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Abstract

In order to evaluate the seasonal responses of periphytic protozoan fauna to the antibiotic
nitrofurazone at sensitive concentration, a 1-year baseline survey was carried out in
Chinese coastal waters of the Yellow Sea. To assess the nitrofurazone (NFZ)-induced toxico-
kinetics in different season, the test protozoan samples were collected using microscope slides
and exposed to the sensitive NFZ concentration of 8 mgml−1. Differences in species compos-
ition and typical species were observed in the test organism fauna in the control and treatment
among four seasons. However, the community patterns were significantly shifted under the
sensitive concentration, with a part of stressed test samples significantly departed from a
respected taxonomic pattern. Therefore, it is suggested that periphytic protozoan fauna
may be significantly changed at the same sensitive concentration in both the species compos-
ition and community pattern, although there were significant differences in tolerant species
among four seasons in marine environments.

Introduction

As widely used pharmaceuticals, antibiotics can enter the environment through a variety of
pathways, including hospital wastewater treatment plant, uncontrolled disposal of un-used
drugs, runoff from agricultural fields and wastewater discharges from livestock facilities
(Isidori et al., 2005; Bhagat et al., 2020; Anh et al., 2021; Wang et al., 2024). The extensive
use of antibiotics has led to the detection of antibiotic residues in the marine environment
worldwide, and thus causing serious damage to the meat-derived food, soil and water, the
ecological environment, and public health (Puckowski et al., 2016; Zhou et al., 2021; Si
et al., 2022). Broad-spectrum veterinary antibiotics commonly used in aquaculture and ani-
mal husbandry are primarily used to treat protozoan and bacterial infections.
Broad-spectrum veterinary antibiotics mainly include furazolidone (FZD), nitrofurazone
(NFZ), nitrofurantoin (NFT) and furaltadone (FTD), all of which are nitrofurans (NFs).
Due to their carcinogenic and mutagenic properties, these compounds are potentially haz-
ardous to human health (Du et al., 2014; Ghosh et al., 2021; Kazmi et al., 2022b). As a result,
NF compounds have been classified as prohibited additives for food and animal production
additives by the European Union (in 1995) and the USA (in 2002). As mariculture is flour-
ishing globally, the use of antibiotics in the culturing process is lack of restrictions, and has
caused serious ecological problems. Currently, research focusing on the presence of anti-
biotic residues in the mariculture environment is limited (Han et al., 2020). NFZ is the
most common and widely used one among these NF compounds (Chang et al., 2016;
Wang et al., 2020). Hence, there is an increasing need to assess the ecotoxicological impact
of antibiotics, especially NFZ, on environmental quality (Vutukuru et al., 2007; Puckowski
et al., 2016).

Ecotoxicology is an integrated approach used to assess the toxic effects of toxicants and
chemical pollutants on ecosystems and their inhabiting biota. Bioassays are considered to
be the most reliable, feasible and cost-effective method of toxicity assessment in ecotoxicology.
The most critical aspect of such toxicological study is the selection of suitable model organ-
isms. The model organisms for bioassays should be abundant, ubiquitous, easy to manipulate
and ecologically relevant (Dahms et al., 2011). Periphytic protozoan communities generally
meet these criteria and have therefore been chosen as model organisms in several ecotoxico-
logical studies (Girling et al., 2000; Niemeyer et al., 2010; Kazmi et al., 2022a).

Protozoans are the primary components of microbial fauna, and play an important role in
driving the functional process of microbial food webs linking both planktonic and benthic eco-
systems (Trielli et al., 2007; Tan et al., 2010; Xu et al., 2014; Kazmi et al., 2022b). In addition,
they employ the indispensable contributor in maintaining/improving water quality of aquatic
ecosystem by removing organic pollutants and various other water contaminants (Xu et al.,
2014; Kazmi et al., 2020). Due to their simple life cycle, they are more sensitive to environmen-
tal changes than post-zoobenthos, so changes in their community pattern of protozoan fauna
may significantly drive the functional process of marine ecosystems (Kathol et al., 2009; Xu
et al., 2011a, 2011b; Xu et al., 2014; Sikder et al., 2020b).
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It has been recognized that there is a significant seasonal vari-
ation in the community structure of periphytic protozoan fauna
in marine ecosystems (Wey et al., 2009; Jiang et al., 2013; Guo
et al., 2020). Recent studies have demonstrated that the relative
species number, taxonomic distinctness indices and body-size dis-
tinctness indices of periphytic protozoan fauna are sensitive to
NFZ at the concentration of 8 mg ml−1 in autumn season
(Kazmi et al., 2022a, 2022b). However, with the seasonal
responses of the periphytic protozoan fauna to the toxin at this
concentration, little information was reported.

