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Motivated by a class of Partially Observable Markov Decision Processes with application
in surveillance systems in which a set of imperfectly observed state processes is to be
inferred from a subset of available observations through a Bayesian approach, we formu-
late and analyze a special family of multi-armed restless bandit problems. We consider the
problem of finding an optimal policy for observing the processes that maximizes the total
expected net rewards over an infinite time horizon subject to the resource availability.
From the Lagrangian relaxation of the original problem, an index policy can be derived,
as long as the existence of the Whittle index is ensured. We demonstrate that such a class
of reinitializing bandits in which the projects’ state deteriorates while active and resets
to its initial state when passive until its completion possesses the structural property of
indexability and we further show how to compute the index in closed form. In general,
the Whittle index rule for restless bandit problems does not achieve optimality. However,
we show that the proposed Whittle index rule is optimal for the problem under study in
the case of stochastically heterogenous arms under the expected total criterion, and it is
further recovered by a simple tractable rule referred to as the 1-limited Round Robin rule.
Moreover, we illustrate the significant suboptimality of other widely used heuristic: the
Myopic index rule, by computing in closed form its suboptimality gap. We present numer-
ical studies which illustrate for the more general instances the performance advantages of
the Whittle index rule over other simple heuristics.

1. INTRODUCTION

Modern sensing technologies offer the possibility of efficiently performing tasks by adaptively
deploying its sensing resources based on the information extracted from past measurements.
Yet, realizing such system’s overall performance gains requires appropriate on-line sensing
rules. Thus, the general problem in sensor management is to design sensing algorithms that
allow for the fruitful adoption of cutting edge technologies. A natural procedure to derive
those rules is to represent the underlying resource allocation problem by some stochastic
dynamic optimization model, whose optimal solution is traditionally characterized by a
dynamic programming (DP) framework. However, those formulations, at least for realistic
scenarios, typically have a prohibitively large size (possibly infinite), which dramatically hin-
ders its practical application. Thus, fully exploiting the performance advantages offered by
the new technologies by means of active dynamic sensing policies remains very challenging.
For this reason, the design of both computationally feasible and nearly optimal sensing

c© Cambridge University Press 2015 0269-9648/15 $25.00 1

https://doi.org/10.1017/S026996481500025X Published online by Cambridge University Press

file:sofia.villar@mrc-bsu.cam.ac.uk
https://doi.org/10.1017/S026996481500025X


2 Sof́ıa S. Villar

strategies, as the ones proposed in this paper, continues to be a highly active applied
research area.

An additional challenge to the design of adequate on-line active sensing schemes is to
take into account specific situations that may affect the system’s performance. For detec-
tion objectives, there have been significant efforts to deal with more general situations, for
example with multiple objects, or with mobile objects, and even to include false targets.
Yet, despite this abundant literature, the case in which targets react to sensing or may
evade the searcher, remains understudied today. This paper addresses these two challenges
by proposing a tractable scheduling rule for a multiple target detection problem in which
targets react to sensing by remaining frozen in their current state and sensing is subject to
misdetection errors. We formulate this detection problem, as a partially observable Markov
decision processes (POMDP) with special structure, which further fits into the framework
of the continuous state multi-armed restless bandit problem (MARBP).

The MARBP constitutes a theoretical framework under which resource allocation prob-
lems under uncertainty can be fruitfully analyzed. In its general version, the MARBP
consists of choosing a subset of arms to activate at each period of time (out of a possi-
bly larger set of arms), where the state of each arm evolves randomly over time, affecting
their resulting flow of rewards (and/or costs). A natural goal for this problem is to choose the
arms to activate so as to achieve the maximum expected total discounted or time-average
rewards over an infinite time horizon.

In the so-called classic Bayesian Bernoulli version of the problem, whose origin dates
back to the Second World War, arms’ states evolve stochastically only when chosen, yielding
a binary random reward. Such a variant, despite its simplified dynamics, was regarded
unsolvable until Gittins and Jones [2,3] showed that its optimal solution admitted a simple
expression in terms of an index function attached to each arm depending on its current
state. The resulting optimal index rule activates at each time period the arm whose current
index value is the maximum. More than a decade later, Whittle [21] proposed and studied
the more general restless case in which non-chosen arms continue to evolve, and pointed out
that neither the existence of the index function extending the classic case nor the optimality
of the resulting index rule was guaranteed for such variant.

This indexability property, that is, the existence of an index function, introduced by
Whittle for MARBP problems, cannot be taken for granted as it needs to be established
for each specific model. Niño-Mora [14,15] provided the first general sufficient indexability
conditions based on the achievable region approach to stochastic optimization which can be
systematically deployed under certain conditions. Furthermore, the indexability of special
classes of MARBP has been specifically addressed and thoroughly studied using various
approaches. These include some families of restless bandits which arise in machine main-
tenance and stochastic scheduling problems with switching costs, as those in Glazebrook,
Ruiz-Hernandez, and Kirkbride [4], the bidirectional bandits introduced in Glazebrook,
Hodge, and Kirkbride [5], the reinitializing bandits in Jacko and Sanso [7], and restless
models in telecommunication and opportunistic spectrum access as in Liu and Zhao [10],
among others. These papers are part of the body of literature that has contributed to a
significant advance in the understanding of this property, yet as Liu, Weber, and Zhao [11]
put it “[. . .] establishing indexability is still an open problem and often relies on numerical
algorithms ”. Moreover, even when indexability is ensured, index computation usually poses
further significant challenges [15].

In this paper, we establish the indexability of a class of MARBP that derives from
a concrete family of POMDPs and it is motivated by a surveillance systems application.
POMDPs admit a widespread range of applications, for example in navigation problems,
artificial intelligence, sensor systems, machine maintenance, telecommunication networks,
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among others but their optimal policy is often computationally intractable. Therefore, the
most commonly used solution methods seek to find good approximate solutions based on
some discretization or reduction of its infinite state space (see, e.g., [12,18]). Still, the high
computational cost of solving POMDPs is the main cause limiting their practical imple-
mentation. The resulting bandit formulation is one in which arms (until reaching a terminal
state), generate a decreasing stream of random rewards when chosen to be active and pas-
sive arms continue to change state (even if not chosen), although they do so according to
a simple transition rule: returning to its initial state (i.e., to its state at time 0 when the
controller starts operating). The class of problems is introduced in Section 2, and following
Jacko [6] we shall refer to them as reinitializing bandits.

These reinitializing bandits have some common features with models previously
addressed: it is similar to the reward depletion and replenishment model presented in [4],
and it also shares with bidirectional bandits in [5], the property that the active and pas-
sive actions produce opposite movements on the state space. Another related application is
found in [7], where a new type of congestion control scheduling method based on a MARBP
is proposed, motivated by the Internet flows behaving according to the Transmission Con-
trol Protocol, and thus admitting a reinitializing feature. In [10], a similar problem with
applications in opportunistic spectrum access is considered. The problem is formulated as
a MARBP and, using a similar approach to the one deployed in this paper based on DP,
indexability is established and the Whittle index in closed form is derived. Later in [11],
following the same rationale, the authors studied the case in which the active action resets
the state is considered and solved though a Whittle index policy. Both [10,11] share with
the model presented in this paper the feature of having a continuous state space. In [11], as
well as in this work a property of the problem is exploited to reduce the state space from a
continuous one to a numerable one.

Despite these similarities, those models and the one addressed in this paper differ in
two main aspects. First, the inclusion of an absorbing state in the model is a distinctive
feature of the problem addressed in this paper that has not been considered in the previous
works. Second, the introduction of imperfect observability of the state instead of the per-
fect observability (when sensing) assumption included in the models in [10,11], makes the
resulting MARBP more realistic and challenging. Another novel contribution of this work
is the introduction of a target’s reacting to the sensing actions, along the lines of what was
done in [9,19].

1.1. Main Contributions and Paper Structure

We start in Section 2 by describing the problem, stating the model’s assumptions and for-
mulating it as a MARBP. In Section 3, we demonstrate the existence of the index for this
class of problems by establishing the monotonicity in an activity charge λ of activation
policies using properties of the corresponding DP formulation. Once indexability is estab-
lished, a closed-form formula for the Whittle index is derived which, despite the problem’s
simplified dynamics, it is far from being trivially deduced. Moreover, the importance of the
indexability result is increased by the fact that the resulting Whittle index can be used as
a well performing approximate solution method for a special family of POMDPs.

