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We establish the simplicial triviality of the convolution algebra �1(S), where S is a
band semigroup. This generalizes some results of Choi (Glasgow Math. J. 48 (2006),
231–245; Houston J. Math. 36 (2010), 237–260). To do so, we show that the cyclic
cohomology of this algebra vanishes in all odd degrees, and is isomorphic in even
degrees to the space of continuous traces on �1(S). Crucial to our approach is the use
of the structure semilattice of S, and the associated grading of S, together with an
inductive normalization procedure in cyclic cohomology. The latter technique appears
to be new, and its underlying strategy may be applicable to other convolution
algebras of interest.

1. Introduction

Computing the Hochschild cohomology of Banach algebras has remained a difficult
task, even when restricted to the class of �1-convolution algebras of semigroups
(see [1, 6] for earlier work on various examples, albeit only in low dimensions).
Choi [3, 4] has shown that the simplicial cohomology of the semigroup algebra
�1(S) vanishes when S is a normal band. However, the techniques were unable to
handle the case of general band semigroups. (We note that bands comprise a rich
and interesting class of semigroups: particular kinds of band have been studied both
in abstract semigroup theory, and also in operator-theoretic settings [11,12].)

Here, we calculate all the cyclic and simplicial cohomology groups of �1(S), where
S is an arbitrary band semigroup. More precisely, we shall show the following:

• the cyclic cohomology of �1(S) is isomorphic in even degrees to the space of
continuous traces on �1(S), and vanishes in odd degrees (theorem 7.2);

• the simplicial cohomology of �1(S) vanishes in all strictly positive degrees
(theorem 7.4).
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The techniques used in establishing these results resemble those in the earlier work
of Gourdeau et al . [7], in that one performs explicit calculations with cyclic cochains,
and then uses the Connes–Tzygan long exact sequence to calculate the simplicial
cohomology. As in that paper, the decision to work with cyclic cohomology is forced
upon us by the nature of our construction (see corollary 5.17), and is not merely
incidental.

Some of our results appear to generalize to the setting of Banach algebras which
are �1-graded over a semilattice. In particular, it seems that similar calculations
would provide an alternative approach to some of Choi’s existing results for Clifford
semigroups in [4]. However, we shall focus throughout on the case of band semigroup
algebras in order to keep the exposition reasonably self-contained.

One approach which one might be tempted to adopt, in order to prove that band
semigroup algebras have trivial cyclic cohomology, is to exhaust the band by finitely
generated bands and cobound the cocycle on increasingly large sets.

This is even more tempting when one recalls that finitely generated bands are
finite [10, theorem 4.4.9] (or see [2] for a short, direct proof). However, one encoun-
ters problems with this approach. It is difficult to obtain uniform control of the
norms of the coboundaries as we take increasingly large generating sets for these
bands. This is true even in the commutative case, which corresponds to the setting
of [3]. Another feature is that finite band algebras are, in general, neither semisimple
nor amenable, which makes their trivial simplicial cohomology surprising.

It should nevertheless be noted that, by specializing the present arguments to the
case of a semilattice L, one obtains a direct calculation of the cyclic cohomology
of �1(L). Previously, this was only known by applying the Connes–Tzygan exact
sequence and using the main result of [3]. Moreover, in order to apply the Connes–
Tzygan exact sequence, one first has to show that certain obstruction groups vanish,
and the only previous proof that these obstructions vanish relied indirectly on other
results from [3]. Thus, the methods of the present paper give a much more accessible
proof that �1(L) has the same cyclic cohomology as the ground field.

Remark 1.1. A feature which may be of wider interest is that, rather than con-
structing a splitting homotopy directly on the cyclic cochain complex, we construct
maps which split ‘modulo terms of lower order’ in a particular filtration, and then
employ an iterative procedure to move progressively further down the filtration.
Some of these arguments could be cast in terms of a more general theory of cohom-
ology of filtered complexes. However, this seems to bring little extra advantage or
clarity for the present problem, so we shall carry out our iterative reduction in a
hands-on fashion.

2. Notation and preliminaries

2.1. Cohomology

Since this paper is only concerned with simplicial and cyclic cohomology, rather
than Hochschild cohomology with more general coefficients, we shall present a fairly
minimal set of definitions that is sufficient for our purposes. Our terminology is that
of [7], but with some small differences of notation.

Let A be a Banach algebra and regard A′, the dual space of A, as a Banach A-
bimodule in the usual way. As in [7, § 1], for n � 0, Cn(A,A′) denotes the space of n-
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cochains, Zn(A,A′) denotes the subspace of n-cocycles, and Bn(A,A′) ⊆ Zn(A,A′)
denotes the subspace of n-coboundaries. Note that, by convention, C0(A,A′) = A′

and Cn(A,A′) = 0 for negative n. Our notation for the corresponding cohomology
groups differs from that of [7]. We shall write HHn(A) for the quotient space
Zn(A,A′)/Bn(A,A′). This is the nth simplicial cohomology group of A.

We need to specify some notation for the Hochschild coboundary operator

δn : Cn(A,A′) → Cn+1(A,A′).

Recall (see [7]) that an n-cochain is a bounded n-linear map T : An → A′, and that
the (n + 1)-cochain δnT is defined by

(δnT )(a1, . . . , an+1)(an+2) = T (a2, a3, . . . , an+1)(an+2a1)

+
n∑

j=1

(−1)jT (a1, a2, . . . , ajaj+1, . . . , an+1)(an+2)

+ (−1)n+1T (a1, . . . , an)(an+1an+2),

where a1, . . . , an+2 ∈ A. We will usually omit the superscript and write δ for δn.
For each n, elements of Cn(A,A′) may be regarded as bounded linear functionals

on the space Cn(A) := A⊗̂n+1, the (n+1)-fold completed projective tensor product
of A; if we do this, then the coboundary operator δ : Cn(A,A′) → Cn+1(A,A′) is
clearly the adjoint of the operator d : Cn+1(A) → Cn(A) given by

d(a1⊗· · ·⊗an+2) = a2⊗· · ·⊗an+1⊗an+2a1+
n+1∑
j=1

(−1)ja1⊗· · ·⊗ajaj+1⊗· · ·⊗an+2

for a1, . . . , an+2 ∈ A. This point of view will be more convenient when A = �1(S)
for a semigroup S. This is the case because, since there is a well-known isometric
isomorphism of Banach spaces

�1(I) ⊗̂ �1(J) ∼= �1(I × J) for any index sets I and J,

in what follows we shall identify �1(S)⊗̂n with �1(Sn).
Simplicial cohomology is closely linked to cyclic cohomology, which we now intro-

duce. Denote by t the signed cyclic shift operator on the simplicial chain complex:

t(a1 ⊗ · · · ⊗ an+1) = (−1)n(an+1 ⊗ a1 ⊗ · · · ⊗ an). (2.1)

By an abuse of notation, we also write t for the adjoint operator on the simplicial
cochain complex. The n-cochain T (in Cn(A,A′)) is called cyclic if tT = T and the
linear space of all cyclic n-cochains is denoted by CCn(A).

It is well known that the cyclic cochains CCn(A) form a subcomplex of Cn(A,A′),
that is, δ(CCn(A)) ⊆ CCn+1(A), and this allows us to define cyclic versions of the
spaces defined above, denoted here by ZCn(A), BCn(A) and HCn(A). Under certain
conditions on the algebra A [9], the cyclic and simplicial cohomology groups are
connected via the Connes–Tzygan long exact sequence

· · · → HHn(A) B−→ HCn−1(A) S−→ HCn+1(A) I−→ HHn+1(A) → · · · , (2.2)
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where the maps B, S and I all behave naturally with respect to algebra homomor-
phisms. (Although we use S to denote both the shift map in cyclic cohomology and
a band semigroup, this should not lead to any confusion.) The reader is referred
to [9] for more details.

We now introduce some definitions and notation which will be useful in our work.

Definition 2.1 (cyclic cocycles arising from traces). Let A be a Banach algebra.
Given ψ ∈ A′ and n � 0, let ψ(n) ∈ Cn(A, A′) be the cochain defined by

ψ(n)(a1, . . . , an)(an+1) := ψ(a1 · · · an+1).

Lemma 2.2. If τ is a continuous trace on A, then τ (2n) is a cyclic cocycle.

This is easily verified by a direct calculation, and we omit the proof.

Definition 2.3. Two chains x, y ∈ Cn(A) are cyclically equivalent if

x − y ∈ (I − t)Cn(A).

Notation 2.4. Let x = x1 ⊗ · · · ⊗ xn+1 ∈ Cn(A) be an elementary tensor, and
suppose we group terms in the tensor together as x = w1 ⊗ · · · ⊗ wj , where j � 2.
We then denote by dc(wl) the restriction of d to wl when seen as a part of x,
meaning that

dc(wl) =
βk+αk−2∑

i=βk

(−1)ixβk
⊗ · · · ⊗ xi · xi+1 ⊗ · · · ⊗ xβk+αk−1,

where αl is the length of the subtensor wl, and βl the rank of its first element. If
wl has length 1, i.e. αl = 1, then we define dc(wl) to be 0.

Note that the introduction of dc is a notational device and does not define a map
on subtensors as the signs are tributary to the position of this subtensor in the
tensor. With this notation, we can write

d(w1 ⊗ · · · ⊗ wj) = x2 ⊗ · · · ⊗ xα1 ⊗ wj · x1

+
j−1∑
k=1

(−1)βk+1−1wk · wk+1j

+
j∑

k=1

w1 ⊗ · · · ⊗ dc(wk) ⊗ · · · ⊗ wj . (2.3)

Notation 2.5. In later sections, many of the calculations involve elementary ten-
sors in A⊗̂n+1, of the form x1 ⊗ · · · ⊗ xn+1, and their images under certain maps,
which have the form

x1 ⊗ · · · ⊗ xi−1 ⊗ f(xi, xi+1) ⊗ g(xi, xi+1) ⊗ xi+2 ⊗ · · · ⊗ xn+1 (2.4)

for certain functions f, g : A × A → A. As a notational shorthand, we will often
denote such an expression in the abbreviated form

•
i−1

⊗f(xi, xi+1) ⊗ g(xi, xi+1) ⊗ •
n−i

.
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2.2. Band semigroups

Definition 2.6. A semigroup S formed only of idempotents is a band semigroup.

