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1. Introduction

We consider the one-dimensional scalar surface growth model (SGM)

vt + vxxxx = −∂xx(vx)2, (1.1)
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which is a model of epitaxial growth of monocrystals, with v being the height
of a crystalline layer. For more applicational motivations see [11,11,18,19,23],
and for certain stochastic aspects see [1–4,7]. The analytical results for the SGM
share striking similarities with the 3D incompressible Navier–Stokes equations,
which has been explored in the recent years by the authors of [5,6,15,16,24].

The Cauchy problem associated with (1.1),{
vt + vxxxx = −∂xx(vx)2 in R × (0,∞) =: Q+,

v(0) = v0 on R,
(1.2)

admits the following notion of an energy weak solution.

Definition 1.1. Let v0 ∈ L2(R). We say that a function v ∈ L∞(0,∞;L2(R))
such that vxx ∈ L2(0,∞;L2(R)) is an energy weak solution to (1.2) provided

(i) (distributional formulation)
ˆ ∞

0

ˆ
R

(
vφt − vxxφxx − v2

xφxx

)
=
ˆ

R

v0φ(0) (1.3)

for every φ ∈ C∞
0 ((−1,∞) × R),

(ii) (energy inequality) for almost every t � 0

1
2

ˆ
R

v(t)2 +
ˆ t

0

ˆ
R

v2
xx � 1

2

ˆ
R

v2
0 . (1.4)

Remark 1.2. Any energy weak solution v of (1.2) can be modified on a set of
measure zero so that the energy inequality holds for any t � 0 and

(iii) v(t) is weakly continuous into L2, i.e. for any w ∈ L2

ˆ
R

v(t)w is continuous on [0,∞),

(iv) (time-truncated distributional formulation) for every t > 0 and φ ∈
C∞

0 ((−1,∞) × R)

ˆ
R

v(t)φ(t) +
ˆ t

0

ˆ
R

(
vφt − vxxφxx − v2

xφxx

)
=
ˆ

R

v0φ(0), (1.5)

(v) ‖v(t) − v0‖L2(R) → 0 as t→ 0+.

Remark 1.2 is proven in appendix 6.1.
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In this note we are interested in local regularity properties of weak solutions
to (1.1). Throughout the paper we will use the notation z = (x, t) and we will
denote a biparabolic cylinder centred at z by

Qr(z) := (x− r, x+ r) × (t− r4, t].

We will use the following shorthand notation for
(a) cylinders:

Qr(z) = Qr as well as Q1(0, 0) ≡ Q,

where there is no danger of confusing cylinders with different centres, and for
(b) the function spaces:

Lp,q(Qr) := Lq(t− r4, t;Lp(x− r, x+ r)),

W k,0
p,q(Qr) := Lq(t− r4, t;W k

p (x− r, x+ r)).

We will also apply the convention that any Sobolev spaces and Lebesgue
spaces are considered on R unless specified otherwise. Moreover, we write
‖ · ‖q := ‖ · ‖Lq ,

´
:=

´
R
. We are now ready to introduce

Definition 1.3. Function v is a suitable weak solution to (1.1) on Q provided

(vi) v ∈ L2,∞(Q) and vxx ∈ L2,2(Q),

(vii) v satisfies (1.1) in the sense of distributions on Q, i.e.
´ ´

(v(φt − φxxxx)
− v2

xφxx) = 0 for every φ ∈ C∞
0 ((−1, 1) × (−1, 0)),

(viii) (local energy inequality) for any nonnegative φ ∈ C∞
0 (Q) and almost any

t ∈ (−1, 0)

1
2

ˆ 1

−1

v2(t)φ(t) +
ˆ t

−1

ˆ 1

−1

|vxx|2φ

�
ˆ t

−1

ˆ 1

−1

(
1
2
(φt − φxxxx)v2 + 2|vx|2φxx − 5

3
v3

xφx − |vx|2vφxx

)
.

(1.6)

In view of the definition of Q, the test function φ ∈ C∞
0 (Q) may not vanish at

t = 0, it vanishes only in the neighbourhood of the parabolic boundary.
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Remark 1.4. As in (iv), we can modify a suitable weak solution v on a set of
measure zero such that the generalized distributional formulation

ˆ 1

−1

v(t)φ(t) +
ˆ t

−1

ˆ 1

−1

(
vφt − vxxφxx − |vx|2φxx

)
= 0 (1.7)

holds for all φ ∈ C∞
0 (Q) and t ∈ (−1, 0), and that the local energy inequality

(1.6) holds for every t ∈ (−1, 0).

Definition 1.3 admits the obvious generalisation to an arbitrary cylinder Qr(z).
The definitions of weak energy solution and of suitable weak solution are not

artificial. Indeed, integration by parts yields the cancellation

ˆ
R

v ∂xx(vx)2 = −
ˆ

R

(vx)2vxx = 0,

which enables the following existence result.

Theorem 1.5. Given v0 ∈ L2(R) there exists an energy weak solution to the
Cauchy problem (1.2) that is a suitable weak solution on every cylinder Qr(z).

For the sake of completeness, the proof of theorem 1.5 is given in appendix 6.1.

1.1. Supercriticality

Our equation (1.1) enjoys invariance under the scaling

vλ(x, t) = v(λx, λ4t) (1.8)

and its total energy

E(v) := sup
t�0

ˆ
R

|v(t)|2 + 2
ˆ ∞

0

ˆ
R

|vxx(s)|2ds

vanishes on small scales, i.e. E(vλ) = λ−1E(v) → 0 as λ→ ∞. In this sense
equation (1.1) is supercritical. Hence one expects that standard methods, e.g.
a perturbation of linear theory, do not provide a satisfactory answer to well-
posedness in the large of (1.2). Observe that the small-scale decay of E occurs at
the same rate λ−1 as in the case of 3D Navier–Stokes equations under its scaling.
This essentially leads to certain similarities between (1.1) and 3D Navier–Stokes
equations, as discussed in the literature.
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1.2. Result

We provide regularity statements in relation to the quantity

I(z,R) :=
1
R2

ˆ
QR(z)

|vx|3. (1.9)

We note that I(z,R) is invariant with respect to the scaling (1.8) and it has
been studied in the previous work [16], where Hölder continuity of v in QR/2(z)
has been deduced from smallness of I(z,R). In our main result, i.e. theorem 1.6,
we improve integrability of a suitable weak solution for which I is bounded on
small scales, and we show local smoothness if I is small.

