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Abstract This is the first of three articles designed to stabilize the global trace formula. The results
apply to any group for which the fundamental lemma (and its variants for weighted orbital integrals)
is valid. The main purpose of this paper is to establish a series of expansions that are parallel to the
expansions in the trace formula. We shall also formulate the local and global theorems required to
interpret the terms in these expansions. The proofs of the theorems will be given in the subsequent two
articles. The expansions of this paper will then yield both a stable trace formula, and a decomposition
of the ordinary trace formula into a linear combination of stable trace formulae.
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Introduction

This paper is the first of three articles designed to stabilize the trace formula. The goal is
to stabilize the global trace formula for a general connected group, subject to a condition
on the fundamental lemma that has been established in some special cases. The role
of this paper will be to investigate the underlying structure of the process. We shall
establish a series of expansions that are parallel to the expansions on each side of the
trace formula. In the subsequent articles, we shall show that these expansions provide
both a stable trace formula and a decomposition of the ordinary trace formula into a
linear combination of stable trace formulae.

We ought to stand back for a moment in order to recall some of the reasons for studying
the trace formula and its stabilization. In fact, it might be a good idea to begin with
a brief historical introduction to the problem of stabilization. We will then be in good
position to outline the contents of the paper. More detailed descriptions of the results
will be given later, in the remarks that introduce individual sections.

Suppose that G is a connected reductive group over a number field F . One can form
the group of points in G with values in the adele ring A of F . This gives a locally compact
group G(A), in which G(F ) embeds diagonally as a discrete subgroup. Automorphic rep-
resentation theory is the study of the regular representation of G(A) on the Hilbert space
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176 J. Arthur

L2(G(F )\G(A)). Automorphic representations of G(A) are the irreducible constituents
of this representation, and are thought to carry fundamental arithmetic information.
One can investigate their properties by applying methods of harmonic analysis to the
decomposition of L2(G(F )\G(A)).

The trace formula is an analogue for the quotient G(F )\G(A) of the familiar Poisson
summation formula. In general, the decomposition of L2(G(F )\G(A)) into irreducible
representations has both continuous and discrete spectra. The general trace formula is
therefore quite complicated. It is the identity given by two different expansions of a certain
linear form I(f), where f is an appropriate test function. The geometric expansion is a
linear combination of distributions

I(f) =
∑
M

|WM
0 ||WG

0 |−1
∑

γ

aM (γ)IM (γ, f), (0.1)

parametrized by conjugacy classes γ in Levi subgroups M of G. The spectral expansion
is a linear combination of distributions

I(f) =
∑
M

|WM
0 ||WG

0 |−1
∫

aM (π)IM (π, f) dπ, (0.2)

parametrized by representations π of Levi subgroups M . One can try to gain information
about the terms in (0.2) by studying the terms in (0.1).

Some of the terms in the two expansions are easy to describe. For example, suppose that
M = G, and that γ is a semisimple elliptic conjugacy class in G(F ). The corresponding
term on the geometric side is then equal to the product of the volume

aG(γ) = vol(Gγ(F )\Gγ(A)1),

with Harish-Chandra’s invariant orbital integral

fG(γ) = IG(γ, f) =
∫

Gγ(A)\G(A)
f(x−1γx) dx, f ∈ C∞

c (G(A)).

As is customary, we have written Gγ for the connected centralizer in G of a representative
of γ. Similarly, suppose that M = G again, and that π is an irreducible representation
of G(A) that does not occur in any of the continuous spectra. The corresponding term
on the spectral side is then equal to the product of the multiplicity

aG(π) = m(π)

of π in the discrete spectrum, with the character

fG(π) = IG(π, f) = tr(π(f)), f ∈ C∞
c (G(A)),

of π. If G is anisotropic over F , or equivalently if G(F )\G(A) is compact, these are the
only terms. For in this case, M = G is the only Levi subgroup. Moreover, the elements in
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G(F ) are all semisimple elliptic, and the entire spectrum is discrete. The identity between
(0.1) and (0.2) reduces to Selberg’s original trace formula

∑
γ

vol(Gγ(F )\Gγ(A))
∫

Gγ(A)\G(A)
f(x−1γx) dx =

∑
π

m(π) tr(π(f)). (0.3)

The analogy with the Poisson summation formula is clear. Unfortunately, it is not possible
to remain within the category of anisotropic groups, even if one were interested only in
these groups. However, the identity (0.3) is very useful for suggesting how one might go
about applying the general trace formula.

If G is allowed to vary, the arithmetic data wrapped up in the associated families of
automorphic representations are not independent. In fact, it is believed that there are
fundamental relationships among automorphic representations of different groups. These
are summarized by Langlands’s principle of functoriality, a far reaching conjecture that
includes a non-abelian generalization of class field theory. The trace formula seems to
be the most powerful tool for attacking those aspects of functoriality that are at all
accessible. The general strategy is to use the structure theory of algebraic groups to
transfer conjugacy classes γ between different groups. One would then hope to define
corresponding relationships among terms in the geometric expansions. Since the geomet-
ric expansion (0.1) equals the spectral expansion (0.2), for any given G, this ought to
imply relationships among the terms in the spectral expansions.

The strategy was carried out by Jacquet and Langlands [19, § 16] for the groups D∗ and
GL(2), where D is a quaternion algebra over F . Langlands then considered the problem
for general G. By studying how to transfer the geometric terms in (0.3), he was lead
to some remarkable new ideas. Langlands published his results in the monograph [28],
where he outlined a general program for transfer that has subsequently become known
as the theory of endoscopy. He also gave a solution of the problem, subject to some
conjectural local conditions, for the semisimple elliptic terms in the trace formula that
are strongly regular. These are the geometric terms in (0.3) for which the centralizer of
γ in G is a torus. Kottwitz [22] later extended Langlands’s results to elliptic singular
terms. At the same time, Shelstad had been working on the local foundations of the
theory of endoscopy. The culmination of her work appeared in the paper [35], where she
solved the local problems for archimedean fields.

The theory of endoscopy is based on the notion of a stable distribution. Two strongly
regular elements in a local factor G(Fv) of G(A) are said to be stably conjugate if they
are conjugate over an algebraic closure G(F̄v). Stable conjugacy reduces to conjugacy in
the groups D∗ and GL(2) above, but is usually a weaker equivalence relation. In general,
if δv is a stable conjugacy class of strongly regular elements in G(Fv), one defines the
stable orbital integral

fG
v (δv) =

∑
γv

fv,G(γv), fv ∈ C∞
c (G(Fv)),

where γv is summed over the finite set of G(Fv)-conjugacy classes in the stable class δv,
and fv,G(γv) is the orbital integral of fv at γv. A distribution on G(Fv) is said to be
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stable if it lies in the closed linear span of the stable orbital integrals fG
v (δv). It is easy to

explain the rationale for such a definition. The natural way to transfer elements between
a pair of groups G and G′, related for example by inner twisting, is through invariant
theory. But invariant theory works in this context only over an algebraically closed field.
One can therefore transfer only stable conjugacy classes. We should then expect only to
be able to transfer stable orbital integrals and stable distributions.

On the other hand, the geometric expansion (0.1) is not generally a stable distribution
on G(A). That is, I(f) is not generally a tensor product of stable distributions on the
local components G(Fv). For example, suppose that G is anisotropic, and that γ is a
strongly regular elliptic element in G(F ). If γ′ =

∏
v γ′

v is an element in G(A) such that
each component γ′

v is stably conjugate to γ in G(Fv), then γ′ need not be G(A)-conjugate
to an element in G(F ). In other words, the orbital integral at the stable conjugate γ′ of
γ need not occur in (0.3), even though the orbital integral at γ does. It follows easily
that the left-hand side I(f) of (0.3) is not generally a stable distribution.

Given this background, we can pose the general problem informally as a question. Can
one write I(f) as the sum of a stable distribution together with an explicit error term?
At this point of the discussion, we assume for simplicity that the derived group of G is
simply connected. Langlands’s study of the regular elliptic terms lead him to attach a
family of quasisplit groups {G′} to G. These objects are known as endoscopic groups for
G, or more properly endoscopic data for G, since they come with extra structure. For
any G′, Langlands also defined a conjectural correspondence

f =
∏
v

fv → f ′ =
∏
v

f ′
v,

from functions f ∈ C∞
c (G(A)) to functions f ′ ∈ C∞

c (G′(A)), where f ′ is determined only
up to the values taken by its stable orbital integrals. For example, the quasisplit inner
form G∗ of G is the largest of its endoscopic groups. In this case, the transfer f∗ of f is
defined by the stable orbital integrals of the local components fv of f . In particular, if S∗

is a stable distribution on G∗(A), and Ŝ∗ is the corresponding linear form on the space
of stable orbital integrals on G∗(A), the distribution f → Ŝ∗(f∗) on G(A) is stable.

The general problem of stabilization can now be stated more precisely as follows. Given
G, find a decomposition

I(f) =
∑
G′

ι(G, G′)Ŝ′(f ′), (0.4)

for stable distributions S′ = SG′
on the endoscopic groups G′ for G. The coefficient

ι(G, G′) comes with a simple formula [21, Theorem 8.3.1], and equals 1 if G′ = G∗. The
decomposition one seeks can therefore be written as

I(f) = Ŝ∗(f∗) +
∑

G′ �=G∗

ι(G, G′)Ŝ′(f ′).

The distribution f → Ŝ∗(f∗) is to be regarded as the stable part of I(f), while the
summands with G′ �= G∗ can be considered the error terms. The essential point is that
S′ is assumed to depend only on the group G′, rather than the group G from which
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G′ arises as an endoscopic datum. Given the conjectural local correspondence f → f ′,
the construction of the decomposition (0.4) is then a well-defined problem. One would
assume inductively the existence of the distribution S′ for each elliptic endoscopic datum
G′ �= G. If G is quasisplit, in which case we take G∗ = G, we simply define

SG(f) = I(f) −
∑

G′ �=G∗

ι(G, G′)Ŝ′(f ′).

The problem in this case is to show that the right-hand side is stable. If G is not quasisplit,
all of the terms on the right-hand side of (0.4) are given by the inductive definition. The
decomposition (0.4) then takes the role of an identity to be proved.

There seems to be no direct way to establish (0.4). One has first to establish correspond-
ing decompositions for each of the terms in the geometric expansion (0.1). Langlands and
Kottwitz treated the terms with M = G and γ semisimple, as we have already mentioned,
and in the process laid down foundations in Galois cohomology. In §§ 6 and 7, we shall
describe the decompositions that would have to be established for the remaining terms.

The reason for trying to establish a decomposition (0.4) is to gain information about
the coefficients aG(π) in the spectral expansion. Such information would take the form
of identities that relate the spectral coefficients with corresponding coefficients for endo-
scopic groups. In fact, we should expect decompositions for each of the terms in (0.2) that
are completely parallel to the decompositions of the terms in (0.1). These will also be
described in §§ 6 and 7. We shall formulate the various problems as a series of theorems,
corresponding to each of the terms in the trace formula. The theorems that apply to the
distributions IM (γ, f) and IM (π, f) are essentially local in nature, and will be stated in
§ 6. The theorems that apply to the coefficients aM (γ) and aM (π) are global, and will
be stated in § 7. Taken together, the theorems represent a stabilization of all the terms
in the trace formula. They are our main results, and will not be proved until the last of
the three articles.

The test function f will actually be taken from a Hecke algebra on the subgroup

GV = G(FV ) =
∏
v∈V

G(Fv)

of G(A), where V is a finite set of valuations on F that contains the ramified places.
This represents a slight departure from earlier papers [2,8]. It is also best to build the
invariant linear form I(f) out of the canonical weighted characters of [11], rather than the
weighted characters in [8] that depend on normalizing factors for intertwining operators.
This simplifies the stabilization problem. In particular, it frees us from having to compare
normalizing factors attached to different endoscopic groups. In § 2, we shall derive the
geometric expansion (0.1) from the earlier expansion of [8, § 3]. In § 3, we shall derive
the spectral expansion (0.2) from the expansion of [8, § 4]. Sections 2 and 3 both depend
on some simple notions introduced in § 1. These include an abstract basis Γ (MV , ζV ),
which will be used in place of conjugacy classes on MV , and which is better suited to
endoscopic transfer.

In § 4, we shall recall the Langlands–Shelstad transfer factors ∆(δ′, γ). These objects
are defined for strongly regular conjugacy classes γ in GV and strongly G-regular stable
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conjugacy classes δ′ in an endoscopic group G′
V . They play the role of a transformation

matrix in the definition

f ′(δ′) =
∑

γ

∆(δ′, γ)fG(γ)

of the conjectural transfer mapping. Since V contains the ramified places, the function
∆(δ′, γ) is really a global object. It is independent of the choice of base point that is
part of the definition of local transfer factors. From § 4 on, it will be convenient to let G

stand for a slightly more general object, which we call a global K-group. The transfer
factors then satisfy adjoint relations (4.7) and (4.8) that allow us to invert the transfer
mappings f → f ′.

The Langlands–Shelstad transfer conjecture asserts that for any f , f ′(δ′) represents
the stable orbital integral of a suitable function on G′

V . Waldspurger [38] has reduced
this conjecture to the fundamental lemma. The fundamental lemma may in turn be
regarded as a variant of the transfer conjecture for unramified places. We shall impose
it, in a generalized form that applies to weighted orbital integrals, as a hypothesis on G

(Assumption 5.2). The hypothesis is known to hold in a limited number of cases, which
include the groups GSp(4), SO(5) and SO(4) of rank 2. In particular, it is valid for the
classical groups whose representations one would hope to classify in terms of those of
GL(4). After introducing the hypothesis in the first part of § 5, we shall then describe
some consequences of the transfer conjecture.

The last three sections of the paper represent the first stage of the proof of the theorems.
In § 8, we shall deal with the unramified terms in the trace formula. These terms do not
appear explicitly in the expansions (0.1) and (0.2). They are actually buried in the
definitions of the coefficients aM (γ) and aM (π) in §§ 2 and 3. They have nonetheless
to be stabilized. The unramified geometric terms are taken care of by the generalized
fundamental lemma. The fundamental lemma is thus required here in its own right, as
well as for the Langlands–Shelstad transfer conjecture. The stabilization of the unramified
spectral terms is not so deep. It is provided by the combinatorial identity of the paper [13].

The main results of the paper are contained in the final two sections. In § 10, we shall
establish the expansions mentioned at the beginning of the introduction. The argument
in this last section relies at a key point on the cancellation of certain terms obtained by
transfer from the original trace formula. We shall establish the required cancellation in
§ 9. The result, Theorem 9.1, is the global analogue of the local vanishing theorem [12,
Theorem 8.3]. It bears the same relation to the global trace formula as the latter does to
the local trace formula. Like its local counterpart, Theorem 9.1 depends ultimately on
some internal signs in the Langlands–Shelstad transfer factors. However, it is somewhat
more delicate, for reasons having to do with the rational global base point.

The expansions of § 10 are either geometric or spectral in nature. They can be divided
along another line as well. In common with the objects in §§ 6 and 7, the expansions of
§ 10 separate into two categories that we call ‘endoscopic’ and ‘stable’.

The endoscopic expansions are stated in parts (a) of Theorems 10.1 and 10.6. They
come from the right-hand side of (0.4), and represent a decomposition of the trace for-
mula into a linear combination of stable trace formulae. Parts (a) of the theorems in §§ 6

https://doi.org/10.1017/S1474748002000051 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748002000051


A stable trace formula. I 181

and 7 apply to the constituents of these expansions. They assert term by term identities
between the endoscopic expansions and the corresponding expansions (0.1) and (0.2). In
particular, the theorems imply that the ‘endoscopic’ trace formula, obtained by identi-
fying the two endoscopic expansions, reduces to the ordinary trace formula. Of course
this is after the fact. The endoscopic trace formula will have a central role to play in the
proof of the theorems.