In this study, a 1-year baseline survey on seasonal responses of
periphytic protozoan fauna to NFZ at the sensitive concentration
was conducted. The objectives are (1) to reveal the variation in
community pattern of periphytic protozoan fauna under the sen-
sitive NFZ concentration; (2) to clarify whether there was seasonal
variability in ecotoxicology of NFZ; and (3) to confirm the
departure of the test protozoan communities from the expected
community pattern in marine ecosystems.

Materials and methods

Sampling site and collection of test samples

Protozoan samples were collected from the coastal waters of the
Yellow Sea near the mouth of Jiaozhou Bay, Qingdao, northern
China in spring, summer, autumn and winter (Figure 1).
The sampling site is a clean/slightly polluted area with an average
water depth of ∼9 m, a tidal interval of 3 m and transparency of
2–3 m (Hassan Kazmi et al., 2021).

The protozoan assemblages as test organisms were collected
through glass slides measuring 2.5 × 7.5 cm according to the

method of Xu et al. (2011a, 2011b, 2012). Briefly, a (polyvinyl
chloride) frame can hold 10 glass slides. Four frames were
immersed at a depth of 2 m from the water surface and were
left for 14 days to allow the protozoans (mainly ciliates) to colon-
ize the slides. The collected samples were then transported to the
laboratory via in situ water and stored in a cooler (Xu et al., 2012).
After the samples were domesticated for 3 days by setting the
laboratory conditions in an illumination cabinet (temperature
25°C, illumination 3960 1 × ), 30 slides with protozoan colony
colonization were randomly selected for the next experiment.

Experimental design

Nitrofurazone (5-nitro-2-furfural semicarbazone) in the form of
yellow crystalline powder from Sigma-Aldrich Co., Ltd.
(Shanghai, China, CAS No. 59870) was model antibiotic. A
stock solution of 300 mg l−1 nitrofurazone was prepared according
to Hong et al. (2015). Briefly, 300 mg of nitrofurazone powder
was dissolved in artificial seawater (AMW; in 1000 ml distilled
water, pH 8.2, salinity 28%, 28 g of NaCl, 0.8 g of KCl, 5 g of
MgCl2. 6H2O and 1.2 g of CaCl2) and then further diluted in arti-
ficial seawater to prepare experimental concentrations (Kazmi
et al., 2022a).

All bioassay experiments were carried out in Petri dishes for 10
days according to the method of Li et al. (2014). For each season
prepare a control group (C): 0 and a treatment group (T): 8 mg
ml−1, respectively. Each glass slide with protozoan communities
was placed in a separate Petri dish. The Petri dishes contained 1
vs 1 solution of habitat water and NFZ in a final volume of 20
ml. Three independent replicates of each treatment were used as
parallel tests. The species composition and individual abundances
of the protozoans were observed throughout the experiment.

Identification and enumeration

The test protozoan communities were observed through
10–400 ×magnification with a bright-field microscope. The enu-
meration and identification of protozoa were based on Xu et al.
(2014) and Song et al. (2009), respectively.

Data analysis

The taxonomic breadth was derived from the average taxonomic
distinctness (Δ+) and variation in taxonomic distinctness (Λ+),
calculated as follows (Kazmi et al., 2022a):

D+=[SSi,jv
ijxixj /] [S(S− 1)/2]

L+=[SSi,j(vij − D+ ) /] [S(S− 1)/2]

where, ωij = distinctness weight given to the path length linking
species (i and j); xi (i = 1, 2, …, S) = abundance of the ist species;
N = total number of individuals in the sample and S is the number
of species (Warwick and Clarke, 1995).