We will denote by Cα any positive constant that depends on some parameter α.

Theorem 1.6. Let v be a suitable weak solution of the SGM (1.1) on Q.
(i) (higher integrability) If there exists M <∞ such that

sup
QR(z)⊂Q

1
R2

ˆ
QR(z)

|vx|3 � M, (1.10)

then there exists δ0 = δ0(M) > 0 such that vx ∈ L 10+δ0
3 ,

10+δ0
3

(Q 1
2
) with

⎛
⎝ˆ

Q 1
2

|vx|
10+δ0

3

⎞
⎠

3
10+δ0

� CM

(ˆ
Q

|vx| 103
) 3

10

(� CCM (‖v‖2,∞;Q + ‖vxx‖2,2;Q)) (1.11)

(ii) (ε-regularity) Given γ ∈ (0, 1) there exists ε > 0 such that if

I(0, 1) ≡
ˆ

Q1

|vx|3 � ε, (1.12)

then

|vx(x, t) − vx(y, s)| � Cγε
1/3
(
|x− y| + |t− s|1/4

)γ

for (x, t), (y, s) ∈ Q 1
2
.

(1.13)

Let us note that:

• The higher integrability result (1.11) does not follow from regularity of a
suitable weak solution by interpolation, etc.

• Our result holds for an arbitrary γ ∈ (0, 1), unlike in the case of Navier–
Stokes equations (compare [13] and theorem 3.1 in [14]), thanks to lack of
pressure-related difficulties.
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• Ożański and Robinson [16] showed that smallness of I implies Hölder conti-
nuity of v (rather than of vx), which is not sufficient to further bootstrap the
regularity of v and exhibits a mismatch between an assumption involving vx

and a result for v. Part (ii) fills this gap, as (1.13) guarantees smoothness.
Indeed, using for example the regularity condition of [15], one has

Corollary 1.7. Under assumptions of theorem 1.6 (ii), v ∈ C∞(Q1/8).

• One can also provide respective partial regularity results based on
theorem 1.6. In particular, denoting by

S := {(x, t) ∈ R × (0,∞) : v is not infinitely differentiable

on any neighbourhood U � (x, t)}
the singular set of a suitable weak solution v, one can deduce from part
(ii) that P1(S) = 0 and that dB(S ∩K) � 7/6 for every compact K ⊂
R × (0,∞), where P1 denotes the one-dimensional biparabolic Hausdorff
measure and dB stands for the box-counting dimension. This improves the
conclusion of Ożański and Robinson [16], who showed these estimates with
S replaced by the set of points where v is not Hölder continuous (a subset
of S).

The remaining part of this note is devoted to proof of theorem 1.6.

2. Auxiliary tools

Here we gather two tools needed further: a Campanato-type estimate for a linear
equation and a multiplicative inequality.

2.1. The linear equation

Consider

ut + uxxxx + βuxxx = 0, (2.1)

where β ∈ R is a parameter. We will use (2.1) as a limiting system in our blowup-
type proof of the ε-regularity result (i.e. theorem 1.6 (ii)). In fact, one of the main
purposes of this work is to demonstrate that (2.1) is a more optimal linearisation
of the SGM (1.1) than the biharmonic heat equation ut + uxxxx = 0 (which was
used by Ożański and Robinson [16]). In fact, if one of the vx’s in (vx)2 in (1.1) is
replaced by a constant β, then the nonlinearity becomes β vxxx, which motivates
(2.1). In this section, we discuss a Campanato-type estimate for (2.1), which will
be later used in closing the blowup-type argument (in § 5.1.3).
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Lemma 2.1 Campanato-type estimate for the linear equation. Suppose that
u ∈ L2,2(Q1) with ux ∈ L2,2(Q1) satisfies (2.1) in the sense of distributions.
Then for any θ ∈ (0, 1/2), p � 1,

( 
Qθ

|ux − (ux)θ|p
)1/p

� c(1 + β) θ‖ux‖L2,2(Q1), (2.2)

where c > 1 is a universal constant and (ux)θ :=
ffl

Qθ
ux.

Proof. See appendix 6.2. �

Remark 2.2. Observe that there is no lowest-order term ‖u‖L2,2(Q1) present
on the right-hand side of (2.2), which the simplest energy estimate would dic-
tate. Instead (2.2) follows from an introduction of time-dependent oscillations
in estimates, inspired by [10], see also [22].

2.2. Multiplicative inequality

In the proof of theorem 1.6 (ii) (i.e. our ε-regularity result) it is sufficient to
use standard interpolation. However for the proof of theorem 1.6 (i) we need the
following more precise inequality. Recall Q+ := R × (0,∞).

Proposition 2.3. Let U = Qr(z) or U = Q+. There exists a constant C > 0
(independent of U) such that

‖fx‖L 10
3 , 10

3
(U) � C‖f‖ 2

5
L2,∞(U)‖fxx‖

3
5
L2,2(U) (2.3)

for every f ∈ L2,∞(U) with fxx ∈ L2,2(U) such that, in the case of U = Qr(z),
f is compactly supported in (x− r, x+ r).

We note that the compact support requirement may be relaxed to the condition
that f and fx vanish at at least one point in space (at almost every t) or the
condition that they vanish in the sense of spatial average.

Proof of Proposition 2.3. From the Gabushin inequality

‖ux‖ 10
3

� C‖u‖ 2
5
2 ‖uxx‖

3
5
2 ,

(cf. theorem 1.4 of [12], p.12, or the original [9]) and therefore also on an interval
I, provided u is compactly supported there (it actually suffices that u and ux

vanish somewhere on I, cf. [12], corollary 1.1, p. 21). Hence by density argument,
we have the same result at almost every t for u(t), where u ∈W 2,0

2,2(U). Taking
both sides to power 10/3 and integrating in time yields (2.3). �
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3. Caccioppoli inequality

Let ϕ0 ∈ C∞
0 (−1, 1) be a nonnegative and even cut-off function, such that ϕ0 = 1

on (−1/2, 1/2), and, given x0 ∈ R and R > 0 let

ϕx0,R(x) := ϕ0((x− x0)/R).

