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Spanwise velocity statistics from high-Reynolds-number turbulent boundary layers are
reported. The dataset combines efforts spanning over a decade at the University of
Melbourne to accurately capture Reynolds number (Re) trends for the spanwise velocity,
nominally over one order of magnitude change in Re, using custom subminiature
cross-wire probes that minimise spatial resolution effects and misalignment errors. The
spanwise velocity (v) variance is found to exhibit an Re invariant logarithmic slope in
the log region, in a similar manner to the streamwise velocity (u), which is consistent
with the existence of self-similar features within wall-bounded flows. However, unlike the
u-variance, it appears that the logarithmic v-variance trend continues to extend towards
the wall. The increase in the v-variance with Re in the log region is found to be due to
‘intermediate-scale eddies’, which follow distance-from-the-wall scaling. This results in
the v-spectrogram exhibiting a dominant energetic ridge across the intermediate-scales, a
trend that is not clearly observed in the u-spectrogram. Other features of the v-spectrogram
are found to be similar to the u-spectrogram, such as showing small-scale near-wall
features that scale universally with viscous units, and the influence of large-scale v signals
residing in the log region that extend to the wall, resulting in a large-scale v footprint in the
near-wall region. The observed behaviour of the v-spectrogram with changing Re is used
to construct a model for the v-variance based on contributions from small-, intermediate-
and large-scales, leading to a predictive tool at asymptotically high Re.

Key words: boundary layer structure, turbulent boundary layers

1. Introduction

Single-normal hot-wire anemometry has been successfully used to obtain sufficiently
resolved streamwise velocity (u) data at moderate and high Reynolds numbers
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(Hultmark et al. 2012; Örlü & Schlatter 2013; Marusic et al. 2015; Samie et al. 2018). These
studies and others show an increasing prominence of large-scale velocity fluctuations with
Reynolds number (Re), such that, at sufficiently large Re, these contributions eventually
become responsible for the majority of the turbulent kinetic energy production (Smits,
McKeon & Marusic 2011). Furthermore, these large-scale u features are also known to
alter the small-scale motions near the wall (Abe, Kawamura & Choi 2004; Hutchins &
Marusic 2007b), resulting in amplitude modulation of the small-scales across all three
velocity components (Talluru et al. 2014). Although the streamwise component of velocity
has provided many valuable insights into the large-scale features residing in the log region,
construction of a more comprehensive view of these features has been hindered by the
scarcity of high-Re measurements surveying the spanwise (v) and wall-normal (w) velocity
components. Here, we redress this issue through matched spatial resolution cross-wire
measurements, where v or w (depending on the cross-wire probe orientation) is captured
simultaneously with u. In addition to their scarcity, often inadequate attention has been
given to the issue of spatial resolution when attempts have been made to measure the v and
w fluctuations (e.g. Fernholz & Finley 1996). This can lead to misleading Re trends, due
to a systematic variation in the spatial resolution introduced as a function of Re (e.g. when
a free stream velocity is increased while a constant sensor size is maintained, see also
Hutchins et al. (2009)). Accordingly, the present measurements are designed to capture
cases where the spatial resolution is matched across a range of Re, allowing a cleaner
extraction of any Re trends that may exist.

The challenges associated with measuring the spanwise or wall-normal velocity in
wall-bounded flows are numerous. The reduced magnitude of v and w compared with
u leads to a reduction in the signal-to-noise ratio. Near-wall measurements are further
challenged by the increase in the physical sensor size that is typically required to measure
the second velocity component. There are also challenges in accurately capturing the
broad range of scales as Re increases, which for most facilities will result in a shrinking
viscous length scale and demand ever-smaller sensor geometries. The work reported here
represents a cumulation of effort undertaken at the University of Melbourne, spanning
over a decade, which include: (i) building a large-scale wind tunnel facility, to effectively
resolve small-scales even at a high-Re regime with conventional, well-established
measurement techniques (Nickels et al. 2005; Marusic et al. 2015); (ii) an extensive
investigation of finite dimension effects expected from a cross-wire probe of a certain
physical size (Philip et al. 2013a,b; Baidya et al. 2019b); (iii) assessment of sensitivity
to probe misalignment and calibration errors (Baidya et al. 2019a); (iv) development of a
custom subminiature cross-wire probe designed to minimise the sources of errors found
in the finite sensor dimension and probe misalignment investigations (Baidya 2016); and
(v) development of a specialised calibration procedure (e.g. Morrill-Winter et al. 2015;
Zimmerman, Morrill-Winter & Klewicki 2017).

Theoretical models that describe the scalings and Re trends for the second-order
velocity statistics for wall turbulence are sparse, and those that have been developed, e.g.
Monkewitz & Nagib (2015), have primarily focussed on the streamwise normal stress.
Classical theory, that follows scalings based on the mean flow, such as law-of-the-wall
and outer scalings (Millikan 1938), lead to the conclusion that all three components of
inner-scaled velocity variance are constants across the log layer at asymptotically high
Re (e.g. Perry & Abell 1975). Empirical data, however, show that this is not the case
(Laufer 1954; Fernholz & Finley 1996; DeGraaff & Eaton 2000), leading Townsend (1976)
to propose alternate scalings based on the attached eddy hypothesis (AEH). Townsend’s
(inviscid) theory considers a description of high-Re boundary layers to be composed of
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self-similar attached coherent motions that scale with their distance from the wall, where
the presence of the wall restricts the wall-normal velocity due to the impermeability
condition, while the u and v fluctuations remain unrestricted. From this point of view,
u and v are expected to show a similar behaviour, with their variances predicted to follow
logarithmic profiles with wall-normal distance across the log layer. The AEH has become
a prominent theory in the field (see the recent review by Marusic & Monty (2019)), and
therefore, here, we compare our results with Townsend’s predictions. Further, we examine
and compare the related spectral energetic content of v against u and assess how the
dominant scales are modified as a function of wall height and Re.

At low to moderate Re, direct numerical simulations (DNS) provide a more readily
assessable avenue to examine the spanwise (and wall-normal) velocity compared with
experiments. As an example, del Álamo et al. (2004) report that the energetic scales in
v occur at a much finer streamwise wavelength compared with u. In addition, the spanwise
velocity variance (v2) profiles demonstrate a clearer log–linear relation, consistent with
Townsend’s prediction, compared with the streamwise velocity intensities (u2), at least for
the range of Re accessible through DNS (Sillero, Jiménez & Moser 2013; Mehrez et al.
2019).

Despite advances in understanding the physical mechanism governing wall-bounded
turbulence permitted by DNS data, the asymptotic behaviour predicted by AEH may
be masked in DNS data due to limited scale separation. For example, the slope of the
log–linear behaviour is expected to be universal across wall-bounded flows (Marusic et al.
2013). However, for the DNS data, the slope of the logarithmic v2 behaviour in the external
flows (boundary layer) is shallower compared with the internal flows (pipe and channel).
Here, we use high-Re experimental data to assess if this logarithmic behaviour approaches
a universal asymptomatic scaling.

As such, the purpose of the current paper is not only to present reliable spanwise
velocity statistics using subminiature cross-wire probes, but also to highlight the unique
characteristics of v pertaining to high-Reynolds-number turbulent boundary layers.