Rectangular bands are of particular importance.

Definition 2.7. A rectangular band is a semigroup in which the identity a = aba
always holds.

Note that, in any rectangular band, the identity

abc = (aca)bc = a(cabc) = ac

holds for arbitrary elements a, b and c. This is particularly clear if one takes the
following description of rectangular bands [10, theorem 1.1.3].

Theorem 2.8. Let S be a semigroup. The the following conditions are equivalent:

(i) S is a rectangular band;

(ii) S is isomorphic to a semigroup of the form A × B, where A and B are non-
empty sets, and where the multiplication is given by

(a1, b1)(a2, b2) = (a1, b2), where a1, a2 ∈ A and b1, b2 ∈ B.

A commutative band semigroup is called a semilattice, and carries a natural and
useful partial order defined by α � β ⇐⇒ αβ = α. Semilattices are important in
the study of general bands because of the following structure theorem.

Theorem 2.9 (see [10, theorem 4.4.5]). Any band semigroup S can be represented
as a disjoint union

∐
α∈L Rα, where L is a semilattice, each Rα is a rectangular

band given by Aα × Bα, the left and right index sets, and the following properties
are satisfied:

(i) RαRβ ⊆ Rαβ for all α, β ∈ L;

(ii) for x = (a1, b1) ∈ Rα and y = (a2, b2) ∈ Rβ with α � β, xy and y have the
same right index (i.e. xy = (·, b2)), while yx and y have the same left index
(i.e. yx = (a2, ·));

(iii) the product is associative.

Note that condition (iii) is needed to ensure that such a construction gives a band
semigroup.

Example 2.10 (normal bands). A band S is said to be a normal band if xaby =
xbay for all a, b, x, y ∈ S. In this case, the structure theorem can be sharpened
significantly; not only do we get a decomposition S =

∐
α∈L Rα into rectangular

bands, but this decomposition turns out to exhibit S as a ‘strong semilattice of
rectangular bands’ (see [10, proposition 4.6.14] for a proof and relevant definitions).
In [4] this stronger decomposition theorem was used to calculate the simplicial
cohomology of �1(S); in the present, more general case, new techniques are needed.
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Although bands do not in general have units, we will define left coherent units
for each element as follows. Given S, for each rectangular band Rα, fix an element
yα ∈ Rα and define 〈x] = xyα for each x ∈ Rα. Then the function 〈·] : S → S has
the following properties:

• for each α ∈ L, 〈Rα] ⊆ Rα;

• for each α ∈ L and each x ∈ Rα, 〈x]x = x;

• for each α, β ∈ L such that α � β, and each x ∈ Rα and y ∈ Rβ , 〈xy] = 〈x].

Notation 2.11. As is often done, if x ∈ S, we denote the point mass at x, as
an element of �1(S), by x itself. This should not cause confusion and follows the
notation used more generally. Throughout, we write x = x1 ⊗ · · · ⊗ xn+1 for an
elementary tensor in which each xi is a point mass at xi ∈ S. Henceforth, when
we speak of an elementary tensor x ∈ Cn(A), we shall always mean one of this
restricted form.

To show that one can cobound any φ ∈ ZCn(A), it suffices to show that one
can do it on these elementary tensors (with a uniform bound). Our strategy will
be to proceed by steps, expanding the set of elementary tensors on which one can
cobound at each step.

To do so, at each step we define s : CCn−1(A) → CCn(A) in such a way that,
denoting by E0 the set of elementary tensors on which one has cobounded φ at the
previous step, and by E1 the set on which one wishes to cobound, (ds+sd)(E0) ⊂ E0
and x − (ds + sd)(x) ∈ E0 for x ∈ E1. Then, given φ ∈ ZCn(A) such that φ0 =
φ−δ(ψ) vanishes on E0, defining ψ1 on E1 by ψ1(x) = φ0(s(x)) (for x ∈ CCn−1(A))
gives

(φ0 − δψ1)(x) = φ0(x) − ψ1(dx)
= φ0(x) − φ0(sdx)
= φ0(x − (ds + sd)x),

which still vanishes on E0 and now vanishes on E1. Note that if E0 ⊂ E1, then it
is sufficient to verify that x − (ds + sd)(x) ∈ E0 for x ∈ E1.

3. A first normalization step

3.1. Cobounding cyclically with norm control

Our first observation is that, if R is a rectangular band, then �1(R) is a 1-biprojective
Banach algebra. That is, there exists1 an �1(R)-bimodule map

σ : �1(R) → �1(R) ⊗̂ �1(R),

which has norm 1 and which is right inverse to the product map �1(R) ⊗̂ �1(R) →
�1(R). (To see how this definition relates to the original homological one, see [8,
ch. IV, § 5].)

1In fact, we can take σ(x) = xe ⊗ ex, where e is a fixed element in R, although we do not need
to know this for the arguments which follow.
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As observed in [4, lemma 7.5], one can use σ to construct a splitting homotopy
for the simplicial chain complex, and thus show directly that HHn(�1(R)) = 0 for
all n � 1. The corresponding result for cyclic cohomology is more complicated,
but can nevertheless be deduced using the Connes–Tzygan long exact sequence for
Banach algebras [9].

Now consider a general band S which decomposes into rectangular band compo-
nents as S =

∐
α Rα. We wish to use this decomposition to reduce our cohomology

problem to the case of rectangular bands. Although we are ultimately interested in
simplicial cohomology, it seems necessary at certain points in our reduction tech-
nique to be working with cyclic cochains. Thus, we shall need to consider the cyclic
cohomology of �1(Rα), for each α ∈ L. Since we need to deal with all the Rα simul-
taneously, it no longer suffices to appeal to [9, theorem 25]. A more precise version
of that result is needed, as follows.

Theorem 3.1. Let A be a biflat Banach algebra, with biflatness constant K � 1.
Let m � 0.

(i) For every ψ ∈ ZC2m+1(A) there exists χ ∈ CC2m(A) such that ψ = δχ;
moreover, χ may be chosen to satisfy the bound

‖χ‖ � 2(m + 1)3K4m‖ψ‖.

(ii) For every ψ ∈ ZC2m+2(A) there exists χ ∈ CC2m+1(A) and τ ∈ CC0(A) such
that ψ = τ (2m+2) + δχ; moreover, τ and χ may be chosen to satisfy the bounds

‖τ‖ � K2(m+1)‖ψ‖, ‖χ‖ � 2(m + 1)3K2(2m+1)‖ψ‖.

Theorem 3.1 may well be implicitly known to specialists; a fairly direct and self-
contained proof can be found in [5]. The important aspect, for our purposes, is
that the constants which control the cobounding depend only on the degree of the
cocycle and on the biflatness constant K.

3.2. Initializing a cyclic cocycle on �1(S)

Given a cyclic cocycle ψ, we are trying to find a cyclic cochain χ such that
ψ − δχ vanishes on a conveniently large set. This will be done in stages: the precise
definition for our first step is as follows.

Definition 3.2. Let φ ∈ ZCn(�1(S)). We say that φ is rectangular-band-normal-
ized, or R-normalized for short, if it vanishes on x = x1 ⊗ · · · ⊗ xn+1 whenever all
xi are in the same rectangular band component of S.

Lemma 3.3.

(i) If R is a rectangular band, every continuous trace on �1(R) is a scalar multiple
of the augmentation character

ε : �1(R) → C, where ε

( ∑
s∈R

λss

)
=

∑
λs.
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(ii) If S is an arbitrary band, decomposed canonically as
∐

α∈L Rα, where each
Rα is rectangular, then Z0(�1(S), �1(S)′) is isomorphic to �∞(L).

A sketch of the proof. Part (i) is proved by fixing e ∈ R and noting that any trace
τ on �1(R) must satisfy τ(x) = τ(xeex) = τ(exxe) = τ(e) for all x ∈ R. Part (ii)
follows by considering the restriction of a trace τ ∈ Z0(�1(S), �1(S)′) to each sub-
algebra �1(Rα).

Proposition 3.4 (normalization on each rectangular component). Let n � 1.

(i) For every ψ ∈ ZC2n−1(�1(S)), there exists χ ∈ CC2n−2(�1(S)) such that ψ−δχ
is R-normalized.

(ii) For every ψ ∈ ZC2n(�1(S)), there exist

τ ∈ Z0(�1(S), �1(S)
′
) and χ ∈ CC2n−1(�1(S))

such that ψ − τ (2n) − δχ is R-normalized.

Proof. We recall that, for each α, the algebra �1(Rα) is biprojective with constant 1.
The case of odd degree is straightforward. Given ψ ∈ ZC2n−1(�1(S)), let ψα

denote the restriction of ψ to the subalgebra �1(Rα). Then, by theorem 3.1, for
each α there exists χα ∈ CC2n−2(�1(Rα)) such that δχα = ψα and

‖χα‖ � 2n3‖ψα‖ � K ′
n‖ψ‖,

where the constant K ′
n does not depend on α. Given (x1, . . . , x2n−1) ∈ S2n−1, we

define

χ(x1, . . . , x2n−2)(x2n−1) :=

⎧⎪⎨⎪⎩
χα(x1, . . . , x2n−2)(x2n−1) if x1, . . . , x2n−1 ∈ Rα

for some α ∈ L,

0 otherwise.

Then χ extends to a bounded (2n − 1)-multilinear functional on �1(S), which is
clearly a cyclic cochain since each χα is. By construction, if x1, . . . , x2n ∈ Rα for
some α, then

(ψ − δχ)(x1, . . . , x2n−1)(x0) = (ψα − δχα)(x1, . . . , x2n−1)(x2n) = 0,

and thus ψ − δχ is R-normalized.
The case of even degree is similar, except that we have to deal with cocycles

arising from traces. As before, let ψ ∈ ZC2n(�1(S)) and, for each α, let ψα ∈
ZC2n(�1(Rα)) be the restriction of ψ to �1(Rα) in each variable. By theorem 3.1,
for each α there exist χα ∈ CC2n−1(�1(Rα)) and τα ∈ ZC0(�1(Rα)) such that

δχα + τ (2n)
α = ψα with ‖τα‖ � K ′′

n‖ψ‖, ‖χα‖ � K ′′
n‖ψ‖,

where the constant K ′′
n does not depend on α.