In Section 4, we proceed to study the properties of the proposed Whittle index rule,
with a special emphasis on its relative performance when compared with other commonly
used naive heuristics. Weber and Weiss [20] showed the asymptotical optimality of Whittle’s
heuristics under certain conditions and for a limiting case in which the number of arms in
total and the number of arms to be activated go to infinity in a constant ratio. We prove
the optimality of the Whittle Index rule for the proposed MARBP in the special case of a
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finite number of heterogenous arms and when considering the Expected Total criterion (i.e.,
when the discount factor is 1). Moreover, in the case in which all arms can be activated
at each time slot, we are able to give a closed-form expression for the suboptimality gap
of other naive yet widely used index rules (e.g., the Myopic Index rule), a result that is in
stark contrast to the equivalence between these rules reported for other similar models; see,
for example [1,10,13,22].

To conclude the paper, in Section 5 we use numerical studies to illustrate how the theo-
retical results of the paper are deployed, we analyze also the performance of the alternative
heuristics revised in Section 4 for this class of problems, and we show how well the Whittle
index rule performs even in those cases in which the optimality of the rule is not analytically
established.

2. PROBLEM DESCRIPTION AND MARBP FORMULATION

Consider the following problem in surveillance systems. There are N -independent locations
(or sites), each containing one target (or object) hidden in it. There are M (1 ≤ M ≤ N)
sensors, each of which at every discrete period can search at most one of those locations. All
sensors in the system are synchronized to operate over time slots t = 0, 1, . . ., where a time
slot corresponds to a Pulse Repetition Interval. Each target can be in one of two possible
visibility states: a hidden (or bad) state, in which it is completely invisible to sensors but
cannot perform its tasks, and an exposed (or good) state, in which it can perform its tasks
but is prone to being detected by sensors. Targets are such that: (1) they perceive if they
are being sensed; (2) they do not wish to be found, but they wish to perform their tasks; (3)
while being sensed they do not change their status, that is, they stay frozen at their current
state; and (4) while not being sensed they alternate between the two states randomly. Thus,
if a target is in site n and is not sensed in period t, it becomes exposed in period t + 1 with
probability φ0

n and it becomes hidden with probability (1 − φ0
n), regardless of its initial

state. The probability that a sensor searching for a target at site n finds it when it is visible
is 0 < 1 − αn < 1, and hence the probability that an unfound target is visible at slot t
changes by Bayes’ theorem as the sensor’s detection output is observed. The cost of a single
search of a location n is cn ≥ 0 and yields a reward rnβt when it succeeds at finding target
n in slot t, where 0 ≤ β ≤ 1 is a discount factor.

The goal is to design a tractable policy which addresses the following question: How
should the N locations be scheduled for being sensed so as to be close to maximizing the
total expected discounted reward of finding all targets, using M or less sensors at each time
slot?

We therefore next formulate and investigate the following MARBP problem. The N tar-
gets are represented by N -independent projects (or arms) labeled by n ∈ N � {1, . . . , N},
each yielding a positive reward if completed. Sensing decisions are thus formulated by binary
action processes an,t ∈ {0, 1}, where an,t = 1 represents that target n is sensed in slot t and
an,t = 0, otherwise. Every unfound target is an incomplete project that can be in two states:
(a “good/exposed” state: 1, a “bad/hidden” state: 0). It is assumed that projects can only
be completed while being active on them and if they are in the “good” state. If a project is
rested then its state changes randomly, while if a project is active its state can only evolve
from the “good” state to a completed state T or it simply stays in its current state. Such a
dependence of the transitions probabilities on the selected action is described in Figure 1.

The state of a project n defines a random process St,n which is only partially observ-
able to the decision maker in the following sense: only under the active action at time t
in project n (i.e., an,t = 1) an imperfect measurement of its current state on,t is available.
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Figure 1. The Markov chain associated to a generic project given each possible action,
active: 1 and passive: 0. The arrows represent one-period transitions among the states 0
(bad) and 1 (good) with given probabilities under actions 0 (on the left) and 1 (on the
right).

Furthermore, whenever project n is at state 0 and it is activated, the measurement of
its state will coincide with its true state (i.e., on,t = sn,t = 0); however, if process n is at
state 1 at time t and it is activated, its measurement is correct (i.e., on,t = sn,t = 1) only
with probability (1 − αn). Hence, the observation process is subject to misdetection errors
with probability αn � P (on,t = 0|sn,t = 1), where 0 < αn < 1. Notice that we exclude the
extreme cases α = 0 or α = 1, respectively corresponding to complete observability of the
process, because we are interested in the non-trivial problem of how to use the partial infor-
mation given by the observable process on,t to gain information on the partially observable
process Sn,t.

The resulting model is thus a POMDP in which the N states of the projects are observ-
able only through the active action, and they are imperfectly observed in the particular sense
that the “good” state can be mistaken for the “bad” state with a given misdetection proba-
bility αn. We shall further consider that project n is completed as soon as a “good” state is
observed, that is, when on,t = 1. In terms of the transition probabilities in Figure 1, we have
that p1

11 = 1 − P (ot = 1|sn,t = 1) = αn, p1
1T = P (ot = 1|sn,t = 1) = (1 − αn). And to intro-

duce the reinitializing feature, we assume that under the passive action the project’s state
resets the probability of being in the “good” state to its value at time 0, which we denote
0 < φ0 < 1, regardless its current state, that is, p0

11 + p0
01 = φ0

n and p0
10 + p0

00 = (1 − φ0
n).

We further consider that at every discrete time slot over an infinite horizon t = 0, 1, . . .,
at most M processes can be selected for activation/observation, with 1 ≤ M ≤ N , incurring
in an observation cost per activated process denoted by cn ≥ 0 and yielding a final reward
per job completion rn > 0 if a process n is observed to be at state 1, that is, on,t = 1,
yielding no more rewards thereafter. Hence, at each time slot we must decide on which
processes to observe so as to maximize the total expected rewards.

Observation decisions are thus formulated by binary action processes an,t ∈ {0, 1},
where an,t = 1 represents that process n is observed in slot t and an,t = 0, otherwise. Any
feasible observation scheduling rule which prescribes how to sequentially observe processes
over time, will be denoted as π, and belongs to the class Π(M) of admissible policies
composed by the non-anticipative scheduling polices (i.e., those based on the history of
states and actions) which observe M or less processes per slot, that is,

∑
n∈N an,t ≤ M ,

t = 0, 1, 2, . . ..
At t = 0 process n has probability φ0

n of being in state sn,0 = 1, since we assume that
at time t = 0 no process was previously activated. Thereafter the posterior probability that
some process n is in state 1, denoted as pn,t ∈ P � [0, φ0

n] (henceforth referred to as its
belief state), must be computed conditioning on past observations and also on the selected
actions via Bayes’ rule. Notice that this posterior probability is a sufficient statistic of each
project’s state. Even though each project has three possible states: exposed (1), hidden
(0) or completed (T ), the last two states yield no reward and the state of completion T is
perfectly observed (as the reward is then collected). Therefore, the only information gained
from the measurements is about the exposed (1) and hidden states (2).
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Finally, given all the elements of the model, we denote by Rn

(
pn,t, an,t

)
�

(rn (1 − αn) pn,t − cn) an,t the one-slot expected net reward function earned when taking
action an,t at time slot t on process n when its probability state is pn,t.

We shall consider that the objective of the controller is to design a policy that sequen-
tially selects at most M out of N processes to observe at each time slot so as to maximize the
total expected discounted reward over an infinite horizon, given a discount factor 0 ≤ β ≤ 1.
Such an objective can be addressed by considering the following dynamic optimization
problem: find an expected β-discounted optimal policy such that:

V ∗
β (φ0) � max

π∈Π(M)
Eπ

φ0

[ ∞∑
t=0

∑
n∈N

βtRn

(
pn,t, an,t

)]
, (1)

where φ0 = (φ0
n) = p0 is the initial joint belief state, and Eπ

φ0 [·] denotes expectation under
policy π conditional on p0 = φ0. Further, as it will be discussed later, (1) is bounded by a
finite constant, thus the problem of finding an expected total-optimal policy is well defined
for this model and thus it will be considered by letting β = 1.