2. Experimental set-up

The current cross-wire measurements were conducted in the high-Reynolds-number
boundary layer wind tunnel (HRNBLWT), located at the University of Melbourne. This
facility is designed for studying high-Re turbulent boundary layers, while also ensuring

relatively low free stream turbulence intensity levels where
√

u2/U∞ < 0.05 – 0.2 %
depending on the streamwise location (Nickels et al. 2005; Marusic et al. 2015). The
measurements are taken at three different x locations – 2, 7 and 18 m downstream of
the tripped inlet to the working section. For the first set of measurements, the free stream
velocity (U∞) is fixed at 15 m s−1, while the streamwise position is varied. Since the
friction velocity is only weakly dependent on the streamwise distance (for a fixed free
stream velocity), this allows measurements at different Re using the same probe while
still ensuring that our viscous-scaled sensor size is relatively constant. In addition to
the matched spatial resolution measurements, we extend the Re range by measuring
at U∞ ≈ 30 m s−1 and x ≈ 18 m using the same cross-wire probe. Consequently, the
viscous length scales are now smaller and thus the spatial resolution is poorer relative
to the 15 m s−1 cases. However, the large-scale contributions which are several orders of
magnitude larger than the sensor size remain unaffected, and therefore the dataset provides
useful Re trends for these scales.

913 A35-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
29

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1129


R. Baidya, J. Philip, N. Hutchins, J.P. Monty and I. Marusic

Symbols x U∞ Reτ ν/Uτ Uτ δ �t+ TU∞/δ l+x l+y �s+
z , l+z

(m) (ms−1) (μm) (ms−1) (m)

2 14.7 2400 28 0.543 0.068 0.486 18 000 14 14 7 (�s+
z )

7 14.7 5000 30 0.508 0.151 0.422 19 000 13 13 7 (�s+
z )

18 14.7 10 400 32 0.479 0.331 0.377 19 000 13 13 7 (�s+
z )

18 29.8 18 400 17 0.925 0.310 0.688 20 000 24 24 12 (�s+
z )

— — 7.2 × 105 83 0.18 60 110 O(100) 600 600 1000 (l+z )

Table 1. Experimental parameters for the cross-wire measurements (solid symbols), configured to measure
the streamwise and spanwise velocities. Also shown are the experimental parameters for the atmospheric
surface-layer dataset ( ) from Hutchins et al. (2012). Here �t and T denote the sampling interval and the
total sampling time, respectively.

The details of the cross-wire experimental conditions (solid symbols) are summarised
in table 1. Here, we employ the coordinate system x, y and z to refer to the streamwise,
spanwise and wall-normal directions, respectively, and u, v and w the corresponding
fluctuating velocities. The superscript ‘+’ denotes viscous scaling of length (e.g. z+ =
zUτ /ν), velocity (e.g. U+ = U/Uτ ) and time (e.g. t+ = tU2

τ /ν), where Uτ and ν are the
mean friction velocity and the kinematic viscosity of the fluid, respectively. Capitalisation
(e.g. U) and overbar (e.g. u2) indicate time-averaged quantities. The symbols •, � and
� in table 1 denote the cases where spatial resolution is maintained constant, while the
highest Re case (�) yields a relatively poorer spatial resolution. The value for friction
velocity, Uτ , and boundary layer thickness, δ, given in table 1 have been obtained by fitting
the mean velocity profile to a composite velocity formulation of Chauhan, Monkewitz
& Nagib (2009). The sampling interval �t is chosen so that it is sufficiently low, to
capture the smallest energetic length scale (i.e. �t+ < 3, Hutchins et al. (2009)), while
the total sampling time T corresponds to approximately 20 000 boundary layer turnover
times (TU∞/δ).

Figure 1 shows the custom cross-wire probe used, where dimensions occupied by
2.5 μm diameter platinum hot-wire sensors are 0.4 × 0.4 mm (lx × ly) in the x and y
directions with a separation of 0.2 mm (�sz) in the z direction. The hot-wire prongs are
stainless steel wires of diameter 250 μm, ground down to a tip diameter of 20 μm, which
are then inserted into specially designed ceramic holders. The prongs are copper plated
before the platinum wires are soldered to them. An important feature of these prongs is
that, although the whole probe body is tilted at approximately 10◦ towards the wall (to
access near-wall velocity statistics), the hot-wires themselves are kept parallel to the wall.
This feature, which unfortunately is not available in commercial probes, is essential in
minimising errors arising from an inclination of the cross-wire sensor plane with respect
to the wall. For example, Baidya et al. (2019a) showed that the inclined sensor plane
cannot be fully accounted for through a typical calibration procedure, where contributions
from the out-of-plane velocity are ignored. The inclined sensor plane results in increased
sensitivity to the out-of-plane velocity component, leading to a large error of up to 10 %
for the turbulent stresses in the log region. In addition, the custom probe allowed us to
incorporate key design information provided from probe simulations into the design. That
is, the custom probe is designed such that the wire separation distance is smaller than the
wire length dimensions (see figure 1) since it is found that the former dominates the errors
when measuring v (Philip et al. 2013b).
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Mean flow
direction

l

l

�sz

xy
z

Figure 1. Schematic of a cross-wire probe configured to measure the streamwise and spanwise velocities. The
red and blue wires are located on their respective coloured planes. l and �sz denote the sensor length and the
spacing between the sensors (in the wall-normal direction), respectively.

The hot-wires are operated in constant temperature mode with an overheat ratio
of 1.8, while a full two-dimensional calibration of the cross-wire probe is performed
in situ using a calibration jet facility that rotates the jet about the wall-normal axis
of the cross-wire sensors (for details, see Morrill-Winter et al. (2015)). During the
two-dimensional calibration, the voltages from the two sensors are recorded at 12 to 17
different velocities across 0–1.1 U∞ and 11 jet angles spanning ±30◦ about the z axis
to build up a voltage-to-velocity conversion map. Figure 2(a) shows voltage pairs (E1, E2)
obtained for multiple jet velocity and angle combinations during a typical two-dimensional
calibration. In order to ensure a smooth voltage-to-velocity conversion map, the recorded
voltages are fitted to a functional form. The functional form utilised for the current study
prescribes (i) a collapse of hot-wire voltages curves as a function of effective velocity
occurs across all jet angles (Browne, Antonia & Shah 1988) and (ii) the response of the
hot-wire to the flow angles follows a sinusoidal function (Hinze 1975; Morrill-Winter et al.
2015). Third-order polynomials are used to describe the effective velocities as functions of
the hot-wire voltages. Prescribing (i) and (ii), and assuming that the inclination angle of
the two hot-wires are at ±45◦ with respect to the x direction (the cross-wire probes used
in the experiments were designed such that the hot-wires are at ±45◦) results in

U2
eff 1

U2
jet

= cos2
(
γ + π

4

)
+ k2 sin2

(
γ + π

4

)

and

U2
eff 2

U2
jet

= cos2
(
γ − π

4

)
+ k2 sin2

(
γ − π

4

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1a,b)

where Ueff 1 and Ueff 2 are effective velocities from the two hot-wires, Ujet and γ are,
respectively, the jet velocity and angle with respect to the cross-wire probe and k is the
axial sensitivity coefficient which usually varies from 0 to 0.2 (Champagne, Sleicher &
Wehrmann 1967). Following algebraic and trigonometric manipulations (2.1) leads to
U2

eff 1 + U2
eff 2 = U2

jet(1 + k2), which corresponds to an equation for a circle. Figure 2(b)
shows the effective velocities from the two-dimensional calibration shown in figure 2(a),
where an equation for a circle provides a good description of the calibration points,
particularly at higher jet velocities. Note that the effective velocities in figure 2(b) are
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Figure 2. (a) Hotwire voltage (E1, E2) and (b) effective velocity (Ueff 1, Ueff 2) pairs from a typical
two-dimensional cross-wire calibration. (a) Constant jet velocity (Ujet) and jet angle (γ ) lines determined from
calibration points are indicated as solid (—) and dotted (· · ·) lines. (b) The effective velocities at a constant
jet velocity are shown normalised by the value at the zero jet angle, while a fitted circle is shown as a dashed
line (- - -). The ◦ symbols showing the calibration points in panels (a,b) are coloured according to the jet
velocities.