By lemma 3.3, each τα is constant, with value cα, say. Let τ : S → C be defined
by τ : Rα → {cα}. Then τ is a bounded trace on �1(S), and the restriction of τ (2n)

to �1(Rα) is clearly just τ
(2n)
α .
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Also, given (x1, . . . , x2n) ∈ S2n, we define

χ(x1, . . . , x2n−1)(x2n) :=

⎧⎪⎨⎪⎩
χα(x1, . . . , x2n−1)(x2n) if x1, . . . , x2n ∈ Rα

for some α ∈ L,

0 otherwise.

Then χ extends to a well-defined cyclic (2n−1)-cochain on �1(S) and, by construc-
tion, we find that, for each α and every x1, . . . , x2n+1 ∈ Rα,

(ψ − τ (2n) − δχ)(x1, . . . , x2n)(x2n+1) = (ψα − τ (2n)
α − δχα)(x1, . . . , x2n)(x2n+1)

as required.

4. A sufficient condition for using the Connes–Tzygan sequence

Definition 4.1. First, given a Banach algebra B, the reduced Hochshild complex
CR∗(B) is the following chain complex of Banach spaces:

0 ←− B
d←− B⊗̂2 d←− · · · d←− B⊗̂n d←− · · · ,

where the boundary map d is defined by

d(b1 ⊗ · · · ⊗ bn+1) =
n∑

j=1

(−1)j •
j−1

⊗ bjbj+1 ⊗ •
n−j

, b1, . . . , bn+1 ∈ B.

Then, for each n � 0, we write ZRn(B) for the kernel of d : B⊗̂n+1 → B⊗̂n and
BRn(B) for the image of d : B⊗n+2 → B⊗̂n+1.

Consider the case where B = �1(S). In order to construct the Connes–Tzygan
long exact sequence for �1(S), we need to know that the complex CR∗(�1(S)) is
exact, i.e. that BRn(�1(S)) = ZRn(�1(S)) for all n � 0 (see [9, theorem 11]). This
is the aim of the current section.

Remark 4.2. Even in the case where B = L, i.e. when our band is a semilattice,
the result is not immediately obvious; hitherto, the only known proof used a special
case of the main results in [3].

The case where n = 0 is trivial, since ZR0(�1(S)) = �1(S), and for

a =
∑
s∈S

λss ∈ �1(S)

we have

d

( ∑
s∈S

λs〈s] ⊗ s

)
= a.

We therefore restrict attention in what follows to the case where n � 1.
Left-coherent units will play a key role in our proof. In particular, we need the

following lemma in several places.
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Lemma 4.3. Let y, z ∈ S. Then 〈〈y]] = 〈y] and 〈y]〈yz] = 〈yz].

Proof. Both identities follow from our explicit construction of the function 〈·]. They
can also be deduced from the coherence properties that were observed earlier.

The first identity follows since 〈x] = 〈xy] for all x ∈ Rα and y ∈ Rβ with
α � β, so that taking x = 〈y] does the job. For the second identity, note that
x〈x] = (〈x]x)〈x] = 〈x], the last equality following because x and 〈x] lie in the same
rectangular band. In particular, taking x = yz yields

〈y]〈yz] = 〈y](yz〈yz]) = yz〈yz] = 〈yz]

as required.

For 1 � k � n + 1, let sk : �1(Sn+1) → �1(Sn+2) be defined by

sk(x1 ⊗ · · · ⊗ xn+1) = (−1)kx1 ⊗ · ⊗ xk−1 ⊗ 〈xk] ⊗ xk ⊗ · ⊗ xn+1. (4.1)

Then set
Qk := dsk + skd − I : �1(Sn+1) → �1(Sn+1).

If z ∈ ZRn(�1(S)), then a straightforward calculation shows that Qk · · ·Q1(z) is
homologous to (−1)kz (that is, the two tensors differ by an element of BRn). The
work lies in obtaining a formula for Qn · · ·Q1, which will allow us to see that
Qn · · ·Q1(z) is homologous to zero.

Remark 4.4. We give some motivation for the introduction of the maps sk and Qk,
and the attention paid to Qn · · ·Q1. When B is a Banach algebra with identity 1, it
is well known that the chain complex CR∗(B) is exact, and that one can construct
an explicit contracting homotopy σ. The maps σn+1 : B⊗̂n+1 → B⊗̂n+2 are given
by σ(b1 ⊗ · · · ⊗ bn+1) = −1 ⊗ b1 ⊗ · · · ⊗ bn+1, and one can check directly that dσ+
σd = I.

In the present case, �1(S) might not even have a bounded approximate identity.
Nevertheless, since we do have local left-coherent units 〈x], it is natural to see how
far ds1 + s1d is from being the identity map, i.e. how far Q1 is from being zero.

Although Q1(x) is in general non-zero (see (4.2) below), it is a tensor with
more ‘structure’ than x in some sense. When we successively apply the maps
Q2, . . . , Qn, at each stage we increase the amount of structure present. Thus, given
z ∈ ZRn(�1(S)), the tensor Qn · · ·Q1(z), which, as previously noted, is homologous
to (−1)nz, will be so highly structured that it falls into BRn(�1(S)).

Let us start our argument by calculating Q1(x), where x = x1 ⊗· · ·⊗xn+1. Since

ds1(x) = x1 ⊗ · · · ⊗ xn+1 +
n∑

j=1

(−1)j〈x1] ⊗ x1 ⊗ · · · ⊗ xjxj+1 ⊗ •
n−j

and

s1d(x) = 〈x1x2] ⊗ x1x2 ⊗ •
n−1

+
n∑

j=2

(−1)j−1〈x1] ⊗ x1 ⊗ · · · ⊗ xjxj+1 ⊗ •
n−j

,
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we have

Q1(x) = −〈x1] ⊗ x1x2 ⊗ •
n−1

+〈x1x2] ⊗ x1x2 ⊗ •
n−1

. (4.2)

Note that ran(Q1) is contained in the kernel of the map

ρ1 : y1 ⊗ · · · ⊗ yn+1 
→ y1〈y2] ⊗ y2 ⊗ •
n−1

.

Now let y = y1 ⊗ · · · ⊗ yn+1, where y1, . . . , yn+1 ∈ S. A similar calculation to
that for Q1 shows that

Q2(y) = −ρ1(y) − y1 ⊗ 〈y2] ⊗ y2y3 ⊗ •
n−2

− y1y2 ⊗ 〈y3] ⊗ y3 ⊗ •
n−2

+y1 ⊗ 〈y2y3] ⊗ y2y3 ⊗ •
n−2

.

Then, since ρ1Q1(x) = 0, we find after some calculation that

Q2Q1(x) = 〈x1] ⊗ 〈x1x2] ⊗ x1x2x3 ⊗ •
n−2

− 〈x1] ⊗ 〈x1x2x3] ⊗ x1x2x3 ⊗ •
n−2

− 〈x1x2] ⊗ 〈x1x2] ⊗ x2x2x3 ⊗ •
n−2

+ 〈x1x2] ⊗ 〈x1x2x3] ⊗ x1x2x3 ⊗ •
n−2

. (4.3)

By lemma 4.3, 〈x1x2]〈x1x2x3] = 〈x1x2x3]〈x1x2x3]. Hence, Q2Q1(x) lies in the ker-
nel of the map

ρ2 : x1 ⊗ · · · ⊗ xn+1 
→ x1 ⊗ x2〈x3] ⊗ x3 ⊗ •
n−3

.

It also lies in ker(ρ1), as can be shown using lemma 4.3 again.
By continuing in this way, one could calculate Qn · · ·Q1(x) directly, but it would

become harder to keep track of the terms involved and how they cancel. To do the
necessary bookkeeping, we write the boundary operator as an alternating sum of
face maps. That is, for n � 1 and 1 � i � n, let ∂i : �1(Sn+1) → �1(Sn) denote the
map defined by

∂i : x1 ⊗ · · · ⊗ xn+1 
→ •
i−1

⊗xixi+1 ⊗ •
n−i

,

so that

d =
n∑

i=1

(−1)i∂i : �1(Sn+1) → �1(Sn).

The following identities are easily verified by checking on elementary tensors:

∂isk = −sk−1∂i if i + 2 � k � n + 1, (4.4 a)

∂isi = (−1)iI, (4.4 b)
∂isk = sk∂i−1 if k + 2 � i � n + 1. (4.4 c)
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Using these identities, for 1 � k � n we may rewrite Qk as

Qk =
n+1∑
i=1

(−1)i∂isk +
n∑

i=1

(−1)isk∂i − I

=
k+1∑
i=1

(−1)i∂isk +
k∑

i=1

(−1)isk∂i − I (by (4.4 c))

=
k−1∑
i=1

(−1)i∂isk + (−1)k+1∂k+1sk +
k∑

i=1

(−1)isk∂i (by (4.4 b))

=
k−2∑
i=1

(−1)i+1sk−1∂i − ρk−1

+ (−1)k+1∂k+1sk +
k∑

i=1

(−1)isk∂i (by (4.4 a)),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

where ρi = (−1)i+1∂isi+1, i.e.

ρi(x1 ⊗ · · · ⊗ xn+1) = •
i−1

⊗xi〈xi+1] ⊗ xi+1 ⊗ •
n−i

. (4.6)

Note that ∂iρi = ∂i, which implies that ker ρi ⊆ ker ∂i.
Next, for 1 � k � n, let Q̃k := (−1)k+1∂k+1sk + (−1)ksk∂k, so that

Q̃k(x) = − •
k−1

⊗〈xk] ⊗ xkxk+1 ⊗ •
n−k

+ •
k−1

⊗〈xkxk+1] ⊗ xkxk+1 ⊗ •
n−k

. (4.7)

We then have the following result.

Proposition 4.5. Let 1 � r � n. Then

(i) Qr · · ·Q1 = Q̃r · · · Q̃1,

(ii) ran(Qr · · ·Q1) ⊆ (ker ρ1) ∩ · · · ∩ (ker ρr).

Proof. The proof is by induction. When r = 1, part (i) is trivial and part (ii)
was proved above (see (4.2)). Suppose both parts hold true for r = k − 1, where
2 � k � n. Then, since ker ρi ⊆ ker ∂i for all i, and since (ii) holds for r = k − 1,

∂i(Qk−1 · · ·Q1) = 0 for 1 � i � k − 2 and ρk−1(Qk−1 · · ·Q1) = 0.