The stable expansions are restricted to the case that G is quasisplit. They are stated
in parts (b) of Theorems 10.1 and 10.6, and represent two different expansions of the
leading term SG(f) = ŜG∗

(f∗) on the right-hand side of (0.4). Parts (b) of the theorems
in §§ 6 and 7 apply to the terms in these expansions. They imply a reduction of the stable
expansions to expressions

S(f) =
∑
M

|WM
0 ||WG

0 |−1
∑

δ

bM (δ)SM (δ, f) (0.5)

and

S(f) =
∑
M

|WM
0 ||WG

0 |−1
∫

bM (φ)SM (φ, f) dφ (0.6)

that are completely parallel to (0.1) and (0.2). The theorems also assert that the dis-
tributions SM (δ, f) and SM (φ, f) in these expansions are stable. The identity obtained
from the right-hand sides of (0.5) and (0.6) will thus be an explicit formula whose terms
are stable distributions. It is the stable trace formula we are looking for.

It would have been better to stabilize the more general twisted trace formula. This
ought to be within reach, given the results of Kottwitz and Shelstad [24] and Labesse
[25]. However, there are still a number of properties for twisted groups that remain
to be established. Rather than write a series of papers that depend on more than the
fundamental lemma, it seemed advisable at this time just to deal with the standard trace
formula.

1. Functions and distributions

Throughout the paper, F will be a field of characteristic 0, and we shall often write
Γ = Gal(F̄ /F ) for the Galois group of an algebraic closure F̄ over F . For the time being,
we take G to be a connected, reductive algebraic group of F . We write AG for the F -split
component of the centre of G, and we set

aG = Hom(X(G)F , R).

Then aG is a real vector space, of dimension equal to that of the torus AG. If c belongs
to G, we shall write Gc,+ for the centralizer of c in G. This leaves the symbol Gc free to
denote the connected component of 1 in Gc,+. A semisimple element c in G(F ) is said
to be elliptic (over F ) if AGc = AG.

By a Levi subgroup M of G, we mean an F -rational Levi component of a parabolic
subgroup of G over F . For any such M ,

W (M) = WG(M) = NormG(M)/M
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denotes the Weyl group of (G, AM ). We also follow the standard notation of writing
L(M) = LG(M) for the finite set of Levi subgroups of G that contain M , and L0(M)
for the complement of G in L(M). Similarly, F(M) = FG(M) stands for the finite set of
parabolic subgroups

P = MP NP , MP ∈ L(M),

over F that contain M , and

P(M) = PG(M) = {P ∈ P(M) : MP = M}

is the subset of parabolic subgroups in F(M) with Levi component M . We shall frequently
assume that we have fixed a minimal Levi subgroup M0 of G, in which case we write
W0 = WG

0 = WG(M0), L = LG = L(M0) and L0 = L0(M0).
For the rest of the paper, F will actually be a local or a global field. For purposes of

induction, it will be convenient to fix a pair (Z, ζ) as in [12]. Then Z is a central induced
torus in G over F , whose quotient G/Z we shall denote by Ḡ. The second component ζ

is a character on Z(F ) if F is local, and an automorphic character of Z(A) if F is global.
In the case of F global, we shall write Vram(G, ζ) for the finite set of valuations of F at
which G, Z or ζ ramify. This set contains V∞, the subset of archimedean valuations.

Suppose now that F is global. We shall be concerned with the trace formula on G(A).
However, the introduction of the pair (Z, ζ) forces us to work in a slightly different setting
from [8]. For any connected reductive subgroup H of G over F , there is a canonical map
from aH to aG. There is also the usual canonical map HG from G(A) to aG. If ∆ is a
subset of G(A), we shall write

∆H = {x ∈ ∆ : HG(x) ∈ image(aH → aG)}.

For example, G(A)G = G(A)M0 = G(A). In the opposite extreme of H = 1, we have

G(A)1 = {x ∈ G(A) : HG(x) = 0}.

This matches the notation of [8]. Observe that if H contains Z, G(A)H contains Z(A).
For most of the paper, we shall in fact take H = Z.

Suppose that V is a finite set of valuations of F . For simplicity, we generally write

GV = G(FV ) =
∏
v∈V

G(Fv)

for the group of points in G with values in the ring

FV =
∏
v∈V

Fv.

This notation can of course be applied to the quotient Ḡ = G/Z, and since Z is an induced
torus, the group ḠV = (G/Z)(FV ) equals GV /ZV [20, Lemma 1.1(3)]. We also write ζV

for the restriction of ζ to the subgroup ZV of Z(A). If H ⊂ G is as above, we write
C(GH

V , ζV ) for the space of ζ−1
V -equivariant Schwartz functions on GH

V . We shall usually
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confine ourselves to functions in the Hecke algebra H(GH
V , ζV ). This is a subalgebra of

C(GH
V , ζV ), which depends on a choice of maximal compact subgroup K∞ = KV∞ of GV∞ .

We shall also generally assume that V contains Vram(G, ζ), and H = Z. To emphasize
this special case, we write

H(G, V, ζ) = H(GZ
V , ζV ).

In §§ 2 and 3, we are going to reformulate the global trace formula as an identity of linear
forms on H(G, V, ζ). As such, it will depend on a choice of maximal compact subgroup
of G(AV ), where A

V denotes the subring of elements in A that are equal to zero at each
v ∈ V .

Let
Kram =

∏
v∈Vram(G,ζ)

Kv

be a fixed, open maximal compact subgroup of G(AVram(G,ζ)). We assume that each Kv

is hyperspecial, and in good position relative to some underlying minimal Levi subgroup
M0. If V is a finite set of valuations that contains Vram(G, ζ), KV =

∏
v �∈V Kv then is a

maximal compact subgroup of GV = G(AV ). We shall generally reserve the symbol f for
a function on GV . This leaves us in need of other notation for functions on G(A). Let
uV = uV,ζ be the function on GV , with support equal to KV ZV , such that

uV (kz) = ζ(z)−1, k ∈ KV , z ∈ ZV .

The map
f → ḟ = f × uV , f ∈ H(G, V, ζ),

then sends functions in H(G, V, ζ) to functions in the space H(G, ζ) = H(G(A)Z , ζ).
In particular, if Z = 1, and f belongs to the space H(G, V ) = H(GZ

V ), ḟ = f × uV is
a function in the space H(G) = H(G(A)1). We shall use similar notation if S is some
finite set of valuations that contains V . Then KV

S =
∏

v∈S−V Kv is a maximal compact
subgroup of GV

S =
∏

v∈S−V G(Fv), and uV
S = uV,ζ

S denotes the function on GV
S , with

support KV
S ZV

S , such that

uV
S (kz) = ζ(z)−1, k ∈ KV

S , z ∈ ZV
S .

In this case,
f → ḟS = f × uV

S , f ∈ H(G, V, ζ),

is a map from H(G, V, ζ) to H(G, S, ζ). In the study of the geometric side of the trace
formula, S will be a large finite set of valuations that depends on the support of a given
f .

We need to define a certain subspace of H(G, S, ζ). The polynomial

det(1 + t − Ad(x)) =
d∑

k=0

Dk(x)tk, x ∈ G,
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provides a morphism

D = (D0, . . . , Dd) : G → (Ga)d+1, d = dimG,

over F from G to affine (d+1)-space. If X = (X0, . . . , Xd) is a non-zero point in (Ga)d+1,
set Xmin = Xk, where k is the smallest integer with Xk �= 0. Then

D(x) = D(x)min, x ∈ G,

is the generalized Weyl discriminant of G. The minimal k in this case is of course bounded
below by the rank of G. If S is a finite set of valuations that contains V∞, set

o
S =

⊕
v �∈S

ov,

where ov is the ring of integers in Fv. We shall say that a subset CS of F d+1
S − {0} is

admissible if any point X in the intersection

F d+1 ∩ (CS × (oS)d+1),

has the property that |Xmin|v = 1 for each v �∈ S. Assume now that S contains Vram(G, ζ),
and that

Z(A) = Z(F )ZSZ(oS).

We shall say that a subset ∆S of GS is admissible if D(∆S) is admissible in F d+1
S . This

condition implies that

|D(γ̇)|v = 1, γ̇ ∈ G(F ) ∩ (∆S × KS), v �∈ S.

It is clear that if ∆S is admissible, so is the larger set obtained by taking GS-stable
conjugates of elements in ∆S . The same is true of the set ∆SZS . In particular, ∆S is
admissible if and only if its projection ∆̄S onto ḠS = GS/ZS is admissible. We shall write
Hadm(G, S, ζ) for the subspace of functions in H(G, S, ζ) whose support is an admissible
subset of GS .

There is an adelic variant of the notion of admissibility, which we can apply to subsets
∆ of G(A). We shall say that ∆ is S-admissible, for a finite set S as above, if there
is an admissible subset CS of F d+1

S such that D(∆) is contained in CS × (oS)d+1. We
claim that any compact subset ∆ of G(A) is S-admissible, for some S. To see this, we
first embed ∆ in a compact set of the form ∆V × KV , for a finite set of valuations
V ⊃ Vreg(G, ζ). We then choose S ⊃ V such that |Xmin|v equals 1, for each v �∈ S, and
for every X in the finite set

F d+1 ∩ (D(∆V ) × (oV )d+1).

We now recall some simple objects from the paper [14] that will eventually be required
for the study of the geometric terms in the trace formula. For a finite set V , and H ⊂ G

as above, let D(GH
V , ζV ) be the vector space of distributions D on GH

V that satisfy the
following three conditions.
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(i) D is invariant under conjugation by GH
V .

(ii) D is ζV -equivariant under translation by ZV .

(iii) D is supported on the preimage in GH
V of a finite union of conjugacy classes in

ḠH
V = GH

V /ZV .

Suppose that c belongs to the set Γss(ḠH
V ) of semisimple conjugacy classes in ḠH

V .
We write Dc(GH

V , ζV ) for the subspace of distributions D in D(GH
V , ζV ) for which the

conjugacy classes in (iii) all have semisimple parts equal to c. This space could be zero.
However, it is easy to characterize the subset Γss(ḠH

V , ζV ) of classes c in Γc(ḠH
V ) such

that Dc(GH
V , ζV ) is non-zero. It consists of images of semisimple conjugacy classes in GH

V

whose stabilizer in ZV lies in the kernel of ζV . The original space obviously has a direct
sum decomposition

D(GH
V , ζV ) =

⊕
c

Dc(GH
V , ζV )

over the classes c in Γss(ḠH
V , ζV ). We shall say that a distribution in D(GH

V , ζV ) is unipo-
tent if it lies in the subspace Dunip(GH

V , ζV ) = D1(GH
V , ζV ) of D(GH

V , ζV ). In general, one
can define the semisimple part of any D ∈ D(GH

V , ζV ) to be the union of those classes
c ∈ Γss(ḠH

V ) for which the image of D in Dc(GH
V , ζV ) is non-zero. If V contains V∞, we

define D to be admissible if its semisimple part is admissible, in the sense defined above.
The space D(GH

V , ζV ) contains the familiar invariant orbital integrals. Suppose that
γV =

∏
v∈V γv belongs to GH

V , and that f is a smooth function of compact support on
GH

V . The orbital integral of f at γV is defined as

fG(γV ) = |D(γV )|1/2
∫

GγV
∩GH

V \GH
V

f(x−1γV x) dx,

for GγV
=

∏
v Gγv and |D(γV )|V =

∏
v |D(γv)|v, and for some choice of invariant measure

on the quotient GγV
∩ GH

V \GH
V . We can also define the ζV -equivariant orbital integral at

γV . It is the distribution

f →
∫

ZV

ζV (z)fG(zγV ) dz (1.1)

in D(GH
V , ζV ). We shall write Dorb(GH

V , ζV ) for the subspace of D(GH
V , ζV ) spanned

by distributions of this form. If V consists entirely of p-adic valuations, the theory of
Shalika germs implies that Dorb(GH

V , ζV ) equals D(GH
V , ζV ). If V contains archimedean

places, however, one can also take radial derivatives of orbital integrals. In this case,
Dorb(GH

V , ζV ) is a proper subspace of D(GH
V , ζV ). The larger space is necessary for ques-

tions of endoscopic transfer.
To specify more general elements in D(GH

V , ζV ) explicitly, one would have to intro-
duce more elaborate notation. Rather than do so, we prefer simply to fix some basis of
D(GH

V , ζV ). This is the point of view of the paper [14]. It is not really much of a departure
from the usual practice. For example, even orbital integrals depend on implicit choices
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of invariant measures on conjugacy classes. For the duration of this paper, we shall write
Γ (GH

V , ζV ) for a fixed basis of the space D(GH
V , ζV ).

We assume implicitly that the elements in Γ (GH
V , ζV ) have been chosen to satisfy

various natural compatibility conditions. (See [14].) For example, Γ (GH
V , ζV ) is supposed

to be a subset of a basis Γ (GV , ζV ) of D(GV , ζV ). Moreover, any element γ in Γ (GV , ζV )
is assumed to have a decomposition

γ =
∏
v∈V

γv, γv ∈ Γ (Gv, ζv),

relative to fixed bases Γ (Gv, ζv) of the spaces D(Gv, ζv). It is also required that each
subset

Γc(GH
V , ζV ) = Γ (GH

V , ζV ) ∩ Dc(GH
V , ζV ), c ∈ Γss(ḠH

V , ζV ),

be a basis of Dc(GH
V , ζV ). In other words, the semisimple part of any element in Γ (GH

V , ζV )
is a single class c. In addition, the elements in the set

Γorb(GH
V , ζV ) = Γ (GH

V , ζV ) ∩ Dorb(GH
V , ζV )

are required to be orbital integrals, and to be a basis of Dorb(GH
V , ζV ). It follows from

this that there is a bijection between Γorb(GH
V , ζV ) and the set Γorb(ḠH

V , ζV ) of conjugacy
classes in ḠH

V whose semisimple part lies in Γss(ḠV , ζV ). We can therefore define a chain
of subsets

Γorb(GH
V , ζV ) ⊃ Γss(GH

V , ζV ) ⊃ Γreg(GH
V , ζV ) ⊃ Γreg,ell(GH

V , ζV ) (1.2)

of Γorb(GH
V , ζV ), corresponding to subsets of classes in Γorb(ḠH

V , ζV ) that are, respectively,
semisimple, strongly regular, and strongly regular elliptic. In particular, the semisimple
part c of a general element γ in Γ (GH

V , ζV ) can be identified with a distribution in the
subset Γss(GH

V , ζV ) of Γ (GH
V , ζV ). We assume, in fact, that γ has been constructed in the

natural way from c, and from an element α in a fixed basis Γunip(GH
c,V , ζV ) of the space

Dunip(GH
c,V , ζV ) of unipotent distributions for GH

c,V . A general element γ ∈ Γ (GH
V , ζV )

therefore has a Jordan decomposition, which we write formally as

γ = cα, c ∈ Γss(ḠH
V , ζV ), α ∈ Γunip(GH

c,V , ζV ). (1.3)

The distributions in D(GH
V , ζV ) are tempered as well as ζV -equivariant. Therefore, any

element γ in D(GH
V , ζV ) transfers to a continuous linear form

f → fG(γ), f ∈ C(GH
V , ζV ),

on C(GH
V , ζV ). The transfer actually depends on an implicit choice of Haar measure on

ZV , but this is obviously harmless. Suppose that γ is an element in Γorb(ḠH
V , ζV ), and

that γV is a conjugacy class in GH
V that maps to γ. The ζV -equivariant orbital integral

at γV provides a distribution in D(GH
V , ζV ), and hence a continuous linear form

f → fG(γV ), f ∈ C(GH
V , ζV ).
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This of course depends on the choice of representative γV of γ, as well as a choice of
invariant measure on the GH

V -conjugacy class γV . On the other hand, we may as well
identify γ with the distribution in Γorb(GH

V , ζV ) to which it corresponds. The linear forms
fG(γV ) and fG(γ) then differ by a scalar multiple. We obtain

fG(γV ) = (γV /γ)fG(γ), f ∈ C(GH
V , ζV ), (1.4)

where (γV /γ) is the ratio of the invariant measure on γV and the signed measure on γV

that comes with γ. As we mentioned earlier, we shall usually restrict our attention to
functions f in the Hecke algebra H(GH

V , ζV ).
What is the spectral analogue of the space D(GH

V , ζV )? There is some ambiguity in
the question, but one could argue plausibly that the answer is the space F(GH

V , ζV ) of
generalized characters on GH

V , with ZV -central character equal to ζV . By a generalized
character, here, we mean a finite, complex linear combination of irreducible characters.
As with D(GH

V , ζV ), we identify an element π in F(GH
V , ζV ) with a linear form

f → fG(π), f ∈ H(GH
V , ζV ),

on H(GH
V , ζV ), which in this case depends on an implicit choice of Haar measure on

GH
V /ZV . The space F(GH

V , ζV ) already has a canonical basis. It is the set Π(GH
V , ζV ) of

irreducible characters with ZV -central character equal to ζV . We write Πunit(GH
V , ζV ) for

the subset of characters in Π(GH
V , ζV ) that are unitary. Then, in partial analogy with

(1.2), we define a chain of subsets

Πunit(GH
V , ζV ) ⊃ Πtemp(GH

V , ζV ) ⊃ Πtemp,ell(GH
V , ζV ) (1.5)

of characters in Πunit(GH
V , ζV ) that are, respectively, tempered, and tempered elliptic.