shown normalised by the effective velocity at γ = 0, which is a constant factor of Ujet
according to (2.1). At low velocities, the heat transferred from the hot-wire is no longer
dominated by the forced convection (Collis & Williams 1959; Hatton, James & Swire
1970), presumably resulting in the departure from (2.1) observed in figure 2(b). In addition
to the jet calibration, the calibration corresponding to zero jet angle is repeated in the
wind tunnel. Thus, for a case when no misalignment exists between the calibration jet
and the wind tunnel, the two calibration curves should be identical. However, in practice,
a non-zero misalignment exists and the in-plane misalignment angle (the sensor plane is
parallel to the x–y plane in the current study) can be determined such that the disparity
between the hot-wire voltages at the zero jet angle after accounting for the misalignment
and the wind tunnel calibration is minimised. It should be noted that, since the in-plane
misalignment is the leading-order contributor to the error in the evaluated velocity (Baidya
et al. 2019a), the influence of the out-of-plane misalignment is ignored for the current
misalignment correction procedure. Here U and V are calculated from the corrected jet
angle and jet velocity to create a voltage–velocity lookup table, and the recorded voltages
during the course of profiling are linearly interpolated based on the lookup table to convert
to velocities. In addition, the test-section temperature increased more severely for the
30 m s−1 dataset compared with the 15 m s−1 cases. This meant that the difference in
the ambient temperature during the two-dimensional calibration and the experiment was
more pronounced for the 30 m s−1 dataset. Hence, the hot-wire voltages for the 30 m s−1

experiments were offset by values (�E1, �E2) such that the compensated U profile agreed
with the single-normal hot-wire measurements. Note that the offset voltages �E1 and �E2
are functions of z, and correspond to the change in the hot-wire voltages due to different
ambient conditions.

The final dataset considered are measurements from the atmospheric surface layer,
obtained utilising three-component sonic anemometers (Campbell Scientific CSAT3),
from Hutchins et al. (2012). The surface layer experiments allow access to very high Re,
which is difficult to achieve in the laboratory, allowing the assessment of Re trends to be
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extended to Reτ ≡ Uτ δ/ν ∼ O(106). The dataset presented here (denoted using symbol
) corresponds to an hour of measurement, carefully selected from nine days of available

measurements based on the requirement of near-neutral stability, appropriate incoming
flow direction relative to the sonic anemometer and steady wind (see Hutchins et al.
(2012), for full details of data selection criteria). Velocity measurements from nine sonic
anemometers logarithmically spaced from z = 1.42 m to 25.69 m on a vertical tower are
considered here. The corresponding friction-based Reynolds number is estimated to be
Reτ ≈ 7.2 × 105, where Uτ is calculated under the assumption that the viscous scaled
Reynolds shear stress peaks at unity, while δ is inferred based on turbulent stress profiles
and two-point correlations.

3. Moments of the spanwise velocity

Figures 3(a) and 3(b) show the second moment (variance) of the spanwise velocity, v2,
where the wall distance is normalised with viscous and outer units, respectively. The
vertical error bars denote uncertainty levels in v2, estimated as ±5 % for the lower Re
laboratory data (Reτ ≈ 2500–10 000) and ±10 % for the Reτ ≈ 18 000 dataset. These error
bars are estimated based on cross-wire probe uncertainty analysis (Baidya et al. 2019a),
uncertainty in determining the friction velocity (Winter 1979; Klewicki et al. 2007) and the
spread in statistics observed during experiment repeats. The peak v2+

occurs at z+ ≈ 50,
which is farther away from the wall than the u2+

peak location at z+ ≈ 15 (Sillero et al.
2013; Lee & Moser 2015). In the log region (i.e. where the mean velocity is seen to follow
a log law – shown by horizontal bars in figure 3a), v2 follows a log–linear relationship in
a similar manner to the u2 statistics, given by,

v2

U2
τ

= −A2 ln
z
δ

+ B2, (3.1)

where A2 and B2 indicate the logarithmic slope and intercept of the fit, respectively.
The slope of the logarithmic behaviour in figure 3 is consistent across the dataset with
a matched spatial resolution (•, �, �) and with the v2 statistics from DNS (dotted and
dash-dotted lines), while a shallower slope is recorded for the Reτ ≈ 18 000 dataset. This
is because a lower spatial resolution sensor leads to underestimated smaller scales, causing
v2 statistics to be increasingly attenuated closer to the wall (Philip et al. 2013b). For the
current experiment, the v2 errors due to the finite sensor effects become prominent below
z+ � 100 (indicated by a vertical dash-dotted line in figure 3a) where the biases introduced
exceed the uncertainty of the experiment (which is equal to ±5 and ±10 % for the
U∞ = 15 and 30 m s−1 cases, respectively). The slope of the logarithmic v2 behaviour for
the Reτ ≈ 10 000 dataset, based on a linear regression in the region 3

√
δ+ � z+ � 0.15δ+

(indicated by the green horizontal bar in figure 3a), provides A2 ≈ 0.27. It should be noted
that the lower bound selected for the log region is based on a z location where the inertial
forces become leading order in the mean momentum balance (Morrill-Winter, Philip &
Klewicki 2017), which also coincides with an onset of a logarithmic behaviour in both the
U and u2 statistics (Marusic et al. 2013). Furthermore, setting A2 = 0.27, the value for
B2 based on the regression varies from 1.3 at Reτ ≈ 2500 to 1.5 at Reτ ≈ 10 000 (only
the matched spatial resolution cases are considered to isolate the Re effects) as shown
in figure 4. The A2 and B2 values from the current study are in good agreement with
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−A2 ln z/δ + B2

(b)(a)

Figure 3. Variance of the spanwise velocity, v2, shown in (a) viscous and (b) outer normalisations. The solid
symbols (•, �, �, �) correspond to measurements conducted at HRNBLWT, while the empty symbol ( )
is an atmospheric surface layer dataset obtained using a sonic anemometer, from Hutchins et al. (2012). The
dotted and dash-dotted lines are v2 statistics from the DNS database of Schlatter & Örlü (2010) and Sillero
et al. (2013), respectively. (a) The vertical dotted and dash-dotted line correspond to z+ = 50 and z+ ≈ 100,
respectively, while the dashed lines show log–linear relations with the slope A2 = 0.27. Furthermore, the
horizontal bars, coloured according to the corresponding Re, denote the location of the log region (3

√
δ+ �

z+ � 0.15δ+).

Reτ

B2

103 104 105 106
1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 4. The logarithmic intercept, B2, for the v2 statistics as a function of Reτ . The magenta symbol, �,
corresponds to measurements by Zimmerman et al. (2019) (where the B2 value has been recomputed utilising
a consistent definition for the log region and δ as the current study).

Zimmerman et al. (2019), who obtained A2 ≈ 0.26 and B2 ≈ 1.6 at Reτ ≈ 8000 in the
same facility (the HRNBLWT) with a different probe. Here, the A2 and B2 values for the
Zimmerman et al. (2019) data have been re-evaluated, based on the definition for the log
region and δ that is consistent with the current study. Hence, the value of B2 differs slightly
from that given in Zimmerman et al. (2019), where the boundary layer thickness is taken
to be the z location where U = 0.99U∞. Note that, Zimmerman et al. (2019) obtain a
somewhat different value of A2 ≈ 0.34, when they measure in the Flow Physics Facility.
However, this difference is presumed to be due to an underdeveloped wake found in the
Flow Physics Facility, where the velocity profile beyond z/δ � 0.8 is found to deviate from
the canonical profile (Zimmerman et al. 2019).
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Also shown in figure 3 are the v2 statistics measured in the atmospheric surface layer
by Hutchins et al. (2012), and denoted by . These field measurements have larger
uncertainties (the error bars reflect ±10 % uncertainty in the friction velocity due to
the assumption that −uw+ peaks at unity) compared with the laboratory measurements.
Although the large uncertainty means that a wide range of A2 is permissible to describe
the log–linear v2 behaviour, A2 = 0.27 is nevertheless consistent with the measurements
(see dashed lines, figure 3a).