We introduce the ϕ0-related mean of a function f

〈f〉x0,R :=
ˆ x0+R

x0−R

f ϕx0,R

( ˆ x0+R

x0−R

ϕx0,R

)−1

. (3.1)

Remark 3.1. If v is a suitable weak solution on QR then ∂t〈v〉x0,R ∈ L5/3(t0 −
R4, t0) (in particular 〈v〉x0,R(t) is a continuous function of t). Indeed, abbrevi-
ating ϕ := ϕx0,R, we have for every ψ ∈ C∞

0 (t0 −R4, t0) via the distributional
formulation (vii)

∣∣∣∣
ˆ t0

t0−R4
〈v〉x0,R(t)ψ′(t)dt

∣∣∣∣ = 1´ x0+R

x0−R
ϕ

∣∣∣∣
ˆ

QR

vϕψ′
∣∣∣∣ = Cϕ

∣∣∣∣
ˆ

QR

v2
xϕxxψ − vxϕxxxψ

∣∣∣∣
� Cϕ‖vx‖2

L10/3,10/3(QR)‖ψ‖L5/2(t0−R4,t0)

+ Cϕ‖vx‖L10/3,10/3(QR)‖ψ‖L10/7(t0−R4,t0)

� Cϕ,R,v‖ψ‖L5/2(t0−R4,t0), (3.2)

where we used (2.3) and (vi) in the last line.

We will also use a smooth nonnegative time cut-off function χ0 ∈ C∞(R) such
that χ0(t) ≡ 0 for t � −1 and χ0 ≡ 1 for t � −1/16. Let

χt0,R(t) := χ0((t− t0)/R4),

then χt0,R(t) ≡ 0 for t � t0 −R4 and χt0,R(t) ≡ 1 for t � t0 − (R/2)4. We
now set the space-time cutoff by writing

ηz0,R(x, t) := χt0,R(t) ϕx0,R(x). (3.3)

Finally, given a function f , R > 0 and x0 ∈ R we will write

f̂(x, t) := f(x, t) − 〈f(t)〉x0,R. (3.4)
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Proposition 3.2 Caccioppoli inequality. Let v be a suitable weak solution to
(1.1) on QR(z0) = (t0 −R4, t0] × (x0 −R, x0 +R), then

sup
t∈(t0−R4,t0)

ˆ x0+R

x0−R

|v̂|2ηz0,Rdx+
ˆ

QR(z0)

|v̂xx|2ηz0,R

� C

R2

ˆ
QR(z0)

|v̂x|2 +
C

R

ˆ
QR(z0)

|v̂x|3. (3.5)

The main issue in the proof consists of replacing v with the time-dependent
oscillation v̂ in the local energy inequality.

Proof. Without loss of generality we can assume z0 = 0 and R = 1. The case
of general z0 and R > 0 follows then from dilations and shifts, due to scale
invariance of (3.5). We will write η := η0,1 for brevity. For brevity we will skip
the variable under the integrals below; instead every integral ‘

´ 1

−1
’ is taken with

respect to x and we will write argument ‘(t)’ to point out that the integral is
taken at a given time t. Letting c(t) := 〈v(t)〉0,1 we have v = v̂ + c(t), and so the
local energy inequality (1.6) with φ := η gives

1
2

ˆ 1

−1

(v̂ + c)2(t)η(t) +
ˆ t

−1

ˆ 1

−1

|v̂xx|2η

�
ˆ t

−1

ˆ 1

−1

(
1
2
(ηt − ηxxxx)(v̂ + c)2 + 2|v̂x|2ηxx − 5

3
v̂3

xηx − |v̂x|2(v̂ + c)ηxx

)

for every t ∈ (−1, 0) (recall Remark 1.4). Rearranging this inequality so that all
terms involving c are moved to the right-hand side yields

1
2

ˆ 1

−1

v̂2(t)η(t) +
ˆ t

−1

ˆ 1

−1

|v̂xx|2η

−
ˆ t

−1

ˆ 1

−1

(
1
2
(ηt − ηxxxx)v̂2 + 2|v̂x|2ηxx − 5

3
v̂3

xηx − |v̂x|2v̂ηxx

)

� −c(t)
ˆ 1

−1

v̂(t)η(t) − c2(t)
2

ˆ 1

−1

η(t)

+
ˆ t

−1

ˆ 1

−1

1
2
(ηt − ηxxxx)(2cv̂ + c2) −

ˆ t

−1

ˆ 1

−1

c|v̂x|2ηxx

= −c(t)
ˆ 1

−1

v(t)η(t) +
c2(t)

2

ˆ 1

−1

η(t) +
ˆ t

−1

ˆ 1

−1

1
2
ηt(2cv − c2)

−
ˆ t

−1

ˆ 1

−1

(cη)xxxxv −
ˆ t

−1

ˆ 1

−1

c|vx|2ηxx, (3.6)
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where we substituted v = v̂ + c(t) and used the fact that
´ 1

−1
ηxxxx = 0 for the

last line.
In order to deal with the second and the third term of the last line of (3.6),

let us observe that for every t

c(t)
ˆ 1

−1

η(t) =

´ 1

−1
v(t)ϕ0´ 1

−1
ϕ0

χ0(t)
ˆ 1

−1

ϕ0 =
ˆ 1

−1

η(t)v(t), (3.7)

by the definition of c(t) and the fact that η(x, t) = χ0(t)ϕ0(x). Therefore, first
integrating by parts and then using (3.7)

c2(t)
2

ˆ 1

−1

η(t) +
ˆ t

−1

ˆ 1

−1

1
2
ηt(2cv − c2)

=
ˆ t

−1

ˆ 1

−1

ηtcv +
ˆ t

−1

c′ c
ˆ 1

−1

η =
ˆ t

−1

ˆ 1

−1

(cη)tv.