For each f in H(GH
V , ζV ), we have been regarding fG as both a linear function on

D(GH
V , ζV ), and a linear function on F(GH

V , ζV ). The former is determined by its restric-
tion to the subset Γreg(GH

V , ζV ) of D(GH
V , ζV ), while the latter is determined by its restric-

tion to the subset Πtemp(GH
V , ζV ) of F(GH

V , ζV ). It is known that either of the functions
is determined by the other, so the notation is consistent. In the usual fashion, we can
form the invariant Hecke space

I(GH
V , ζV ) = IH(GH

V , ζV ) = {fG : f ∈ H(GH
V , ζV )}

of functions obtained from H(GH
V , ζV ). This space comes with the topology that makes

the surjective map f → fG from H(GH
V , ζV ) to I(GH

V , ζV ) open and continuous. There
is also the invariant Schwartz space

I(GH
V , ζV ) = IC(GH

V , ζV ) = {fG : f ∈ C(GH
V , ζV )},

which comes with a similar topology. However, we shall use the overlapping notation I(·)
only if the context is clear. In either case, we can use the familiar notation

I(f) = Î(fG),
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for any invariant linear form I that lies in the image of the transpose of the map f → fG.
For later use, we also introduce the stably invariant Hecke space. Recall that a distri-

bution on GH
V is stable if it lies in the closed linear span of the strongly regular, stable

orbital integrals
fG(δV ) =

∑
γV →δV

fG(γV ).

Here, δV is any strongly regular, stable conjugacy class in GH
V , and γV is summed over the

finite set of conjugacy classes in δV . Let SD(GH
V , ζV ) and SF(GH

V , ζV ) be the subspaces
of stable distributions in D(GH

V , ζV ) and F(GH
V , ζV ), respectively. Suppose that δ belongs

to the set ∆reg(ḠH
V ) of strongly regular, stable conjugacy classes in ḠH

V . Then there is a
corresponding tempered distribution

f → fG(δ) =
∑

γ

fG(γ), f ∈ C(GH
V , ζV ),

where γ is summed over those classes in the set Γreg(ḠH
V ) = Γreg(ḠH

V , ζV ) that map to
δ, and fG(γ) is the corresponding linear form in Γreg(GH

V , ζV ). One of the requirements
in [14] on the choice of basis Γ (GH

V , ζV ) is a simple compatibility condition on the
summands that insures an identity

fG(δV ) = (δV /δ)fG(δ), (1.6)

where δV is any stable class in GH
V that maps to δ. The ratio (δV /δ) equals (γV /γ),

where γV is the conjugacy class in δV that maps to the given class γ in the sum. In
particular, the distribution δ is stable. We have thus identified ∆reg(ḠH

V ) with a subset
∆reg(GH

V , ζV ) of SD(GH
V , ζV ). The stably invariant Hecke space is the space of functions

SI(GH
V , ζV ) = SIH(GH

V , ζV ) = {fG : f ∈ H(GH
V , ζV )}

on ∆reg(GH
V , ζV ). The stably invariant Schwartz space is defined in the same way.

Suppose that M is a Levi subgroup of G. Assuming that M contains H, we of course
take Π(MH

V , ζV ) to be the basis of F(MH
V , ζV ). We assume that we have also chosen a

basis Γ (MH
V , ζV ) of D(MH

V , ζV ), as well as corresponding subsets (1.2), as above. Consider
the case that H = M , so that MH

V = MV and GH
V = GV . We recall that there is a

canonical map f → fM from H(GV , ζV ) to I(MV , ζV ), which factors through the map
f → fG. This map allows us to define induction operations. We obtain canonical linear
maps

µ ∈ D(MV , ζV ) → µG ∈ D(GV , ζV )

and

ρ ∈ F(MV , ζV ) → ρG ∈ F(GV , ζV ),

https://doi.org/10.1017/S1474748002000051 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748002000051


A stable trace formula. I 189

such that

fG(µG) = fM (µ) (1.7)

and

fG(ρG) = fM (ρ), (1.8)

for any f ∈ H(GV , ζV ). The choice of bases also determine adjoint restriction maps.
These are the unique linear maps

γ ∈ D(GV , ζV ) → γM ∈ D(MV , ζV )

and

π ∈ F(GV , ζV ) → πM ∈ F(MV , ζV ),

such that ∑
γ∈Γ (GV ,ζV )

aM (γM )bG(γ) =
∑

µ∈Γ (MV ,ζV )

aM (µ)bG(µG) (1.9)

and ∑
π∈Π(GV ,ζV )

cM (πM )dG(π) =
∑

ρ∈Π(MV ,ζV )

cM (ρ)dG(ρG), (1.10)

for any linear functions aM ∈ D(MV , ζV )∗, bG ∈ D(GV , ζV )∗, cM ∈ F(MV , ζV )∗ and
dG ∈ F(GV , ζV )∗ such that the right-hand inner products converge.

The notions we have been reviewing come from [14] and earlier papers. We shall make
free use of any obvious variants of the notation. For example, the notation Γ (GV , ζV ),
D(GV , ζV ), F(GV , ζV ), etc., in the case above that H = M , is in obvious recognition
of the fact that H plays no role. As we noted earlier, we shall generally assume that V

contains Vram(G, ζ), and that H equals Z. In this case, let a∗
G,Z denote the subspace of

linear forms on aG that are trivial on the image of aZ in aG. Then there is an action

λ : π → πλ, π ∈ Πunit(GV , ζV ), λ ∈ ia∗
G,Z ,

of ia∗
G,Z on Πunit(GV , ζV ), whose orbits can be identified with the set Πunit(GZ

V , ζV ). We
have agreed to write H(G, V, ζ) = H(GZ

V , ζV ). This is the space of test functions we will
be using for our global study. We shall also write

I(G, V, ζ) = I(GZ
V , ζV )

for the corresponding invariant space. In the next two sections, we shall single out subsets
Γ (G, V, ζ) and Π(G, V, ζ) of Γorb(GZ

V , ζV ) and Πunit(GZ
V , ζV ), respectively, that also have

special global significance.
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2. Global trace formula: geometric side

The first main task of the paper will be to recast the global trace formula of [8] in
somewhat different terms. There are three reasons for doing so. The first concerns how
we make the trace formula invariant. We want to use the canonically normalized weighted
characters of [11], rather than the weighted characters of [8] that depend on a choice
of normalizing factors for intertwining operators. Secondly, it will be convenient to work
with test functions on a finite product GV = G(FV ) of local groups, rather than on the
adele group G(A). Finally, we have to set things up for ζ−1-equivariant test functions,
in order to allow for future induction arguments. The result will be a formulation of
the trace formula that is quite natural, and that clearly displays the remarkable duality
between terms on the geometric and spectral sides.

Until further notice, F will be a global field, (G, ζ) will be a fixed pair over F as in § 1,
and V will be a finite set of valuations of F that contains the ramified set Vram(G, ζ). The
formula of [8] is the identity provided by two different expansions of a certain continuous
linear form on H(G) = H(G(A)1). The formula we want will be an identity given by two
expansions of a continuous linear form on H(G, V, ζ) = H(GZ

V , ζV ). We shall first describe
a formal process for passing from the former to the latter. The bulk of this section will
then be devoted to the explicit construction of the new geometric expansion. The next
section will be reserved for the construction of the new spectral expansion.

There is a natural projection

ḟ1 → ḟζ , ḟ1 ∈ H(G),

from H(G) onto the space H(G, ζ) = H(G(A)Z , ζ). The image of ḟ1 is defined to be the
function

ḟζ(x) =
∫

Z(A)x

ḟ1(zx)ζ(z) dz, x ∈ G(A)Z ,

where we have written

Z(A)x = {z ∈ Z(A) : HG(zx) = 0}.

Suppose that J is a continuous, Z(F )-invariant linear form on H(G). If ḟ1
z denotes the

translate of a function ḟ1 ∈ H(G) by a point z ∈ Z(A)1, the integral

Jζ(ḟ1) =
∫

Z(F )\Z(A)1
J(ḟ1

z )ζ(z) dz

converges, and depends only on the image ḟζ of ḟ1 in H(G, ζ). We write

J(ḟζ) = Jζ(ḟ1).

We then define a linear form on H(G, V, ζ) by setting

J(f) = J(ḟ), f ∈ H(G, V, ζ),

where ḟ = f × uV is the function in H(G, ζ) defined in § 1. We are using the symbol J

here to denote three different objects: the original Z(F )-invariant linear form on H(G),
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the projection of this form onto the space of linear forms on H(G, ζ), and the projection
of the second object onto the space of linear forms on H(G, V, ζ). Since the three linear
forms act on three different spaces, there is no ambiguity in denoting them by the same
symbol.

We shall apply this general procedure to the basic linear form that is the foundation
of the trace formula of [8]. We need refer to [8] only for the non-invariant trace formula,
since we will be using a different process to make it invariant. The relevant formula
from [8] consists then of two different expansions of the continuous (non-invariant) linear
form

J(ḟ1) =
∑
o∈O

Jo(ḟ1) =
∑
χ∈X

Jχ(ḟ1), ḟ1 ∈ H(G), (2.1)

on H(G) that appears in [8, (2.1)]. The two expansions are derived in §§ 3 and 4 of [8]
by refining the terms in the respective sums over o and χ. Our aim here is to convert
these expansions into two expansions of an invariant linear form on H(G, V, ζ).

It is an immediate consequence of the general constructions in [1] that the linear form
(2.1) is Z(F )-invariant. The process above therefore provides a (non-invariant) linear
form

J(f) = J(ḟ) = Jζ(ḟ1), f ∈ H(G, V, ζ),

on H(G, V, ζ), where ḟ1 is any function in H(G) whose projection ḟζ onto H(G, ζ) equals
ḟ = f × uV . We then define an invariant linear form I = IG on H(G, V, ζ) inductively
by setting

I(f) = J(f) −
∑

M∈L0

|WM
0 ||WG

0 |−1ÎM (φM (f)), (2.2)

for certain maps
φM : H(G, V, ζ) → I(M, V, ζ) (2.3)

constructed from the normalized weighted characters of [11]. To describe the maps pre-
cisely, suppose first that f̃ belongs to the Schwartz space C(GV , ζV ). Then φM (f̃) is
defined to be the function on Πtemp(MV , ζV ) whose value at a representation

π̃ =
⊗

v

πv, πv ∈ Πtemp(Mv, ζv),

equals
tr(MM (π̃, P )IP (π̃, f̃)), P ∈ P(M).

The operator

MM (π̃, P ) = lim
Λ→0

∑
Q∈P(M)

(⊗
v∈V

MQ(Λ, πv, P )
)

θQ(Λ)−1,

with
θQ(Λ) = vol(aG

M/Z(∆∨
Q))−1

∏
α∈∆Q

Λ(α∨),
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is defined as part of the theory of (G, M)-families [2, § 6]. The relevant (G, M)-family
here is a tensor product of the (G, M)-families

MQ(Λ, πv, P ) = µQ(Λ, πv, P )JQ(Λ, πv, P ), Q ∈ P(M), Λ ∈ ia∗
M ,

defined for πv in general position on p. 37 of [11]. It follows from [11, Lemma 3.1] that
φM maps C(GV , ζV ) continuously to IC(MV , ζV ). If f and π are the restrictions of f̃ and
π̃ to GZ

V and MZ
V , respectively, we set

φM (f, π) =
∫

ia∗
M,Z

φM (f̃ , π̃λ) dλ.

Our concern here is in the case that f belongs to the subspace H(G, V, ζ) of C(GZ
V , ζV ).

The argument of [9, § 12] is easily modified to show that φM maps H(G, V, ζ) continuously
to the subspace I(M, V, ζ) = IH(MZ

V , ζV ) of IC(MZ
V , ζV ).

We shall now derive a geometric expansion of I(f) from the geometric expansion
in [8, § 3] of (2.1). We have first to describe the local and global ingredients of the new
expansion. We will then be able to apply the methods of [8, § 3].

The local terms in the geometric expansion of I(f) are essentially the invariant dis-
tributions of [11, § 3]. They are invariant linear forms IM (γ) = IG

M (γ) on H(G, V, ζ),
which are parametrized by Levi subgroups M ∈ L and elements γ ∈ Γ (MZ

V , ζV ). For any
f ∈ H(G, V, ζ), IM (γ, f) is defined inductively by the usual formula

IM (γ, f) = JM (γ, f) −
∑

L∈L0(M)

ÎL
M (γ, φL(f)),

where φL(f) is the map (2.3), and JM (γ, f) is the weighted orbital integral, defined for
γ ∈ Γorb(MZ

V , ζV ) as in [6], and for general γ in [14].
The global terms in the geometric expansion appear as coefficients. They require rather

more discussion. We begin by recalling the global coefficients

aG(S, γ̇), γ̇ ∈ (G(F ))G,S ,

of [8], which were defined in [5, (8.1)]. Here S ⊃ Vram(G) is a large finite set of valuations,
and (G(F ))G,S is the set of what we called the (G, S)-equivalence classes in G(F ). (We
are using the dot notation γ̇ for elements in G(F ), since γ will generally be reserved for
elements in GV .) We recall that two elements γ̇ and γ̇1 in G(F ), with standard Jordan
decompositions γ̇ = cα̇ and γ̇1 = c1α̇1, were defined to be (G, S)-equivalent if there is
an element δ̇ ∈ G(F ) such that δ̇−1c1δ̇ = c, and such that δ̇−1α̇1δ̇ is conjugate to α̇

in Gc(FS). For a general element γ̇ = cα̇, the coefficient was defined in [5, (8.1)] by a
descent formula

aG(S, γ̇) = iG(S, c)| Stab(c, α̇)|−1aGc(S, α̇). (2.4)
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We write Stab(c, α̇) here for the stabilizer of α̇ in the finite group (Gc,+(F )/Gc(F )),
which acts on the set of unipotent conjugacy classes in Gc(FS). The symbol iG(S, c) is as
in [8, (3.2)]. It equals 1 if c is F -elliptic in G and the G(AS)-conjugacy class of c meets
KS , and is otherwise equal to 0. (We neglected to mention the second condition on c

explicitly in [5, (8.1)], although we included it in the proof.) The point of the descent
formula is to reduce the study of aG(S, γ̇) to the case of unipotent elements treated in [4].