PRIMER v7 with PERMANOVA+ calculated the toxic-
dynamics in protozoan communities (Clarke and Gorley, 2015).
The variations in species composition and toxic dynamics of
periphytic protozoa in the control and treatment groups were
presented by shade plotting with cluster analysis (Anderson
et al., 2008). In addition, distance-based redundancy analyses
(dbRDA) revealed the community patterns of periphytic protozoa
across seasons for treatment and control groups. Moreover,
TAXTDTEST ellipse plotting was used to present the significance
of deviation from an expectation at different groups (Clarke and
Gorley, 2015).

Figure 1. Sampling station, for the collection of test protozoan communities, located
in the coastal waters of the Yellow Sea, northern China.
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Figure 2. Shade plotting with clustering analysis on the index of association showed seasonal variability in species distribution of periphytic protozoa and relative
abundance in the controls (C) and treatments (T, NFZ concentration of 8 mgml−1) (1, spring; 2, summer; 3, autumn; 4, winter; I–IV, Groups I–IV).
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Table 1. Typical species to the test organism communities in control and treatment during four seasons

Species

Spring Summer Autumn Winter

C T Ctb% C T Ctb% C T Ctb% C T Ctb%

Litonotus paracygnus ++++ + 20.8 + − 3.5 − − − + + 1.9

Acineta foetida +++ − 18.2 − − − − − − − − −

Euplotes raikovi +++ + 14.4 − − − ++++ + 13.8 − − −

Diophrys appendiculata ++ − 13.1 ++ − 9.7 − − − + + 1.3

Uronychia transfuga + − 4.7 − − − − − − − − −

Diophrys hystrix + + 4.5 − − − − − − − − −

Pseudovorticella anomala + − 3.8 − − − − − − − − −

Pseudovorticella parakenti + − 3.3 − − − − − − − − −

Aspidisca aculeata + + 3.0 ++++ + 14.7 ++ − 5.3 + + 2.6

Vorticella utriculus + + 2.7 − − − − − − − − −

Zoothamnium vermicola + + 2.4 − − − − − − − − −

Thuricola parafolliculata + − 1.8 − − − − − − − − −

Loxophyllum simplex + − 1.8 − − − − + 2.9 − − −

Holosticha bradburyae + − 1.3 − − − − − − − − −

Chlamydonella derouxi − − − ++++ − 16.0 − − − − − −

Tachysoma dragescoi − − − +++ + 13.2 − − − − − −

Acineta tuberosa − − − +++ + 10.2 +++ − 12.1 − − −

Acineta compressa − − − + − 4.7 − − − − + 1.2

Coeloperix sleighi − − − + − 3.8 − − − + − 1.9

Holosticha heterofoissneri − − − + − 3.4 − − − − − −

Pseudovorticella parafornicata − − − − + 3.0 − − − − − −

Stephanopogon paramesnili − − − − + 2.8 − − − − − −

Dysteria pusilla − − − + − 2.7 − − − − − −

Aspidisca steini − − − + + 1.9 + − 4.4 ++++ + 23.0

Orthodonella apohamatus − − − + − 1.7 − − − − − −

Stephanopogon minuta − − − + − 1.6 − − − − − −

Tachysoma ovata − − − + + 1.6 + + 2.1 − − −

Protogastrostyla pulchra − − − + + 1.5 +++ + 10.7 − − −

Euplotes minuta − − − − − − +++ + 10.9 − − −

Ephelota crustaceorum − − − − − − ++ − 7.4 − − −

Aspidisca magna − − − − − − + − 4.5 + − 1.6

Discocephalus ehrenbergi − − − − − − + − 4.2 − − −

Metaurostylopsis salina − − − − − − + − 3.5 − − −

Pseudovorticella marina − − − − − − + − 3.5 − − −

Zoothamnium plumula − − − − − − − + 3.1 − − −

Euplotes vannus − − − − − − + + 1.9 + + 5.2

Strombidium paracalkinsi − − − − − − + − 1.8 − − −

Philasterides armatalis − − − − − − + − 1.7 − − −

Thigmokeronopsis rubra − − − − − − + + 1.6 − − −

Litonotus blattereri − − − − − − − − − +++++ + 44.0

Hartmannula derouxi − − − − − − − − − + − 5.5

Litonotus yinae − − − − − − − − − + + 3.2

Pseudokeronopsis rubra − − − − − − − − − + + 1.5

Uronyuchia binucleata − − − − − − − − − + + 1.3

Hartmannula angustipilosa − − − − − − − − − + + 1.1

Average abundance: ‘−’ = 0; ‘+’ = 0–1, ‘++’ = 1–5, ‘+++’ = 5–10, ‘++++’ = 15–20, ‘+++++’>20; C, control; T, treatment; Ctb, Contribution.
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The t-test was used to signify the differences in abundance
between the treatment and the control using the program SPSS
(v22) (Xu et al., 2014).

Result