In the context of AEH, an increase in Re is reflected by a larger number of self-similar
hierarchy levels required to model the wall-bounded flow. Thus, since the u and v

contributions from each hierarchy level are additive, u2+
and v2+

at a fixed z+ increases
proportionally with the number of hierarchy levels, which scales as log δ+ (Perry &
Chong 1982). Indeed, an increase in v2+

at a fixed z+ location is observed in the current
experiments (see figure 3a). Notably, the slope of logarithmic v2 (A2 ≈ 0.27) is shallower
than that found in u2, where A1 ≈ 1.2 (Marusic et al. 2013). If one accepts the AEH
description, a possible explanation for the difference in the slope between the u2 and v2

behaviour is that the wall-bounded flow is better represented by a hierarchy of multiple
streamwise aligned eddies travelling in a packet (Adrian, Meinhart & Tomkins 2000),
rather than a hierarchy of single isolated eddies where the logarithmic slopes observed for
u2 and v2 are similar (i.e. A1 ≈ A2). The streamwise aligned eddies lead to a strengthening
of the u contributions per hierarchy level, while the v contributions remain relatively
unaffected, leading to A1 > A2, which is more consistent with the experimental data
(Baidya et al. 2014).

In the asymptotic limit, AEH predicts that B2 will reach a constant, in a similar manner
to the u2 behaviour, where the logarithmic intercept, B1, also approaches a constant.
While the empirical evidence supports B1 approaching a constant at sufficiently high Re
(Marusic, Uddin & Perry 1997; Marusic et al. 2013), an increase in B2 is observed for the
current dataset with increasing Re, as shown in figure 4 on log–linear axes. Furthermore,
the atmospheric surface layer measurement suggests that B2 might maintain a log δ+
behaviour despite an increase in Re by over an order of magnitude. We note that, it is
difficult to draw a robust conclusion on Re-dependency of B2 based on figure 4 and further
high quality v2 measurements in the Reτ ∼ 104–106 range are necessary to make a more
definitive conclusion. A discrepancy between the AEH predictions and the experimental
results is also observed in terms of the spanwise velocity tendency to exhibit extreme
values compared with a Gaussian distribution. That is, the v flatness values exceed 3
(super-Gaussian behaviour) in the log region (e.g. Fernholz & Finley (1996), and this
is consistent with our observations too, but not shown here for brevity) while a value
lower than 3 (sub-Gaussian behaviour) is predicted by AEH (Woodcock & Marusic 2015).
This is in contrast to the u signal, which exhibits sub-Gaussian behaviour as predicted by
AEH. Consequently, the higher-order even moments of u and v also behave differently
– e.g. the logarithmic slope for the higher-order moments increasingly deviate away
from a Gaussian behaviour in the opposite direction (Meneveau & Marusic 2013; Yang
et al. 2018). The discrepancy between the experiment and AEH predictions is thought to
arise due to a degree of correlation being retained among eddies of different scales in a
real flow (Meneveau & Marusic 2013). For example, de Silva et al. (2016) showed that
an introduction of a slight non-randomness in AEH hierarchy, whereby a restriction is
imposed on the placement of eddies such that a minimum separation is maintained (i.e.
two eddies from the same hierarchy level cannot coexist at the same location), results in a
u and v behaviour that is more consistent with the experiments.
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Figure 5. Premultiplied energy spectra of v fluctuations for a Reτ ≈ 10 000 turbulent boundary layer. The v

spectra shown correspond to the wall heights z+ = 50 (	), z+ = 3
√

δ+ (•), z = 0.15δ (�) and z = 0.6δ (�),
as indicated in figure 6(c).

4. Energy spectral density

Figure 5 shows the energy spectral density of v as a function of streamwise wavelength,
λx, at selected z locations for the Reτ ≈ 10 000 case. The premultiplied energy spectra
of spanwise velocity fluctuations, kxφvv , provide a measure of v2 contributions for a
given streamwise length scale, since

∫ ∞
0 kxφvv d ln kx = v2, where kx corresponds to the

streamwise wavenumber (i.e. λx = 2π/kx). Note that, the energy spectral density, φvv , is
a function of kx (or λx) and therefore is distinct from (but related to) the spectral density
per unit non-dimensional wavenumber kxL, Φvv(kxL), where L is some length scale of
interest (for further details see Nickels & Marusic (2001)), used by Perry & Chong (1982)
and in the subsequent works.

It is evident from figure 5 that within the log region the most energetic wavelength
becomes longer with wall distance (e.g. • and �), while in the outer layer it remains
relatively fixed at λx ≈ δ (e.g. � and �). It should be noted that the temporal hot-wire
signals have been converted to the spatial domain by invoking Taylor’s frozen turbulence
hypothesis (Taylor 1938), where the turbulent motions at all length scales are assumed to
convect at the local mean velocity, U(z). However, it is known that the convection velocity
is scale-dependent (del Álamo & Jiménez 2009; Monty & Chong 2009); hence, we expect
a slight change in the actual shape of the v spectrum following this procedure. Although
we cannot entirely rule out its influence here, we expect the redistribution of energy beyond
the log region (z+ � 3

√
δ+, see vertical dashed lines in figure 6) to correspond to a small

fraction of the overall energy, as at these z locations the convection velocity across the
scales become more uniform (del Álamo & Jiménez 2009).

Figure 6(a–c) display the full map of the v-spectrogram at various Re, where the colours
indicate the energetic content at a particular wall height and wavelength. Hence, the v

spectra shown in figure 5 correspond to kxφvv along the vertical lines in figure 6(c) with
a matched symbol. Unlike the u-spectrogram (e.g. Hutchins & Marusic (2007a) and also
figure 12(a) in appendix A) there is no apparent inner/outer site separation even at the
highest Re data. Rather, it appears that for z+ < 70, there exists a ridge of energy at a
fixed streamwise wavelength λ+x ≈ 350. Through the log region, there are clear signs of
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Figure 6. Premultiplied energy spectrogram of v fluctuations as a function of wall height, z, and wavelength,
λx, at (a) Reτ ≈ 2500, (b) Reτ ≈ 5000 and (c) Reτ ≈ 10 000. The vertical dashed lines indicate the bounds of
the log region, which are taken here to be z+ = 3

√
δ+ and z/δ = 0.15, while the black dashed lines show the

location of the energetic ridge identified. The solid white lines correspond to contour levels 0.2, 0.4 and 0.6.
Here ‘FP’ denotes the location of the energetic ‘footprint’ from the very large-scale structure. The wavelengths
corresponding to small-, intermediate- and large-scales are denoted by SS, IS and LS, respectively.

energy scaling with distance from the wall, with the energetic ridge seeming to follow the
line λx = 5z for 70 � z+ � 0.15δ+. Moreover, in the wake region, the energy seems to
reach a ridge at a constant λx/δ ≈ 0.75. The energetic ridge, adhering to these trends, is
indicated by the black dashed lines in figure 6. The distribution of the energetic u content
relative to the location of the black dashed line in figure 12(a) of appendix A, indicates
that the u fluctuations are dominated by energetic scales that are at a longer streamwise
wavelength than the v fluctuations. This is due to the tendency of u fluctuations to align
in the streamwise direction, while the spanwise velocity regions remain isolated (Sillero,
Jiménez & Moser 2014).