Comparing this with (4.5), we see that QkQk−1 · · ·Q1 = Q̃kQk−1 · · ·Q1. Since (i)
holds for r = k − 1, we have Qk · · ·Q1 = Q̃k · · · Q̃1. Thus, part (i) holds for r = k.

To complete the inductive step, we must show that (ii) holds for r = k, i.e. that
Q̃k(ker ρi) ⊆ ker ρi for all 1 � i � k.

For 1 � i � k − 2 this is straightforward, since a direct check on elementary
tensors shows that ρi commutes with Q̃k. For i = k − 1, by using lemma 4.3 we
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obtain

ρk−1Q̃k(x) = ρk−1

(
− •

k−2
⊗xk−1 ⊗ 〈xk] ⊗ xkxk+1 ⊗ •

n−k

+ •
k−2

⊗xk−1 ⊗ 〈xkxk+1] ⊗ xkxk+1 ⊗ •
n−k

)
= − •

k−2
⊗xk−1〈xk] ⊗ 〈xk] ⊗ xkxk+1 ⊗ •

n−k

+ •
k−2

⊗xk−1〈xkxk+1] ⊗ 〈xkxk+1] ⊗ xkxk+1 ⊗ •
n−k

= ρk−1

(
− •

k−2
⊗xk−1〈xk] ⊗ 〈xk] ⊗ xkxk+1 ⊗ •

n−k

+ •
k−2

⊗xk−1〈xk] ⊗ 〈xkxk+1] ⊗ xkxk+1 ⊗ •
n−k

)
= ρk−1Q̃k

(
•

k−2
⊗xk−1〈xk] ⊗ xk ⊗ xk+1 ⊗ •

n−k

)
= ρk−1Q̃kρk−1(x).

Finally, another direct calculation on elementary tensors, using lemma 4.3, shows
that ρkQ̃k = 0. This completes the inductive step.

Lemma 4.6. We have (snd + dsn+1 − I)Q̃n = 0.

Proof. Using the identities (4.4 a) and (4.4 b), we have

(snd + dsn+1 − I)(y) =
n∑

j=1

(−1)jsn∂j(y) +
n+1∑
k=1

(−1)k∂ksn+1(y) − y

= (−1)nsn∂n(y) + (−1)n∂nsn+1(y)
= •

n−1
⊗〈ynyn+1] ⊗ ynyn+1 − •

n−1
⊗yn〈yn+1] ⊗ yn+1.

Thus,

(snd + dsn+1 − I)Q̃n(x)

= −(snd + dsn+1 − I)
(

•
n−1

⊗〈xn] ⊗ xnxn+1

)
+ (snd + dsn+1 − I)

(
•

n−1
⊗〈xnxn+1] ⊗ xnxn+1

)
= − •

n−1
⊗〈xnxn+1] ⊗ xnxn+1 + •

n−1
⊗〈xn]〈xnxn+1] ⊗ xnxn+1

+ •
n−1

⊗〈xnxn+1] ⊗ xnxn+1 − •
n−1

⊗〈xnxn+1]〈xnxn+1] ⊗ xnxn+1.

Since 〈xn]〈xnxn+1] = 〈xnxn+1] = 〈xnxn+1]〈xnxn+1], from lemma 4.3, these four
terms cancel pairwise to give 0.

Theorem 4.7. The complex CR∗(�1(S)) is exact.

Proof. Let n � 1. As already mentioned, it suffices to prove that ZRn(�1(S)) =
BRn(�1(S)). Thus, let z ∈ ZRn(�1(S)). A simple induction using the definition of
the Qi shows that, for 1 � k � n,

Qk · · ·Q1(z) = (dsk − I) · · · (ds1 − I)(z) ∈ ZRn(�1(S)).
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Hence,

(snd + dsn+1 − I)Qn · · ·Q1(z) = (dsn+1 − I)(dsn − I) · · · (ds1 − I)(z).

Now, combining proposition 4.5 and lemma 4.6 yields

(snd + dsn+1 − I)Qn · · ·Q1 = (snd + dsn+1 − I)Q̃n · · · Q̃1 = 0.

Thus, (dsn+1 − I)(dsn − I) · · · (ds1 − I)(z) = 0. Expanding out, we deduce that
z ∈ BRn(�1(S)), as required.

Remark 4.8. Although the present work is focused on band semigroups, it should
nevertheless be noted that the calculations of this section apply equally well to a
Clifford semigroup.

For our present purposes (see [10, theorem IV.2.1]), we say that a semigroup
G is a Clifford semigroup if it decomposes as a disjoint union G =

∐
α∈L Gα of

sub-semigroups, where the indexing set L is a semilattice, each Gα is a group with
identity element eα, and Gα ·Gβ ⊆ Gαβ for all α and β. We can define an analogous
local left unit function 〈·] : G → G, which sends x ∈ Gα to eα.

If we were then to repeat the calculations of this section, we would find that every-
thing goes through (with slight simplifications, in fact), and we would thus obtain
a direct proof that the complex CR∗(�1(G)) is exact. This implies, for instance,
that we have a Connes–Tzygan long exact sequence for �1(G), so that the results
of [4] for the simplicial cohomology of �1(G) could be applied to obtain results for
its cyclic cohomology.

5. Inductively reducing down to the R-normalized case

5.1. Minimal elements

Definition 5.1 (degree of elements and tensors). For a ∈ S, let [a] denote its
degree in S, that is, if a ∈ Rα, then [a] := α. Then, given an elementary (sub)tensor
of point masses w = xk ⊗ · · · ⊗ xl, define the degree of w, denoted by [w], to be
[xkxk+1 · · ·xl].

In this section, we shall prove that one can cobound any R-normalized φ ∈
ZCn(A) on those elementary tensors x = x1 ⊗ · · · ⊗ xn+1 such that [xi] = [x] for
some i.

We work cyclically with indices when dealing with cyclic cohomology: for exam-
ple, the interval [n − 1, 2] is the set {n − 1, n, n + 1, 1, 2} and we call xn−1 ⊗ · · · ⊗
xn+1 ⊗ x1 ⊗ x2 a subtensor. We will sometimes emphasize this by describing these
as cyclic intervals or cyclic subtensors.

Definition 5.2. An elementary tensor x = x1 ⊗· · ·⊗xn+1 has a minimal element
xi, for some i, if [xi] = [x]. (The degree of such an element is a minimum.) A
minimal block is a (cyclic) subtensor xk ⊗ · · · ⊗ xl such that [xi] = [x] for all i in
the cyclic interval [k, l], and xk−1 �= [x] �= xl+1.

Note that if x is a minimal block itself, then all xi are in the same rectangular
band; the assumption that φ is R-normalized therefore implies that it vanishes on
such an x.
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For elementary tensors with at least one minimal element, let

Jx = {i ∈ {1, 2, . . . , n + 1} : xi is the first component of a minimal block}.

Jx is the set of the indices of all initial points of minimal blocks. Given i ∈ Jx,
define si : Cn(A) → Cn+1(A) by

si(x1 ⊗ · · · ⊗ xn+1) = (−1)i(x1 ⊗ · · · ⊗ xi−1 ⊗ 〈xi] ⊗ xi ⊗ · · · ⊗ xn+1),

and then define s : Cn(A) → Cn+1(A) on x with j minimal blocks by

s(x) =
1
j

∑
i∈Jx

si(x). (5.1)

If there are no minimal blocks (Jx is empty), set s(x) = 0.
Dualizing this operator then yields σ : Cn+1(A,A′) → Cn(A,A′), defined on φ ∈

Cn+1(A,A′) by
σφ(x) = φ(s(x)). (5.2)

We now wish to show that σ takes cyclic cochains to cyclic cochains.

Lemma 5.3. If φ is cyclic, then so is σφ.

Proof. The key point is that the definition of minimal blocks is equivariant with
respect to cyclic shifts, that is,

i ∈ I(x1⊗···⊗xn+1) ⇐⇒ i + 1 ∈ I(xn+1⊗x1⊗···⊗xn),

where this is understood cyclically in the case i = n + 1.
If i ∈ I(x1⊗···⊗xn+1) and 1 � i � n, then

tsi(x1 ⊗ · · · ⊗ xn+1) = (−1)it(x1 ⊗ · · · ⊗ xi−1 ⊗ 〈xi] ⊗ xi ⊗ · · · ⊗ xn+1)

= (−1)n+1+i(xn+1 ⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ 〈xi] ⊗ xi ⊗ · · · ⊗ xn)
= (−1)nsi+1(xn+1 ⊗ x1 ⊗ · · · ⊗ xn).

On the other hand, if n + 1 ∈ Ix1⊗···⊗xn+1 , then

t2sn+1(x1 ⊗ · · · ⊗ xn+1) = (−1)n+1t2(x1 ⊗ · · · ⊗ 〈xn+1] ⊗ xn+1)

= (−1)n+1(〈xn+1] ⊗ xn+1 ⊗ x1 ⊗ · · · ⊗ xn)
= (−1)ns1(xn+1 ⊗ x1 ⊗ · · · ⊗ xn).

Thus, if ψ ∈ CCn+1(A), so that ψ ◦ t = ψ, we find that

tσψ(x1 ⊗ · · · ⊗ xn+1) = (−1)nψ(s(xn+1 ⊗ x1 ⊗ · · · ⊗ xn))
= ψ(s(x1 ⊗ · · · ⊗ xn+1))
= σψ(x1 ⊗ · · · ⊗ xn+1)

as required.

Proposition 5.4. For any R-normalized φ ∈ ZCn(A), there exists ψ ∈ CCn−1(A),
such that (φ−δψ)(x) = 0 for all elementary tensors x with some minimal element.
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Proof. Let x = x1 ⊗ · · · ⊗ xn+1 be a tensor with some minimal element and let mx

be the sum of the length of its minimal blocks. Since we are working in cyclic
cohomology, by cycling our tensor we can assume without loss of generality that
1 ∈ Jx. It will be convenient to write x = u1⊗v1⊗· · ·⊗ul⊗vl, where ul, l = 1, . . . , j
are the j minimal blocks.

If all elements are minimal, we say that mx = n+1. Then, since φ is R-normalized,
it will be assumed to vanish on x.