The optimal scheduling problem posed by (1) describes a constrained POMDP consist-
ing of optimally deciding which processes to observe to maximize rewards given the resource
constraint and based on the current estimate of the belief state of all processes. The approach
followed in this paper to address the high computational cost of optimally solving POMDPs
is to exploit the fact that the POMDP in (1) can be analyzed as a MARBP with a continu-
ous state variable p = (pn) and a reinitializing feature. Thus, each process n constitutes an
independent single-bandit model, with two possible actions: “observe” and “not observe”
and whose state is given by its belief state, that is, the probability pn,t of being in state 1
at time t. The optimal solution for MARBPs is also generally intractable (see, e.g., [17]),
yet we shall follow the solution approach for MARBPs based on a Lagrangian approach,
first proposed by Whittle [21], which often results in nearly optimal and tractable solution.

Since for the model at hand, processes’ state transitions are independent, the stochastic
evolution of each arm depends only on the decisions taken for it and on its own specific
parameters. Hence, each arm is a single-bandit problem which can be individually consid-
ered for establishing index existence and also for index computation. Therefore, in what
follows we first describe the elements of the single-bandit problem modeling the optimal
observation decisions of an individual process, and next, based on these elements, we define
the indexability property that is required to hold in order to derive the Whittle Index rule
for the original problem (1). Thus, the following discussion focuses on a generic single-bandit
problem, and henceforth its label n is dropped to simplify the notation.

2.1. Single-Bandit POMDP: Definition

Each of the N processes is represented by a single-bandit problem, which can be defined by
its composing elements as follows.

• Action Space: a binary action set at ∈ {0, 1}, where at = 1 represents that the
process is observed in slot t and 0, otherwise;

• State Space: a continuous state space, denoted by P � [0, φ0] containing all the
possible belief states of the random process. The final state of the process T , which
is an absorbing state that after being reached is never abandoned, causes the process
to yield no rewards nor costs thereafter. Given that the only case in which we are
certain that a project will not yield a reward (by being in the exposed state) is when
it is completed (i.e., it is in state T ), we shall assume that projects only have a zero
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probability of being in the good state if they have been successfully completed. Thus
the terminal state can be conveniently represented by the belief state 0.

Since at the state T there is no actual decision to take, we therefore adopt
the convention that at p = 0 the selected action is a = 0, yielding no rewards and
producing no transitions. For the rest of the belief states, there is a decision to be
taken by the controller, and thus we shall refer to that set of states as the controllable
set of states, that is, p ∈ P \ {0}.

• State Dynamics: a transition rule that specifies how the state evolves stochastically
over P in time depending on the selected action a and on the current state p. If
p = 0, it stays at this state thereafter. For any p ∈ P \ {0}, the belief state process
pt evolves according to the dynamics below:

For pt ∈ P \ {0}
if at = 0 pt+1 = φ0 w.p. 1;

if at = 1 pt+1 = αpt

1−(1−α)pt
w.p. 1 − (1 − α)pt;

pt+1 = 0 w.p. (1 − α)pt.
For pt = 0

if at = 0 pt+1 = 0 w.p. 1

(2)

• Rewards: a one-period reward function given by R
(
pt, at

)
� (r(1 − α)pt − c) at for

pt ∈ P \ {0} and R
(
0, 0) � 0;

• Costs: a fixed parameter, λ ∈ R, introduced to represent an extra activity-charge
that must be paid by the controller whenever at = 1.

Thus, the infinite horizon single-bandit problem is formulated as

V ∗
β (φ0, λ) � max

π∈Π
Eπ

φ0

∞∑
t=0

βt
[
R

(
pt, at

) − λat

]
, (3)

We shall further denote the optimal active set for (3) as a function of the parameter λ by
A∗(λ). Hence, for some p ∈ P \ {0}, p ∈ A∗(λ) if and only if pt = p, then the optimal action
a∗

t = 1.
Let us now introduce the definition of indexability.

Definition 2.1: For any value of parameter λ ∈ R, subproblem (3) is indexable if its
optimal active set A∗(λ) decreases monotonically from P \ {0} to ∅ as λ goes from −∞
to ∞.

Whittle’s original indexability definition was formulated in terms of optimal passive
sets, letting the multiplier λ be a subsidy for passivity. In Definition 2.1, the parameter λ
as can be interpreted as a tax for activity. Such a definition ensures the existence of critical
values of the multiplier λ which induce a nesting ordering of the optimal active sets as a
function of λ.

3. WHITTLE INDEX EXISTENCE AND INDEX CHARACTERIZATION

In this section, we shall establish the validity of the following theorem, which ensures that
indexability holds for the model at hand.
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Theorem 3.1: The single-bandit problem (3) is indexable according to Definition 2.1.

DP Analysis and Proof of Theorem 3.1

As in [10,11], we shall prove 3.1 following a DP approach.
First, we define b(p) � 1 − (1 − α)p, which denotes the probability that the process

in belief state p has not reached its final state after one active time period. Further, we
shall use the notation φ1(p) � αp/1 − (1 − α)p to represent the posterior probability of a
misdetection when the process is observed in a belief state p.

Hence, for some fixed parameter λ, the DP equation for the β-discounted problem (3)
is written as

V ∗
β (φ0, λ) = max{R(φ0, 1) − λ + b(φ0)βV ∗

β (φ1(φ0), λ) ; βV ∗
β (φ0, λ)} (4)

where we have used the fact that when the final state of the process (represented by p = 0)
is reached, the process yields no rewards nor costs and the selected action by default is
at = 0, by setting V ∗

β (0, λ) = 0 for all possible β and λ.
Next, we write the DP equations for each possible partition of the set P \ {0}, that is,

in terms of the optimal active set A∗(λ) for a fixed λ, as follows:

V ∗
β (p, λ) = R(p, 1) − λ + b(p)βV ∗

β (φ1(p), λ) for p ∈ A∗(λ), (5)

V ∗
β (p, λ) = βV ∗

β (φ0, λ) for p �∈ A∗(λ). (6)

The proof of Theorem 3.1 is based on the following property of the optimal value
function.

Lemma 3.2: Function V ∗
β (φ0, λ) is nonnegative, piecewise-linear in λ and non-increasing

in λ.

Proof: We shall use the fact that the evolution of the state variable after t (unsuc-
cessful) active slots starting from an initial belief state p generates an iterated mapping
p �→ φ1(p), that is, φ1

0(p) � p and φ1
t (p) � φ1(φ1

t−1(p)) for t ≥ 1. Such a mapping repre-
sents the Bayesian update of the belief state and it is decreasing in t, since for all p and α
it holds that φ1(p) < p, and further, it defines a Möbius Transformation. Using the matrix
form of such non-linear functions, we can derive by induction a closed-form expression for
the tth iterate of φ1(p) to be

φ1
t (p) =

[
1 −

(
1 − 1

p

) (
1
α

)t
]−1

. (7)

Note that from (7) it can also be shown that φ1
t (p) is a decreasing function in t. (See [23]

for a detailed description on how to derive such closed-form expressions.)
Thus, once the process leaves state φ0, as long as it does not reach its final state, it

only returns to φ0 after reinitializing the process, that is, after being passive for a time slot.
Hence, for any p ∈ A∗(λ), we denote by t∗(p, λ) the number of (unsuccessful) active time
slots that, starting from a belief state p, may elapse until it is optimal to be passive, and
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we rewrite (5) as a function of t∗(p, λ) as follows:

V ∗
β (p, λ) =

t∗(p,λ)−1∑
t=0

βt
(
R(φ1

t (p), 1) − λ
) t−1∏

s=0

b(φ1
s(p))

+ βt∗(p,λ)+1

t∗(p,λ)−1∏
s=0

b
(
φ1

s(p)
)
V ∗

β (φ0, λ).

(8)

The first term in expression (8) is the optimal expected discounted reward generated
during the t∗(p, λ) active time slots and the second term represents the expected dis-
counted optimal value function starting at the reinitializing state in t∗(p, λ) + 1, that is,
after allowing for one passive slot.