Figure 6(a–c) also indicate that the small-scale, near-wall v spectral content is invariant
with Reynolds number when scaled in viscous units. Note that, although the effects from
finite sensor dimensions (the v spectra closely follow the w spectra behaviour described
in Baidya et al. (2019b)) become more severe in the near-wall region, we expect this
effect to remain constant across figure 6(a–c) since we have maintained a matched spatial
resolution (Philip et al. 2013b; Baidya et al. 2019b). Similarly, even though the assumption
that the convection velocity for Taylor’s hypothesis is equal to the local mean velocity
is less valid in the near-wall region (del Álamo & Jiménez 2009), the redistribution of
the energetic content in the v-spectrogram is expected to be similar across the three Re
cases. In contrast to the invariance of the near-wall v-spectrogram when λ+x � 1000, the
contours outside this region shift towards higher λ+x with increasing Re. This is likely
because, in a similar manner to the streamwise velocity (e.g. Hutchins & Marusic (2007a),
and also figure 12(a), in appendix A) the influence of the very large-scale features that
reside in the log region extends to the wall for the spanwise velocity. Thus, the very
large-scale feature has a footprint that extends to the wall, leading to large-scale energetic
content in v at z+ ∼ 10 and λ/δ ∼ 1 (this location is indicated by ‘FP’) as shown in
figure 6. Note that, although the presence of the large-scale footprint at the wall leads
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Figure 7. Premultiplied v spectra at (a) near-wall (z+ = 50) and (b) log (z+ = 310) regions. The symbols •,
�, �, � correspond to Reτ ≈ 2500, 5000, 10 000 and 18 000 cases, respectively.

to small-scales that are more strongly modulated with the large-scale u at high Re (Mathis,
Hutchins & Marusic 2009; Talluru et al. 2014), the small-scale energetic content seems
to be preserved on the time-averaged sense, and therefore exhibits Reynolds number
invariance when scaled in viscous units. Notably, the energetic footprint is absent from the
w-spectrogram and the Reynolds shear stress cospectrogram (as shown by Baidya et al.
(2017), and reproduced in figure 12b,c), due to the impermeability condition at the wall,
which restricts large-scale wall-normal fluctuations in this region (Perry & Chong 1982).
Furthermore, in an analogous manner to the classical mean flow theory (e.g. Millikan
1938), the peak contribution in the v-spectrogram and the uw-cospectrogram (and to a
lesser extent w-spectrogram) follow a viscous and δ scaling in the near-wall and outer part
of the boundary layer, respectively, while a transition from these two regimes occurs in the
log region where the dominant modes scale with z.

Figure 7(a,b) show the influence of the Reynolds number on the v energetic
content at the near-wall (z+ = 50) and log (z+ = 3

√
δ+ ≈ 310 at Reτ ≈ 10 000) regions,

respectively. Here, the vertical dotted line indicates the spectral cutoff limit for the
small-scale contribution (the choice for the cutoff wavelength is detailed in § 4.1).
The small-scale spectral-cutoff also corresponds to the lower horizontal dotted lines in
figure 6(a–c). Thus, the intermediate- and large-scale v fluctuations, where λx exceeds the
cutoff value (the intermediate- and large-scales are distinguished in § 4.1), are responsible
for an increase in the peak v2 observed at z+ = 50 as a function of Re. Note that, due
to poorer spatial resolution, the small-scale energetic content is not as well-resolved
for the Reτ ≈ 18 000 dataset as the other three cases, and therefore this part of the
spectrum is not shown in figure 7. The increase in the combined contribution from the
intermediate- and large-scales to the broadband v2 observed in the near-wall region at high
Re may provide clues on the scalability of the flow control strategies, which introduce
oscillation or travelling waves at the wall to alter the near-wall v (Choi, Moin & Kim
1994; Quadrio 2011). These strategies achieve drag reduction by suppressing the near-wall
streaks (Karniadakis & Choi 2003; Quadrio 2011), which are increasingly modified by
the intermediate- and large-scale contributions at high Re (Hutchins & Marusic 2007b;
Talluru et al. 2014); providing an additional mechanism that may explain the reduced drag
performance observed with increasing Re (Hurst, Yang & Chung 2014; Gatti & Quadrio
2016).
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Spanwise velocity statistics in high-Re boundary layers

In AEH, the logarithmic behaviour of v2 is associated with a φvv ∼ k−1
x behaviour (as

with u) when a sufficient scale separation exists between the viscous and inertial scales
(Perry, Henbest & Chong 1986). However, no distinct plateau region, spanning across
an increasingly wide range of scales at higher Re (as envisioned by Perry et al. 1986)
exists in figure 7(b). Hence, even though φvv shows clear signs of energy scaling with
z in the log region, there is no evidence of φvv ∼ k−1

x behaviour for our experiment.
Instead, a peak in energetic contribution occurs at λ+x ≈ 1100 and a shallower departure
from the maxima occurs at higher Re for λ+x 
 1100 (contributions below λ+x � 1100 are
Reynolds number invariant). Thus, the slope of the departure may eventually approach
zero at sufficiently high Re (Reτ � O(104)), transforming the peak into a plateau. Note
that, a self-similar hierarchy of eddies do not necessarily guarantee a k−1

x behaviour, such
as for a case when insufficient scale separation exists between the smallest and largest
hierarchy levels (Davidson, Nickels & Krogstad 2006; Baidya et al. 2017). Nevertheless,
the Re trend observed in figure 7(b) is consistent with the AEH calculations for these
limited scale separation cases, where an increasingly plateau-like behaviour occurs when
the scale separation is increased.

4.1. Scale-decomposed v2 contributions
To further quantify how the v-spectrogram behaviour changes with Re, we will divide
the kxφvv contribution into the small, intermediate and large wavelengths, using cutoff
values (denoted by the horizontal lines) as illustrated in figure 6. Since small-scale energy
scales with viscous units, the limit λc1 is set in this inner-normalisation. Meanwhile, the
large-scale energy scales with the outer scale, and therefore λc2 is set to be a constant
fraction of δ. This grouping implies that the separating thresholds (λc1 and λc2) will move
apart as Re (i.e. scale separation) increases. Therefore, the range of scales that will be
grouped within the ‘intermediate’ range grows with Re.

The three regions in the v-spectrogram are integrated with respect to λx, and hence v2

can be decomposed based on the small- (v2SS), intermediate- (v2IS) and large-scale (v2LS)
contribution. That is,

v2 =
∫ λc1

0
kxφvv d ln λx +

∫ λc2

λc1

kxφvv d ln λx +
∫ ∞

λc2

kxφvv d ln λx

= v2SS + v2IS + v2LS. (4.1)

In the v-spectrogram, the energetic ridge at λ+x ≈ 350 and λx ≈ 0.75δ across a range of z
locations suggest that they result from viscous and δ-scaled structures, respectively. Thus,
to demarcate the small- and large-scale contributions, the geometric centre between these
two streamwise wavelengths is selected at the lowest Re (Reτ ≈ 2500); therefore,

λ+c1=
√

350 × 1875 = 810. (4.2a)

Furthermore, λc2 is chosen so that λc2 = λc1 at Reτ ≈ 2500, i.e.