Using the above identity in the last line of (3.6), we obtain

1
2

ˆ 1

−1

v̂2(t)η(t) +
ˆ t

−1

ˆ 1

−1

|v̂xx|2η

−
ˆ t

−1

ˆ 1

−1

(
1
2
(ηt − ηxxxx)v̂2 + 2|v̂x|2ηxx − 5

3
v̂3

xηx − |v̂x|2v̂ηxx

)

� −c(t)
ˆ 1

−1

v(t)η(t) +
ˆ t

−1

ˆ 1

−1

((cη)t − (cη)xxxx)v

−
ˆ t

−1

ˆ 1

−1

c|vx|2ηxx =: I. (3.8)

We will show that I vanishes. To this end let us observe that we can use
φ(x, t) := c(t)η(x, t) as a test function in (1.7). Indeed, via Remark 3.1 ∂t(cη) ∈
L5/3,∞(Q) and c(t) is continuous. This gives I = 0, and so (3.8) reduces to

1
2

ˆ 1

−1

v̂2(t)η(t) +
ˆ t

−1

ˆ 1

−1

|v̂xx|2η

�
ˆ t

−1

ˆ 1

−1

(
1
2
(ηt − ηxxxx)v̂2 + 2|v̂x|2ηxx − 5

3
v̂3

xηx − |v̂x|2v̂ηxx

)
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for every t ∈ (−1, 0). Thus

sup
t∈(−1,0)

ˆ 1

−1

v̂(t)2η(t) +
ˆ

Q

|v̂xx|2η � C

ˆ
Q

(
v̂2 + |v̂x|2 + |v̂x|3 + |v̂x|2|v̂|

)

� C

ˆ
Q

(
v̂2 + |v̂|3 + |v̂x|2 + |v̂x|3

)

� C

ˆ
Q

(|v̂x|2 + |v̂x|3
)
,

as required, where we used the spatial Poincaré-Sobolev inequality (for functions
with vanishing ϕ-related means) in the last line. �

4. Higher integrability

Here we prove part (i) of theorem 1.6. First we derive a reverse Hölder inequality
from the Caccioppoli inequality (3.5). Indeed, (3.5) gives

sup
t∈(t0−R4,t0)

ˆ x0+R

x0−R

|v̂ηz0,R|2dx+
ˆ

QR(z0)

|∂xx(v̂ηz0,R)|2

� C

R2

ˆ
QR(z0)

|v̂x|2 +
C

R

ˆ
QR(z0)

|v̂x|3

� C

R
1
3

(ˆ
QR(z0)

|v̂x|3
) 2

3

+
C

R

ˆ
QR(z0)

|v̂x|3. (4.1)

Recall that by assumption (1.10)

sup
QR(z0)⊂Q

1
R2

ˆ
QR(z0)

|vx|3 � M.

Thus, (4.1) yields

sup
t∈(t0−R4,t0)

ˆ x0+R

x0−R

|v̂ηz0,R|2dx+
ˆ

QR(z0)

|∂xx(v̂ηz0,R)|2

� C
1 +M

1
3

R
1
3

(ˆ
QR(z0)

|v̂x|3
) 2

3

(4.2)
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for every QR(z0) ⊂ Q. Let us use multiplicative inequality (2.3) for v̂ ηz0,R to
compute

(ˆ
QR/2(z0)

|v̂x|10/3

)3/5

� C‖v̂ηz0,R‖4/5
L2,∞(QR(z0))

‖∂xx(v̂ηz0,R)‖6/5
L2,2(QR(z0))

� sup
t∈(t0−R4,t0)

ˆ x0+R

x0−R

|v̂ηz0,R|2dx

+
ˆ

QR(z0)

|∂xx(v̂ηz0,R)|2

� (1 +M1/3)
1
R

1
3

(ˆ
QR(z0)

|v̂x|3
) 2

3

,

where we used (4.2) in the last line. In other words, we obtain the reverse Hölder
inequality

⎛
⎝ 

Q R
2

(z0)

|v̂x| 103
⎞
⎠

3
10

� CM

( 
QR(z0)

|v̂x|3
) 1

3

for every QR(z0) ⊂ Q. Applying the Gehring Lemma (see proposition 1.3 in [10],
for example) gives part (i) of theorem 1.6.

5. ε-regularity

In this section, we prove part (ii) of theorem 1.6. It relies on quantifying decay
of

Y (r, v) :=
( 

Qr

|vx − (vx)r|3
)1/3

as r → 0+, where (f)r :=
ffl

Qr
f . The needed decay lemma is stated and proved

in § 5.1. Then we conclude our proof of the part (ii) of theorem 1.6 in § 5.2,
using the Campanato characterisation of Hölder continuity.

5.1. Decay estimate

Lemma 5.1 Decay Lemma. For any M > 1 and θ ∈ (0, 1/4) there exists
ε0(θ,M) > 0 such that for any suitable weak solution v to the SGM (1.1) on
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Q1, if

|(vx)1| � M and Y (1, v) � ε0, (5.1)

then

Y (θ, v) � 6cMθ Y (1, v),

where c is the universal constant from lemma 2.1.

In § 5.1.1–5.1.4, we prove lemma 5.1: we first compare nonlinear problem (1.1)
to a linear one (2.1) using the blow-up technique, and then we use quantitative
decay for a linear system, by means of lemma 2.1.

5.1.1. Proof of Lemma 5.1. The Setup Suppose that lemma 5.1 is false. Then
there exist numbers θ ∈ (0, 1/4), M > 1, a sequence εk → 0 and a sequence of
suitable weak solutions v(k) such that

∣∣∣(v(k)
x )1

∣∣∣ � M, Y (1, v(k)) = εk, and Y (θ, v(k)) > 6cMθεk (5.2)

We let

u(k) := ε−1
k

(
v(k) − [v(k)]1 − (∂xv

(k))1 x
)
,

where we set [f ]1 :=
ffl 0

−1
〈f(t)〉0,1dt, with 〈f(t)〉0,1 denoting the ϕ-related mean

(recall (3.1)). Since ϕ is even we have [u(k)]1 = (u(k)
x )1 = 0; u(k) also normalises

(5.2), i.e.