The decreasing feature of the active dynamics (7) implies that starting from some state p
in the optimal active set, the original optimization problem can be analyzed as an optimal
stopping problem. From some p in the active set, the system may visit states φ1

t (p) for
t = 1, 2 . . . (by repeatedly selecting the active action starting from p) or state 0 (if it reaches
its final state), but the states different from φ0 can only be visited in a predetermined
(decreasing) order, as φ1

t (p). Exploiting this deteriorating feature, the solution to problem
(3) can be equivalently described in terms of optimal active sets or in terms of the optimal
number of active time slots starting from a given state.

Also, notice that if φ0 �∈ A∗(λ), it follows from (6) that V ∗
β (φ0, λ) = 0, and further given

the problem’s dynamics, the optimal belief state trajectory remains constant at φ0, thus
never activating the process, that is, A∗(λ) = ∅ and hence, t∗(φ0, λ) = 0. Thus, the non-
trivial case to consider corresponds to all possible λ such that φ0 ∈ A∗(λ), that is, where
t∗(φ0, λ) > 0.

Next, we will invoke the auxiliary results in Lemma 3.3 (whose proof is deferred to the
Appendix) to simplify expression (8).

Lemma 3.3: We have

(a)
t−1∏
s=0

[
1 − (1 − α)φ1

s(p)
]

= 1 − (1 − αt)p; (b) φ1
t (p)

t−1∏
s=0

[
1 − (1 − α)φ1

s(p)
]

= αtp.

For any λ such that φ0 ∈ A∗(λ), setting p = φ0 in (8) and using Lemma 3.3, V ∗
β (φ0, λ)

can be computed in closed-form as a function of t∗(φ0, λ) with the expression below:(
1−(αβ)t∗(φ0,λ)

1−(αβ)

)[
r(1 − α)φ0

] − (λ + c)
(

φ0 1−(αβ)t∗(φ0,λ)

1−(αβ) + 1−βt∗(φ0,λ)

1−β (1 − φ0)
)

1 − βt∗(φ0,λ)+1(1 − (1 − αt∗(φ0,λ))φ0)
. (9)

Denote by Vβ(φ0, λ, i) the expression (9) evaluated by setting t∗(φ0, λ) = i. Notice that,
solving problem (4), that is, finding the states that belong to A∗(λ), is therefore equivalent
to finding the maximum positive integer i such that it holds: φ1

i (φ
0) ∈ A∗(λ). Thus, if

t∗(φ0, λ) = i it must be the case that φ1
t (φ

0) ∈ A∗(λ) only if t ≤ i.
Thus, substituting φ1

i (φ
0) for p in Eqs (5) and (6), and given that V ∗

β (φ0, λ) =
Vβ(φ0, λ, i), using (4) we have that:

R(φ1
i (φ

0), 1) − λ + β2b(φ1
i (φ

0))Vβ(φ0, λ, i) > βVβ(φ0, λ, i), (10)
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where we have also assumed that in the case of the maximum being achieved by both
actions, the selected action by default is the passive action. Further, Vβ(φ0, λ, i) is computed
for t∗(φ0, λ) = i using expression (9). Thus, rearranging (10) we have that

Vβ(φ0, λ, i) − R(φ1
i (φ

0), 1) − λ

β[1 − β2b(φ1
i (φ0))]

< 0. (11)

Therefore, for some given λ such that φ0 ∈ A∗(λ), t∗(φ0, λ) is determined as the maxi-
mum non-negative integer i such that (11) holds. Furthermore, for t∗(φ0, λ) = i, where i is
some positive integer, it must be the case that:

Vβ(φ0, λ, i) > Vβ(φ0, λ, j) > 0, j = 1, . . . , (i − 1). (12)

The first relation in (12) is a consequence of the fact that t∗(φ0, λ) = i, while the second
relation in (12), that is, V ∗

β (φ0, λ, j) > 0 follows from the fact that V ∗
β (φ0, λ, 0) = 0. Notice

also that if starting at φ0 it is optimal to be active for i time slots, then it must be optimal
to be active at any time slot between 0 and i − 1.

Consider now some λ′ < λ. It follows from (9) that, for a fixed i, Vβ(φ0, λ, i) is a linear
decreasing function of λ. Thus, when (12) holds for a given λ, it will hold also for λ′ < λ.
Therefore, the set of integers for which the optimality (12) holds is a non-increasing set with
respect to λ. Therefore, t∗(φ0, λ) is a non-increasing (piece-wise constant) function of λ and
it further follows that V ∗

β (φ0, λ) as in (9) is a nonnegative and non-increasing piece-wise
linear function in λ. �

Next, we announce the following corollary, which is a direct consequence of Lemma 3.2.

Corollary 3.4: If p ∈ A∗(λ) for some p ∈ P \ {0}, then it must be that p ∈ A∗(λ′) for
λ′ < λ.

Proof: The proof follows from the relation between t∗(φ0, λ) and the optimal active set
A∗(λ). Suppose it is known that when the process is at state φ0 it is optimal to take the
active action (as long as the process does not yield its final reward) for the next i steps, that
is, t∗(φ0, λ) = i. Then, it must be the case that the belief states in the sequence φ1

t (φ
0) for

t = 0, . . . , (i − 1) belong to the active set A∗(λ) Further, given the non-decreasing property
of t∗(φ0, λ), the set A∗(λ′) for λ′ < λ must (at least) include the set composed by the
sequence φ1

t (φ
0) for t = 0, . . . , (i − 1).

Alternatively, after some algebraic manipulations, expression (12) can be written for
fixed i and s = 1, . . . , (i − 1) as a function of λ which is also linear and decreasing in λ. �

Proof: Finally, indexability of the single-process problem (3), as defined in Definition 2.1,
follows from Corollary 3.4. �

3.1. The Whittle Index

Based on the indexability result established by 3.1, we announce in (13) the Whittle index
closed-form expression for the single-process problem (3).
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Theorem 3.5: The Whittle index, denoted by λW (p), for the single-bandit problem (3) and
for p ∈ P \ {0}, is computed as follows:

λW (p) =
r(1 − α)

[
(1 − β̂)p − β(1 − βb(p))1−(αβ)d(φ0,p)

1−(αβ) φ0

]
(1 − β̂) − β(1 − βb(p))

[
1−(αβ)d(φ0,p)

1−(αβ) φ0 + 1−βd(φ0,p)

1−β (1 − φ0)
] − c, (13)

where β̂ � βd(φ0,p)+1(1 − (1 − αd(φ0,p))φ0)), and d(φ0, p) �

⎡⎢⎢⎢
log

(
(1−p) φ0

(1−φ0) p

)
log

(
1
α

)
⎤⎥⎥⎥ . (14)

Proof: Once indexability has been established, the Whittle index λW (p) for some belief
state p ∈ P \ {0} is computed as the value of the multiplier λ such that the active and passive
action are indifferent when the process is at state p, that is, the value of V ∗

β (p, λW (p)) as
computed by Eqs (5) (i.e., with a = 1) or (6) (i.e., with a = 0) is the same. Further, given
the properties of the active dynamics previously derived, it follows that if for λ = λW (p)
at p both actions are indifferent, then it must be true that for belief states larger than
p it is optimal to be active (until either the process reaches it final state or it reaches
a belief state below p) while for belief states smaller than p it is optimal to reinitialize
the process. Moreover, for some p ∈ P \ {0} there will exist a strictly positive integer t such
that φt(φ0) ≤ p < φt−1(φ0) and Vβ(φt−1(φ0), λW (p)) takes its maximum value setting a = 1
(i.e., V ∗

β (φt−1(φ0), λW (p)) and it is computed using (5)) while Vβ(φt(φ0), λW (p)) takes its
maximum vale when a = 0 (i.e., V ∗

β (φt(φ0), λW (p)) as in (6)).
The above reasoning allows us to conclude that t∗(φ0, λW (p)) is exactly the number of

active slots required to make the state go from the initial state φ0 to a state at most equal
to p, that is, t∗(φ0, λW (p)) = d(φ0, p) � {t ≥ 1 : φt(φ0) ≤ p < φt−1(φ0)}. Notice that λW (p)
can be interpreted as the value of λ such that the optimal maximum number of (unsuccess-
ful) periods that a process starting at the initial state must be activated before advising to
reinitialize the process is exactly t∗(φ0, λW (p)) . From expression (7) and given its definition,
d(φ0, p) can be computed in closed-form using the corresponding expression (14).