As explained in [5] and [8], the finite set S has to be large in a sense that depends on
the semisimple part of γ̇. In this paper, we require a quantitative criterion for the choice
of S. It is provided by the next lemma, and the definitions of § 1.

Lemma 2.1. If γ̇ belongs to G(F ), the coefficient aG(S, γ̇) is defined for any finite set
S such that γ̇ is S-admissible.

Proof. Suppose that γ̇ is S-admissible. We must show that the definition of aG(S, γ̇)
in [5] and [8] is valid for the given S. For the definition in [5], the requirements to verify
are the conditions (i)–(iv) on p. 203. The condition (i) follows from the definition of
S-admissible, while conditions (iii) and (iv) follow from [5, Lemma 7.1]. The condition
(ii), in the untwisted case we are considering in this paper, asserts that γ̇v belongs to Kv

for each v �∈ S. This condition was removed in [8, § 3] by simply setting aG(S, γ̇) = 0 if
γ̇ is not G(AS)-conjugate to an element in KS . Therefore, aG(S, γ̇) is defined whenever
γ̇ is S-admissible. �

In this paper, we would like to index the coefficients by admissible elements in
Γ (GZ

S , ζS), rather than by classes in (G(F ))G,S . To help us make the transition, we
set

Iell(ḟ1
S) =

∑
γ̇∈(G(F ))G,S

aG(S, γ̇)ḟ1
S,G(γ̇), ḟ1

S ∈ Hadm(G, S). (2.5)

This is the term with M = G in the geometric expansion [8, (3.3)], and can be regarded
as the G-elliptic part of the expansion. (We use ‘elliptic’ to refer to the semisimple
components of the classes in G(F ) that index the summands.) One consequence of the
descent formula (2.4) is that

aG(S, zγ̇) = aG(S, γ̇), z ∈ ZS,o,

where

ZS,o = Z(F ) ∩ ZSZ(oS).

We can obviously embed ZS,o as a discrete subgroup of ZS . The linear form Iell(ḟ1
S) on

Hadm(G, S) is then ZS,o-invariant. Applying a variant of the process at the beginning of
this section, we define a linear form

Iell(ḟS) =
∫

ZS,o\Z1
S

Iell(ḟ1
S,z)ζ(z) dz, ḟS ∈ Hadm(G, S, ζ),
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on Hadm(G, S, ζ), in which ḟ1
S is any function in Hadm(G, S) whose projection ḟζS

S onto
H(G, S, ζ) equals ḟS . It follows from the ZS,o-invariance of aG(S, γ̇) that

Iell(ḟS) =
∑

γ̇∈(G(F ))G,S

aG(S, γ̇)
∫

ZS,o\Z1
S

ḟ1
S,G(zγ̇)ζ(z) dz

=
∑
{γ̇}

|Z(F, γ̇)|−1aG(S, γ̇)
∫

Z1
S

ḟ1
S,G(zγ̇)ζ(z) dz,

where {γ̇} stands for a set of representatives of ZS,o-orbits in (G(F ))G,S , and

Z(F, γ̇) = {z ∈ Z(F ) : zγ̇ = γ̇} = {z ∈ ZS,o : zγ̇ = γ̇}.

The integral ∫
Z1

S

ḟ1
S,G(zγ̇)ζ(z) dz

is easily evaluated in terms of ḟS . It vanishes unless γ̇ maps to an element γ̇S in
Γorb(GZ

S , ζS), which is to say that the conjugacy class of γ̇ in ḠZ
S = GZ

S /ZS lies in
Γorb(ḠZ

S , ζS), and in addition, the G(Fv)-orbit of γ̇ meets Kv for each v �∈ S. If the two
conditions hold, the integral simply equals

(γ̇/γ̇S)ḟS,G(γ̇S),

where (γ̇/γ̇S) is the ratio in (1.4).
We have converted the expansion (2.5) for Iell(ḟ1

S) into an expansion for Iell(ḟS). To
describe the latter, we first define a coefficient aG

ell(γ̇S). If γ̇S is any admissible element
in Γ (GS , ζS), we set

aG
ell(γ̇S) =

∑
{γ̇}

|Z(F, γ̇)|−1aG(S, γ̇)(γ̇/γ̇S), (2.6)

where {γ̇} is summed over those ZS,o-orbits in (G(F ))G,S that map to γ̇S , and such that
the G(AS)-conjugacy class of γ̇ in G(AS) meets KS . This coefficient obviously vanishes
on the complement of Γorb(GZ

S , ζS) in Γ (GS , ζS). It is in fact instructive to introduce
a subset of Γorb(GZ

S , ζS) that can serve as a more manageable domain. If V is any
finite set containing Vram(G, ζ), we write Γell(G, V, ζ) for the collection of elements γ ∈
Γorb(GZ

V , ζV ) such that there is a γ̇ ∈ G(F ) that satisfies the following three conditions.

(i) The semisimple part of γ̇ is F -elliptic in G.

(ii) The conjugacy class of γ̇ in GV maps to γ.

(iii) The element γ̇ is bounded at each v �∈ V . In other words, for each v �∈ V , the image
of γ̇ in Gv lies in a compact subgroup.
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The subset Γell(G, V, ζ) is discrete in the natural topology on Γ (GZ
V , ζV ). Taking V = S,

we see that aG
ell(γ̇S) is supported on the set of admissible elements in Γell(G, S, ζ). The

expansion for Iell(ḟS) is just

Iell(ḟS) =
∑

γ̇S∈Γell(G,S,ζ)

aG
ell(γ̇S)ḟS,G(γ̇S), ḟS ∈ Hadm(G, S, ζ). (2.7)

The definition (2.6) is only a part of our reformulation of the global coefficients. We
are going to define coefficients that depend on elements γ ∈ Γ (GZ

V , ζV ), where V is an
arbitrary finite set of valuations that contains Vram(G, ζ). The role of S will be simply
that of some finite set containing V that is large relative to γ. First, let us define a
discrete subset of Γ (GZ

V , ζV ) that will serve as a suitable domain for the new coefficients.
We have already defined the ‘elliptic’ set Γell(G, V, ζ). If M is a Levi subgroup of G, and
µ belongs to Γ (MZ

V , ζV ), the induced distribution µG is a finite linear combination of
elements in Γ (GZ

V , ζV ). We write Γ (G, V, ζ) for the set of elements so obtained, as M

ranges over L and µ runs over the elements in Γell(M, V, ζ). This will be the domain.
The new coefficients will combine the elliptic coefficients (2.6) with unramified weighted

orbital integrals at places v in S − V . Let us write K(ḠV
S ) for the set of conjugacy classes

in ḠV
S = GV

S /ZV
S that are bounded. Since ζV

S is trivial on Z(oV
S ), K(ḠV

S ) is contained in
Γorb(ḠV

S , ζV
S ), so by the conventions of § 1, any element k ∈ K(ḠV

S ) provides a distribution
γV

S (k) in the subset Γorb(GV
S , ζV

S ) of Γ (GV
S , ζV

S ). If k belongs to K(ḠV
S ) and γ is an element

in Γ (GZ
V , ζV ), we shall write

γ × k = γ × γV
S (k)

for the associated element in Γ (GZ
S , ζS). It is then clear that for any k, the preimage

of Γell(G, S, ζ) under the map γ → γ × k is contained in Γell(G, V, ζ). To emphasize the
duality with the spectral expansion in next section, we shall also write KV

ell(Ḡ, S) for the
set of k in K(ḠV

S ) such that γ × k belongs to Γell(G, S, ζ) for some γ. These sets are
of course defined if G is replaced by a Levi subgroup M ∈ L. The unramified weighted
orbital integrals JM (·, uV

S ) will appear in the form of a function

rG
M (k) = JM (γV

S (k), uV
S ), k ∈ K(M̄V

S ),

on K(M̄V
S ).

We can now define the coefficients that will occur in our geometric expansion. If γ

belongs to Γ (GZ
V , ζV ), we set

aG(γ) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑
k∈KV

ell(M̄,S)

aM
ell(γM × k)rG

M (k), (2.8)

where S ⊃ V is any finite set of valuations such that the set γ × KV is S-admissible.
The summands on the right-hand side are defined, by Lemma 2.1, and since KV

ell(M̄, S)
is discrete in the relevant topology in K(M̄V

S ), the sum over k can be taken over a finite
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set. Of course γM × k is understood to be a finite linear combination of elements γ̇S

in Γ (MZ
S , ζS), and aM

ell(γM × k) is the corresponding finite linear combination of values
aM
ell(γ̇S). It follows from the definitions that aG(γ) is supported on the discrete subset

Γ (G, V, ζ) of Γ (GZ
V , ζV ).

Proposition 2.2. Suppose that f ∈ H(G, V, ζ). Then the linear form I(f) in (2.2) has
a geometric expansion

I(f) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑
γ∈Γ (M,V,ζ)

aM (γ)IM (γ, f), (2.9)

in which the inner sum can be taken over a finite set that depends only on the support
of f .

Proof. As a function of γ in Γ (MZ
V , ζV ), IM (γ, f) has compact support. This assertion

is valid only because we are considering elements γ attached to the closed subgroup MZ
V

of MV . It follows from the usual splitting and descent formulae satisfied by IM (γ, f),
as for example in the proof of [8, Lemma 3.2]. Since Γ (M, V, ζ) is a discrete subset of
Γell(MZ

V , ζV ), the inner summand on the right-hand side of (2.9) therefore has finite
support.

The proof of (2.9) is similar to that of [8, Theorem 3.3]. The main step will be to
establish a parallel expansion for the linear form

J(f) = Jζ(ḟ1) =
∫

Z(F )\Z(A)1
J(ḟ1

z )ζ(z) dz,

in which ḟ1 is any function in H(G) whose projection ḟζ onto H(G, ζ) equals the function
ḟ = f × uV .

We recall the geometric expansion for J(ḟ1) that is provided by [5, Theorem 9.2]. Let
S ⊃ V be a finite set of valuations such that support of ḟ1 is S-admissible, and such that
ḟ1 is of the form

ḟ1
S × uS,1, ḟ1

S ∈ H(G, S).

Then
J(ḟ1) =

∑
M∈L

|WM
0 ||WG

0 |−1
∑

γ̇∈(M(F ))M,S

aM (S, γ̇)JM (γ̇, ḟ1
S),

where JM (γ̇, ḟ1
S) is the weighted orbital integral of ḟ1

S over the conjugacy class of γ̇ in
GS . The term corresponding to M depends on S, but the sum over M does not. For a
given choice of S, the linear form J(ḟ1) is obviously KS-invariant. We obtain

J(f) =
∫

Z(F )Z(oS)\Z(A)1
J(ḟ1

z )ζ(z) dz

=
∫

ZS,o\Z1
S

J(ḟ1
z )ζ(z) dz

=
∑

M∈L
|WM

0 ||WG
0 |−1

∑
γ̇∈(M(F ))M,S

aM (S, γ̇)
∫

ZS,o\Z1
S

JM (zγ̇, ḟ1
S)ζ(z) dz,
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since

Z(A) = Z(F )ZSZ(oS),

and

JM (γ̇, ḟ1
S,z) = JM (zγ̇, ḟ1

S), z ∈ ZS .

Following the derivation of (2.7) from (2.5) above, we conclude that

J(f) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑
γ̇S∈Γell(M,S,ζ)

aM
ell(γ̇S)JM (γ̇S , ḟS),

where ḟS equals the projection ḟζS

S of ḟ1
S onto H(G, S, ζ).

It is a consequence of the definitions that ḟS is equal to the product f × uV
S , where

f ∈ H(G, V, ζ) is the function we started with. Taking a corresponding decomposition
γ̇V × γ̇V

S of γ̇S , we see from the usual splitting and descent properties that

JM (γ̇S , ḟS) =
∑

L∈L(M)

JL
M (γ̇V

S , (uV
S )L)JL(γ̇L

V , f).

(See [7, Proposition 9.1 and Corollary 8.2]. We are dealing with weighted orbital integrals
here, rather than the corresponding invariant distributions, so it does not matter that
the set S − V fails to have the closure property of [8]. We have also used the fact that
(uV

S )L = (uV
S )Q is the unit in the invariant unramified Hecke algebra on LS

V , and is
therefore independent of Q ∈ P(L).) Now JL

M (γ̇V
S , (uV

S )L) vanishes unless γ̇V
S = γV

S (k)
for some k in K(M̄V

S ), in which case it equals rL
M (k) by definition. With this condition

on γ̇V
S , aM

ell(γ̇S) vanishes unless µ = γ̇V lies Γell(M, V, ζ), and k lies in KV
ell(M̄, S). We find

that J(f) equals∑
L∈L

∑
M∈LL

|WM
0 ||WG

0 |−1
∑

µ

∑
k

aM
ell(µ × k)rL

M (k)JL(µL, f),

where µ and k are summed over Γell(M, V, ζ) and KV
ell(M̄, S), respectively. But we can

write ∑
M∈LL

|WM
0 ||WG

0 |−1
∑

µ

∑
k

aM
ell(µ × k)rL

M (k)JL(µL, f)

=
∑
M

|WM
0 ||WG

0 |−1
∑

γ∈Γ (L,V,ζ)

∑
k

aM
ell(γM × k)rL

M (k)JL(γ, f)

= |WL
0 ||WG

0 |−1
∑

γ∈Γ (L,V,ζ)

aL(γ)JL(γ, f),

by (1.9) and (2.8). We obtain an expansion

J(f) =
∑
L∈L

|WL
0 ||WG

0 |−1
∑

γ∈Γ (L,V,ζ)

aL(γ)JL(γ, f) (2.10)

of the form we want.

https://doi.org/10.1017/S1474748002000051 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748002000051


198 J. Arthur

It is now a simple matter to convert the expansion (2.10) for J(f) into an expansion
for I(f). By definition,

I(f) = J(f) −
∑

L∈L0

|WL
0 ||WG

0 |−1ÎL(φL(f)).

Assume inductively that the required expansion (2.9) holds if G is replaced by any group
L ∈ L0. Combining this with the formula (2.10) for J(f), we see that I(f) equals

∑
M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ (M,V,ζ)

aM (γ)
(

JM (γ, f) −
∑

L∈L0(M)

ÎL
M (γ, φL(f))

)
.

By the definition of IM (γ, f), this in turn equals
∑
M

|WM
0 ||WG

0 |−1
∑

γ∈Γ (M,V,ζ)

aM (γ)IM (γ, f),

the required expansion for I(f). �

We shall later have reason to consider the simpler linear form

Iorb(f) =
∑

γ∈Γ (G,V,ζ)

aG(γ)fG(γ), f ∈ H(G, V ), (2.11)

defined by the term with M = G in the expansion (2.9). It is the purely ‘orbital’ part
of I(f), and consists of a linear combination of invariant orbital integrals. However, the
coefficients of this expansion are defined by a formula (2.8) that seems to depend on the
set S ⊃ V .

Corollary 2.3. The coefficients {aG(γ)} are in fact independent of S, and so therefore
is Iorb(f).

Proof. Recall that we constructed I(f) from the linear form (2.1) that does not depend
on S. We can assume inductively that if M is a proper Levi subgroup of G, the coefficients
{aM (γ)} are independent of S. The corresponding term on the right-hand side of (2.9) is
therefore also independent of S. This leaves only the term with M = G on the right-hand
side of (2.9), which is just Iorb(f). The corollary follows. �

Remark. The corollary could easily be proved directly from the admissibility of γ×KV ,
and properties of the weighted orbital integrals rG

M (k).