Suppose we can cobound on x such that mx � K. Let x be such that mx = K−1
and consider (ds+sd)x. In the notation of (2.3), in d(x) there are terms with dc(vl),
ul · vl and vl · ul+1 that all have K − 1 minimal elements, and those with dc(ul)
that have K − 2 minimal elements. Applying s increases the number of minimal
elements by one in all terms, and, therefore, by induction it suffices to consider only
those terms in sd(x) of the form

(−1)iu1 ⊗ v1 ⊗ · · · ⊗ 〈xi] ⊗ dc(ul) ⊗ vl ⊗ · · · ⊗ uj ⊗ vj ,

where xi is the first element of ul (and where we have used that if [x] � [y], then
〈xy] = 〈x]). Note that dc is applied to ul as a subtensor of x.

Similarly, in ds(x), we only need to consider terms of the form

(−1)iu1 ⊗ v1 ⊗ · · · ⊗ d′
c(〈xi] ⊗ ul) ⊗ vl ⊗ · · · ⊗ uj ⊗ vj ,

where d′
c is applied to 〈xi] ⊗ ul as a subtensor of si(x). This effectively changes the

signs when comparing to terms in sd(x). When summing, all terms cancel except

u1 ⊗ v1 ⊗ · · · ⊗ 〈xi] · ul ⊗ vl ⊗ · · · ⊗ uj ⊗ vj ,

which is x.

5.2. Without minimal elements

The procedure for handling tensors without minimal elements is much more
involved. Crucial to our construction is the following definition.

Definition 5.5. Let x = x1 ⊗ · · ·⊗xn+1 ∈ Sn+1 be without minimal element. We
say that a subtensor xk ⊗· · ·⊗xl has a minimal left element if [xk] � [xi] for all i in
the cyclic interval [k, l]. A subtensor is a left-block if it has a minimal left element
and is not strictly included in another subtensor which has a minimal left element.

Clearly, a tensor x ∈ Sn+1 can have at most n+1 left-blocks. Note that a tensor
x with a minimal element informally corresponds to having only one left-block:
extending the definition to this case leads to confusion as the initial element of
such a left-block may not be well defined. Nevertheless, if x does not have at least
two left-blocks, then it has a minimal element.

We stress again that we consider tensors like xn ⊗ xn+1 ⊗ x1 ⊗ x2 as subtensors
of x and, therefore, as potential left-blocks.

Notation 5.6. For 2 � j � n+1, denote by Fj
n the set of all elementary tensors in

Sn+1 with at most j left-blocks. We write F1
n for the subset of elementary tensors

with a minimal element.
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These subsets give us a filtration

F1
n ⊂ F2

n ⊂ · · · ⊂ Fn+1
n = Sn+1,

where Fn+1
n has dense linear span in Cn(A). Crucially, each face map

∂i : Cn(A) → Cn−1(A)

cannot increase the number of left-blocks, and hence maps Fj
n to Fj

n−1.
We have seen in the previous sections that if ψ is an R-normalized n-cocycle, it

is equivalent in cyclic cohomology to one that vanishes on F1
n.

Theorem 5.7. Let 2 � j � n+1 and let ψ ∈ ZCn(A). Suppose that ψ vanishes on
Fj−1

n . It is then equivalent in cyclic cohomology to a cocycle that vanishes on Fj
n.

Theorem 5.7 will allow us, by an inductive argument, to conclude that if ψ is an
R-normalized cocycle, there exists a cyclic cochain φ such that ψ = δφ. The proof
of this theorem will take up the rest of this section and the following one.

Notation 5.8. For elementary tensors without a minimal element, it is easy to see
that any tensor x has a unique decomposition into left-blocks. Therefore, we can
define

Ix = {i ∈ {1, 2, . . . , n + 1} : xi is the first component of a left-block}.

Ix is the set of the indices of all initial points of left-blocks.

As in § 5.1, we shall now define an insertion operator in terms of this block
structure. (This operator will also be denoted by s, but this abuse of notation
should not cause any confusion with the insertion operator that was considered in
§ 5.1.) Given an elementary tensor x ∈ Cn(A) and i ∈ Ix, define

si(x) = (−1)i
(

•
i−1

⊗〈xi] ⊗ xi ⊗ •
n−i

)
∈ Cn+1(A),

and then define s : Cn(A) → Cn+1(A) by

s(x) =
∑
i∈Ix

si(x). (5.3)

If there are no left-blocks, (Ix is empty), set s(x) = 0.
Dualizing this operator, we define σ : Cn+1(A,A′) → Cn(A,A′) by

σφ(x) = φ(s(x)) for φ ∈ Cn+1(A,A′). (5.4)

The proof of lemma 5.3 shows that we also have the following.

Lemma 5.9. If φ is cyclic, then so is σφ.

Two parameters will be important for our approach in this section and the next:
the degree of a left-block, and the height of a elementary tensor. The degree of a
(sub)tensor was defined earlier (definition 5.1). Note that the degree of a left-block
will be the same as the degree of its initial element.
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Definition 5.10. If T is a finite semilattice, and α ∈ T , the height of α in T is
the length of the longest descending chain in T which starts at α. That is,

htT (α) = sup{m : there exist t0, . . . , tm ∈ T with α = tm � tm−1 � · · · � t0}.

If x = x1 ⊗ · · · ⊗ xn+1 is an elementary tensor in Cn(A), let L(x) be the sub-
semilattice of L that is generated by the set {[x1], . . . , [xn+1]}, and define the height
of x to be

ht(x) :=
n+1∑
i=1

htL(x)([xi]).

Denote by Fj,h
n the set of elementary tensors with at most j left-blocks and with

height at most h. Note for later reference that, if x has no minimum element, then
there are crude bounds

n + 1 � ht(x) � n(n + 1).

We now define linear spaces which will be key to our induction:

Gn,j,h = linFj,h
n + linFj−1

n and Hn,j,h = (I − t)Cn(A) + Gn,j,h. (5.5)

Lemma 5.11. Let T be a finite semilattice and let F ⊆ T be a sub-semilattice.

(i) If α ∈ F then htF (α) � htT (α).

(ii) If α, β ∈ T and α ≺ β then htT (α) < htT (β).

The proofs of both parts are clear.

Proposition 5.12. Let x = x1 ⊗ · · · ⊗ xn+1 be an elementary tensor in Fj,h
n . Then

(sd + ds)(x) ≡
∑
i∈Ix

[
x + •

i−1
⊗〈xixi+1] ⊗ xixi+1 ⊗ •

n−i

− •
i−1

⊗〈xi] ⊗ xixi+1 ⊗ •
n−i

]
mod Gn,j,h−1. (5.6)

Remark 5.13. When n+1 ∈ Ix, the corresponding term in square brackets should
be interpreted as

x + (−1)nx2 ⊗ · · · ⊗ xn ⊗ 〈xn+1x1] ⊗ xn+1x1

+ (−1)n+1x2 ⊗ · · · ⊗ xn ⊗ 〈xn+1] ⊗ xn+1x1. (5.7)

The proof of proposition 5.12 is long, and will therefore be deferred to § 6. Assum-
ing for the moment that the proposition holds, let us continue with the proof of
theorem 5.7.

For k = 1, . . . , j, let
Pk = I − k−1(sd + ds).

By construction, if ψ ∈ ZCn(A), then ψ − P ∗
k ψ = k−1δσψ ∈ BCn(A), and so apply-

ing P ∗
k to a cyclic cocycle does not change its cyclic cohomology class. Proposi-

tion 5.12 suggests that, by repeatedly applying Pk to an elementary tensor in Fj
n,

for varying k, one would eventually obtain a linear combination of tensors in Fj−1
n .
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To prove that this hope can be realized (at least, if we work up to cyclic equiv-
alence, see definition 2.3) we must analyse the surviving terms in (5.6) in more
detail. Left-blocks of length 1 will play a special role and we adopt the following
definitions.

Definition 5.14. A left-block of length 1 is called a 1-block. A 1-block xk in an
elementary tensor x is called a block-unit if xk = 〈xk] and xkxk+1 = xk+1.

Remark 5.15. Since block-units are left-blocks of length 1, there are certainly no
more than j − 1 of them when j < n + 1. In fact, if j = n + 1, then this is still
true, for if there were only block-units, the degree of each would lie above that of
the following block-unit, and hence the tensor would have a minimal element (and
therefore no left-blocks).

Given an elementary tensor x = x1 ⊗ · · · ⊗ xn+1, let

Rx = {i : xi is a 1-block but not a block-unit, and [xi] � [xi+1]},

where we allow n + 1 ∈ Rx. Clearly, Rx is a proper subset of the set Ix of all initial
points of left-blocks; it may even be empty.

Lemma 5.16. Let x = x1 ⊗ · · · ⊗ xn+1 be an elementary tensor in Fj
n, and let i ∈

Ix. Then precisely one of the following four cases can occur:

(i) xi is not a 1-block in x, in which case,

•
i−1

⊗〈xixi+1] ⊗ xixi+1 ⊗ •
n−i

= •
i−1

⊗〈xi] ⊗ xixi+1 ⊗ •
n−i

; (5.8)

(ii) xi is a 1-block and [xi] �� [xi+1], in which case, the tensor

•
i−1

⊗〈xi] ⊗ xixi+1 ⊗ •
n−i

(5.9)

either has fewer left-blocks, or lower height (and the same number of left-
blocks), than x;

(iii) xi is a block-unit, in which case •i−1 ⊗〈xi] ⊗ xixi+1 ⊗ •n−i = x;

(iv) i ∈ Rx.

In cases (ii)–(iv), the tensor •i−1 ⊗〈xixi+1] ⊗ xixi+1 ⊗ •n−i has fewer left-blocks
than x.

Proof. If xi is not a 1-block, then since i is initial we must have [xi] � [xi+1].
Equation (5.8) then follows from the left-coherent property of the function 〈·], as
described in § 2.

If xi is a 1-block, we split into two cases. The first is when [xi] does not lie above
[xi+1], i.e. case (ii) of the lemma. In this case, xixi+1 has strictly smaller degree
than xi+1, and so (5.9) has height at most

ht(x) − htL(x)([xi+1]) + htL(x)([xixi+1]) < ht(x)

as claimed. The second case is when [xi] � [xi+1] (note that, since xi is assumed here
to be a 1-block, it then has to lie strictly above xi+1). There are now two subcases:

https://doi.org/10.1017/S0308210510000648 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510000648


734 Y. Choi, F. Gourdeau and M. C. White

either xi is a block-unit, in which case the claim in (iii) follows immediately from
the definition of a block-unit (and the fact that 〈〈·]] = 〈·]), or it is not, in which case
i is by definition a member of Rx, so that we are in case (iv).