Therefore from Eqs (5) and (6), using the fact that for λ = λW (p) it holds
that t∗(φ0, λW (p)) = d(φ0, p), we write the DP equations for some φ1

d(φ0,p)(φ
0) ≤ p <

φ1
d(φ0,p)−1(φ

0) as:

V ∗
β (p, λW (p)) = R(p, 1) − λW (p) + b(p)β2V ∗

β (φ0, λW (p)), if p ∈ A∗(λW (p)), (15)

V ∗
β (p, λW (p)) = βV ∗

β (φ0, λW (p)), if p �∈ A∗(λW (p)). (16)

The critical value λW (p) is such that (15) equals (16). Thus,

λW (p) = R(p, 1) − β[1 − βb(p)]V ∗
β (φ0, λW (p)). (17)

Next, we compute V ∗
β (φ0, λW (p)) using expression (9) setting t∗(φ0, λW (p)) = d(φ0, p) as

in (14) and substitute it in (17). After tedious yet straightforward algebraic manipulations
expression (13) is obtained. �

Corollary 3.6: The Whittle Index defined in (13) for the single-bandit problem (3) is a
continuous and monotone increasing function in p, for any p ∈ P \ {0}.

Proof: Both properties can be shown through algebraic manipulations of expression (13).
The function d(φ0, p) is a piecewise constant(left continuous)function. In particular, it
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Figure 2. (Color online) The Whittle index of a process with parameters: φ0 = 0.95,
R = 1, α = 0.35 and c = 0, and computed for instances with discount factors
β ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99}. The optimal active set in this example is the set
of p for which λW (p) > 0.

remains constant for all p ∈ P \ {0} such that p �= φt(φ0) for t = 0, 1, . . ., while it has
decreasing jump discontinuities in the set p = φt(φ0) as t = 0, 1, . . ..

Thus, within the belief state intervals
[
φt(φ0) ; φt−1(φ0)

)
, with φt(φ0) given by expres-

sion (7), for all natural t ≥ 1 it therefore holds that d(φ0, p) remains constant and λ∗(p) is
a linear, continuous and increasing function in p.

In order to show continuity of the index function λ∗(p), it remains to establish the
continuity for the set of points in which the function d(φ0, p) has jump discontinuities. For
such a purpose, using the fact that at those critical values of p the active and passive actions
are indifferent to the decision maker, it can be shown that

lim
p→:φt(φ0)−

λ∗(p) = lim
p→:φt(φ0)+

λ∗(p) = λ∗(φt(φ0)), ∀ t = 1, 2, . . . ,

which completes the proof of Corollary 3.6. �

Corollary 3.7: The single-bandit problem (3) is optimally solvable by threshold policies,
that is, for every λ ∈ R there exists a threshold p∗(λ) such that for any p ∈ P \ {0} it is
optimal to activate the process if and only if p > p∗(λ).

Proof: It follows from the analysis to derive the Whittle index in Theorem 13, that the
optimal policy for problem (3) can be expressed as follows: a∗ = 1 for all p ∈ P \ {0}: p ≥
φ1

n−1(φ
0) and a∗ = 0, otherwise. �

3.2. Example

To illustrate the previous analysis with an example, consider a process with the follow-
ing parameters: φ0 = 0.95, r = 1, α = 0.35 and c = 0. Figure 2 plots the corresponding
Whittle index function, given by expression (13), for instances with discount factors
β ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99}.

Notice that the Whittle index for the instance β = 0 reduces to the index λW (p) =
R(p, 1), commonly known as the Myopic index, and thus henceforth denoted as λM (p) �
R(p, 1). Further, when β = 0 the optimal policy advices to observe the process regardless
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of its current state p, that is, the optimal active set is P \ {0} or the optimal stopping time
for any p ∈ P \ {0} is infinite. However, as β increases, the optimal active set becomes a
subset of the controllable states, for example, when β = 0.3 it holds that, starting from φ0

it is optimal to be active for 4 periods (until state φ1
4(φ

0) is reached), while for β = 0.99 it
is optimal to be active for 3 periods (until state φ1

3(φ
0) is reached). In the limit, for β = 1

the Whittle index converges to an index that takes value 0 for all P \ {0, φ0}, while in the
reinitializing state φ0 it takes the value R(φ0, 1).

It follows from the previously mentioned equivalence between the optimal active sets and
the optimal stopping times, that for every β, the Whittle index policy can be equivalently
expressed in terms of the optimal maximum possible number of observations starting from
the initial state φ0 until the process yields its final reward, which we shall denoted by t∗β ,
therefore admitting a simpler and tractable expression alternative to the computation of
expression (13). Thus, for β = 1 the Whittle Index rule is equivalent to a 1-limited Round
Robin observation rule, for β = 0 it is equivalent to an ∞-limited Round Robin rule and
for some general 0 < β < 1 it is equivalent to a t∗β-limited Round Robin rule.

4. PROPERTIES OF THE WHITTLE INDEX RULE

We now explicitly define a Whittle Index rule for the multi-armed problem (1) based on
the index expression (13), and two alternative naive heuristics index rules. We shall further
establish the optimality of the Whittle Index rule for solving problem (1) for the special case
of N stochastically heterogeneous processes (i.e., having distinct parameter specifications)
under the Expected Total criterion, that is, the case corresponding to letting β = 1. We
shall also give a closed-form expression for the suboptimality gap of the alternative index
rules for the special case in which there is no constraint in the number of processes that
can be simultaneously observed, that is, for M = N .

Definition 4.1: The Whittle Index rule for the multi-armed problem (1) is implemented
as follows: at time t, the index is computed using expression (13) for each of the N processes
independently, and the M processes yielding the highest index values, as long as they are
positive (i.e., λW

n,t(p) > 0), are observed at time t. Further, in the case of a tie among two
or more (positive) index values, we shall choose to observe the process that has been least
(unsuccessfully) observed up to time t. If processes have been previously observed the same
number of periods, ties are broken arbitrarily.

The use of such a problem specific tie-breaking rule is a novel feature proposed in
this paper. Any identical processes, when in the same state at time t, will have the same
index value at that time, although they may have been (unsuccessfully) observed a different
number of times. For instance, if at time t the controller must choose between two processes,
both at a common state φ0, but process 1 has been observed before while process 2 has
never been observed, the expected net reward of observing each of them respectively is
R(φ0, 1)b(φ0) and R(φ0, 1). Naturally, if the least observed process has a higher priority
despite the fact that their Whittle Index value is the same, then we expect to obtain
a higher immediate expected reward by observing it. This difference will be particularly
important for the discounted case, in which the time of job completion affects the rewards
obtained from them. Moreover, the inclusion of this additional tie-breaking rule can be used
for simplifying some of the optimality results’ proofs presented in this section.

We shall further define two alternative well-known index-based heuristics for the multi-
armed problem (1): the Myopic and the Belief Index rules, respectively taking index
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λM (p) � R(p, 1) and λB(p) � p. For the sake of the fairness in the comparison, they will be
implemented in an analogous way as the Whittle index (i.e., using the same tie-breaking
rule). Usually for the cases in which not only the optimal policy for the MARBP but also
the Whittle Index rule for a single-bandit subproblem is not easily derived, this type of
simpler rules are the most commonly implemented. For an example of the application of
these two alternative index-based policies and a comparison of their performance against
the Whittle Index rule see, for example [16] or [8].

Furthermore, we propose the following tractable heuristic rule:
The n̄-limited Round Robin rule, observes the M least observed processes whose state

is greater than φ1
n̄(φ0), as long as R(φ1

n̄−1(φ
0), 1) > 0.

Theorem 4.2: The Whittle index rule in Definition 4.1 is optimal for problem (1) for the
case of N stochastically heterogeneous processes for any 1 ≤ M ≤ N when β = 1. Further, it
is equivalent to the following simple 1-limited Round Robin rule: at each time slot t, observe
(at most) M processes only if they are in their reset state φ0

n, as long as R(φ0
n, 1) > 0.