3. Global trace formula: spectral side

We turn now to the spectral side. As before, V will be any finite set of valuations that
contains Vram(G, ζ). We shall convert the spectral expansion [8, § 4] for the right-hand
side of (2.1) into an expansion for the linear form (2.2) on H(G, V, ζ).
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We should recall that the spectral expansion for (2.1) in [8] is only conditionally
convergent. There is first an absolutely convergent sum

J(ḟ1) =
∑
t�0

Jt(ḟ1), ḟ1 ∈ H(G), (3.1)

for the linear form (2.1). The terms

Jt(ḟ1) =
∑

{χ∈X :‖ Im(νχ)‖=t}
Jχ(ḟ1), t � 0,

in this sum are obtained from those summands on the right-hand side of (2.1) whose
archimedean infinitesimal characters νχ are of height t [8, § 4]. Each Jt(ḟ1) in turn has
an absolutely convergent spectral expansion. A strengthening of results of Müller [32]
would establish that the resulting expansion of J(ḟ1) is actually absolutely convergent
(as a double integral). However, for the comparison problems of this and subsequent
papers, it will be no trouble for us to treat the spectral expansion as a conditionally
convergent double integral.

We first have to apply the formal process at the beginning of § 2 to each of the terms
Jt(ḟ1). It follows without difficulty from the original definition [2] of Jχ(ḟ1) that each
linear form Jt(ḟ1) on H(G, V, ζ) is Z(F )-invariant. We obtain a (non-invariant) linear
form

Jt(f) = Jt(ḟ) = Jζ
t (ḟ1), f ∈ H(G, V, ζ),

on H(G, V, ζ), in which ḟ1 is any function in H(G) whose projection ḟζ onto H(G, V )
equals ḟ = f × uV . We then define a corresponding invariant linear form It = IG

t on
H(G, V, ζ) inductively by setting

It(f) = Jt(f) −
∑

M∈L0

|WM
0 ||WG

0 |−1ÎM
t (φM (f)), (3.2)

with φM being the map of (2.3).
To treat the conditional convergence of the spectral expansion, we shall exploit the

multiplier convergence estimate of [16, (2.15.2)] and [10, Lemma 7.1]. Recall that a
multiplier for G is a function α in C∞

c (hZ)W∞ , where

h = ihK ⊕ h0

is a Cartan subalgebra of a split form of the real group G∞ = GV∞ , and W∞ is the
corresponding Weyl group. (See [16, § 2.15] or [10, § 7].) We have written hZ for the
subspace of points in h whose projection onto aG lies in the image of aZ . The Fourier
transform α̂ is then a W∞-invariant function in the Paley–Wiener space on

h
∗
C/a

∗
G,Z,C = h ⊗ C/a

∗
G,Z ⊗ C.

If f belongs to H(G, V, ζ), one can transform the archimedean components of f by α.
This provides a second function fα in H(G, V, ζ), which is characterized by the property
that

fα,G(π) = α̂(ν)fG(π),
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for any representation π ∈ Π(GZ
V , ζV ) whose archimedean infinitesimal character corre-

sponds to the point ν ∈ h∗
C/a∗

G,Z,C.
The convergence estimate is given by the values of α̂ on a subset

h
∗
u(r, T ) = {ν ∈ h

∗
u : ‖ Re(ν)‖ � r, ‖ Im(ν)‖ � T}

of h∗
C/ia∗

G,Z,C, where h∗
u is a subset of h∗

C/ia∗
G,Z that embeds into h∗

C/a∗
G,Z,C, and contains

the infinitesimal characters of all unitary representations. (The definitions are essentially
those of [8, p. 536] and [10, p. 558]. In particular, the norm ‖ ·‖ is assumed to come from
a fixed, W∞-invariant, Euclidean inner product on hZ .) Suppose that

At(f), f ∈ H(G, V, ζ), t � 0,

is a family of linear forms such that for any f and α, the function

t → At(fα), t � 0,

is supported on a discrete set that is independent of α. We shall say that the family
satisfies the multiplier convergence estimate if for each f ∈ H(G, V, ζ), we can choose
constants C, k and r with the following property. For any positive numbers T and N ,
and any α in

C∞
N (hZ)W∞ = {α ∈ C∞

c (hZ)W∞ : ‖ supp(α)‖ � N},

the estimate ∑
t>T

|At(fα)| � CekN sup
ν∈h∗

u(r,T )
(|α̂(ν)|) (3.3)

holds.

Proposition 3.1. The linear forms

It(f), f ∈ H(G, V, ζ), t � 0,

satisfy the multiplier convergence estimate (3.3), and the formula

I(f) =
∑

t

It(f). (3.4)

Proof. The non-invariant linear forms J(f) and Jt(f) are continuous images of the
linear forms in (3.1). It follows from (3.1) that

J(f) =
∑
t�0

Jt(f).

The formula (3.4) then follows inductively from the definitions (2.2) and (3.2). The
multiplier convergence estimate follows in the same way from the parallel estimate for
the linear forms

Jt(ḟ1), ḟ1 ∈ H(G), t � 0,

that was the main step in the proof of [8, Lemma 6.3]. �
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Suppose now that t � 0 is fixed. We shall derive a spectral expansion for It(f) from
the expansion in [8, § 4] for Jt(ḟ1). As in § 2, we shall first describe the local and global
ingredients of the new expansion.

The local terms are similar to those in [8, § 4], except that they are defined by means
of the canonically normalized weighted characters of [11]. They are invariant linear forms
IM (π) = IG

M (π) on H(G, V, ζ), parametrized by Levi subgroups M ∈ L and representa-
tions π ∈ Πunit(MZ

V , ζV ). For any f ∈ H(G, V, ζ), IM (π, f) is defined inductively by the
formula

IM (π, f) = JM (π, f) −
∑

L∈L0(M)

ÎL
M (π, φL(f)),

where φL is again the map (2.3), and JM (π, f) is the weighted character defined in [11]
and [15]. We recall that if π̃ ∈ Πunit(MV , ζV ) is a unitary representation of MV whose
restriction to MZ

V is π, JM (π, f) is defined by an integral∫
ia∗

M,Z

tr(MM (π̃λ, P )IP (π̃λ, f̃)) dλ,

where f̃ is a function in H(GV , ζV ) whose restriction to GZ
V equals f . This matches the

definition of φM (f, π) if π is tempered, in which case IM (π, f) vanishes if M �= G. In
the general case, however, IM (π, f) is given by a complicated combination of residues of
weighted characters in the complex domain.

The global terms in our spectral expansion again appear as coefficients. They are to
be constructed from the basic coefficients aG

disc(π̇) defined in [8, § 4]. Recall that for each
t � 0, there is a discrete subset Πt,disc(G) = Πdisc(G, t) of Πunit(G(A)1) that supports a
linear combination

It,disc(ḟ1) =
∑

π̇∈Πt,disc(G)

aG
disc(π̇)ḟ1

G(π̇), ḟ1 ∈ H(G), (3.5)

of characters on H(G). The linear form It,disc(ḟ1) is the ‘discrete part’ of It(ḟ1), relative
to the spectral variable π̇, and is defined by an explicit expression [8, (4.3)]. We recall
that t equals the norm of the imaginary part of the archimedean infinitesimal character
of any representation in Πt,disc(G). Given Πt,disc(G) from the construction of [8, § 4], we
define Πt,disc(G, ζ) to be the set of representations in Πunit(G(A)Z , ζ) whose restrictions
to G(A)1 lie in Πt,disc(G). The restriction map identifies Πt,disc(G, ζ) with the subset of
representations in Πt,disc(G) whose central character on Z(A)1 coincides with ζ. We can
also define a linear form

It,disc(ḟ) = Iζ
t,disc(ḟ

1) =
∫

Z(F )\Z(A)1
It,disc(ḟ1

z )ζ(z) dz

by the general procedure of § 2, with ḟ1 being any function in H(G) whose projection ḟζ

onto H(G, ζ) equals ḟ . It comes with an expansion

It,disc(ḟ) =
∑

π̇∈Πt,disc(G,ζ)

aG
disc(π̇)ḟG(π̇), ḟ ∈ H(G, ζ). (3.6)
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For later use, we agree to extend the domain of aG
disc(π̇) to Πt(G(A)Z , ζ), the subset of

Π(G(A)Z , ζ) associated to t, by setting it equal to zero on the complement of Πt,disc(G, ζ).
As in the geometric case, we are going to index spectral coefficients by objects asso-

ciated with GV , in this case representations π ∈ Πunit(MV , ζV ). Our general spectral
coefficients will combine the discrete coefficients above with terms that come from unram-
ified automorphic L-functions for GV . The corresponding terms in the spectral expansion
of [8, § 4] come from complete automorphic L-functions for G(A), or rather, global nor-
malizing factors that are conjectured to be quotients of L-functions. The source of the
discrepancy will be our use here of the canonically normalized weighted characters of [11].

To describe the terms that come from unramified L-functions, we review some simple
definitions from [13]. Let C(GV , ζV ) be the set of families

c = {cv : v �∈ V },

with cv being a semisimple conjugacy class in the L-group LGv = Ĝ � WFv whose image
in WFv

is a Frobenius element, that satisfy the following two conditions. First of all, each
cv must be compatible with the unramified character ζv on Zv. In other words, the image
of cv under the projection LGv → LZv is the conjugacy class in LZv associated to ζv.
Secondly, we require that c satisfy an estimate

|A(cv)| � qrA
v , v �∈ V,

for every Ĝ-invariant polynomial A on LG. As usual, qv is the order of the residue field
of Fv, while rA is some constant that depends only on A. Suppose that c belongs to
C(GV , ζV ), and that ρ is a finite dimensional representation of LG. We can then form
the Euler product

L(s, c, ρ) =
∏
v �∈V

det(1 − ρ(cv)q−s
v )−1, s ∈ C,

which converges, and defines an analytic function of s in some right half plane. We note
that there is a natural action

c → cλ = {cv,λ : v /∈ V }, λ ∈ a
∗
G,Z,C,

of a∗
G,Z,C on C(GV , ζV ). As a function of (s, λ), L(s, cλ, ρ) is analytic for the real part of

s large relative to the real part of λ.
By the theory of the Satake transform, any element c ∈ C(GV , ζV ) can be identified

with a KV -unramified representation πV (c) in Π(GV , ζV ). If c belongs to C(GV , ζV ),
and π is a representation in Π(GV , ζV ), we shall write

π × c = π ⊗ πV (c)

for the associated representation in Π(G(A), ζ). We shall use the same notation if π

belongs to the quotient Π(GZ
V , ζV ) of Π(GV , ζV ), with the understanding that π is identi-

fied with a representative in Π(GV , ζV ), and π×c is identified with a corresponding repre-
sentative in Π(G(A)1, ζ). Any use we make of this convention will depend ultimately only
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on π as an element in Π(GZ
V , ζV ). For example, it makes sense to define Πt,disc(G, V, ζ)

as the set of representations π ∈ Πunit(GZ
V , ζV ) such that π × c belongs to Πt,disc(G, ζ),

for some element c ∈ C(GV , ζV ). We also define CV
disc(G, ζ) to be the set of c ∈ C(GV , ζV )

such that π × c belongs to Πt,disc(G, ζ), for some t and some π ∈ Πt,disc(G, V, ζ). The set
CV
disc(G, ζ) is invariant under the action of ia∗

G,Z .
Suppose that M ∈ L is a fixed Levi subgroup of G, and that M̂ ⊂ Ĝ is a dual Levi

subgroup [12, § 1]. Then there is a bijection P → P̂ from the set P(M) of parabolic
subgroups of G with Levi component M to the set P(M̂) of Γ -stable parabolic subgroups
of Ĝ with Levi component M̂ . If P, Q ∈ P(M), let ρQ|P denote the adjoint representation
of LM on the Lie algebra of the intersection of the unipotent radicals of P̂ and ˆ̄Q. Suppose
that c belongs to CV

disc(M, ζ). It follows from a theorem of Shahidi [34] that L(s, c, ρQ|P )
has analytic continuation as a meromorphic function of s ∈ C, and that for any fixed s,
L(s, cλ, ρQ|P ) is a meromorphic function of λ in a∗

M,Z,C. Following the usual prescription,
we define unramified normalizing factors

rQ|P (cλ) = L(0, cλ, ρQ|P )L(1, cλ, ρQ|P )−1, P, Q ∈ P(M).

We then form the (G, M)-family of functions

rQ(Λ, cλ) = rQ|Q̄(cλ)−1rQ|Q̄(cλ+Λ/2), Q ∈ P(M), (3.7)

of Λ ∈ ia∗
M , as in [13, § 4]. The limit

rG
M (cλ) = lim

Λ→0

∑
Q∈P(M)

rQ(Λ, cλ)θQ(Λ)−1 (3.8)

is then defined as a meromorphic function of λ ∈ a∗
M,Z,C.

Lemma 3.2. Assume that c ∈ CV
disc(M, ζ). Then rG

M (cλ) is an analytic function of
λ ∈ ia∗

M,Z , and satisfies an inequality

∫
ia∗

M,Z/ia∗
G,Z

rG
M (cλ)(1 + ‖λ‖)−N dλ < ∞, (3.9)

for some N .

Proof. Since c belongs to CV
disc(M, ζ), there is a representation

π̇ = π × c, π ∈ Πt,disc(M, V, ζ),

that lies in Πt,disc(M, ζ) for some t � 0. The automorphic representation π̇ and the
representation π of GV can both be assigned their own sets of (non-canonical) normal-
izing factors {rQ|P (π̇λ)} and {rQ|P (πλ)}. (See [8, § 4], for example.) Let rQ(Λ, π̇λ) and
rQ(Λ, πλ) be corresponding (G, M)-families, defined by analogues of (3.7). Then

rQ(Λ, πλ)rQ(Λ, cλ) = rQ(Λ, π̇λ).
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It was actually the (G, M)-family

rQ(Λ, π̇λ, P ) = rQ|P (π̇λ)−1rQ|P (π̇λ+Λ), Λ ∈ ia∗
M , Q ∈ P(M),

defined for a fixed P ∈ P(M), that was used in [8] and earlier papers. With this in mind,
we rewrite the function rQ(Λ, π̇λ) in the form

rQ(Λ, πλ)rQ(Λ, cλ) = νQ(Λ, π̇λ, P )rQ(Λ, π̇λ, P ), (3.10)

where
νQ(Λ, π̇λ, P ) = rQ(Λ, π̇λ)rQ(Λ, π̇λ, P )−1.

We claim that the limit

νL
M (π̇λ, P ) = lim

Λ→0

∑
{Q∈P(M):Q⊂QL}

νQ(Λ, π̇λ, P )θQ∩L(Λ)−1, QL ∈ P(L),

vanishes for any L ∈ L(M) with L �= M . Indeed, a global version of the argument at the
end of the proof of [11, Lemma 2.1] tells us that

νL
M (π̇λ, P ) = µL

M (π̇λ, P ),

where µL
M (π̇λ, P ) is obtained from the (G, M)-family

µQ(Λ, π̇λ, P ) = µQ|P (π̇λ)−1µQ|P (π̇λ+Λ/2)

that is constructed from global Plancherel densities

µQ|P (π̇λ) = (rQ|P (π̇λ)rP |Q(π̇λ))−1.

By the functional equation of the global normalizing factors rQ|P (π̇λ) [8, p. 519], µQ|P (π̇λ)
equals 1 for every P and Q. The claim follows from the fact that

lim
Λ→0

∑
{Q∈P(M):Q⊂QL}

θQ∩L(Λ)−1 = 0, L �= M.