λc2 = 0.32δ. (4.2b)

Hence, the contributions from the intermediate-scales v2IS is equal to zero for the lowest
Re case. It should be noted that, since the turbulence is broadband, no clear boundary exists
between the small-, intermediate- and large-scale contributions. Therefore, equally valid
choices for the integral limits used in (4.1) could exist, different from the current definition.
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Figure 8. Scale-decomposed v2. (a–c) Small-, intermediate- and large-scale contributions as functions of
z+. (d) Large-scale contributions shown against z/δ. The symbols denote different Re: ◦, Reτ ≈ 2500; �,
Reτ ≈ 5000; ♦, Reτ ≈ 10 000; , Reτ ≈ 18 000. The solid, chequered and open symbols correspond to the
small-, intermediate- and large-scale contributions. The horizontal bars in panels (a–c) show the location of
the log region and are coloured according to the corresponding Re, while the solid lines demonstrate log–linear
relations.

Note that, altering the integral limits would change the v2 contributions associated with
each scale; however, the focus here is on the Re trends, which remain relatively unaffected
(provided that the viscous and δ scaling is used, respectively, for the integral limits λc1 and
λc2).

Figure 8(a) shows that v2+
SS is invariant in the near-wall region when the spatial

resolution is comparable, similar to the u2 statistics (e.g. Hutchins et al. (2009), and
also figure 13(a) in appendix A). Furthermore, the small-scale invariance is found to be
universal across all turbulent stresses, when the procedure is repeated for the other velocity
components (see appendix A for further details). Hence, these Re invariant contributions
are likely to be associated with the buffer layer streaks (Kim, Kline & Reynolds 1971)
and the quasi-streamwise vortices (Jeong et al. 1997), where the dominating contribution
scales with viscous units (Jiménez & Moin 1991).

As expected, a strengthening of the intermediate-scale contribution occurs in figure 8(b)
as Re increases, since the hierarchy of eddies contributing to v2IS extends with increasing
Re. Note that the contribution at Reτ ≈ 2500 to intermediate-scale is equal to zero based
on (4.2). The importance of intermediate-scales becomes clear if we consider the high-Re
limit, where evidence suggests that the hierarchy of eddies that are sufficiently separated
from the viscous and inertially dominated scales exhibit self-similarity (Hwang & Sung
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Spanwise velocity statistics in high-Re boundary layers

2018; Marusic & Monty 2019). Furthermore, with increasing Re, data in figure 8(b) show
logarithmic behaviour within the inertial regime, which are made evident by the grey
solid lines. This feature of the intermediate-scale would be employed later in § 4.2 (and
figure 11) to construct a model for v2 in the high-Re limit.

Figure 8(d) shows the large-scale contributions to v2 in outer scaling. A good collapse
of v2+

LS is observed for z/δ > 0.5, with a peak contribution at z/δ ≈ 0.2. Notably, a simple
decomposition based on a spectral cutoff is more successful in demarcating the viscous
and δ-scaled contributions for v compared with u. This is because the viscous and δ-scaled
energetic contributions are confined to a narrow wavelength band around the energetic
ridge for v fluctuations, whereas for the u-spectrogram the energetic contributions about
the local peaks occur over a wider wavelength band (compare figures 6c and 12a). It
should be noted that for the Re ≈ 2500 case, a secondary peak exists in the near-wall
region (z+ < 100) for v2LS due to inadequate scale separation, while it is absent in the
higher Re cases. Thus, for the subsequent analysis this near-wall region below z+ < 100 is
ignored. Figure 9 shows a comparison of how the maxima in v2LS above z+ > 100 varies
with Re. Furthermore, the same procedure is applied for other turbulent stresses, where
the symbols �, � and • show the maxima in u2LS, w2LS and −uwLS, respectively. Note
that, to account for energetic contribution at larger λx, the streamwise cutoff wavelengths
λ+c1 = 2500 and λc2/δ = 1 are used for the streamwise velocity, while the limits given
in (4.2) are maintained for demarcating the w2 and −uw stresses (see appendix A for
further details). At low Re (Reτ ≈ 2500–5000) an increase in the peak v2+

LS contribution

is observed with increasing Re in a similar manner to the peak u2+
LS behaviour; however,

the observed growth rate compared with u2+
LS is smaller. At increased Re, the data show

that the maximum values deviate from the log δ+ behaviour observed at low Re, and the
growth as a function of Re is reduced. Therefore, at sufficiently high Re, the peak u2+

LS

and v2+
LS may asymptote to constants. However, these highest Reynolds number data are

the most experimentally challenging to obtain, and repeated measurements at even higher
Re data are required to confirm these trends. The data also suggest that the peak w2+

LS and
−uw+

LS exhibit Re invariance at a lower Re relative to the u2 and v2 stresses, as they are
found to be constant across the Re range examined.

Recent high-Re measurements compiled by Marusic et al. (2013), suggest that the slope
of the logarithmic u2 behaviour is universal across pipe (internal) and boundary layer
(external) flows. In contrast, a difference in the v2 slope has been noted between the
internal and external flows (A2 ≈ 0.5 in the channel and pipe compared with A2 ≈ 0.3
in the boundary layer), albeit at a lower Re (Sillero et al. 2013; Chin, Monty & Ooi
2014; Mehrez et al. 2019). However, at this Re range, the logarithmic behaviour in u2

is also not well defined, and hence the differences in A2 observed may simply be a low
Re effect. Here, we re-examine these differences by decomposing v2 based on scales at a
matched Re, and the result is presented in figure 10. Close to the wall, the intermediate-
(chequered symbols and dash-dotted lines) and large-scale (empty symbols and dashed
lines) v2 contribution show good agreement between the channel and boundary layer flows,
while the differences in the small-scale contributions (solid symbols and dotted lines) are
likely due to differences in the spatial resolution between the boundary layer experiments
and channel DNS of Lee & Moser (2015).
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a factor 0.5. The dashed line shows a log δ+ dependency.
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Figure 10. (a) Comparison of scale-decomposed v2 contributions between the channel (denoted by lines, Lee
& Moser 2015) and boundary layer (symbols) flows at Reτ ≈ 5000. The dotted (· · ·), dash-dotted (- · -) and
dashed (- - -) lines denote small-, intermediate- and large-scale contributions, respectively, while the symbols
are as in figure 8. (b) The broadband v2 statistics. The vertical dashed lines in panels (a,b) denote the bounds
of the log region.

In the outer region, the maximum difference in v2 occurs between the channel and
boundary layer flows at z/δ ≈ 0.33–0.4, and the differences are most evident at the large
scales. In the outer region, the flow is intermittent, i.e. it switches between turbulent and
quiescent/non-turbulent states (Chauhan et al. 2014; Kwon, Hutchins & Monty 2016).
Furthermore, the quiescent core and non-turbulent regions in the channel and boundary
layer flows behave differently, which is reflected in the distinct large-scale contributions
observed in figure 10(a). Thus, although the logarithmic slope exhibited by the broadband
v2 in the internal and external flows may appear distinct, the results suggest that the v2

contributions from the intermediate-scale wall-attached eddies may be universal between
these flows. Furthermore, since the wall-attached contributions dominate the broadband v2

behaviour at high Re (see § 4.2 for further details), A2 values in the external and internal
flow may exhibit universality at a sufficiently high Re.
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4.2. Revisiting the v2 logarithmic behaviour

Since the sum of v2SS, v2IS and v2LS returns the broadband v2, their trends in the log
region can provide a better insight regarding the behaviour of the cumulative statistic,
which follows (3.1) as demonstrated in § 3. Thus, here we fit functional forms to describe
the small-, intermediate- and large-scale contributions and suppose that they respectively
maintain the viscous, distance-from-the-wall and outer scaling to predict the v2 behaviour
as a function of Re.