Proof: Following an approach similar to the one in [10], we shall show optimality by
deriving and comparing relevant bounds on the resulting value functions under different
rules. Consider first the case in which c = 0. A natural upper bound for the objective
function (1) when β = 1 and for any 1 ≤ M ≤ N is such that V ∗

1 (φ0) ≤ ∑N
n=1 rn. Given

that each one of the N processes generates a reward rn when observed at state s = 1,
the best that any observation scheduling rule could do is to succeed with all of them,
hence

∑N
n=1 rn is the (obvious) maximum attainable value for the total expected objective

function.
Next, we compute the expected value of the objective function under the Whittle Index

rule (as in Definition 4.1).
For β = 1, the Whittle rule induces a 1-limited Round Robin scheme in which every

process is observed once every two slots, as long as it is in the state φ0
n and until it yields

its final reward. Under such a rule, every process will yield its final reward in finite time
with probability 1, given that the probability of completing a job by time t is 1 − b(φ0

n)t.
So for any possible 1 ≤ M ≤ N , all the N processes will be eventually operated under this
rule, though at different moments of time, and all the possible rewards will be achieved in
a finite time.

Using the above reasoning, for β = 1 and operated under the Whittle Index rule the
expected flow of rewards yields the following value for the objective function, denoted by
V W

1 (φ0):

V W
1 (φ0) =

N∑
n=1

rn(1 − αn)φ0
n(1 + b(φ0

n) + b(φ0
n)2 + · · · + b(φ0

n)t + · · · )

=
N∑

n=1

rn(1 − αn)φ0
n

∞∑
t=0

b(φ0)t.

(18)

By Lemma 3.3, (18) is reduced to rN , which coincides with the upper bound of the
objective function (1). Hence, given that V W

1 (φ0) =
∑N

n=1 rn, the Whittle Index rule is opti-
mal V W

1 (φ0) = V ∗
1 (φ0). Further, notice that because the 1-limited Round Robin scheme can

be implemented for every process in finite time, such an optimality result is true regardless
of the value of M .

Regarding the case in which problem (1) is considered for c > 0 or under the β-
discounted criterion, we cannot show optimality using the rough bound on the value function
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for the expected total case, yet an upper bound can be derived solving the Whittle relaxation
of problem (1) and using a Lagrangian approach to solve it, that is,

V ∗
β ≤ V L

β � inf
λ≥0

[
N∑

n=1

V n
β (φ0

n, λ) + λ
M

(1 − β)

]
, (19)

where V n
β (φ0

n, λ) is defined as in (3) for every n = 1, . . . , N .
By solving the convex optimization problem posed by (19), it is derived that V L

β for
the case β → 1 results in λ∗ = 0 and V L

1 =
∑

j∈J [rj − (c/[(1 − αj)φ0
j ])] where J is the set

of processes for which it holds that cn < R(φ0
n, 1). By an analogous reasoning to the one

used for computing the total expected value function under the Whittle index rule in (20),
it follows that the 1-limited Round Robin scheme induced by this rule will yield all the final
rewards incurring in an expected cost equal to the expected cost of the induced cycles, that
is, V W

1 =
∑

j∈J [rj − (c/[(1 − αj)φ0
j ])]. Thus, again V W

1 = V L
1 = V ∗

1 . �

From the above proof it follows as well that when c = 0 the optimality result will hold
for any n̄-limited Round Robin rule such that the length of its active cycle n̄ is finite.
Given that the Myopic and Belief rule are equivalent to a ∞-limited Round Robin rule, we
can expect them to be suboptimal in that case. Next, we introduce a theorem stating its
suboptimality gap in closed-form for that case and under certain assumptions.

Theorem 4.3: The suboptimality gap (V M
1 (φ0) − V ∗

1 (φ0)) for the total expected perfor-
mance achieved under the Myopic index rule or the Belief index rule for the special case of
stochastically heterogeneous processes with c = 0, β = 1 and

(a) M = N , is
∑N

n=1 rn(1 − φ0
n);

(b) M = 1 and processes such that: φ0
1 ≥ φ0

2 ≥ · · · ≥ φ0
N and φ1

1(φ
0
1) ≤ φ0

N , is rl(1 − φ0
n),

where rmin ≤ rl ≤ rmax.

Proof: First, we compute the value of the total expected performance under the Myopic
index rule or the Belief index rule under the assumptions in (a). Notice that both rules
are equivalent in the case of heterogeneous processes with c = 0 and M = N . Both index
functions are strictly increasing in the belief state, and both are strictly positive when con-
sidering a given state of the set of controllable states, therefore inducing identical decisions
over time. However, notice that both policies are not equivalent to the Whittle index rule,
basically because the Myopic and Belief index rules are equivalent to an ∞-limited Round
Robin rule while the Whittle index rule is equivalent to a 1-limited Round Robin rule.

For β = 1, c = 0 and M = N , operated under the Myopic (or the Belief) index rules,
the expected flow of rewards yields the following expected value V M

1 (φ0) (or V B
1 (φ0)) for

the objective function:

V M
1 (φ0) =

N∑
n=1

rn(1 − αn)

[
φ0

n + φ1
1(φ

0
n)b(φ0

n) + φ1
2(φ

0
n)b(φ0

n)b(φ1
1(φ

0
n)) + · · ·

+ φ1
t (φ

0
n)

t−1∏
s=0

b(φ1
s(φ

0
n)) + · · · )

]

=
N∑

n=1

rn(1 − αn)
∞∑

t=0

φ1
t (φ

0
n)

t−1∏
s=0

b(φ1
s(φ

0
n)). (20)
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As a consequence of Lemma 3.3, (20) reduces to V M
1 (φ0) =

∑N
n=1 rnφ0

n < V ∗
1 (φ0).

Hence, the suboptimality gap for these two simple index rules is computed in closed-form
for the case M = N and c = 0 to be

∑N
n=1 rn(1 − φ0

n) > 0. Thus, as it will be illustrated
through the computational experiments, the gap decreases with φ0

n.
Next, we compute the value of the total expected performance under the Myopic index

rule or the Belief index rule under the assumptions in (b). The relation between the restart-
ing states φ0

n (together with the tie-breaking rule) ensures that under the Myopic or Belief
rule no process will be activated two consecutive times until there is only one process that
has not yet yield its final reward. Once there is only one process, which we denote by the
subscript l, with the possibility of yielding a reward, the Myopic (and the Belief) policy
would activate that process over an infinite period of time. As a consequence of Lemma 3.3,
(20) reduces to V M

1 (φ0) =
∑

n∈N\l rn + rlφ
0
l < V ∗

1 (φ0).
For the case of stochastically identical process, (20) for case (b) reduces to V M

1 (φ0) =
(N − 1)r + rφ0, and the suboptimality gap to (1 − φ0)r. �

Regarding the case in which problem (1) is considered for β = 1 and c > 0, fol-
lowing an analogous reasoning, it can be shown that the simpler index rules will
also be suboptimal in this case. Let t̄n(c) be the maximum prescribed number of
consecutive active slots for process n on excess of 1 that are prescribed under the
Myopic or Belief index rules when the cost is c. The simpler index rules can be
shown to attain the following expected performance values: V M

1 = V B
1 =

∑
j∈J [φ0

nrn −
(c/(1 − αn))] − (c

∑
j∈J t̄n(c)(1 − φ0

n)/(1 − α
t̄n(c)
n )φ0

n). Therefore, it follows that the Whit-
tle index rule is also not only optimal for any c when β = 1 but also that the other index
rules are suboptimal, since it holds that V ∗

1 − V M
1 =

∑
j∈J(1 − φ0

j )[rj − (c/(1 − αj)φ0
j )] +

(c
∑

j∈J t̄n(c)(1 − φ0
n)/(1 − α

t̄n(c)
n )φ0

n) > 0 for c > 0 and t̄(c) > 0.
For the more general case, in which M < N and β = 1, the computation in closed-

form of the total expected value function under the Myopic or Belief index rule is less
straightforward. Yet, it can be intuitively argued that both of them will also be suboptimal.
Under any of these heuristics the first M terms of the sum defining V M

1 (φ0) coincide with the
ones achieved by the Whittle index rule. From the M + 1th term onwards both the Myopic
or Belief index rule, with a strictly positive probability, take an action that is different from
the optimal action (i.e., the action prescribed by the Whittle index rule), thus generating a
total expected reward strictly less than rN .