If we apply the splitting formula [7, Corollary 7.4] to each side of (3.10), we obtain an
identity∑

L1,L2∈L(M)

dG
M (L1, L2)rL1

M (πλ)rL2
M (cλ) =

∑
L1,L2∈L(M)

dG
M (L1, L2)νL1

M (π̇λ, P )rL2
M (π̇λ, P ),

which then reduces to

rG
M (cλ) = rG

M (π̇λ, P ) −
∑

{L1,L2∈L(M):L2 �=G}
dG

M (L1, L2)rL1
M (πλ)rL2

M (cλ).

The assertions of the lemma are known to hold if rG
M (cλ) is replaced by the function

rG
M (π̇λ, P ). (See the discussion on [8, p. 519], which is based on [3, Proposition 7.5 and
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Lemma 8.4].) Since the representation π =
⊗

v∈V πv is unitary, the assertions also hold if
rG
M (cλ) is replaced by any of the functions rL1

M (πλ). This follows from [11, Corollary 2.4],
and the growth properties of local normalizing factors. Finally, we can assume inductively
that the assertions of the lemma hold if rG

M (cλ) is replaced by any of the functions rL2
M (cλ),

with L2 �= G. In particular, the contribution to (3.9) of a pair (L1, L2), with L2 �= G and
dG

M (L1, L2) �= 0, will be given by a convergent double integral over the space

(ia∗
M,Z/ia∗

L1,Z) ⊕ (ia∗
M,Z/ia∗

L2,Z) ∼= ia∗
M,Z/ia∗

G,Z .

The lemma follows. �

Before defining the general spectral coefficients, we first construct a subset Πt(G, V, ζ)
of Πunit(GZ

V , ζV ) from the sets Πt,disc(M, V, ζ). Let Π̃t,disc(G, V, ζ) be the preimage of
Πt,disc(G, V, ζ) in Πunit(GV , ζV ). Then Πt,disc(G, V, ζ) can be identified with the set of
ia∗

G,Z-orbits in Π̃t,disc(G, V, ζ). There is of course also a similar set if G is replaced
by M . We write ΠG

t,disc(M, V, ζ) for the set of ia∗
G,Z-orbits in Π̃t,disc(M, V, ζ). Then

ia∗
M,Z/ia∗

G,Z has a free action ρ → ρλ on ΠG
t,disc(M, V, ζ), whose orbits can be identified

with Πt,disc(M, V, ζ). Any element ρ in ΠG
t,disc(M, V, ζ) is an irreducible representation

of MV ∩ GZ
V , from which one can form the parabolically induced representation ρG of

GZ
V . We define Πt(G, V, ζ) to be the union, over M ∈ L and ρ ∈ ΠG

t,disc(M, V, ζ), of the
irreducible constituents of ρG. This space comes with a Borel measure dπ, defined by
setting∫

Πt(G,V,ζ)
h(π) dπ =

∑
M∈L

|WM
0 ||WG

0 |−1
∑

ρ∈Πt,disc(M,V,ζ)

∫
ia∗

M,Z/ia∗
G,Z

h(ρG
λ ) dλ, (3.11)

for any h ∈ Cc(Πt(G, V, ζ)).
We now define the general spectral coefficients. If π belongs to Πt(GZ

V , ζV ), we set

aG(π) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑
c∈CV

disc(M,ζ)

aM
disc(πM × c)rG

M (c). (3.12)

Of course πM × c is a finite sum of representations π̇ in Πunit(M(A), ζ), and aM
disc(πM × c)

is the corresponding sum of values aM
disc(π̇). A similar convention applies to the integrand

h(ρG
λ ) in (3.11). It follows from the definitions that aG(π) is supported on the subset

Πt(G, V, ζ) of Πt(GZ
V , ζV ).

We have formulated the definition (3.12) in obvious analogy with that of the geometric
coefficients (2.8). We could have made it slightly simpler. The role of Πt(G, V, ζ) in the
trace formula will be strictly that of a measure space, which means that we can ignore
sets of measure 0. If ρ belongs to ΠG

t,disc(M, V, ζ), and λ lies in the complement of a
set of measure 0 in ia∗

M,Z/ia∗
G,Z , the representation ρG

λ is irreducible. Moreover, if M1

belongs to L, and λ again lies in the complement of a set of measure 0, the irreducible
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components of (ρG
λ )M1 are disjoint from ΠG

t,disc(M1, V, ζ) unless M1 lies in the W0-orbit
of M , in which case

(ρG
λ )M1 =

⊕
w

wρλ, w ∈ WG
0 /WM

0 , wM = M1.

It is easy to check from the original definition in [8] that the coefficients aM
disc(π̇) are

invariant under isomorphisms of M . In particular,

aM1
disc(wρλ × wc) = aM

disc(ρλ × c), wM = M1, c ∈ CV
disc(M, ζ).

We could therefore have defined Πt(G, V, ζ) to be the disjoint union of induced represen-
tations ρG, as ρ ranges over the set of W0-orbits in∐

M∈L
(ΠG

t,disc(M, V, ζ)).

The coefficient aG
disc(ρ

G) would then be defined as∑
c∈CV

disc(M,ζ)

aM
disc(ρ × c)rG

M (c).

(See [8, p. 519].) The two formulations are the same under an isomorphism of measure
spaces.

Proposition 3.3. Suppose that f ∈ H(G, V, ζ) and t � 0. Then the linear form It(f) in
(3.2) has a spectral expansion

It(f) =
∑

M∈L
|WM

0 ||WG
0 |−1

∫
Πt(M,V,ζ)

aM (π)IM (π, f) dπ, (3.13)

in which the integral converges absolutely.

Proof. As a function on Πt(M, V, ζ), IM (π, f) is rapidly decreasing. The absolute con-
vergence of the integral then follows from Lemma 3.2.

The proof of (3.13) follows the same steps as that of Proposition 2.2. Again the main
point is to construct a parallel expansion for the non-invariant linear form

Jt(f) = Jζ
t (ḟ1) =

∫
Z(F )\Z(A)1

Jt(ḟ1
z )ζ(z) dz,

where ḟ1 is any function in H(G) whose projection onto H(G, ζ) equals ḟ = f × uV .
It follows from [3, Theorem 8.2] and the definitions of [8, § 4] that Jt(f) has an expan-

sion∫
Z(F )\Z(A)1

∑
M∈L

|WM
0 ||WG

0 |−1
∑

π̇∈Πt,disc(M)

∫
ia∗

M,Z/ia∗
G,Z

aM
disc(π̇λ)JM (π̇λ, ḟ1

z )ζ(z) dλ dz,
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where
JM (π̇λ, ḟ1

z ) = tr(JM (π̇λ, P )IP (π̇λ, ḟ1
z ))

is the global unnormalized weighted character. The operator

JM (π̇λ, P ) = lim
Λ→0

∑
Q∈P(M)

JQ(Λ, π̇λ, P )θQ(Λ)−1

is obtained from the (G, M)-family

JQ(Λ, π̇λ, P ) = JQ|P (π̇λ)−1JQ|P (π̇λ+Λ),

in which
JQ|P (π̇λ) : HP (π̇) → HQ(π̇)

is the global (unnormalized) intertwining operator that comes from the theory of Eisen-
stein series. The integral over Z(F )\Z(A)1 simply annihilates the contributions from
those π̇ in the complement of Πt,disc(M, ζ) in Πt,disc(M). Consequently, Jt(f) equals

∑
M∈L

|WM
0 ||WG

0 |−1
∑

π̇∈Πt,disc(M,ζ)

∫
ia∗

M,Z/ia∗
G,Z

aM
disc(π̇λ)JM (π̇λ, ḟ) dλ. (3.14)

Consider a representation π̇ in Πt,disc(M, ζ) that is unramified outside of V . Then we
can write

π̇ = π̇V ⊗ πV (c) = π × c, π ∈ Πt,disc(M, V, ζ), c ∈ CV
disc(M, ζ).

We would like to express JM (π̇λ, ḟ) in terms of the local normalized weighted characters

JL(πL
λ , f) = tr(ML(πL

λ , PL)IPL
(πL

λ , f)), L ∈ L(M), PL ∈ P(L).

(We have allowed the same symbol J to denote two different linear forms on the two
different spaces H(G) and H(G, V, ζ).) The problem is obviously one of comparison
between two operator valued (G, M)-families {JQ(Λ, π̇λ, P )} and {MQ(Λ, πλ, P )}. Since
π̇ is unramified outside of V , JQ(Λ, π̇λ, P ) is a scalar multiple of MQ(Λ, πλ, P ). More
precisely,

JQ(Λ, π̇λ, P ) = rQ(Λ, cλ, P )JQ(λ, πλ, P )

= rQ(Λ, cλ, P )µQ(Λ, πλ, P )−1MQ(Λ, πλ, P ),

in the notation of [11, § 2] and the proof of Lemma 3.2. Since

µQ(Λ, πλ, P )µQ(Λ, cλ, P ) = µQ(Λ, π̇λ, P ) = 1,

by the triviality of global Plancherel densities noted in the proof of Lemma 3.2, we obtain

JQ(Λ, π̇λ, P ) = (rQ(Λ, cλ, P )µQ(Λ, cλ, P ))MQ(Λ, πλ, P ).
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We apply the splitting formula [2, Lemma 6.5] to this product of (G, M)-families. A
variant of [11, Lemma 2.1], which applies to the function uV on G(AV ), asserts that the
limit

lim
Λ→0

∑
Q∈P(M)

(rQ(Λ, cλ, P )µQ(Λ, cλ, P ))θQ(Λ)−1

equals rG
M (cλ). Indeed, the left-hand side of the analogue of [11, (2.6)] for uV equals

the given limit, while the summand corresponding to L ∈ L(M) on the right-hand side
vanishes unless L = G, in which case it equals rG

M (cλ). A similar assertion holds if G is
replaced by any L ∈ L(M). The splitting formula then yields the identity

JM (π̇λ, P ) =
∑

L∈L(M)

rL
M (cλ)ML(πL

λ , P ).

It follows that

JM (π̇λ, ḟ) =
∑

L∈L(M)

rL
M (cλ)JL(πL

λ , f).

Since ḟ equals f × uV , the term JM (π̇λ, ḟ) in (3.14) vanishes unless π̇ is unramified
outside of V . We can therefore replace the sum over π̇ ∈ Πt,disc(M, ζ) with a double sum
over π ∈ Πt,disc(M, V, ζ) and c ∈ CV

disc(M, ζ). At the same time, we can substitute the
formula we have just obtained for JM (π̇λ, ḟ). Ignoring sets of measure 0, as in the remark
following the definition (3.12), we write

aL(πL
λ ) =

∑
c∈CV

disc(M,ζ)

aM
disc(πλ × c)rL

M (c) =
∑

c

aM
disc(πλ × cλ)rL

M (cλ),

for any point λ ∈ ia∗
M,Z in general position. The expansion (3.14) for Jt(f) becomes

∑
L∈L

|WL
0 ||WG

0 |−1
∑

M∈LL

|WM
0 ||WL

0 |−1
∑

π∈Πt,disc(M,V,ζ)

∫
ia∗

M,Z/ia∗
G,Z

aL(πL
λ )JL(πL

λ , f) dλ.

Now the coefficient aL(πL
λ ), and the integral

JL(πL
λ1

) =
∫

ia∗
L,Z/ia∗

G,Z

JL(πL
λ+Λ, f) dΛ,

both depend only on the image λ1 of λ in ia∗
M,Z/ia∗

L,Z . In other words, they depend only
on the restriction πL

λ1
of the representation πL

λ to LZ
V . Changing notation, we write π

instead of πL
λ1

. Then π runs over representations in Πt(L, V, ζ). Recalling the definition
(3.11) of the measure dπ on Πt(L, V, ζ), we obtain at last an expansion

Jt(f) =
∑
L∈L

|WL
0 ||WG

0 |−1
∫

Πt(L,V,ζ)
aL(π)JL(π, f) dπ (3.15)

of the form we want.
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We can now argue exactly as at the end of the proof of Proposition 2.2. Assuming
inductively that (3.13) holds if G is replaced by a group L ∈ L0, we obtain

It(f) = Jt(f) −
∑

L∈L0

|WL
0 ||WG

0 |−1ÎL
t (φL(f))

=
∑

M∈L
|WM

0 ||WG
0 |−1

∫
Πt(M,V,ζ)

aM (π)
(

JM (π, f) −
∑

L∈L0(M)

ÎL
M (π, φL(f))

)
dπ

=
∑

M∈L
|WM

0 ||WG
0 |−1

∫
Πt(M,V,ζ)

aM (π)IM (π, f) dπ.

This is the required expansion. �

If we recall this stage of the discussion of the geometric side, we can imagine what to
do next. We introduce the linear form

It,unit(f) =
∫

Πt(G,V,ζ)
aG(π)fG(π) dπ, f ∈ H(G, V, ζ), (3.16)

defined by the term with M = G in the expansion (3.13). This is the purely ‘unitary’
part of It(f), which consists of a (continuous) linear combination of irreducible unitary
characters. Not surprisingly, It,unit(f) will play a role that is parallel to that of Iorb(f).

4. K-groups and transfer factors

To study the transfer properties of the various objects in the trace formula, it is best to
work with several groups simultaneously. From now on, G will be a multiple group over
the field F , in the sense of [12, § 1]. Thus

G =
∐
α

Gα, α ∈ π0(G),

is a variety whose connected components Gα are reductive groups over F , equipped with
an equivalence class of frames

(ψ, u) = {(ψαβ , uαβ) : α, β ∈ π0(G)}.

Recall that ψαβ : Gβ → Gα is an isomorphism over F̄ , and that uαβ : Γ → Gα,sc is
a locally constant function from the Galois group Γ = Gal(F̄ /F ) to Gα,sc. (As usual,
Gα,sc stands for the simply connected cover of the derived group Gα,der of Gα.) A given
pair (ψαβ , uαβ) is required to satisfy some compatibility conditions, while equivalence of
frames (ψ, u) is defined in a natural way in terms of conjugacy.

We shall make free use of the notation and terminology of [12]. For example, a homo-
morphism between multiple groups G and Ḡ over F is a morphism

θ =
∐
α

(θα : Gα → Ḡᾱ)
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from G to Ḡ (as varieties over F ) that preserves all the structure. In other words, there are
frames (ψ, u) and (ψ̄, ū) for G and Ḡ such that θα ◦ψαβ = ψ̄ᾱβ̄ ◦θβ and ūᾱβ̄ = θα,sc(uαβ),
for each α, β ∈ π0(G). An isomorphism of multiple groups is of course an invertible
homomorphism. In this paper, we shall also make use of a weaker notion of isomorphism.
We shall say that a map θ: G → Ḡ is a weak isomorphism if it satisfies all the requirements
of an isomorphism except for the condition relating ūᾱβ̄ with uαβ . We introduce this
notion in order to be able to identify multiple groups that differ only in the choices of
functions {uαβ}.

Another notion from [12] is that of a Levi subgroup M of the multiple group G. For
any such M , we construct the associated objects W (M), P(M), L(M) and F(M) as
in [12]. We can also form a dual group Ĝ for G, and a dual Levi subgroup M̂ ⊂ Ĝ for
M . Any such M̂ comes with a bijection L → L̂ and P → P̂ from L(M) to L(M̂) and
from P(M) to P(M̂). (Recall that P(M̂), L(M̂) and F(M̂) consist of groups that are
Γ -stable.) Finally, we have the notion of a quasisplit inner twist G∗ for G, and of a Levi
subgroup M∗ of G∗ corresponding to M . Then G∗ can be regarded as a component of a
multiple group G  G∗, and M∗ is a component of a Levi subgroup M  M∗. Any such
M∗ comes with bijections L → L∗ and P → P ∗ from L(M) to L(M∗) and from P(M)
to P(M∗).