Y (1, u(k)) = 1 and Y (θ, u(k)) > 6cMθ. (5.3)

5.1.2. Proof of Lemma 5.1. Uniform estimate on the rescalings u(k) Here we
show that

‖u(k)η0,1‖L2,∞(Q1) + ‖∂xx(u(k)η0,1)‖L2,2(Q1) � CM . (5.4)

uniformly in k. (Recall (3.3) for the definition of η0,1.)
Letting βk := (v(k)

x )1, we see that u(k) satisfies the following perturbed SGM:

∂tu
(k) + u(k)

xxxx + εk∂xx(u(k)
x )2 + 2βku

(k)
xxx = 0 (5.5)
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in Q1 in the sense of distributions. Moreover, the local energy inequality (1.6)
for v(k) gives that

1
2

ˆ 1

−1

(u(k))2(t)φ(t) +
ˆ t

−1

ˆ 1

−1

|u(k)
xx |2φ

� εk

ˆ t

−1

ˆ 1

−1

(
1
2
(φt − φxxxx)(u(k))2 + 2(u(k)

x )2φxx

− 5
3
(u(k)

x )3φx − (u(k)
x )2u(k)φxx

)

− βk

ˆ t

−1

ˆ 1

−1

3(u(k)
x )2φx − (u(k))2φxxx (5.6)

for any nonnegative φ ∈ C∞
0 (Q1) and every t ∈ (−1, 0). Here, as before, we

skipped the variable under the integrals below, and every integral ‘
´ 1

−1
’ is taken

with respect to x and we wrote argument ‘(t)’ to point out that the integral
is taken at a given time t. Unless specified otherwise, we will apply the same
convention in what follows. Letting

û(k) := u(k) − 〈u(k)(t)〉0,1

we can use the above inequality to obtain the following Caccioppoli inequality
for û(k), analogously to how (3.5) was proven

sup
t∈(−1,0)

ˆ 1

−1

û(k)(t)2η0,1(t) +
ˆ

Q1

|û(k)
xx |2η0,1

� εkC

ˆ
Q1

|û(k)
x |2 + εkC

ˆ
Q1

|û(k)
x |3 + C|βk|

ˆ
Q1

|û(k)
x |2 (5.7)

for each k. Recalling that εk � 1, |βk| =
∣∣∣(v(k)

x )1
∣∣∣ � M (see (5.2)) and observing

that (5.3) gives
ˆ

Q1

|û(k)
x |3 =

ˆ
Q1

|u(k)
x |3 = 2Y (1, u(k))3 = 2,

we obtain

‖û(k)η0,1‖L2,∞(Q1) + ‖∂xx(û(k)η0,1)‖L2,2(Q1) � CM .

Comparing this with (5.4), we see that it suffices to show that
supt∈(−1,0)〈u(k)(t)〉0,1 � CM . We will write

c(t) := 〈u(k)(t)〉0,1,
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for brevity. Similarly as in (3.2) we have for every ψ ∈ C∞
0 (−1, 0)

∣∣∣∣
ˆ 0

−1

c(t)ψ′(t) dt
∣∣∣∣ � C‖u(k)

x ‖2
L3,3(Q1)

‖ψ‖L3(−1,0) + C‖u(k)
x ‖L3,3(Q1)‖ψ‖L3/2(−1,0)

� C‖ψ‖L3(−1,0),

where we used (5.3). Thus, c(t) is continuous with c′(t) ∈ L3/2(−1, 0). Since´ 0

−1
c(t) dt = [u(k)]1 = 0 there exists t0 ∈ (−1, 0) such that c(t0) = 0, and hence

|c(t)| = |c(t) − c(t0)| =
∣∣∣∣
ˆ t

t0

c′(s) ds
∣∣∣∣ � ‖c′‖L3/2(−1,0) � C

for every t ∈ (−1, 0), as required. We thus obtained (5.4).

5.1.3. Proof of Lemma 5.1. Blowup limit equation Here we extract a sequence
of u(k) converging to a limit u that satisfies a linear equation and that
Y (θ, u) < 6cMθ. Indeed, from (5.3), the interpolation inequality ‖f‖L10,10(U) �
C‖f‖ 4

5
L2,∞(U)‖f‖

1
5

W 2,0
2,2 (U)

applied to u(k)η0,1 and (5.4) we obtain

ˆ
Q1

|u(k)
x |3 = 2,

ˆ
Q1/2

(u(k))10 � CM . (5.8)

This and the fact that |βk| � M allow to extract a subsequence (which we
relabel) such that

u(k) ⇀ u in W 1,0
3,3 (Q1/2) and βk → β

for some u ∈W 1,0
3,3 (Q1/2) and β ∈ [−M,M ]. Since also εk → 0, we can take

k → ∞ in the distributional formulation of perturbed SGM (5.5) to obtain that
u is a distributional solution to the linear equation

ut + uxxxx + 2βuxxx = 0 in Q1/2.

Applying lemma 2.1 and using the fact that
´

Qθ
|ux|3 � 2 for every θ < 1/2

(a consequence of the weak convergence and (5.8)), we obtain

Y (θ, u) =
( 

Qθ

|ux − (ux)θ|3
)1/3

� c(1 + 2|β|)θ‖ux‖L3(Q1) < 6cMθ, (5.9)

as required.
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5.1.4. Proof of Lemma 5.1. Compactness and contradiciton Here we will show
that (on a subsequence)

u(k)
x → ux in L3(Q1/2). (5.10)

This will conclude the proof of lemma 5.1 since the strong limit (5.10) implies
Y (θ, u(k)) → Y (θ, u), and so the inequality in (5.3) yields

6cMθ � Y (θ, u)
(5.9)
< 6cMθ, (5.11)

a contradiction. In order to justify (5.10) we will use an Aubin-Lions argument.