In fact, denoting by N̂t(M) the expected number of processes which have not yet yielded
their final reward at time t for some 1 ≤ M ≤ N , the probability that at time t the naive
index rules diverge from the optimal action (i.e., the action prescribed by the Whittle index
rule) is at least equal to: P (0 < N̂t(M) ≤ M). When the event (0 < N̂t(M) ≤ M) occurs,
the simpler index rules prescribe to activate all of the N̂t processes, even if they are not
in their initial state (i.e., they never prescribe to reinitialize those processes). Furthermore,
from the time at which the M + 1th term of the sum V M

1 (φ0) is added onwards, the event
(0 < N̂t(M) ≤ M) may occur with a strictly positive probability for any 1 ≤ M ≤ N , that
is, with the probability that in the previous M observations, at least (N − M) and at most
(N − 1) processes have reached its final state.

The number of processes reaching its final state at a given time defines a binomial
random variable, hence: P (0 < N̂t(M) ≤ M) =

∑N−1
i=N−M

(
N−1
N−i

)
[1 − (1 − α)φ0

n]N−i[(1 −
α)φ0

n]i > 0. Notice further that for M = N , that probability is equal to 1, which yields
a value function as in (20). Also, as M diminishes, the minimum for the probability of
divergence from the optimal action decreases, and since this probability tends to zero
as t → ∞, we can expect that the best performance of the simpler index rules will be
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achieved when the number of possible observations per period is the lowest. We would like
to emphasize that this suboptimality result is also noteworthy since it implies that the
Myopic Index and the Belief Index rules perform worse as the resource constraint is less
binding.

For the β-discounted criterion, for each β the Whittle index rule is equivalent to a
simple t∗β-limited round robin heuristic rule. In general, for every β the Whittle index rule
will be equivalent to a heuristic that advices to observe processes starting at the initial state
at most for t∗β slots (unless the process reaches its final state) and resting for one slot after
that. Given the fact that the Whittle index rule in this case also induces cycles equivalent
to a t∗β-limited Round Robin policy, we expect that this simple rule will also outperform
the other rules for the β-discounted criterion, especially as β → 1 and M increases. Also,
following this reasoning it can be argued that this will be the case in any other situation in
which the observation rule selected tends to reinitialize processes less often than the optimal
rule would do.

5. NUMERICAL STUDY

We present the results of some of the simulation studies performed with the goal of illustrat-
ing the ideas presented in the previous sections. The experiments are based on MATLAB
implementation codes developed by the author, where the relative performance of the pro-
posed Whittle index rule is compared against the other previously described naive index
policies and to the corresponding upper bound. For each instance, 104 independent sim-
ulation runs were performed on a horizon of T = 104 time slots. In each experiment, the
resulting mean total reward function under different rules is reported together with 95%
confidence intervals around that mean to evaluate the statistical significance of the results.
All the results reported in this section are statistically significant at a 95% confidence level.

In all instances, the rules considered are: the Whittle index rule, the myopic index
rule, the belief state index rule (both as defined in Section 4), the t∗-limited round robin
rule, based on the simple rule equivalent of the Whittle index rule proposed in Section 4,
the n̄-limited round robin rule with n̄ �= t∗, and the random selection policy which picks
a process to observe at random, with each process having the same probability of being
selected.

5.1. Experiment #1

In this experiment we illustrate the optimality result announced in 4.2 and the suboptimality
gap of the naive index rules presented in 4.3 while studying the effect of varying the hard
sample-path resource constraint in an instance with non-identical processes for the case
β = 1. We considered a total of N = 100 processes, where 75 have a reinitializing state
equal to φ0 = 0.5 while for the 25 remaining it is φ0 = 0.8. For the N processes we have
considered a common misdetection error α = 1/3, r = 1 and c = 0. This base instance was
modified by letting M increase in 1 unit from 1 to N . The upper bound on the objective
function is in this case rN = 100.

Following the arguments introduced in Section 4, it can be shown that for the case
β = 1 and c = 0 any n̄-limited round robin observation scheduling rule with n̄ < ∞ will
be optimal. However, the lifetime of the system (i.e., the time until all processes yield its
final reward) will grow significantly the more the cycle diverges from the optimal one. By
the same reasoning, the optimality of other finite limited Round Robin rules different from
the t∗-limited rule will not hold for c �= 0 or β < 1; however, we expect that these rules,
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(a) (b)

(c) (d)

Figure 3. (Color online) Computational experiments: performance results (a) Mean Total
Reward vs. M (Non-Identical Processes). (b) Mean Total Reward vs. M (Identical Pro-
cesses). (c) Mean Total Discounted Reward versus c. (d) Mean Total Discounted Reward
versus α.

though suboptimal, may outperform the Myopic and Belief rules only in some instances.
These issues shall be explored in Experiment 5.3.

In this experiment, we illustrate the optimality of other n̄-limited round robin rules by
implementing a rule with a finite cycle of (at most) n̄ = 3 consecutive active time slots,
that is, a 3-limited Round Robin rule. Results displayed in Figure 3(a) show that the
Whittle index rule is statistically identical to the upper bound on the total expected rewards.
Furthermore, the n̄-limited round robin policy, which was computed in this experiment both
for n̄ = t∗ = 1 and n̄ = 3 (though the figure displays only the 3-limited), resulted in both
cases also optimal in terms of the objective function.

Results displayed in Figure 3(a) show that both the Whittle index rule and the 3-limited
Round Robin rules outperform all the other rules with the largest suboptimality gap (of
around 43%) occurring again for M ≥ 70. The Myopic and the Belief index rules are
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statistically equivalent in practically all of the values of M , with their resulting mean per-
formance deteriorating as M increases. All the policies are statistically equivalent (and
moreover optimal) only when M takes very small values (M ≤ 3) and the variability of
the performance attained by the optimal rules is relatively constant over the values of M
whereas it decreases for the suboptimal ones as M grows. It is also noteworthy that in
almost all the range of values of M these two naive index rules do not result in statistically
significant improvements over the random policy.

5.2. Experiment #2

In this experiment we consider a base instance with N = 100 identical processes, each with
parameters φ0 = 0.6, α = 0.25, r = 1 and c = 0, for the expected total criterion (i.e., for
β = 1). This base instance was modified to asses the effect of varying of the hard sample-
path resource constraint, specifically by letting M (the number of processes that can be
observed at a time slot t) increase by 1 unit from 1 to N . Again, the rough upper bound
on the objective function is in this case rN = 100. Results displayed in Figure 3(b).

As expected, the Myopic and the Belief index rules are statistically equivalent policies
for the identical processes case and they are both suboptimal. Once more, their subop-
timality gap grows as M increases, reaching its theoretical maximum value of 40% =
(1 − φ0)(corresponding for M = N) for M ≈ 70. Remarkably, for the range of values of
M smaller than that and until the set of values for which all the policies are statistically
equivalent and optimal (roughly M ≤ 3), these two heuristic rules do statistically significant
improve over the random policy, contrary to what occurred in the previous experiment for
non-identical processes. Finally, notice that the variability of the performance achieved by
all the rules exhibits the same behavior as in the previous experiment.

5.3. Experiment #3

In this experiment we study the effect of including a strictly positive observation cost c > 0
when the discount factor equals β = 0.95 and for a case of identical processes each with
parameters φ0 = 0.55, α = 1/3, r = 1, M = 100. This base instance was modified to asses
the effect of including a strictly positive observation cost, specifically by letting c increase
in 0.05 units from 0 to 0.75. We expect that the naive index rules will perform better as
the cost increases, and to even outperform the 3-limited Round Robin when c becomes
sufficiently large. The upper bound on the objective function is in this case computed for
each instance using the Lagrangian relaxation approach described in Section 4.

Results displayed in Figure 3(c) show that the Whittle Index rule is statistically equiv-
alent to the upper bound for any value of the observation cost c while, as expected, the
suboptimality gap of the Myopic and Belief index rules decreases as c grows. Moreover, for
small values of c (approximately less than 0.03) the 3-limited Round-Robin rule performs
better than the other naive heuristics, while it performs statistically equivalent to them
when c is around 0.06 and it is overperformed by them for larger values of c. The poor
performance attained by the random rule is mainly explained by the fact that its definition
does not take into account the observation cost.