Based on an empirical observation from figure 8(a–c), log–linear functions are chosen
as a first approximation to describe contributions in the log region for all three scales
(it will be shown later that the resulting asymptotic prediction holds independently of
the v2

SS and v2
LS functional forms). For the small-scale contributions, the data suggest a

ln z+ dependence (grey solid lines) as indicated in figure 8(a). Therefore, the small-scale
contributions are modelled as

v2+
SS= − CS1 ln z++CS2, (4.3)

where CS1 and CS2 are constants.
Meanwhile, figure 8(b) shows increasing v2+

IS contribution with increasing Re at a fixed
z+. This is consistent with the eddies responsible for the intermediate-scales following the
distance-from-the-wall scaling prescribed by AEH, since the self-similar attached eddy
contributions from each hierarchy level are identical. This means that v2 at a particular z+
location is expected to correspond to the number of contributing hierarchy levels, which
exhibits a log δ+ scaling (Townsend 1976; Perry & Chong 1982). Hence, based on AEH,
v2IS is modelled to follow a ln (z/δ) dependence. Hence,

v2+
IS= fI1(δ

+) ln (z/δ) + fI2(δ
+), (4.4)

where fI1 and fI2 are functions of the Reynolds number but not of z. Note that the Re
dependency prescribed for fI1 and fI2 is based on the logarithm slope and intercept trends
observed for the fits (the logarithmic behaviour is hardly present for the Reτ ≈ 5000 case)
shown in figure 8(b).

The large-scale contributions, v2LS, show a collapse as a function of z+ within the
log region, indicating a ln z+ dependence similar to the small-scale contribution, as
demonstrated in figure 8(c); therefore,

v2+
LS= fL1(δ

+) ln z++ fL2(δ
+), (4.5)

where fL1 and fL2 are functions of the Reynolds number but not of z as in (4.4). Here,
fL1 and fL2 are chosen to exhibit an Re dependency, since the maximum v2LS, shown
in figure 9, deviates from a log δ+ relation (dashed line) required for an Re invariant
logarithmic slope and intercept.

Figures 11(a) and 11(d) show the modelled v2 statistics based on the experimental
data at Reτ ∼ 104. Note that the modelled v2 is constructed based on piecewise
log–linear functions and follows (4.3)–(4.5) within the log region, demarcated here by
the vertical dashed lines. In order to satisfy the distance-from-the-wall scaling for the
intermediate-scale, fI1(δ

+) and fI2(δ
+) in (4.4) need to approach constants CI1 and CI2 at

sufficiently high Re (Townsend 1976). Through an additional assumption that the small-
and large-scales remain invariant in the viscous and outer scaling, respectively, the Re
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,

,

log z+ log z+ log z+

v2 +

v2
LS

v2
LS

v2
SS

v2
SS

v2
IS

v2
IS

−A2 ln z/δ + B2

(e)

(b)(a) (c)

(d ) ( f )

+

+

+

Figure 11. Logarithmic behaviour of v2 and its Re dependency. (a,d) Reτ ∼ 104 (based on the experimental
data), (b,e) Reτ ∼ 105 (prediction) and (c, f ) Reτ ∼ 106 (prediction). (a–c) Scale-decomposed and (d–f )
broadband v2 statistics. The small- (v2SS), intermediate- (v2IS) and large-scales (v2LS) are denoted by the dotted
(· · ·), dash-dotted (- · -) and dashed (- - -) lines, respectively, in panels (a–c), while the relative contributions
are demarcated by the shaded region in panels (d–f ).

dependency of the v2 statistics can be predicted, as shown in figure 11 for cases when the
scale separation increases by one and two orders of magnitude.

In order to examine the Re dependency of the constants A2 and B2 in (3.1), (4.3)–(4.5)
is substituted into (4.1) leading to

v2+ =
v2

SS︷ ︸︸ ︷
−CS1 ln(z/δ) − CS1 ln δ+ + CS2 +

v2
IS︷ ︸︸ ︷

fI1(δ
+) ln (z/δ) + fI2(δ

+)

+
v2

LS︷ ︸︸ ︷
fL1(δ

+) ln (z/δ) + fL1(δ
+) ln δ+ + fL2(δ

+)

= − (
CS1 − fI1(δ

+) − fL1(δ
+)

)
︸ ︷︷ ︸

A2

ln (z/δ)

+ (−CS1 ln δ+ + CS2 + fI2(δ
+) + fL1(δ

+) ln δ+ + fL2(δ
+)

)
︸ ︷︷ ︸

B2

. (4.6)

Thus, in addition to the term fI1(δ
+) approaching a constant, Re needs to be sufficiently

high such that the small- and large-scale influences in the log region are minimal to observe

a universal A2. The prescribed small-scale invariance in the viscous units means that v2
SS

remain identical in figure 11(a–c) irrespective of the Re increase. Furthermore, since the
start of the log region follows a

√
δ+ scaling (Wei et al. 2005; Morrill-Winter et al.

2017), an increasingly smaller portion of the small-scale fluctuations modelled by (4.3)
falls within the log region with increasing Re. Ultimately, the CS1 and CS2 contributions
disappears at Reτ 
 O(106) (see figure 11c, f ). For the v2

LS contributions, the log–linear
relation in the near-wall and outer regions (the tinted regions) for the Reτ ≈ 104 case
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is maintained for the high-Re predictions in the viscous and outer units, respectively.

Furthermore, fL1(δ
+) and fL2(δ

+) in (4.5) are adjusted such that v2
LS is continuous at all

z locations. Hence, the logarithmic slope, fL1(δ
+), becomes shallower with increasing

Re until it reaches zero and fL2(δ
+) becomes a constant (see figure 11c). Finally, the

v2
IS contributions shown in figures 11(a) and 11(c) assumes that fI1(δ

+) has reached the
asymptotic value −CI1. Since CS1 and fL1(δ

+) both approach zero in (4.6) at sufficiently
high Re, the intermediate-scales are solely responsible for the logarithmic v2 behaviour
in the asymptotic limit (i.e. A2 = CI1) as demonstrated in figure 11. Note that, although
the trends observed for v2 may reflect the attached eddy behaviour at very high Re
(Reτ ∼ O(106)), this does not necessarily hold at a lower Re (Reτ ∼ O(104)) where the
intermediate-scales are not the dominant contributor to v2.

A non-zero CS1 leads to a reduced B2 at a higher Re according to (4.6); however, in
reality B2 is observed to increase with Re (see figure 4). Therefore, the other Re dependent
terms, fI2(δ

+) + fL2(δ
+), must increase at a rate faster than O(ln δ+). Moreover, based on

the intermediate-scales following the distance-from-the-wall scaling, fI2(δ
+) is expected

to asymptote to a constant. Thus, at sufficiently high Re the CS1 contribution is expected
to disappear while both fI2(δ

+) and fL2(δ
+) approach constants, and therefore B2 becomes

a constant.
To summarise the asymptotic behaviour,

CS1, CS2, fL1(δ
+) → 0 (4.7)

and
fI1(δ

+) → −CI1, fI2(δ
+) → CI2, fL2(δ

+) → CL2, (4.8a–c)

where CI1, CI2 and CL2 are constants. Consequently, (4.6) simplifies to

v2+= −CI1︸ ︷︷ ︸
−A2

ln (z/δ) + CI2 + CL2︸ ︷︷ ︸
B2

, (4.9)

in the asymptotic limit. Furthermore, since the only term retained in the asymptotic form
from v2

SS and v2
LS is a constant, CL2, it turns out that (4.9) holds irrespective of the v2

SS and

v2
LS functional forms, provided that v2

SS

+ → 0 and v2
LS

+ → CL2 as Re → ∞ is satisfied.
Note that, if further experiments in the range of Reτ ∼ 104–106 show a B2 dependency on
Re and do not approach a constant B2 as predicted by AEH, this can be accommodated in
the current model by retaining fI2(δ

+) and fL2(δ
+) instead of CI2 and CL2 in (4.9).