Finally, if we are not in case (i), i.e. if xi is a 1-block, then •i−1 ⊗〈xixi+1] ⊗
xixi+1 ⊗ •n−i clearly has fewer left-blocks than x (more precisely, the left-blocks
which started in position i and position i + 1 have merged).

The previous lemma motivates the following notation. Define a map Err on ele-
mentary tensors by

Err(x) =
∑
i∈Rx

•
i−1

⊗〈xi] ⊗ xixi+1 ⊗ •
n−i

, (5.10)

where if Rx = ∅, we define Err(x) := 0, and extend Err by linearity and continuity
to a bounded linear map on Cn(A). It is easily checked from the definitions in (5.5)
that Err maps Gn,j,h into itself, and hence maps Hn,j,h into itself.

Corollary 5.17. If x = x1 ⊗ · · · ⊗ xn+1 is an elementary tensor with height h,
and with j left-blocks, exactly r of which are block-units, then

Pk(x) ≡
(

1 − j − r

k

)
x +

1
k

Err(x) mod Hn,j,h−1. (5.11)

Proof. Fix i ∈ Ix and consider the corresponding terms enclosed by square brackets
on the right-hand side of (5.6) (or, if i = n + 1, the terms in (5.7)).

If xi is a block-unit and 1 � i � n, then, by lemma 5.16(iii), the first and
third of these terms cancel out, while the middle term is equal to •i−1 ⊗〈xixi+1] ⊗
xixi+1 ⊗ •n−i and so lies in Fj−1

n . If i = n + 1 and xn+1 is a block-unit, we
have to consider (5.7). There, the first and third terms will now cancel out mod-
ulo cyclic equivalence, while the middle term is cyclically equivalent to xn+1x1 ⊗
•n−1 ⊗〈xn+1x1] and so lies in Fj−1

n as before.
If xi is not a block-unit, then we get x, together with two other terms. These two

will cancel if xi is not a 1-block (lemma 5.16(i)), while if xi is a 1-block that does
not lie above its successor, these terms will have either fewer left-blocks or lower
height than x (lemma 5.16(ii)). That only leaves the case where i ∈ Rx, when one
of the terms will have fewer left-blocks and the other will form part of Err(x).

Summing over all i ∈ Ix, we obtain from (5.6) that

(ds + sd)(x) ≡
( ∑

i∈Ix, xi not a block-unit

x

)

−
( ∑

i∈Rx

•
i−1

⊗〈xi] ⊗ xixi+1 ⊗ •
n−i

)
mod Hn,j,h−1

The first sum in brackets is equal to (j − r)x; the second is equal to Err(x). Re-
arranging gives us the desired identity.

At this point, note that the degree of a left-block and the height of a tensor,
which both play a pivotal role in our analysis, depend only on the degrees of terms
in an elementary tensor, i.e. those elements of the structure semilattice L which
index these terms. This motivates the following definition.
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Definition 5.18. Given an elementary tensor x = x1 ⊗ · · · ⊗ xn+1, the shape of x
is the tensor [x1] ⊗ · · · ⊗ [xn+1] ∈ �1(Ln+1).

Clearly, the number of left-blocks, the location of the initial points of left-blocks
and the height are each dependent only on the shape of a tensor. It is also clear that
if i ∈ Rx, then •i−1 ⊗〈xi] ⊗ xixi+1 ⊗ •n−i has the same shape as x. Consequently,
each term in Pk(x) has the same shape as x, has lower height or has fewer left-
blocks.

Given an elementary tensor x = x1 ⊗ · · · ⊗ xn+1 without minimal element, define
a descending block in x to be a cyclic subtensor xk ⊗· · ·⊗xl with the property that
[xk] � [xk+1] � · · · � [xl], while [xk−1] �� [xk] and [xl] �� [xl+1]. Since the entries of
x can strictly decrease at most n times, a descending block in x = x1 ⊗ · · · ⊗ xn+1
can have length at most n, and so has a well-defined first element and last element.
In particular, for each i, we can define the descent of xi in x to be l − i, where
xl is the last element in the unique descending block that contains xi. (This is
interpreted cyclically, so that if xn ⊗ xn+1 ⊗ x1 is a descending block, then the
descent of xn+1 is 1.) We denote the descent of xi in x by desci(x), and now define
the descent of x to be

desc(x) :=
∑
i∈Rx

desci(x).

Since desci(x) � n − 1 for all i and |Rx| � j − 1, there is a crude upper bound
desc(x) � (j − 1)(n − 1). Moreover, since desc xi � 1 for each i ∈ Rx (recall
that if i ∈ Rx then xi lies strictly above its successor), there is a lower bound
desc(x) � |Rx|.

The idea behind the next lemma is that, given x with Rx non-empty, each term
in Err(x) either has one more block-unit, or else has one of the block-units shifted
one place to the left. Since each such term has the same shape as x, this process
must terminate after a finite number of steps.

Lemma 5.19. Let x = x1 ⊗ · · · ⊗ xn+1 be a tensor without minimal element, such
that Rx is non-empty, and let i ∈ Rx. Then

desc
(

•
i−1

⊗〈xi] ⊗ xixi+1 ⊗ •
n−i

)
< desc(x).

Proof. To allay potential concerns with degenerate cases, we start by observing
that, since x has no minimal element but Rx is non-empty, we must have n � 2.
Next, since the definition of descent is cyclically invariant, we may as well cycle our
tensor so that 2 � i � n (this just simplifies some of the notational bookkeeping).

Set y = •i−1 ⊗〈xi] ⊗ xixi+1 ⊗ •n−i. Note that y coincides with x in the first
i − 1 and last n − i entries, and [yk] = [xk] for all k ∈ {1, . . . , n + 1}. Given
r ∈ {1, . . . , i − 1} ∪ {i + 2, . . . , n + 1}, it follows that yr is a 1-block and non-
block-unit lying strictly above its successor in y if and only if xr is a 1-block and
non-block-unit lying strictly above its successor in x; moreover, if this is the case,
then the descent of yr is equal to that of xr. It follows from the definition of descent
that

desc(x) −
∑

r∈Rx∩{i,i+1}
descr(x) = desc(y) −

∑
r∈Ry∩{i,i+1}

descr(y).
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Now, by hypothesis i ∈ Rx, and since yi is a block-unit in y, we have i /∈ Ry.
Moreover, since [xi] � [xi+1], it is clear that the descent of xi in x is strictly
greater than the descent of yi+1 = xixi+1 in y. Therefore,∑

r∈Rx∩{i,i+1}
descr(x) � desci(x) > desci+1(y) �

∑
r∈Ry∩{i,i+1}

descr(y),

and hence desc(x) > desc(y) as claimed.

Corollary 5.20. Let x ∈ Fj,h
n . Then (Pj · · ·P1)(x) is congruent mod Hn,j,h−1 to

a linear combination of elementary tensors which have smaller descent than x. In
particular, if N � j(n − 1)n2, then (Pj · · ·P1)N (x) is cyclically equivalent to a
tensor in linFj−1

n .

Proof. Let h := ht(x). First, note that the operators P1, . . . , Pj are pairwise com-
muting (as they are just linear combinations of I and sd + ds). Note also that, by
corollary 5.17 and the remarks preceding it, each Pi maps Hn,j,h−1 to itself.

Now, if r is the number of block-units in x, let

Qj−r = Pj · · ·Pj−r+1Pj−r−1 · · ·P1.

We note that Qj−r maps Hn,j,h−1 to itself. Hence, recalling that 0 � r � j − 1, it
follows from corollary 5.17 that

Pj · · ·P1(x) = Qj−rPj−r(x) ≡ Qj−r(Err(x)) mod Hn,j,h−1. (5.12)

Let y be an elementary tensor in Gn,j,h−1. For arbitrary k, the identity (5.11)
also implies that the tensor Pk(y) is cyclically equivalent to a linear combination of
a term in Gn,j,h−1, some scalar multiple of y, and some scalar multiple of Err(y);
in particular, modHn,j,h−1, Pk(y) is a linear combination of terms whose descent
does not exceed desc(y). (This uses lemma 5.19 applied to y.)

Since Qj−r is a product of various Pk, the same is true of Qj−r(y), and so the
descent of each term in Qj−r(Err(x)) is bounded above by desc(Err(x)), which
is in turn strictly less than desc(x). Combining this with (5.12), we see that,
mod Hn,j,h−1, the tensor Pj · · ·P1(x) is a linear combination of terms with descent
strictly less than desc(x).

Now let P = (Pj · · ·P1)j(n−1). Since desc(x) � (j − 1)(n − 1) � j(n − 1) − 1, the
previous paragraph implies that

P (x) ≡ 0 mod Hn,j,h−1.

That is, P (x) is cyclically equivalent to a linear combination of terms that have
at most j − 1 left-blocks, together with terms that have height strictly less than
ht(x). Finally, we can iterate again, using the fact that n + 1 � ht(x) � n(n + 1),
to deduce that if we apply P to x at least n(n + 1) − (n + 1) + 1 = n2 times, then
the resulting tensor will be cyclically equivalent to one in linFj−1

n . This concludes
the proof.

To prove theorem 5.7, we take N = j(n − 1)n2. If ψ ∈ Cn(A,A′) vanishes on
all tensors in Fj−1

n , the cochain ψ1 := [(Pj · · ·P1)N ]∗(ψ) vanishes on all tensors
in Fj

n, by the previous corollary. By our earlier remarks, ψ1 is in the same cyclic
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cohomology class as ψ, and we have proved theorem 5.7, provided we take for
granted the proof of proposition 5.12.

6. Proof of proposition 5.12

Throughout, x denotes a fixed elementary tensor x1 ⊗· · ·⊗xn+1 which has exactly
j left-blocks.

As in earlier sections, it will be useful to regard the boundary operator d as an
alternating sum of face maps.