Suppose for a moment that F is a local field. Following suggestions of Kottwitz (which
were in turn motivated by ideas of Vogan), we introduced a notion in [12, § 2] that we
called a K-group. By definition, a K-group over F is a multiple group G such that the
functions uαβ : Γ → Gα,sc are all 1-cocycles, and such that for each α, the map

{uαβ
: β ∈ π0(G)} → H1(F, Gα)

is a bijection onto the image of H1(F, Gα,sc) in H1(F, Gα). A K-group over a p-adic field
F is just an ordinary connected group. However, a K-group over F = R can have several
connected components.

We assume for the rest of this section that F is a global field. Suppose that G is a
multiple group over F that satisfies the global analogue of the property above. That is,
for every frame (ψ, u), the functions uαβ : Γ → Gα,sc are 1-cocycles, and for any α, the
map {uαβ

} → H1(F, Gα) is a bijection onto the image of H1(F, Gα,sc) in H1(F, Gα).
We shall be interested in representing G as a product of local K-groups. We define a
local product structure on G to be a family of local K-groups (Gv, Fv), indexed by the
valuations of F , and a family of (multiple group) homomorphisms G → Gv over Fv whose
restricted direct product

G →
∏
v

Gv

is an isomorphism of schemes over A. Such a structure determines a surjective map

α → αV =
∏
v∈V

αv, α ∈ π0(G), αv ∈ π0(Gv),

of components, for any finite set V of valuations, which is bijective if V contains V∞. We
also obtain a group theoretic injection of Gα(F ) into GαV

(FV ), for each α ∈ π0(G). We
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shall often write
GV =

∐
αV

GV,αV
=

∐
αV

GV,αV
(FV ),

a set we can also represent as a product

GV =
∏
v∈V

Gv =
∏
v∈V

Gv(Fv).

It is easy to see from the Hasse principle for the groups Gα,sc, together with Lemmas
4.3.1(b) and 4.3.2(b) of [21], that G does have a local product structure.

We define a K-group over the global field F to be a multiple group over F , as above,
together with a local product structure. Suppose that G is a K-group over F , and that
G∗ is a quasisplit inner twist of G. By definition, G∗ is a connected quasisplit group
over F , together with a G∗-inner class of inner twists ψα: Gα → G∗ and a corresponding
family of functions uα: Γ → G∗

sc, for α ∈ π0(G). Then G∗ determines a quasisplit inner
twist G∗

v of each of the local K-groups G∗
v. Following [12], we shall sometimes refer to G

as an inner K-form of G∗. We shall say that G is quasisplit if one of its components is
quasisplit (over F ).

We emphasize that K-groups have been introduced only to streamline some aspects of
the study of connected groups. If we are given a connected reductive group G1 over F ,
we can find a K-group G over F such that Gα1 = G1 for some α1 ∈ π0(G). There could
of course be several such G, but the weak isomorphism class of G is uniquely determined
by G1. In particular, any connected quasisplit group G∗ has a quasisplit inner K-form
G, which is unique up to weak isomorphism.

Suppose that G is a K-group over F , with quasisplit inner twist G∗. As in the local
case, any Levi subgroup M of G inherits the structure of a K-group. We shall investigate
the case that M is minimal.

For each v, we write ζ̂G,v for the character attached to the local K-group Gv that was
denoted by ζGv in [12, (2.2)]. Then ζ̂G,v is a character on the group ẐΓv

sc of invariants of
the local Galois group Γv = Gal(F̄v/Fv) in the centre Ẑsc = Z(Ĝsc). It is trivial unless v

belongs to Vram(G) = Vram(Gα), α ∈ π0(G). The tensor product

ζ̂G =
⊗

v

ζ̂G,v :
∏
v

(ẐΓv
sc ) → C

∗

over v of these characters is invariant on the diagonal image of ẐΓ
sc in

∏
v ẐΓv

sc . (See [22,
§ 2].) Now the canonical based root datum

(XG, ∆G, X∨
G, ∆∨

G)

for G is canonically isomorphic to its counterpart for G∗. The canonical isomorphism

Ẑsc ∼= XG∗
sc

/XG∗
ad

leads to a map
α → zα, α ∈ ∆G/Γ,
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from the set of Γ -orbits of simple roots into ZΓ
sc. The definition is identical to the case

of a local K-group treated in [12, § 2]. This in turn determines a Γ -stable subset

∆0 = {α ∈ ∆G : ζ̂G,v(zα) = 1, v ∈ Vram(G)}

of ∆G. On the other hand, the set of simple roots of any parabolic subgroup P of G over
F also determines a Γ -stable subset ∆P of ∆G.

Lemma 4.1. Suppose that ∆ is a Γ -stable subset of ∆G. Then there is a parabolic
subgroup P of G over F with ∆P = ∆ if and only if ∆P is contained in ∆0.

Proof. The proof of the lemma is essentially the same as that of its local analogue [12,
Lemma 2.1]. The only difference is that in place of the local map

Kv : H1(Fv, G∗
v,ad) → ẐΓv

sc ,

whose kernel is the image of H1(Fv, G∗
v,sc) in H1(Fv, G∗

v,ad), we use the composition of
maps

K : H1(F, G∗
ad) →

∏
v

H1(Fv, G∗
v,ad) →

∏
v

ẐΓv
sc ,

of which the kernel is the image of H1(F, G∗
sc) in H1(F, G∗

ad). In particular, the role of
the local character ζ̂G,v in the earlier proof is taken here by the global product ζ̂G. The
definition of a global K-group is such that the proof of [12, Lemma 2.17] applies directly
to the global situation here. �

As in the local case [12, Corollary 2.2], the proof of the lemma also provides a corollary.

Corollary 4.2. Suppose that R is a Levi subgroup of G∗, with a dual Levi subgroup
R̂ ⊂ Ĝ. Then R corresponds to a Levi subgroup M of G (with dual Levi subgroup
M̂ = R̂) if and only if for each v, ζ̂G,v is trivial on the subgroup

ẐΓv
sc ∩ (Z(R̂sc)Γ )0 = ẐΓv

sc ∩ (Z(M̂sc)Γ )0

of ẐΓv
sc . (As in [12, § 1], M̂sc stands for the preimage of M̂ in Ĝsc.)

If M is a Levi subgroup of G, with dual Levi subgroup M̂ ⊂ Ĝ, ζ̂G is the pullback of a
character ζ̂M

G =
∏

v ζ̂M
G,v on

∏
v π0(Z(M̂sc)Γv ). The Levi subgroup will be minimal if and

only if for any P ∈ P(M), ∆P equals ∆0. In this case, we write M0 = M , and we denote
the character ζ̂M

G by
ζ̂0
G =

∏
v

ζ̂0
G,v.

For the rest of this section, G will be a fixed K-group over the global field F , together
with a quasisplit inner twist G∗. Following § 1, we fix a central induced torus Z for the
K-group G, and a character ζ on Z(A)/Z(F ). The notion is the same as that for a local
K-group [12, § 3]. Thus, Z is an induced torus over F , together with central embeddings

Z
∼−→ Zα ⊂ Gα, α ∈ π0(G),
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over F that are compatible with the isomorphisms ψαβ
: Gβ → Gα. For each α, ζ deter-

mines a character ζα on Zα(A)/Zα(F ). As in [12], we shall make free use of obvious
extensions to G of notation for connected groups. In particular, we have the quotient

Ḡ = G/Z =
∐

α∈π0(G)

(Gα/Zα),

which is easily seen to be a K-group. We also have the notion of a central extension

G̃ =
∐

α∈π0(G)

G̃α

of G by an induced torus Z̃, which is a K-group such that G̃/Z̃ = G. Other examples
are the vector spaces

H(G, ζ) =
⊕

α∈π0(G)

H(Gα, ζα) =
⊕

α∈π0(G)

H(Gα(A), ζα)

and

I(G, ζ) =
⊕

α∈π0(G)

I(Gα, ζα) =
⊕

α∈π0(G)

I(Gα(A), ζα).

Similarly, if V is a finite set of valuations of F ,

Γ (GV , ζV ) =
∐
αV

Γ (GV,αV
, ζV,αV

)

stands for a basis of the vector space

D(GV , ζV ) =
⊕
αV

D(GV,αV
, ζV,αV

)

of ζV -equivariant distributions on GV , while

Γreg(GV , ζV ) =
∐
αV

Γreg(GV,αV
, ζV,αV

)

is the subset of orbital distributions in Γ (GV , ζV ) that have strongly regular support.
Moreover,

Π(GV , ζV ) =
∐
αV

Π(GV,αV
, ζV,αV

)

stands for a basis of the vector space

F(GV , ζV ) =
⊕
αV

F(GV,αV
, ζV,αV

)

of ζV -equivariant distributions on GV , while

Πtemp(GV , ζV ) =
∐
αV

Πtemp(GV,αV
, ζV,αV

)

https://doi.org/10.1017/S1474748002000051 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748002000051


214 J. Arthur

is the subset of tempered distributions in Π(GV , ζV ).
We turn now to transfer factors. We would eventually like to be able to transfer general

elements in Γ (GV , ζV ). Before we can consider this, however, we must first describe the
canonical adelic transfer factors for strongly G-regular conjugacy classes. If α ∈ π0(G) is
a component of G, the strongly regular set Gα,reg in Gα is Zariski open. The set Gα,reg(A)
of adelic points is therefore defined, as is the corresponding set Γreg(Gα(A)) of strongly
regular conjugacy classes. We shall describe transfer factors attached to elements in

Γreg(G(A)) =
∐
α

Γreg(Gα(A)).

This is largely a review. It combines a mild generalization [12] of the local Langlands–
Shelstad transfer factors with the global definitions of [31, § 6].

As in the local case, an endoscopic datum for G is defined entirely in terms of the
dual group Ĝ, and is therefore the same as an endoscopic datum for G∗. It consists of
a connected quasisplit group G′ over F , embedded in a larger datum (G′,G′, s′, ξ′) [31,
(1.2)]. We shall write E(G) for the set of isomorphism classes of endoscopic data for G

over F that are locally relevant to G. In other words, for every v, G′(Fv) has a strongly
G-regular element that is an image (in the sense of [31, (1.3)]) of some class in

Γreg(Gv) =
∐

αv∈π0(Gv)

Γreg(Gv,αv (Fv)).

As usual, we generally denote an element in E(G) by G′, even though G′ is really only the
first component of a representative of an equivalence class. If V is a finite set of valuations
of F that contains Vram(G), we write E(G, V ) for the subset of elements G′ ∈ E(G) that
are unramified outside of V . We also write Eell(G) and Eell(G, V ) for the subset of elements
in E(G) and E(G, V ), respectively, that are elliptic over F .

If G′ belongs to Eell(G), we can fix a central extension G̃′ → G′ and an L-embedding
ξ̃′: G′ → LG̃′ that satisfy the conditions of [10, Lemma 2.1]. In this paper, it will be
convenient to write C̃ ′ for the induced torus that is the kernel of the projection G̃′ → G′,
and η̃′ for the character on C̃ ′(A)/C̃ ′(F ) that is dual to the global Langlands parameter
obtained from the composition

WF → G′ ξ̃′

−→ LG̃′ → LC̃ ′,

where WF is the Weil group of F , and WF → G′ is any section. (The local forms of these
objects were denoted by Z̃ ′ and ζ̃ ′ in [10] and [12].) We reserve the symbol Z̃ ′ for the
preimage of Z in G̃′. Global analogues of the local constructions in [31, (4.4)] lead to a
canonical extension of η̃′ to a character on Z̃ ′(A)/Z̃ ′(F ). We shall reserve the symbol ζ̃ ′

for the character on Z̃ ′(A)/Z̃ ′(F ) obtained from the product of η̃′ with the pullback of
ζ. (The local forms of these last objects were denoted by Z̃ ′Z and ζ̃ ′

Zζ in [10] and [12].)
The global transfer factors are products of the local transfer factors of [31]. However,

we have to agree how to normalize them.
Suppose that G′ ∈ E(G). Since G′ is locally relevant to G, we can find a maximal torus

T̄ ′
v in G′ over Fv, for any v, that transfers over Fv to Gv. Choose a finite set of valuations
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V ⊃ Vram(G), and let UV be the set of elements in G′
V =

∏
v∈V G′

v(Fv) that are G′
V -

conjugate to G-strongly regular elements in T̄ ′
V =

∏
v T̄ ′

v(Fv). Then UV is an open subset
of G′

V whose closure contains 1. Now the closure of the diagonal image of G′(F ) in G′
V

is known to contain an open neighbourhood of 1. (See [23, Theorem 1].) It follows that
there is a strongly G-regular element in G′(F ) that for each v ∈ V is a local image of
some point in Gv(Fv). This element is automatically also a local image from any of the
quasisplit groups Gv, v �∈ V . Let δ̄′ be a point in its preimage in G̃′(F ). The projection of
δ̄′ onto Ḡ′(F ) is then an adelic image of a strongly regular element γ̄ =

∏
v γ̄v in Gᾱ(A),

for some ᾱ ∈ π0(G). We fix the two elements δ̄′ and γ̄. The pair (δ̄′, γ̄) will serve as a
base point for the global transfer factor.

Let T̄ ′ be the centralizer in G′ of the projection of δ̄′ onto G′. Then T̄ ′ is a maximal
torus in G′ over F . Choose an admissible embedding T̄ ′ → T̄ of T̄ ′ into a maximal torus
in G∗, and let δ̄∗ ∈ T̄ (F ) be the corresponding image of δ̄′. For the element γ̄ ∈ Gᾱ(A),
we choose a point h̄ ∈ G∗

sc(A) such that h̄ψᾱ(γ̄)h̄−1 = δ̄∗. The function

v̄(τ) = h̄uᾱ(τ)τ(h̄)−1, τ ∈ Γ,

takes values in T̄sc(A), where T̄sc is the preimage of T̄ in G∗
sc. This function need not be

a cocycle, but its boundary ∂v̄ equals ∂uᾱ, and takes values in T̄sc(F̄ ). One can therefore
project v̄ onto an element µT̄ = µT̄ (δ̄∗, γ̄) in H1(F, T̄sc(A)/T̄sc(F̄ )). On the other hand,
the admissible embedding T̄ ′ → T̄ , and the semisimple element s′ ∈ Ĝ attached to G′,
determine a point s′

T̄
in ˆ̄T [31, (3.1)]. This point projects to an element s̄′

T̄
in π0( ˆ̄TΓ

ad),
where ˆ̄Tad is a dual torus for T̄sc. As in [31, p. 268], we set

d(δ̄′, γ̄) = 〈µT̄ , s̄′
T̄ 〉,

where the right-hand side is given by the global Tate–Nakayama pairing for the torus
T̄sc.

Now suppose that δ′ ∈ G̃′(A) is strongly G-regular and that γ ∈ G(A) is strongly
regular. We define the relative global transfer factor as a product

∆(δ′, γ; δ̄′, γ̄) =
∏
v

∆(δ′
v, γv; δ̄′

v, γ̄v)

of relative transfer factors for the local K-groups Gv. The local factors were defined
in [12, § 2] by a natural variant of the basic construction in [31, (3.7)], and are easily
seen to equal 1 for almost all v. Following [24, (7.3)], we define the absolute global
transfer factor

∆(δ′, γ) = ∆(δ′, γ; δ̄′, γ̄)d(δ̄′, γ̄)−1. (4.1)

It depends only on the image of γ in Γreg(G(A)) and on the image of δ′ in the set
∆G- reg(G̃′(A)) of strongly G-regular stable conjugacy classes in G̃′(A).