5. Summary and conclusions

The spanwise velocity statistics are examined using a custom subminiature cross-wire
probe in high-Reynolds-number turbulent boundary layers. The custom probe is
designed to minimise the spatial resolution effects and misalignment errors, based on
recommendations from simulated cross-wire studies (Philip et al. 2013b; Baidya et al.
2019a,b). Furthermore, the current experiments are designed to include cases where a
constant spatial resolution is maintained across a range of Reynolds numbers to avoid
contamination from the spatial attenuation that can lead to incorrect interpretation of
Reynolds number (Re) trends (Hutchins et al. 2009).

A logarithmic relation with respect to wall-normal location (z) is observed for the
variance of the spanwise velocity, v2, in a similar manner to the streamwise velocity
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component, u. Although the slope of the logarithmic v2 behaviour recorded is slightly
dependent on the spatial resolution of the sensors, for matched spatial resolution datasets
we find a consistent slope across a range of Re. Hence, the empirical data, in part, supports
the AEH of Townsend (1976), in that a constant Re invariant logarithmic slope for u2

and v2 is predicted. The experimental data indicate that A2, the slope of logarithmic v2

behaviour, is approximately 0.27 based on a linear regression in the log region (3
√

δ+ �
z+ � 0.15δ+) at Reτ ≈ 10 000. It is noted, however, that contrary to Townsend’s AEH
prediction, the data show a varying value in the intercept of this log law (B2).

Similar to u, the influence of the large-scale features residing in the log region extends
to the wall for the v signal, resulting in a large-scale v footprint in the near-wall
region. The dominant energetic scales in v lie between the streamwise (largest) and
wall-normal components (smallest), as shown in figure 12. Moreover, unlike for u,
energetic contributions from O(10δ) fluctuations are insignificant in v, and consequently
the range of energetic scales is narrower when compared with u. Below z+ < 70, the
dominant contribution in the v spectra occurs at scales where the streamwise wavelength
is approximately 350 viscous units (i.e. λ+x ≈ 350). In the log region, the peak in the v

spectra follows the distance-from-the-wall scaling. Beyond the log region, the dominant
contribution in the v spectra again seems to occur at a constant λx which is O(δ). Thus,
as shown in figure 6, an energetic ridge is evident in the v-spectrogram, instead of distinct
inner and outer energetic sites observed for the u-spectrogram (Hutchins & Marusic
2007a). However, similar to the u-spectrogram, the near-wall small-scales are found to be
universal in the v-spectrogram (and also in the w-spectrogram and Reynolds shear stress
cospectrogram) when scaled in viscous units.

The observed scaling for certain regions in the v-spectrogram can provide insights into
the behaviour of the v2 statistic by considering it to be a summation of contributions
from small-, intermediate- and large-scales. Hence, a modelled v2 is constructed from
the small-, intermediate and large-scales, which are prescribed to follow the viscous,
distance-from-the-wall and outer scaling, respectively. The modelled v2 demonstrate that
its logarithmic behaviour is not necessarily solely due to attached eddy contributions.
Hence, at finite Re, the additional non-attached-eddy contributions may mask the true
attached eddy behaviour. As an example, the differences between the v2 behaviour in the
internal (channel and pipe) and external flows (boundary layer) are found to be a result of
differing contributions from the δ-scaled structures. Consequently, the contributions from
the attached eddies for the internal and external flow are found to be more similar than
their respective v2 behaviours would suggest.

Funding. The authors gratefully acknowledge support from the Australian Research Council.

Data repository. The moments and (co)spectra of u, v and w from the current study are available online at
https://fluids.eng.unimelb.edu.au/#data.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
R. Baidya https://orcid.org/0000-0002-6148-602X;
I. Marusic https://orcid.org/0000-0003-2700-8435.

913 A35-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
29

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://fluids.eng.unimelb.edu.au/#data
https://orcid.org/0000-0002-6148-602X
https://orcid.org/0000-0002-6148-602X
https://orcid.org/0000-0003-2700-8435
https://orcid.org/0000-0003-2700-8435
https://doi.org/10.1017/jfm.2020.1129


Spanwise velocity statistics in high-Re boundary layers

k+
xφ

+
uu

0 0.5 1.0 1.5

k+
xφ

+
ww

0 0.1 0.2 0.3 0.4

−k+
xφ

+
uw

0 0.05 0.10 0.15 0.20 0.25

z+

λ+
x

SS

LS

IS

FP

101 102 103 104

z+
101 102 103 104

z+
101 102 103 104

102

104

106

SS

LS

IS

SS

LS

IS

z/δ

λ
x/
δ

10−3 10–2 10–1 100

z/δ
10−3 10–2 10–1 100

z/δ
10–2 10–1 100

10–2

100

(a) (b) (c)

Figure 12. Premultiplied turbulent stress spectrogram as functions of wall height, z, and wavelength, λx, at
Reτ ≈ 10 000. (a) u-spectrogram, (b) w-spectrogram and (c) Reynolds shear stress cospectrogram. The black
dashed lines correspond to the location of the energetic ridge shown in figure 6(c), while the solid lines indicate
contour levels (a) 0.5 and 1, (b) 0.1, 0.2 and 0.3, (c) 0.1 and 0.2, respectively. (a) Here ‘FP’ denotes the location
of the energetic u footprint from the very large-scale structure, while ‘+’ and ‘×’ indicate the location of
the inner and outer energetic sites, respectively. The wavelengths corresponding to small-, intermediate- and
large-scales are denoted by SS, IS and LS, respectively.

Symbols x U∞ Reτ ν/Uτ Uτ δ �t+ TU∞/δ l+x l+z �s+
y

(m) (ms−1) (μm) (ms−1) (m)

2 15.2 2600 28 0.569 0.071 0.513 18 000 14 14 7
7 15.2 5100 30 0.526 0.153 0.436 19 000 13 13 7
18 14.8 10 600 32 0.484 0.338 0.377 18 000 12 12 6
18 29.6 18 300 17 0.919 0.308 0.684 20 000 24 24 12

Table 2. Experimental parameters for the cross-wire measurements, configured to measure the streamwise
and wall-normal velocities.

Appendix A. Streamwise and wall-normal velocity components

In order to facilitate comparison of v against other components, the equivalent statistics
for u, w and the Reynolds shear stress are shown here. The w fluctuations are also obtained
using a cross-wire probe with a similar dimension as to that used for measuring v, however,
the wires are now arranged to be parallel to the x–z plane and the sensors are now separated
by �sy in the y direction. The experimental parameters are summarised in table 2, where
the Reτ ≈ 2500–10 000 dataset are measurements detailed in Baidya et al. (2017). It should
be noted that, the u statistics shown in figures 9, 12 and 13 are obtained by combining
both cross-wire configurations at nominally matched Reτ , while the w and Reynold shear
stress statistics are solely from the datasets shown in table 2. Moreover, to account for the
dominant u energy residing in the larger-scales compared with v, the cutoff wavelengths
λc1 and λc2 used to distinguish the small-, intermediate- and large-scale u2 contributions
are set at

λ+c1=2500, λc2 = δ. (A1a,b)
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Figure 13. Scale-decomposed u2, w2 and uw, shown from top to bottom. (a–c) Small-, intermediate- and
large-scale contributions as functions of z+ and (d–f ) large-scale contributions shown against z/δ. The symbols
are as in figure 8.

In contrast, λc1 and λc2 remain unchanged from (4.2) for the w2 and Reynolds shear stress
statistics. The cutoff wavelengths are indicated by the horizontal dotted lines in figure 12.
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