Definition 6.1 (face maps on C∗(A)). For i = 0, . . . , n, define the face maps from
Cn(A) to Cn−1(A) by

∂0(x1 ⊗ · · · ⊗ xn+1) = x2 ⊗ · · · ⊗ xn ⊗ xn+1x1,

∂i(x1 ⊗ · · · ⊗ xn+1) = •
i−1

⊗xixi+1 ⊗ •
n−i

for 1 � i � n.

An easy but key observation. If a, b, c ∈ S and [a] � [bc], then [a] � [b] and [a] � [c].
Thus, if x = w1 ⊗ · · · ⊗ wj , where each wl is a left-block, and if xr and xr+1 are
contained in the same left-block wl, then ∂r(x) also has exactly j left-blocks, and
has the form

∂r(x) = w1 ⊗ · · · ⊗ wl−1 ⊗ w′
l ⊗ wl+1 ⊗ · · · ⊗ wj ,

where the only new left-block, w′
l, is just wl with xr and xr+1 multiplied together.

The important point is that w′
l does not become part of a larger left-block.

If, on the other hand, the face map takes the product of the end of one left-block
with the start of the next left-block, then the resulting tensor might have j left-
blocks, but might have fewer. The following example illustrates some possibilities.

Example 6.2 (an illustration of complications). Let S be the free semilattice on
four generators, labelled as g1, g2, g3 and g4. Consider

x =
︷ ︸︸ ︷
g1g2 ⊗ g2 ⊗

︷ ︸︸ ︷
g1g2g3 ⊗ g1g2 ⊗

︷︸︸︷
g3g4 ⊗

︷︸︸︷
g1 ⊗

︷ ︸︸ ︷
g1g3 ⊗ g3 ∈ C7(A),

which consists of five left-blocks as indicated (so that Ix = {1, 3, 5, 6, 7}). Then

∂4(x) = g1g2 ⊗ g2 ⊗ g1g2g3 ⊗ g1g2g3g4 ⊗ g4 ⊗ g1g2 ⊗ g1g3 ⊗ g3 ∈ C6(A)

contains a minimal element, so that all entries lie in the same left-block. Note that
the set I4 of initial points in ∂4(x) is just {4}.

For the purposes of comparison, note that

∂5(x) =
︷ ︸︸ ︷
g1g2 ⊗ g2 ⊗

︷ ︸︸ ︷
g1g2g3 ⊗ g1g2 ⊗

︷ ︸︸ ︷
g1g3g4 ⊗ g1g3 ⊗ g3, I5 = {1, 3, 5},

∂6(x) =
︷ ︸︸ ︷
g1g2 ⊗ g2 ⊗

︷ ︸︸ ︷
g1g2g3 ⊗ g1g2 ⊗

︷︸︸︷
g3g4 ⊗

︷ ︸︸ ︷
g1g3 ⊗ g3, I6 = {1, 3, 5, 6},

∂2(x) =
︷︸︸︷
g1g2 ⊗

︷ ︸︸ ︷
g1g2g3 ⊗ g1g2 ⊗

︷︸︸︷
g3g4 ⊗

︷︸︸︷
g1 ⊗

︷ ︸︸ ︷
g1g3 ⊗ g3, I2 = {1, 2, 4, 5, 6}.
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Figure 1. Individual pairs of cancelling terms.

With this warning example in mind, we start on the proof. Define indexing sets
SD ⊆ {1, . . . , n} × {0, . . . , n} and DS ⊆ {0, . . . , n + 1} × {1, . . . , n + 1} as

SD = {(i, p) : 0 � p � n and i ∈ I∂p(x)} =
∐

0�p�n

I∂p(x) × {p},

DS = {(r, k) : 0 � r � n + 1 and k ∈ Ix} = {0, . . . , n + 1} × Ix.

Then

(sd + ds)(x) =
∑

(i,p)∈SD

(−1)psi∂p(x) +
∑

(r,k)∈DS

(−1)r∂rsk(x),

and the first task in evaluating this tensor is to show that most terms on the right-
hand side either cancel pairwise, or have fewer than j left-blocks, or have lower
height than x. Much of this takes place in greater generality, without using the
properties of the left-coherent units that are inserted.

Lemma 6.3.

(A) Let 1 � i < p � n. Then

si∂p(x) = (−1)i •
i−1

⊗〈xi] ⊗ xi ⊗ · · · ⊗ xp−1 ⊗ xpxp+1 ⊗ •
n−p−1

= ∂p+1si(x).

(6.1 a)

(B) Let 1 � p < i � n. Then

si∂p(x) = (−1)i •
p−1

⊗xpxp+1 ⊗ · · · ⊗ xi ⊗ 〈xi+1] ⊗ xi+1 ⊗ •
n−i

= −∂psi+1(x).

(6.1 b)

(C) Let 1 � i � n − 1. Then

si∂0(x) = (−1)ix2 ⊗ · · · ⊗ xi ⊗ 〈xi+1] ⊗ xi+1 ⊗ •
n−i

⊗xn+1x1 = −∂0si+1(x).

(6.1 c)

Proof. This is a direct computation. We omit the details (see figure 1 for a diagram
that illustrates how this works in cases A and B).

We have to keep track of which terms in a corresponding pair, as in lemma 6.3,
actually occur when we expand out (sd + ds)(x). More notation will be useful. Let

A = {(i, p) : 1 � i < p � n}, A′ = {(r, k) : 1 � k < r − 1 � n},

B = {(i, p) : 1 � p < i � n}, B′ = {(r, k) : 1 � r < k − 1 � n},

C = {(i, 0) : 1 � i � n − 1}, C ′ = {(0, k) : 2 � k � n},
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so that A, B and C are pairwise disjoint subsets of {1, . . . , n} × {0, . . . , n} and A′,
B′ and C ′ are pairwise disjoint subsets of {0, . . . , n+1}×{1, . . . , n+1}. Now define

DSj := {(r, k) ∈ DS: ∂rsk(x) has exactly j left-blocks},

SDj := {(i, p) ∈ SD: ∂p(x) has exactly j left-blocks},

and let DS∗
j := DSj ∩(A′ � B′ � C ′) and SD∗

j := SDj ∩(A � B � C).
It turns out that the obvious maps A ↔ A′, B ↔ B′ and C ↔ C ′ restrict to give

a bijection between DS∗
j and SD∗

j (which shows that most terms in
∑

DSj
+

∑
SDj

cancel pairwise). To do this precisely, we have a lemma.

Lemma 6.4. Let m � 1, and let y = y1 ⊗ · · · ⊗ ym+1 be an elementary tensor with
j left-blocks. Let 1 � p � m. Then ∂p(y) ∈ Fj−1

n if and only if one (or both) of the
following holds: either

(i) yp is a 1-block in y, or

(ii) [ypyp+1] � [w], where w is the left-block immediately following the one which
contains yp+1.

An analogous result holds for ∂0(y), provided that condition (i) is interpreted as
‘ym+1 is a 1-block in y’, and condition (ii) as ‘[ym+1y1] � [w]. . . ’.

Proof. We first note that the case p = 0 is not really distinct from the cases 1 �
p � m, once we interpret ‘position 0’ in a tensor of length m + 1 as being position
m + 1. Next, we may assume without loss of generality that 1 ∈ Iy (if not, then by
applying a suitable power of t we obtain a tensor y′ in which 1 is an initial point,
and work with y′ instead). Let y = w1 ⊗ · · · ⊗ wj be the decomposition of y into
its constituent left-blocks. Let wk be the left-block which contains yp+1.

If (i) holds, then wk−1 just consists of the single element yp, and

∂p(y) = w1 ⊗ · · · ⊗ wk−2 ⊗ yp · wk ⊗ · · · ⊗ wj .

Thus, two left-blocks have been merged together, and there are now at most j − 1
of them. If (ii) holds, then every element of w and every element of wk lies above
[ypyp+1], so that in ∂p(y) these two left-blocks are merged into a single one; thus,
once again, the number of left-blocks has decreased.

Conversely, suppose that ∂p(y) has fewer than j left-blocks, and suppose (ii) does
not hold. Then the left-blocks w1, . . . , wk−2 and wk+1, . . . , wj remain left-blocks in
∂p(y). Therefore, wk−1 · wk must form a single left-block. If yr denotes the initial
element of wk−1, and r < p, then this implies that [yr] � [ypyp+1] � [yp+1] and this
contradicts the fact that wk−1 and wk are disjoint left-blocks. The only remaining
possibility is that wk−1 is a 1-block, with yp as its sole element, and so (i) holds.

In view of condition (ii) in this lemma, we say that the tensor y has a dead
spot at p + 1, for 0 � p � m, if [xpxp+1] � [w], where w is the left-block immedi-
ately following the one which contains xp+1. Once again, this definition should be
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interpreted cyclically, so that having a dead spot at 1 means that [xm+1x1] � [w],
etc.

Proposition 6.5. Define φ : DS∗
j → {1, . . . , n} × {1, . . . , n} as

φ(r, k) =

{
(k − 1, r) if (r, k) ∈ B′ ∪ C ′,

(k, r − 1) if (r, k) ∈ A′.
(6.2)

Then φ maps SD∗
j bijectively onto DS∗

j . Consequently,∑
(r,k)∈DS∗

j

(−1)r∂rsk(x) +
∑

(i,p)∈SD∗
j

(−1)psi∂r(x) = 0. (6.3)

Proof. Start by noting that φ is the restriction of obvious bijections from A′, B′

and C ′ to A, B and C, respectively.
Moreover, the identities in lemma 6.3 show that if (r, k) ∈ DS∗

j , then φ(r, j) ∈
SD∗

j . (The point is that if, say, 1 � k � r − 2 and ∂rsk(x) has j left-blocks, then
the identity (6.1 b) shows that sk−1∂r(x) has j left-blocks, so ∂r(x) must have j
left-blocks.) Thus, ranφ ⊆ SD∗

j .
To show the converse inclusion, let (i, p) ∈ SD∗

j . Then, by lemma 6.4 (with
m = n), xp is not a 1-block in x and p + 1 is not a dead spot in x. (If p = 0 this
means xn+1 is not a 1-block, etc.) Therefore, by the other direction of lemma 6.4
(with m = n + 1), we have the following.

• If 1 � i � p − 1, and we consider si(x), then xp (occurring in position
p + 1) is not a 1-block in si(x) and p + 2 is not a dead spot in si(x), so that
(i, p + 1) ∈ DS∗

j .