In fact, it turns out that as c varies each of the index rules becomes equivalent to
a simple n̄–limited Round-Robin rule. Thus, to explain such results, we summarize the
equivalence relations in Table 1. For c = 0 and β = 0.95 the Whittle index rule is equivalent
to a 2-limited Round Robin rule, while the Myopic and Belief index rule are ∞-limited,
therefore resulting in the maximum possible divergence among these index rules. When the
observation cost is in the range [0.2895, 0.367) all three index polices become equivalent to
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Table 1. Equivalence between index rules and n̄-limited round Robin
rules as a function of c, with a is a integer such that a ≥ 4

c Whittle index rule Myopic index rule Belief index rule

[0.55,∞) 0-limited 0-limited 0-limited
[0.367, 0.55) 0-limited 0-limited 1-limited
[0.2895,0.367) 1-limited 1-limited 1-limited
[0.1923, 0.2895) 1-limited 1-limited 2-limited
[0.1195, 0.1923) 1-limited 2-limited 2-limited
[0.07971, 0.1195) 1-limited 2-limited 3-limited
[0.06,0.07971) 1-limited 3-limited 3-limited
[0.0433,0.06) 2-limited 3-limited 3-limited
[0.02887, 0.0433) 2-limited 3-limited 4-limited
[0.0148, 0.02887) 2-limited 4-limited 4-limited
(0, 0.0148) 2-limited a-limited a-limited
0 2-limited ∞-limited ∞-limited

a 1-limited Round Robin rule but the total expected discounted rewards are reduced to an
approximate value of 20. Also, from the table it follows that for values of c less than 0.0433
both naive index policies are overperformed by the 3-limited Round-Robin rule.

5.4. Experiment #4

In this final experiment we study the effect of differences in the misdetection error probabil-
ity α in an instance of identical processes for the case β = 0.9. Once more, we have considered
a total of N = 100 processes, where in the base instance all of them have φ0 = 0.5, α = 0.05,
r = 1 and c = 0 and M = N . Then we modify the base instance by letting the misdetec-
tion probability vary from α = 0.05 to 0.5 in increments of 0.05. The upper bound on the
objective function in each case is computed using the Lagrangian relaxation value.

Results displayed in Figure 3(d) show that the performance measure decreases for all
rules as the misdetection error probability grows. The naive index rules are statistically
equivalent to the random policy and their variability is smaller than the variability of
Whittle index rule and the 3-limited round robin rule.

Further, the Whittle index rule is statistically equal to the upper bound over all values
of the parameter α, overperforming the all the other rules. The 3-limited round robin rule
results equivalent to the Whittle index policy for values of α larger than 0.35 and it further
overperforms the other index rules for all values of α.

6. CONCLUDING REMARKS

In this paper, we have proposed a simple yet intractable POMDP model with application in
surveillance systems dealing with the detection and expulsion of smart intruders. The model
admits other applications in similar contexts. For example, consider a supervisory control
system in which multiple processes are monitored and controlled. The state 1 represents
an abnormal state and 0 the normal state. While a processes is being monitored, its state
can only change if an abnormality is detected and corrected. The objective is to control the
processes, identifying and rectifying processes that are in the abnormal state to ensure the
quality or security of the system.
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For solving the original model, we reformulated it as a MARBP with reinitializing
states and we introduced a novel dynamic scheduling policy based on an index function
which was further shown to be optimal in some special cases. Moreover, this optimality
property was observed in more general scenarios through simulations. For the proposed
model, the paper established analytically the existence of the Whittle index, obtaining a
closed-form expression for it and analytically showing the suboptimality of other widely
used heuristics under some conditions.

Besides the above mentioned theoretical results that are of concern for the model intro-
duced by this work, we believe two important conclusions can be drawn from these results
which have a relevance that goes beyond the scope of this paper. The first one is in relation
to the design of simple tractable heuristics based on myopic approaches which is in stark
contrast to the results valid for the MARBP models studied in [10,11] in which myopic rules
where optimal or nearly optimal. This paper shows that in problems in which the passive
action has a recovery effect on the states of arms (a situation likely to occur when arms
suffer from exhaustion, as human resources), those polices which do not advice arms to rest
are very likely to be substantially far from the optimal. Hence, if we must use a heuristic
policy in such instances, it is more reasonable to deploy a heuristic that is defined in such
a way that it will cyclically alternate between working and resting every arm. As shown in
this paper, for the present model and in the case β = 1 and c = 0 any cycled policy of this
sort, regardless of the cycle composition, will be optimal in terms of the objective function.

The second conclusion is regarding the potentially good performance of the Whittle
index policy as an approximate solution method for POMDP models. In this particular
case, given the simplicity of the model, this rule turns out to be optimal in many instances.
We believe that the results reported in this paper suggest that in more complex cases (such
as the model in [16]), the application of this approach may lead to designing a rule that
may offer significant performance gains at a feasible computational cost. We regard this
direction as a highly fruitful one to continue research.

Finally, it is our hope that this work will contribute to stimulate the development of
tractable decision-making rules for models that extend the present formulation. For example,
to solve a more complex problem that includes false positives, the case in which targets can
re-appear in the sites after being detected or even a model in which smart targets have a
different reaction that the one modelled here.
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APPENDIX

Proof of Lemma 3.3

Lemma 3.3 states the validity of the following results:

(a)

t−1∏
s=0

[
1 − (1 − α)φ1

s(p)
]

= 1 − (1 − αt)p; (b)φ1
t (p)

t−1∏
s=0

[
1 − (1 − α)φ1

s(p)
]

= αtp.

Proof: We show these results by induction. We start with part (a), and show that

(a)

t−1∏
s=0

[
1 − (1 − α)φ1

s(p)
]

= 1 − (1 − αt)p, ∀t ∈ Z
+ � {1, 2, . . .}

For t = 1, by definition of φ1
0(p) it holds

∏0
s=0

[
1 − (1 − α)φ1

s(p)
]

= 1 − (1 − α)p.
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Next, if we let it be true for some t ≥ 1, we then have that
∏t−1

s=0

[
1 − (1 − α)φ1

s(p)
]

=

1 − (1 − αt)p.

Thus, it holds that
∏t

s=0

[
1 − (1 − α)φ1

s(p)
]

=
[

1 − (1 − α)φ1
t (p)

] (
1 − (1 − αt)p

)
.

Next, using the expression (7) that

φ1
t (p) =

αt p

1 − (1 − αt) p
, (A.1)

we conclude that

t∏
s=0

[
1 − (1 − α)φ1

s(p)
]

=

[
1 − (1 − α)

αt p

1 − (1 − αt) p

] (
1 − (1 − αt)p

)
.

Finally, straightforward algebra yields that

t∏
s=0

[
1 − (1 − α)φ1

s(p)
]

= 1 − (1 − αt+1)p,

which completes the proof of part (a).
Next, we shall prove part (b).

(b) φ1
t (p)

t−1∏
s=0

[
1 − (1 − α)φit1s(p)

]
= αtp, ∀t ∈ Z

+.

Notice that φ1
t (p) admits expression (7) because is the tth iterate of a Möbius Transformation

defined by φ1(p) � α p
1−(1−α) p

whose associated matrix is

Φ1 =

(
α 0
1 −(1 − α)

)
.

Thus, by properties of Möbius Transformations, φt(p) is also a Möbius Transformation with
associated matrix (Φ1)t.

We shall also prove part (b) by induction. By definition φ1
0(p) and φ1

1(p), it holds for t = 1:

φ1
t (p)

t−1∏
s=0

[
1 − (1 − α)φ1

s(p)
]

=
α p

(1 − (1 − α) p)
(1 − (1 − α)p) = αp

Next, let it be true for t ≥ 1, that is, φ1
t (p)

∏t−1
s=0

[
1 − (1 − α)φ1

s(p)
]

= αtp.

Then, it holds that

φ1
t+1(p)

t∏
s=0

[
1 − (1 − α)φ1

s(p)
]

= φ1
t+1(p)

[
1 − (1 − α)φ1

t (p)
] t−1∏

s=0

[
1 − (1 − α)φ1

s(p)
]
.

Next, substituting φt+1(p) by its equal according to expression (7), we get that

φ1
t+1(p)

t∏
s=0

[
1 − (1 − α)φ1

s(p)
]

= α φ1
t (p)

t−1∏
s=0

[
1 − (1 − α)φ1

s(p)
]

= αt+1 p.

which shows part (b), and hence completes the proof of Lemma 3.3 holds for all natural t. �
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