Applying (5.4) and the interpolation inequality ‖f‖
W

7/6,0
3,3

� C‖f‖ 1
3
L2,∞‖f‖ 2

3

W 2,0
2,2

to the function u(k)η0,1, we obtain that

‖u(k)‖
W

7/6,0
3,3 (Q1/2)

� CM . (5.12)

On the other hand, for every φ ∈ C∞
0 (Q1/2)∣∣∣∣∣

ˆ
Q1/2

u(k) ∂tφ

∣∣∣∣∣ =
∣∣∣∣∣−

ˆ
Q1/2

(u(k)
xx ) (φxx − 2βkφx) − εk

ˆ
Q1/2

(
u(k)

x

)2

φxx

∣∣∣∣∣
� CM‖φ‖W 2,0

3,3 (Q1/2)

(
‖u(k)

xx ‖L3/2,3/2(Q1/2) + ‖u(k)
x ‖2

L3,3(Q1/2)

)
� CM‖φ‖W 2,0

3,3 (Q1/2)
,

where we used (5.4) and (5.8) in the last line. Hence

‖u(k)
t ‖L 3

2
(−1/16,0;(W 2

3 (B1/2))∗) � CM . (5.13)

This, (5.8) and (5.12) allow us to use the Aubin–Lions lemma (see Section
3.2.2 in [25], for example) to extract a subsequence of u(k) that converges

strongly in W
7
6−δ,0
3,3 (Q1/2) for any fixed δ ∈ (0, 7/6). (Recall that W

7
6−δ,0
3,3 (Qr) =

L3(t− r4, t;W
7
6−δ
3 (x− r, x+ r)).) Taking δ := 1/6 gives (5.10), as required.

5.2. Concluding ε-regularity proof

Here we finish the proof of part (ii) of theorem 1.6 by iterating lemma 5.1.
Indeed we have the following.
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Corollary 5.2. Given γ ∈ (0, 1) and M � 1, there exist ε0, θ ∈ (0, 1/2) with
the following property. If v is a suitable weak solution to the SGM (1.1) on Q1

such that

|(vx)1| � M, Y (1, v) � ε0

then

θk−1 |(vx)θk−1 | � M and Y (θk, v) � θγY (θk−1, v) (5.14)

for every k � 1.

Proof. We fix θ ∈ (0, 1/2) so small that

6cMθ1−γ < 1. (5.15)

(Recall that c is the universal constant from lemma 2.1.) Let ε0 be sufficiently
small so that lemma 5.1 holds and

ε0 < θ5M/2. (5.16)

The case k = 1 follows from our assumptions and lemma 5.1. For k > 1 we
proceed by induction. Suppose that (5.14) holds for k′ � k. Then

θk |(vx)θk | � θk |(vx)θk − (vx)θk−1 | + θk |(vx)θk−1 |

= θk

∣∣∣∣∣
 

Q
θk

(vx − (vx)θk−1)

∣∣∣∣∣+ θk |(vx)θk−1 |

� θk−5

 
Q

θk−1

|vx − (vx)θk−1 | + θM

� θk−5

( 
Q

θk−1

|vx − (vx)θk−1 |3
)1/3

+M/2

= θk−5Y (θk−1, v) +M/2 � θ−5Y (1, v) +M/2 � θ−5ε0 +M/2 � M,
(5.17)

where we used Jensen’s inequality, the fact that θ < 1
2 (so that in particular

θγ < 1 and θk < 1), the inductive assumption (for k′ = 1, . . . , k − 1), and the
choice (5.16).
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It remains to show that Y (θk+1, v) � θγY (θk, v). To this end let us rescale

vk(x, t) := v(θkx, θ4kt).

In particular, vk is a suitable weak solution of SGM (1.1) on Q1, and∣∣(vk
x)1
∣∣ = θk |(vx)θk | � M and Y (1, vk) = θkY (θk, v) � Y (1, v) � ε0,

where we used (5.17), the assumption (5.14) (for k′ = 1, . . . , k) and the fact that
θ < 1. Thus, lemma 5.1 gives Y (θ, vk) � 6cMθ Y (1, vk), from which we conclude

Y (θk+1, v) = θ−kY (θ, vk) � 6cMθ1−k Y (1, vk) = 6cMθ Y (θk, v) < θγ Y (θk, v),

via the choice (5.15). �

We can now conclude the proof of part (ii) of theorem 1.6. Without loss of
generality we assume that Q = Q1(0, 0). Recall that we need to show that for
any γ ∈ (0, 1) there exists ε > 0 such that I(Q) ≡ ´

Q
|vx|3 � ε implies that

|vx(x, t) − vx(y, s)| � Cγε
1/3
(
|x− y| + |t− s|1/4

)γ

for (x, t), (y, s) ∈ Q 1
2
.

(5.18)

We first deduce from corollary 5.2 that( 
Qr(y,s)

∣∣vx − (vx)Qr(y,s)

∣∣3)1/3

� Cγε
1/3rγ (5.19)

for every (y, s) ∈ Q1/2, r ∈ (0, 1/2), where (vx)Qr(y,s) :=
ffl

Qr(y,s)
vx.

Indeed, let ε0, θ ∈ (0, 1/4) be given by corollary 5.2 applied with M := 1, and
let ε := ε30/16 and

u(x, t) := v(y + x/2, s+ t/16).

Given r ∈ (0, 1/2) let K ∈ N be such that

θK+1 � r < θK .

By assumption (1.12) and Jensen’s inequality

|(ux)1| �
( 

Q1

|ux|3
)1/3

= 21/3

(ˆ
Q1/2(y,s)

|vx|3
)1/3

� 21/3I(Q)1/3

� 21/3ε1/3 � 1 = M,

Y (1, u) =
( 

Q1

|ux − (ux)1|3
)1/3

� 2
( 

Q1

|ux|3
)1/3

� 24/3ε1/3 = ε0,
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and so corollary 5.2 gives

Y (θK , u) � θγKY (1, u) � θγKε0.

Noting that r/θK ∈ (θ, 1) and that |(ux)r − (ux)θK | � θ−5Y (θK , u) (as in (5.17)
above), we obtain( 

Qr

|ux − (ux)r|3
)1/3

�
( 

Qr

|ux − (ux)θK |3
)1/3

+ θ−5Y (θK , u)

� (θ−5/3 + θ−5)Y (θK , u) � (θ−5/3 + θ−5)θγKε0

� (θ−5/3 + θ−5)θ−γrγε0 = Cε1/3rγ

for every r ∈ (0, 1), where C = C(γ). (Recall that θ is fixed depending on γ, see
(5.15).) The claim (5.19) follows by writing the above inequality in terms of v.