• If 2 � p + 1 � i � n, and we consider si+1(x), then xp (occurring in position
p) is not a 1-block in si+1(x) and p + 1 is not a dead spot in si+1(x), so that
(i + 1, p) ∈ DS∗

j .

• If p = 0 and 1 � i � n, and we consider si+1(x), then xn+1 (occurring in
position n+2) is not a 1-block in si+1(x) and 1 is not a dead spot in si+1(x),
so that (i + 1, 0) ∈ DS∗

j .

In each case, (i, p) ∈ ranφ as required.

We now continue with the proof of proposition 5.12. It follows from (6.3) that

(sd + ds)(x) ≡
∑

(r,k)∈DSj \ DS∗
j

(−1)r∂rsk(x)

+
∑

(i,p)∈SDj \ SD∗
j

(−1)psi∂p(x) mod (linFj−1
n ). (6.4)
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Expanding out the terms on the right-hand side gives∑
1�k�n+1: (k−1,k)∈DSj

(−1)k−1∂k−1sk(x) (6.5 a)

+
∑

1�k�n+1: (k,k)∈DSj

(−1)k∂ksk(x) (6.5 b)

+
∑

1�k�n : (k+1,k)∈DSj

(−1)k∂k+1sk(x) (6.5 c)

+
∑

1�i�n : (i,i)∈SDj

(−1)isi∂i(x) (6.5 d)

+ RDS(x) + RSD(x), (6.5 e)

where the terms RDS(x) and RSD(x) are defined as

RDS(x) =

{
∂0sn+1(x) if (0, n + 1) ∈ DSj ,

0 otherwise,

RSD(x) =

{
sn∂0(x) if (n, 0) ∈ SDj ,

0 otherwise.

Lemma 6.6.

(i) If 0 � k � n and k + 1 ∈ Ix, then ∂ksk+1(x) has strictly lower height than x.

(ii) If 1 � k � n and k + 1 ∈ Ix, then sk∂k(x) has strictly lower height than x. If
1 ∈ Ix, then sn∂0(x) has strictly lower height than x.

Proof. First suppose that 1 � k � n. Then the corresponding terms in (i) and (ii)
expand out to be

a = (−1)k+1 •
k−1

⊗xk〈xk+1] ⊗ xk+1 ⊗ •
n−k

,

b = (−1)k •
k−1

⊗〈xkxk+1] ⊗ xkxk+1 ⊗ •
n−k

,

respectively. Since k + 1 is initial, [xk] �� [xk+1] and so htL(b)([bk]) < htL(x)([xk]).
It follows that ht(b) < ht(x), since b agrees with x in all other entries. A similar
argument shows that ht(a) < ht(x).

In the case where k = 0 (and 1 ∈ Ix), set b = sn∂0(x), b′ = t−1(b) (see (2.1)),
and a = ∂0s1(x). Then

a = ∂0s1(x) = −x1 ⊗ •
n−1

⊗〈xn+1]x1 and b′ = xn+1x1 ⊗ •
n−1

⊗〈xn+1x1].

The same arguments as in the first part of the proof show that ht(b′) and ht(a)
are both strictly less than ht(x); it remains only to note that since the height of an
elementary tensor is unchanged by cyclic shifts, ht(b) = ht(b′).

Lemma 6.7. Let 1 � i � n and suppose (i, i) ∈ SDj. Then either i or i + 1 lies in
Ix. If (n, 0) ∈ SDj, then either n + 1 or 1 lies in Ix.
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Consequently, if x has height h, then

RSD(x) +
∑

1�i�n : (i,i)∈SDj

si∂i(x)

≡
∑
i∈Ix

•
i−1

⊗〈xixi+1] ⊗ xixi+1 ⊗ •
n−i

mod Gn,j,h−1, (6.6)

where, if n + 1 ∈ Ix, the corresponding term on the right-hand side of (6.6) is
interpreted as (−1)nx2 ⊗ · · · ⊗ xn ⊗ 〈xn+1x1] ⊗ xn+1x1.

Proof. Let 1 � i � n. Write si∂i(x) = a, as defined in the proof of lemma 6.6. By
assumption, a has j left-blocks and one of them starts in position i. If neither i
nor i + 1 were initial in x, then xi and xi+1 would both lie in the same left-block
of x, whose initial point is some k < i, and so ak would also mark the start of
a left-block in a which contains ai = 〈xixi+1]. Since we originally assumed that
i ∈ Ia, this yields a contradiction.

A similar argument, with slight adjustments to the notation, shows that if n ∈
I∂0(x), then either n + 1 or 1 must have been initial in x. This completes the proof
of the first part of the lemma.

For the second part of the lemma, suppose that i ∈ Ix with 1 � i � n, and note
that there are two possibilities. Either ∂i(x) has fewer than j left-blocks, in which
case si∂i(x) ∈ Fj−1

n , or ∂i(x) has exactly j left-blocks, in which case one of them
must start in position i, and so (i, i) ∈ SDj . By the first part of the lemma, the
only other (k, k) ∈ SDj with 1 � k � n must arise from having k + 1 ∈ Ix, but
then, by lemma 6.6(ii), such terms have height at most h − 1.

It remains to deal with the case where n + 1 ∈ Ix. If ∂0(x) has fewer than j
left-blocks, then RSD(x) = 0; if it has exactly j left-blocks, then (n, 0) ∈ SDj and
so

RSD(x) = (−1)nx2 ⊗ · · · ⊗ xn−1 ⊗ 〈xn+1x1] ⊗ xn+1x1,

as required. Equation (6.6) now follows.

In summary, all terms in (6.5 a) have strictly lower height than x; the terms
in (6.5 b) each give x, since 〈xi]xi = xi for all i, and lemma 6.7 tells us the sum of
terms in (6.5 d) with RSD(x), provided we work modulo terms of fewer left-blocks
or lower height. Therefore, the right-hand side of (6.4) is equal to∑

k∈Ix

x +
∑
k∈Ix

(−1)k+1∂k+1sk(x) +
∑
k∈Ix

(−1)ksk∂k(x) mod Gn,j,h−1,

provided that we interpret the case n + 1 ∈ Ix appropriately. Expanding this out
gives exactly what is claimed in proposition 5.12, and so completes the proof.

7. Tying things together

The inductive calculations carried out in the previous sections give us the following
result.

Theorem 7.1. Let n � 1, and let ψ ∈ ZCn(�1(S)) be an R-normalized cyclic n-
cocycle. Then ψ is a cyclic coboundary.
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Combining this with proposition 3.4, we finally obtain our main result.

Theorem 7.2. The cyclic cohomology of �1(S) is zero in all odd degrees, whereas,
in even degrees, it is the space {[τ (2n)] : τ ∈ Z0(�1(S), �1(S)′)}.

As promised earlier, we can use theorem 7.2 to determine the simplicial cohom-
ology of �1(S) via the Connes–Tzygan long exact sequence. This requires one last
fact about how the cohomology classes [τ (2n)] transform under the shift map S.

Lemma 7.3. Let n � 1. There exists a non-zero constant λn such that, for any
Banach algebra A and τ ∈ Z0(A, A′), the shift map S : HC2n−2(A) → HC2n(A) sat-
isfies S(τ (2n−2)) = λnτ (2n).

This lemma seems to be folklore, to some extent (for a direct proof that does not
rely on [9], see [5]). The value of λn depends on a choice of scalar normalization of
S when one constructs the Connes–Tzygan exact sequence. In [5] the formulae are
chosen so that λn = 1 for all n, but if one uses the formulae of [9], then different
scaling factors will appear.

Theorem 7.4. The simplicial cohomology of �1(S) is zero in degrees 1 and above.

Proof. By theorem 4.7 and [9, theorem 11], the Connes–Tzygan sequence for �1(S)
exists. Then, since the cyclic cohomology of �1(S) vanishes in all odd degrees, the
long exact sequence breaks up to give exact sequences

0 → HH2n−1(�1(S)) B−→ HC2n−2(�1(S)) S−→ HC2n(�1(S)) → HH2n(�1(S)) → 0

for all n � 1. Moreover, the shift map is surjective: by theorem 7.2, every cyclic 2n-
cocycle is cohomologous to one of the form τ (2n) for some trace τ , and by lemma 7.3
we have τ (2n) = λ−1

n Sτ (2n−2). Thus, HH2n(�1(S)) = 0 for all n � 1.
To conclude, it suffices to show that the shift map is injective (which will imply

that B is the zero map, and hence that HH2n−1(�1(S)) = 0). As already observed in
this proof, HC2n−2 is generated by cohomology classes of the form [τ (2n−2)], where
τ ∈ Z0(A,A′). Consider S([τ (2n−2)]) = λn[τ (2n)] and suppose that τ (2n) = δϕ for
some ϕ ∈ CC2n−1(A). For each idempotent e ∈ A, direct calculation gives τ(e) =
δϕ(e, . . . , e)(e) = ϕ(e, . . . , e)(e). But, since ϕ is cyclic,

ϕ(e, . . . , e)(e) = −ϕ(e, . . . , e)(e) = 0.

Thus, τ vanishes on each idempotent in A, and since A = �1(S) where S is a band,
continuity forces τ to vanish identically.

8. Conclusion

We have had to work quite hard to establish that the cyclic and simplicial cohom-
ology of a band �1-semigroup algebra behave as one would hope. Our methods would
simplify in the case where the band is a semilattice, and in that case they would
give an alternative approach to the main result of [3]. Note that, in [3], Choi was
unable to obtain explicit formulae for cobounding a given cocycle in high degrees,
since the contracting homotopy in that setting was only given recursively. Here, we
have an explicit algorithm for cobounding a given cyclic cocycle, but once again we
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do not have a reasonable formula for cobounding arbitrary cocycles in high degrees,
even for the case of a semilattice, owing to the reliance on the Connes–Tzygan exact
sequence.

We feel that the tactics used in establishing the main result may be of wider
interest when interpreted in a broader sense. A general picture seems to be emerging:
in order to obtain vanishing results for simplicial cohomology of Banach algebras,
unless the geometry of the underlying Banach spaces intervenes helpfully, one has
to replace the exhaustion arguments that are commonly found in ‘purely algebraic’
cohomology of algebras with more careful approaches, and these new arguments
seem to depend on the local relations between entries of a given elementary tensor
in the Hochschild chain complex, rather than on how such entries factorize in terms
of global generators for the algebra.
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