of the two main processes
mentioned in the introduction for layer fracturing,
namely the Cox–Hobbs process and the Pollard–Segall
process. It was shown (Rabinovitch & Bahat, 1999)
that, in fact, the α = 1 distribution was related to rocks
for which the Cox–Hobbs process was the preferred
jointing method, while the α = 3 distribution agreed
with the Pollard–Segall one. Therefore, we concluded

that q(x) was proportional to the stress field σ(x), where
x is the distance from an existing crack. This conclusion
was drawn since, (a) for the Cox–Hobbs case, for
short distances, x 
 δ, the exponent (Eq. (1)) can be
developed in a Taylor series to yield σ(x) ≈ σ0 x/δ,
which is proportional to x, i.e. α= 1; (b) for the Pollard–
Segall case, σ(x) is given (Pollard & Segall, 1987)
by

σ(x) = 8σ0(x/d)3 [4(x/d)2 + 1]−3/2 (18)

and for small values of x, x 
 d, (x/d)2 can be neglected
with respect to 1 and σ(x) ≈ 8σ0 (x/d)3, which is
proportional to x3. The powers of x, the α’s, for the
two cases are therefore α = 1 and α = 3, which are
exactly equal to the powers of x in the q(x) relations
obtained experimentally.

Eq. (1) is an approximation, valid when the number
of joints is not too large. For dense joints, there is inter-
action between adjacent joints and the stress between

them is given by: σ(x ′, x) = σ
[
1 − chβ(x′/2−x)

ch( βx ′
2 )

]
, where

x′ is the distance between the joint pair, and β = 1/δ.
In that case this stress never attains the ultimate σ0

value. We do not consider this case here. However, Eq.
(1) provides a good approximation for short distances
(|x|/ δ < 1), so it constitutes an adequate approximation
except for some intermediate inter-fracture distances at
high joint densities.

6. Conclusion

Several important results have been achieved regarding
joint spacing.

(1) The joint spacing distribution is shown to be
dependent only on q(x), where q(x)dx is the conditional
probability that if a crack exists at x = 0, another crack
would appear between x and x+dx away from it.

(2) The joint spacing distribution is exactly calcu-
lated from q(x) (Eq. (7)).
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(3) Our assumption, that q(x) is proportional exclus-
ively to the stress level σ(x), is verified by comparing the
analytical joint spacing distribution calculated under
this assumption with field data (Becker & Gross,
1996). An additional support is obtained from creep
experimental data.

(4) For the Cox–Hobbs case, a complete joint
spacing distribution is obtained, valid both for high
joint densities as well as for low ones. Our approach
amends their infilling approach and leads to a new
understanding of the saturation phenomenon.

(5) Saturation is shown not to be a certain lower
level threshold below which joint spacing would
never occur. It is rather an infilling process in which
joint spacing always decreases when strain (or stress)
increases, but, when joint spacing is large, the rate
of change of spacing with stress is high, while, when
joint spacing becomes lower, the rate of change
decreases logarithmically, i.e. it ‘costs’ higher and
higher stress increments for the same amount of joint
spacing decrease. There is a clear distinction between
unsaturated and saturated jointing, although the
transition from the first to the second occurs gradually.

(6) The field observations in which very small joint
spacings (much smaller than the layer thickness) appear
can readily be explained by the present model.

(7) It is shown that the only two parameters governing
the joint spacing distribution are δ the normalized
bed thickness, and η, which is proportional to the
accumulated stress in the layer. Experimental results
can yield only values of these two parameters. η can
be used to compare stress levels at different layers as
well as to locate the position of the joint spacing in the
measured layer with respect to saturation (which occurs
for η values above ∼ 10).

(8) For different functional dependence of q(x), for
example for the Pollard–Segall case or for the Cox–
Hobbs case with slip and overburden (Jain, Guzina
& Voller, 2007), the analysis is of course more
complicated. But in principle, all that is needed is
to replace the stress function in Eq. (2) by the new,
more elaborate profile (e.g. that given in eq. (20) of
Jain, Guzina & Voller, 2007) and continue (this time
completely numerically) to derive the relevant p(�).
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Appendix 1. Comparison with the Weibull distribution

The empirical Weibull distribution (Weibull, 1939, 1951, and
see e.g. Lu, Danzer & Fischer, 2002 for a critical review) with
two adjustable parameters has been successful in describing
many brittle fracturing experimental data. The method is
based on the ‘weakest link’ (e.g. Shih, 1980) theory and on
a specific relation of the fracture probability to the material
stress value. We briefly describe the Weibull method and
compare it to the present approach.

(A) The weakest link theory for fracturing is given by:

(1) For a single link:
Let F(x) be the probability of fracture in the link. The
variable x can be, for example, the length of the link or
the stress there. Then the probability that no fracture
occurs in the link is 1 − F(x).

(2) For n links (each of which has the same fracture
probability and they are all independent):
The probability of no fracture is [1 − F(x)]n

(3) If F(x) = 1-exp[−�(x)] (assumption), then the
probability of no fracture in one link is 1 − F(x) =
exp[−�(x)] and for n links exp[−n�(x)].

(4) The pdf (probability density function) of fracture in a
single link is:
f(x) = dF/dx = d�/dx exp(−�), i.e. the fracture
probability between x and x+dx is f(x)dx

(5) (a) If x is the length of the link, then the probability
that there is no fracture between 0 and nx (in the first
n links) and there is a fracture between x and x+dx is
therefore:
p(n,x)dx = d�/dx exp[−n�(x)]dx.

(b) If x is the stress σ, then the pdf of a link is f(σ) =
dF(σ)/dσ = d�/dσ exp[−�(σ)].

(B) The specific Weibull distribution assumes F(σ) = 1-
exp[−(σ−σth)/σ0]m, where σ is the present material stress,
σth is the threshold stress, below which no fracture occurs
(and is often taken as 0), σ0 is a normalizing material
strength and m is called the Weibull modulus. Thus, in
this case, � = [(σ−σth)/σ0]m and the pdf is given by
item 5(b).

The present approach (see Eq. (7)) can be compared to
item 5(a), namely it is also based on a weakest link method.
However, the comparison with the exact stress dependence
is not straightforward. In the present approach d�/dx can be
compared with q(x) and n�(x) with

∫ �

0 q(x)dx (since q(x) can
change along x, i.e. not all links are equal). Now, in our case,
q(x) = γσ(x), therefore, only for small values of x, q(x) is
proportional to x, � will be proportional to x2 or to σ2, and
compared with the Weibull distribution this would imply a
Weibull modulus m = 2.
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