Using (5.19), we obtain (5.18) by applying the following Campanato Lemma
with p = 3, R = 1, cf. the original [8] or lemma A.2 in [16].

Lemma 5.3 Campanato. Let R ∈ (0, 1], f ∈ L1,1(QR(0)) and suppose that there
exist positive constants γ ∈ (0, 1], N > 0, such that( 

Qr(z)

|f(y) − (f)Qr(z)|p dy

)1/p

� Nrγ

for any z ∈ QR/2(0) and any r ∈ (0, R/2), where (f)Qr(z) :=
ffl

Qr(z)
f . Then f is

Hölder continuous in QR/2(0) with

|f(x, t) − f(y, s)| � cN(|x− y| + |t− s|1/α)γ

for all (x, t), (y, s) ∈ QR/2(0).

6. Appendices

6.1. Appendix on weak solutions

Proof of Remark 1.2. The distributional formulation (1.3) yields∣∣∣∣
ˆ ∞

0

ˆ
R

v φt

∣∣∣∣ �
ˆ ∞

0

(
‖vxx(t)‖2‖φxx(t)‖2 + ‖vx(t)‖2

10/3‖φxx(t)‖5/2

)
dt.

In particular, for φ(x, t) = ϕ(x)χ(t), where χ ∈ C∞
0 ((0,∞)) and φ ∈ C∞

0 (R),
using (2.3), and the energy inequality (1.4)∣∣∣∣

ˆ ∞

0

ˆ
R

v ϕχt

∣∣∣∣ � Cu0‖ϕ‖W
5/2
2

‖χ‖L 5
2
,
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i.e. vt ∈ L 5
3
((0,∞); (W 5/2

2 (R))∗). Hence redefining v on a set of measure zero, we

have v ∈ C((0, T ); (W 5/2
2 (R))∗). Since also v ∈ L2,∞, we have weak L2 continuity

of v, via e.g. lemma 2.2.5. of [17], which shows (iii).
We now verify that the energy inequality (1.4) holds for every t > 0. Choose

any t � 0 and a sequence tn → t+ such that the energy inequality holds at
each tn. Since v(tn) ⇀ v(t) (by (iii)) we can take lim inftn→t of the energy
inequalities and use lower weak semicontinuity of the norm to write ‖v(t)‖2 �
lim inftn→t+ ‖v(tn)‖2 � ‖v0‖2 − 2

´ t

0

´
R
|vxx|2.

As for (iv), given φ ∈ C∞
0 ((−1,∞) × R) we can multiply φ by a cutoff in time

(as in lemma 3.14 in [20], for example) to obtain (1.5) for almost every t > 0.
Weak continuity (iii) guarantees that (1.5) holds for every t > 0.

As for (v), note that (iv) implies weak convergence v(t) ⇀ v0 as t→ 0+. More-
over ‖v(t)‖ → ‖v0‖ since lim inft→0+ ‖v(t)‖ � ‖v0‖ (from the weak convergence)
and lim supt→0+ ‖v(t)‖ � ‖v0‖ (from the energy inequality (1.4)), and so strong
convergence follows, cf. p. 106 in [21]. �

Proof of Theorem 1.5. Given l > 0 let v0,l ∈ C∞
0 (−l, l) be such that ‖v0,l‖ �

‖v0‖ and v0,l → v0 strongly in L2 as l → ∞, and let Tl > 0 be such that Tl → ∞
as l → ∞. Let us denote by W̊ 2

2 (−l, l) the completion of C∞
0 (−l, l) in the W 2

2

norm. By a straightforward modification of the arguments in theorem 4.3 in [24]
and theorem 2.4 in [16], for each l there exists a suitable weak solution of the
initial-boundary value problem

⎧⎪⎨
⎪⎩
∂tvl + ∂xxxxvl + ∂xx(vl)2 = 0 on (−l, l) × (0, T )
vl(0) = v0,l

vl = ∂xvl = 0 on {−l, l} × (0, T ),

namely there exists vl ∈ L∞((0, Tl);L2(−l, l)) ∩ L2((0, Tl); W̊ 2
2 (−l, l)) such that,

after null-extending vl from (−l, l) to R, we have

ˆ ∞

0

ˆ (
vlφt − (∂xxvl)φxx − (∂xvl)2φxx

)
=
ˆ
v0,l φ(0) (6.1)

for every φ ∈ C∞
0 ((−1, Tl) × (−l, l)), and

ˆ ∞

0

ˆ
(∂xxvl)2φ �

ˆ ∞

0

ˆ (
1
2
(φt − φxxxx)v2

l + 2(∂xvl)2φxx

− 5
3
(∂xvl)3φx − (∂xvl)2vlφxx

)
(6.2)
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for every φ ∈ C∞
0 ((−1, Tl) × (−l, l)) with φ � 0, and

‖vl(t)‖2 + 2
ˆ t

0

‖∂xxvl(τ)‖2dτ � ‖v0,l‖2 � ‖v0‖2 (6.3)

for almost every t > 0. Here we wrote ‖ · ‖ ≡ ‖ · ‖L2(R) for brevity. Consequently,
there exists v such that

vl
∗
⇀v in L∞((0,∞);L2)

∂xxvl⇀vxx in L2((0,∞);L2)
(6.4)

as l → ∞ and, via lower weak semi-continuity

‖v(t)‖2 + 2
ˆ t

0

‖vxx(τ)‖2dτ � ‖v0‖2 (6.5)

for almost every t > 0, in particular v ∈ L∞(0,∞;L2(R)) ∩ L2(0,∞;W 2
2 (R)).

The multiplicative inequality (2.3) controls via (6.5) the nonlinear term, and
thus for any φ ∈ C∞

0 ((−1,∞) × R) we can pass to the limit in (6.1). We obtained
v satisfying the definition of energy weak solution to the Cauchy problem (1.2).