Species composition and changes

Figure 2 shows the species composition and changes in terms of
average abundances, and ecological types of the test periphytic
protozoan communities. A total of 60 protozoan species were
identified. A total of 14, 15, 16 and 13 species were identified
in the controls (C), while 6, 8, 8 and 11 species were observed
in the treatments (T) from spring to winter, respectively
(Figure 2 and Table 1).

These species were roughly divided into four groups using
clustering analysis with the SIMPROF test (Figure 2). The
shade plotting with clustering analysis showed a clear seasonal
variation in species distribution, and four groups (I–IV) domi-
nated spring, summer, autumn and winter, respectively
(Figure 2a, b). From spring to winter, the relative abundance
and relative number of species of dominant contributors changed
in the following order: Group I→II→III→IV, and sharply
dropped from the controls and treatments (Figures 2 and 3).
Species number and individual abundance followed the same
variation (Figure 4). For example, Group I, Acineta foetida, was
very sensitive, which was mainly present in the control group.
Diophrys hystrix, which was ubiquitous in the treatment group,
was tolerant to 8 mg ml−1 nitrofurazone (Figure 2 and Table 1).

It should be noted that there were significant differences in
both species number and individual abundance between the treat-
ment and the control (P < 0.05).

Table 1 summarizes the abundance, frequency of occurrence
and contribution of typical protozoan species of the test organ-
isms in different seasons. The dominant contributors in each sea-
son showed different contribution rates in the treatment and
control groups. For example, in spring, Litonotus paracygnus
was the largest contributor with a contribution of 20.8%.
Chlamydonella derouxi dominated the summer with its contribu-
tion of 16%. In addition, Euplotes raikovi with 13.8% and
Litonotus blattereri with 44% contributed in autumn and winter,
respectively.

Variation in protozoan community pattern

Distance-based redundancy analysis (dbRDA) ordinations
showed that there were different colonization patterns of the
protozoan communities among the four seasons (Figure 5).
Taxonomic patterns at Group C were separated from Group T
by dbRDA1.

It can be clearly observed that the vectors of six species are
pointed toward the data points of Group C, whereas only D.
hystrix and Aspidisca aculeata pointed toward the data clouds
of Group T (Figure 5a); the vectors of nine species point to the
data of Group C and only three species (Stephanopogon parames-
nili, Aspidisca steini, Pseudovorticella parafornicata) point to the
Group T data (Figure 5b). In Figure 5c, there are eight and
three species vectors in the Groups T and C, respectively; in
Figure 5d, there are seven vectors of species pointing to the
Group C data and four species pointing to the Group T.

Variations in taxonomic distinctness

Variations in taxonomic distinctness and average taxonomic dis-
tinctness (Λ+ and Δ+) are summarized in Figure 6. Ellipse tests on
the 95% probability regions have a range with sublist sizes (10, 20

Figure 3. Seasonal variability in relative species numbers (a) and relative abundance
(b) of Yellow Sea coastal periphytic protozoa in the controls and treatments (I–IV,
Groups I–IV).

Figure 4. Seasonal variability in species numbers (a) and individual abundance (b) of
Yellow Sea coastal periphytic protozoa in Groups C and T (I–IV, Groups I–IV).
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and 30 species) of the protozoan samples for all seasonal controls
and treatments (Figure 6). It was clear that there were differences
in taxonomic pattern of the protozoan communities between the
controls and treatments, for example, all samples were fallen in
10, 20 and 30 species contour in the controls (Figure 6a), whereas
a part of these showed a significant departure from the expected
community pattern (Figure 6b).