Let us show that v is a suitable weak solution. Fix any bounded cylin-
der Qz(r) ⊂ (−L,L) × (0, T ). Identity (6.1), the energy bound (6.3) and the
reasoning as in proof of Remark 1.2 imply

‖vt‖L 5
3
(0,T ;(W 2

5/2(−L,L))∗)dτ � CT,L,‖v0‖, (6.6)

with the only difference now being C(L), due to the Hölder inequality
‖vxx(t)‖L 5

3
(−L,L) � (2L)

1
5 ‖vxx(t)‖L2(−L,L). Applying the Aubin-Lions Lemma

(see for example theorem 2.1 on p. 184 in [25]) with X0 := H2(−L,L), X :=
W 1

∞(−L,L), X1 := (W 2
5/2(−L,L))∗, α0 := 2, α1 := 5/3, we see that (along a

subsequence)

vl → v in L2((0, T );W 1
∞(−L,L)).

Thus we can take liml→∞ on the r.h.s. of (6.2) and lim inf l→∞ on its l.h.s. to
obtain via l.w.s.c.

ˆ L

0

ˆ L

−L

v2
xxφ �

ˆ L

0

ˆ L

−L

(
1
2
(φt − φxxxx)v2 + 2v2

xφxx − 5
3
v3

xφx − v2
xvlφxx

)
(6.7)
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for any φ ∈ C∞
0 (Q). Applying a cut-off procedure in time, i.e. rewriting (6.7) for

φ(x, t)χ(t), with χ being a bump function around t, we obtain that

1
2

ˆ
v(t)2φ(t) +

ˆ t

0

ˆ
v2

xxφ

�
ˆ t

0

ˆ (
1
2
(φt − φxxxx)v2 + 2v2

xφxx − 5
3
v3

xφx − v2
xvlφxx

)
(6.8)

for almost every t > 0. More precisely, for every Lebesgue point of f(t) :=´
v(t)2φ(t), so the times t > 0 where (6.8) holds depends on the choice of φ.

However, since v(t) is weakly continuous in L2 (by (iii), cf. Remark 1.2), the
same is true of v(t)

√
φ(t) and so we can extend (6.8) for all t > 0. �

6.2. Proof of Lemma 2.1

We show now a Campanato-type estimate for the linear equation (2.1).
We may assume that u ∈ C∞(Q3/4). Otherwise first we use the standard
mollification u(ε) and then our claim follows from taking the limit ε→ 0 in (2.2).

Let φ ∈ C∞
0 (Q3/4) be such that φ = 1 on Q5/8, multiplying (2.1) by uφ and

integrating by parts, we obtain

ˆ
Q3/4

u2
xxφ =

ˆ
Q3/4

(
1
2
u2(φt − φxxxx) + u2

x

(
2φxx +

3β
2
φx

)
− βuxuφxx

)
(6.9)

Thus

‖uxx‖L2,2(Q5/8) � Cβ

(
‖u‖L2,2(Q3/4) + ‖ux‖L2,2(Q3/4)

)
. (6.10)

Since any space derivative ∂m
x u (m � 0) satisfies (2.1) on Q3/4 and any mixed

derivatives ∂k
t ∂

m
x u (k,m � 0) can be expressed in terms of pure space derivatives

via (2.1) itself, we obtain

‖∂k
t ∂

m
x u‖L2,2(Q1/2) � Ck,m,β

(
‖u‖L2,2(Q3/4) + ‖ux‖L2,2(Q3/4)

)
(6.11)

for any k � 0, m � 2, by bootstrapping the inequalities of type (6.10) on a
sequence of decreasing cylinders. An embedding and (6.11) imply

‖ux‖W 1,0
∞,∞(Q1/2)

� Cβ

(
‖u‖L2,2(Q3/4) + ‖ux‖L2,2(Q3/4)

)
.
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Hence ( 
Qθ

|ux − (ux)θ|p
)1/p

� max
Qθ

|ux − (ux)θ| = max
Qθ

|ux − ux(z0)|

� Cθ‖ux‖W 1,0
∞,∞(Q1/2)

� Cβθ
(
‖u‖L2,2(Q3/4) + ‖ux‖L2,2(Q3/4)

)
since by Darboux property there exists z0 ∈ Qθ such that ux(z0) = (ux)θ.
It remains to estimate ‖u‖L2,2(Q3/4) in terms of ‖ux‖L2,2(Q1) above. To this end,
we introduce û in place of u in (6.9) and along the lines of our proofs of Cac-
cioppoli inequalities (3.5) or (5.7) (this case is easier, since problem is linear and
solutions are smooth). Next we repeat the above proof with û.
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2015/0. W. S. Ożański was supported by postdoctoral funding from ERC 616797,
the AMS Simons Travel Grant and by funding from Charles Simonyi Endowment
at the Institute for Advanced Study. G. Seregin was supported by the grant
RFBR 20-01-00397.

References

1 D. Blömker, F. Flandoli and M. Romito. Markovianity and ergodicity for a surface
growth PDE. Ann. Probab. 37 (2009), 275–313.

2 D. Blömker and C. Gugg. Thin-film-growth-models: on local solutions, in Recent devel-
opments in stochastic analysis and related topics Sergio Albeverio, Zhi-Ming Ma and
Michael Roeckner (eds), pp. 66–77 (Hackensack, NJ: World Sci. Publ., 2004).

3 D. Blömker, C. Gugg and M. Raible. Thin-film-growth models: roughness and correla-
tion functions. European J. Appl. Math., 13 (2002), 385–402.

4 D. Blömker and M. Hairer. Stationary solutions for a model of amorphous thin-film
growth’. Stochastic Anal. Appl. 22 (2004), 903–922.

5 D. Blömker and M. Romito. Regularity and blow up in a surface growth model. Dyn.
Partial Differ. Equ. 6 (2009), 227–252.

6 D. Blömker and M. Romito. Local existence and uniqueness in the largest critical space
for a surface growth model. Nonlinear Differ. Equ. Appl. 19 (2012), 365–381.

7 D. Blömker and M. Romito. Stochastic PDEs and lack of regularity: a surface growth
equation with noise: existence, uniqueness, and blow-up’. Jahresber. Dtsch. Math.-Ver.
117 (2015), 233–286.
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