Discussion

Antibiotics are deposited in surface water through multiple
sources, thus posing a serious ecological threat (Puckowski
et al., 2016; Bawa-Allah and Ehimiyein, 2022). Aquatic ecosys-
tems primarily serve as the main repository for various kinds of
antibiotics, posing ecological risks to aquatic organisms (fresh-
water algae, microphytes, macrophytes, zooplankton and fishes)
(Kovalakova et al., 2020; Anh et al., 2021; Zhou et al., 2024).
Protozoa, as important hubs in marine ecosystems, necessitate
the study of their response to antibiotic toxicity. Recent investiga-
tions have demonstrated that the periphytic protozoan

communities are sensitive particularly to NFZ at 8 mgml−1 in
the concentration (Kazmi et al., 2022a, 2022b).

Due to environmental heterogeneity, differences in food avail-
ability between seasons significantly influenced the protozoan col-
onization dynamics, with significant seasonal changes in
community structure and functioning (Sikder et al., 2020a,
2020b). In our study, it was found that 8 mgml−1 caused a decrease
in the relative species number and relative abundance in each sea-
son and therefore NFZ was toxic in each season. However, each
season has different dominant species, and SIMPROF analysis
allowed to divide the 60 protozoa observed into four groups. The
contribution of these four groups was different in each season,
Group I, II, III and IV were occupying the four seasons of spring,
summer, autumn and winter, respectively, which indicated that
there were seasonal differences in the toxic effects of NFZ. It is
probably because NFZ affects the food supply of ciliates, and the
difference in food supply can have a significant effect on ciliate col-
onization dynamics, which needs further confirmation.

The dbRDA analysis showed that nitrofurazone toxicity led to
changes in the community structure of periphytic protozoa in

Figure 5. Distance-based redundancy analysis (dbRDA), showing the seasonal variation of protozoan community patterns in Groups C and T in the coastal waters
of the Yellow Sea (a, spring; b, summer; c, autumn; d, winter).
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different seasons, which may be due to differences in tolerance
between species as well as seasonal variation. This reflects that
8 mgml−1 concentration of NFZ respond to the protozoa tested
with some variation depending on the season.

Taxonomic distinctness indices for analysing variability in
taxonomic breadth of a community have the advantage of being
low sensitivity to sampling effort and sample size, and being
able to test the significance of departure from expectation within
a statistical framework (Clarke and Warwick, 1998; Leonard et al.,
2006; Somerfield et al., 2008; Prato et al., 2009; Sikder et al.,
2020a). Thus, in the present study these taxonomic indices (Δ+

and Λ+) may have played an auxiliary role exploring the adapta-
tion of protozoa to the same concentration of NFZ across seasons.
Ellipse plots of these metrics indicate that protozoan communities
deviated significantly from the expected taxonomic width when
NFZ concentrations were 8 mg ml−1, whereas in controls no sam-
ples deviated from the expected taxonomic pattern.

Thus, our study confirms that periphytic protozoa can be used
as biomarkers for evaluating NFZ ecotoxicity, which is consistent
with previous reports. In total, 8 mg ml−1 of NFZ does not lose its
effect on protozoa toxicity due to seasonal variability. Because the
major contributors differed in each season, when the season chan-
ged, new populations were substituted to cope with the NFZ tox-
icity effects. This finding could explain the ability of protozoa to
transport material and energy from plankton to benthos when
exposed to environmental pollutants, playing an important role
in the functioning of microbial food webs and maintaining eco-
system stability.

In summary, differences in species composition and typical
species were observed in the test organism fauna in the control
and treatment among four seasons. However, the community pat-
terns were significantly shifted under the sensitive concentration,
with a part of test samples showed a significant departure from
the respected taxonomic pattern. Therefore, it is suggested that
periphytic protozoan fauna may be significantly changed at the
sensitive concentration of 8 mg ml−1 in four seasons, although
there were significant differences in both species composition
and community pattern in marine environments.
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