Lemma 4.3. The absolute global transfer factor ∆(δ′, γ) is independent of the base
point (δ̄′, γ̄).
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Proof. Suppose that (δ̄′, γ̄) is replaced by another base point (¯̄δ′, ¯̄γ), with ¯̄δ′ ∈ G̃′(F )
strongly G-regular. Then

∆(δ′, γ; ¯̄δ′, ¯̄γ) = ∆(δ′, γ; δ̄′, γ̄)∆(δ̄′, γ̄; ¯̄δ′, ¯̄γ),

by the analogue of [31, Lemma 4.1.A] for local K-groups. Furthermore,

∆(δ̄′, γ̄; ¯̄δ′, ¯̄γ) = d(¯̄δ′, ¯̄γ)d(δ̄′, γ̄)−1,

by [31, Lemma 6.3.B]. The lemma follows. �

Corollary 4.4. The absolute global transfer factor depends only on the weak isomor-
phism class of G.

Proof. It follows from the definitions that the transfer factors are invariant under iso-
morphisms of K-groups. To deal with the more general case of weak isomorphisms, we
need only show that the absolute global transfer factor for G remains unchanged if we
modify the functions {uαβ

}. The relative local transfer factors, from which the global
factor is formed, are actually sensitive to the choice of {uαβ

}. The dependence is through
the term [12, (3.4)], defined on p. 222 of [12]. However, if the two points γ and γ̄ lie in
the same component Gα, this term is the same as the factor in [31, (3.4)]. The latter
is defined in terms of the function uα, (which was denoted by u in [31]), although it is
actually independent of the choice of this function. The functions {uαβ} have no role at
all in this special case. The corollary therefore follows from the lemma. �

Our concern in this paper will be primarily with products of local transfer factors over
finite sets V ⊃ Vram(G). Suppose that G′ ∈ Eell(G) is fixed. We recall that the local
transfer factor at any v is defined by

∆(δ′
v, γv) = ∆(δ′

v, γv; δ̄′
v, γ̄v)∆(δ̄′

v, γ̄v),

where ∆(δ̄′
v, γ̄v) is an arbitrary preassigned value at the local base point (δ̄′

v, γ̄v). Consider
the case that v does not belong to Vram(G). In particular, Gv is a quasisplit group.
As such, it has canonical transfer factors that depend only on a choice of splitting for
Gv [31, (3.7)]. As observed by Hales [17, § 7], our choice of hyperspecial maximal compact
subgroup Kv determines a family of splittings of Gv for which the associated transfer
factors are the same. We obtain a transfer factor ∆Kv (δ′

v, γv) for (Gv, G′
v) that depends

only on Kv. For our preassigned value at v, we set ∆(δ̄′
v, γ̄v) equal to ∆Kv (δ̄′

v, γ̄v). Since

∆Kv (δ′
v, γv) = ∆(δ′

v, γv; δ̄′
v, γ̄v)∆Kv

(δ̄′
v, γ̄v)

by definition, we obtain
∆(δ′

v, γv) = ∆Kv (δ′
v, γv). (4.2)

In particular, ∆(δ′
v, γv) is independent of (δ̄′

v, γ̄v). For the places v ∈ Vram(G), we choose
any preassigned values ∆(δ̄′

v, γ̄v), subject only to the condition∏
v∈Vram(G)

∆(δ̄′
v, γ̄v) = d(δ̄′, γ̄)−1

∏
v �∈Vram(G)

∆Kv (δ̄′
v, γ̄v)−1. (4.3)
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The absolute global transfer factor will then be given by a product

∆(δ′, γ) =
∏
v

∆(δ′
v, γv),

almost all of whose factors are easily seen to be equal to 1.
Consider a finite set of valuations V that contains Vram(G). Suppose that γV ∈

Γreg(GV ) is a strongly regular conjugacy class in GV (FV ), and that δ′
V ∈ ∆G-reg(G̃′

V ) is
a strongly G-regular stable conjugacy class in G̃′

V . The transfer factor for γV and δ′
V is

defined by a product
∆(δ′

V , γV ) =
∏
v∈V

∆(δ′
v, γv) (4.4)

of local transfer factors, chosen as above. We can certainly assume that δ′
V and γV are

projections of adelic elements δ′ and γ. We obtain a representation

∆(δ′
V , γV ) = ∆(δ′, γ)

∏
v �∈V

(∆Kv
(δ′

v, γv))−1

that is independent of the base point (δ̄′, γ̄). The transfer factor ∆(δ′
V , γV ) is thus a

canonical object, that depends only on the hyperspecial maximal compact subgroup
KV . This will be the general setting for our study of global transfer.

What makes the transfer factor (4.4) remain a global object is the fact that the endo-
scopic datum G′ is over F . We can of course also consider local endoscopic data. Suppose
that V is any finite set of valuations. We write E(GV ) for the set of products

G′
V =

∏
v∈V

G′
v, G′

v ∈ E(Gv),

of local endoscopic data. If δ′
V =

∏
v∈V δ′

v belongs to the set

∆G- reg(G̃′
V ) =

∏
v∈V

∆G- reg(G̃′
v),

and γv lies in Γreg(GV ), the transfer factor ∆(δ′
V , γV ) can still be defined by a product

(4.4). As a local object, however, it does depend on a preassigned value at a local base
point (δ̄′

V , γ̄V ). It of course also depends on the products G̃′
V =

∏
G̃′

v and ξ̃′
V =

∏
v ξ̃′

v

of auxiliary data.
For each valuation v, we write ∆̃E

reg,ell(Gv), ∆E
reg,ell(Gv), ∆̃E

reg(Gv) and ∆E
reg(Gv) for the

endoscopic sets of [14]. We can then form the sets ∆̃E
reg,ell(GV ), ∆E

reg,ell(GV ), ∆̃E
reg(GV )

and ∆E
reg(GV ) as products over the places v in a given finite set V . Thus, ∆̃E

reg(GV ) is a
quotient of the family of elements in

{(G′
V , ξ̃′

V , δ′
V ) : G′

V ∈ E(GV ), ξ̃′
V : G′

V → LG̃′
V , δ′

V ∈ ∆G- reg(G̃′
V )}

that are GV -images, taken with respect to a certain natural equivalence relation. This is
the set denoted by Γ̃ E(GV ) in [12, § 2] and [10, § 2] (in the special case that V contains
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one element), apart from the fact that the latter did not have variable embeddings ξ̃′
V

built into the definition. The set ∆E
reg(GV ) is the corresponding quotient of the family of

elements in
{(G′

V , δ′
V ) : G′

V ∈ E(GV ), δ′
V ∈ ∆G- reg(G′

V )}

that are GV -images. It is equal to the set denoted by Γ E(GV ) in [12, § 2] and [10, § 2].
The point of introducing these endoscopic sets is that the transfer factor attached

to (δ′
V , γV ) depends only on the image δV of δ′

V in ∆̃E
reg(GV ), or rather, of the triplet

(G′
V , ξ̃′

V , δ′
V ) represented by δ′

V . We can therefore regard the transfer factor as a function

∆(δV , γV ) = ∆(δ′
V , γV )

on ∆̃E
reg(GV ) × Γreg(GV ). Now the group C̃ ′

V =
∏

v C̃ ′
v acts simply transitively on the

fibres of the map ∆G- reg(G̃′
V ) → ∆G- reg(G′

V ). Moreover, the group

H1(WFV
, Z( ˆ̃G′

V )) =
⊕
v∈V

H1(WFv , Z( ˆ̃G′
v))

acts simply transitively on the set of Z( ˆ̃G′
V )-orbits of admissible embeddings

ξ̃′
V : G′

V → LG̃′
V . If aV zV δV is the image in ∆̃E

reg(GV ) of a point

(G′
V , aV ξ̃′

V , zV δ′
V ), aV ∈ H1(WFV

, Z( ˆ̃G′
V )), zV ∈ C̃ ′

V ,

the transfer factor satisfies

∆(aV zV δV , γV ) = χaV
(δ′

V )η̃′
V (zV )∆(δV , γV ), (4.5)

where η̃′
V =

∏
v η̃′

v is the canonical character on C̃ ′
V , and χaV

=
∏

v χav
is a character on

G̃′
V that can be defined in terms of the Langlands correspondence for tori [30] from the

parameter aV . Since the embeddings ξ̃′
V are assumed implicitly to be of unitary type,

χaV
is indeed a unitary character. It follows that the product of ∆(δV , γV ) with the

adjoint transfer factor

∆(γV , δV ) = |KγV
|−1∆(δV , γV ), |KγV

| =
∏
v∈V

|Kγv |, (4.6)

of [12, § 2] depends only on the image of δV in ∆E
reg(GV ). As in [12, Lemma 2.3], we

obtain adjoint relations∑
δV ∈∆E

reg(GV )

∆(γV , δV )∆(δV , γV,1) = δ(γV , γV,1), γV , γV,1 ∈ Γreg(GV ), (4.7)

and ∑
γV ∈Γreg(GV )

∆(δV , γV )∆(γV , δV,1) = δ̃(δV , δV,1), δV , δV,1 ∈ ∆̃E
reg(GV ). (4.8)
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Our concern in this paper is really with the general basis Γ (GV , ζV ) of D(GV , ζV ).
We shall set up transfer factors for elements in this basis in § 5, under the assump-
tion of the fundamental lemma. In the meantime, we consider distributions in the sub-
set Γreg(GV , ζV ) of Γ (GV , ζV ). For each G′

V ∈ E(GV ), we fix a subset ∆reg(G̃′
V , ζ̃ ′

V )
of SD(G̃′

V , ζ̃ ′
V ), as at the end of § 1. This set in turn has a subset ∆G- reg(G̃′

V , ζ̃ ′
V ) of

G-regular elements. We shall convert the basic transfer factor above to a function on
∆G- reg(G̃′

V , ζ̃ ′
V ) × Γreg(GV , ζV ).

If G′
V belongs to E(GV ), the transfer factor determines a map

f → f ′(δ′
V ) =

∑
γV ∈Γreg(GV )

∆(δ′
V , γV )fG(γV ), δ′

V ∈ ∆G- reg(G̃′
V ),

from functions f ∈ H(GV ) to functions f ′ = fG′
on ∆G- reg(G̃′

V ). The image f ′ is (η̃′
V )−1-

equivariant under translation by C̃ ′
V . If we apply a variant of the projection (1.1) to f ′, we

obtain a function that is (ζ̃ ′)−1-equivariant under translation by Z̃ ′
V . This determines a

function on ∆G- reg(G̃′
V , ζ̃ ′

V ), which we denote again by f ′. The new function depends only
on the image of fG in I(GV , ζV ), which we denote again by fG. How are these two new
functions related? The answer is clearly given by (1.4) and (1.6). If δ′ ∈ ∆G- reg(G̃′

V , ζ̃ ′
V )

and γ ∈ ΓG- reg(GV , ζV ), we define a modified transfer factor by

∆(δ′, γ) =
∑
γV

(δ′
V /δ′)−1∆(δ′

V , γV )(γV /γ)−1

=
∑
δ′

V

(δ′
V /δ′)−1∆(δ′

V , γV )(γV /γ)−1,

where in the first formula, for example, δ′
V is any representative of δ′ in ∆G- reg(G̃′

V ),
and γV is summed over all representatives of γ in Γreg(GV ). The new functions f ′ and
fG are then related by

f ′(δ′) =
∑

γ∈Γreg(GV ,ζV )

∆(δ′, γ)fG(γ), δ′ ∈ ∆G- reg(G̃′
V , ζ̃ ′

V ). (4.9)

The Langlands–Shelstad conjecture amounts to the assertion that for any f ∈ H(GV , ζV ),
the corresponding function f ′ belongs to SI(G̃′

V , ζ̃ ′
V ).

If we choose the bases ∆G- reg(G̃′
V , ζ̃ ′

V ) appropriately, we can also construct an ana-
logue for ζV -equivariant distributions of the set ∆E

reg(GV ). One defines ∆E
reg(GV , ζV ) as

a quotient of the subset of elements in

{(G′
V , δ′) : G′ ∈ E(GV ), δ′ ∈ ∆G- reg(G̃′

V , ζ ′
V )}

that are relevant to GV . Any element δ in this quotient can be represented by a number
of triplets

(G′
V , ξ̃′

V , δ′), G′
V ∈ E(GV ), ξ̃′

V : G′
V → LG̃′

V , δ′ ∈ ∆G- reg(G̃′
V , ζ̃ ′

V ),
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but it is not hard to show from the definitions that the modified transfer factor

∆(δ, γ) = ∆(δ′, γ)

depends only on δ. In particular, the elements in ∆E
reg(GV , ζV ) provide linear forms

f → fE
G(δ) = f ′(δ′), f ∈ H(GV , ζV ).

We obtain a space

IE(GV , ζV ) = {fE
G : f ∈ H(GV , ζV )},

of functions on ∆E
reg(GV , ζV ). Obviously,

fE
G(δ) =

∑
γ∈Γreg(GV ,ζV )

∆(δ, γ)fG(γ), f ∈ H(GV , ζV ),

and it follows from the adjoint relations (4.7) and (4.8) that the map fG → fE
G is an

isomorphism from I(GV , ζV ) onto IE(GV , ζV ). We note that the sets Γreg(GV , ζV ) and
∆E

reg(GV , ζV ) represent a pair of bases of the subspace of distributions in D(GV , ζV ) that
are supported on the strongly regular set in GV .

This completes our summary of the basic transfer factors

∆G(·, ·) = ∆(·, ·)

attached to strongly regular classes in GV . The discussion has been largely formal. We
have tried to set things up in a way that will ease the transition to more general trans-
fer factors, which we shall introduce in the next section under the hypothesis of the
fundamental lemma.

5. An assumption: the fundamental lemma

The fundamental lemma is a misnomer. It is not a lemma at all, but a general conjecture
of Langlands. In this paper, it will be the basic assumption on which the main theorems
depend. We shall actually require a generalization of the usual fundamental lemma, which
applies weighted orbital integrals of the unit unramified spherical function.

To describe the fundamental lemma, we take F to be a local field. Suppose for a
moment that F is arbitrary, and that G is a K-group over F . Suppose also that Z is a
central induced torus in G over F , and that ζ is a character on Z(F ). We then write

H(G, ζ) = H(G(F ), ζ), I(G(F ), ζ) = I(G, ζ),

Γreg(G, ζ) = Γreg(G(F ), ζ), ∆reg(G, ζ) = ∆reg(G(F ), ζ),

etc., for the various objects attached to G(F ). The basic local transfer factor

∆(δ′, γ) = ∆G(δ′, γ), γ ∈ Γreg(G, ζ), δ′ ∈ ∆G- reg(G̃′, ζ̃ ′),

is defined as a function on ∆G- reg(G̃′, ζ̃ ′) × Γreg(G, ζ).
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Assume now that G, Z and ζ are unramified over F . In particular, F is non-archi-
medean, and G is a connected reductive group. Following § 2, we write Kreg(Ḡ) for the
set of strongly regular conjugacy classes in Ḡ(F ) = G(F )/Z(F ) that are bounded, and
k → γ(k) for the canonical injection from Kreg(Ḡ) to Γreg(G, ζ). We also write Lreg(Ḡ)
for the set of strongly regular stable conjugacy classes in Ḡ(F ) that are bounded, and
� → δ(�) for the corresponding injection from Lreg(Ḡ) to ∆reg(G, ζ). Suppose that K is
a hyperspecial maximal compact subgroup of G(F ). If G′ is any endoscopic datum for G

over F , the normalized transfer factor ∆K(δ′, γ) attached to K is a canonical function on
∆G- reg(G̃′, ζ̃ ′) × Γreg(G, ζ). It does depend on the auxiliary data (G̃′, ξ̃′) attached to G′.
However, if G′ is unramified, there is a canonical class of admissible embeddings of LG′

into LG. (See [17, § 6].) This means that we can set G̃′ = G′. The embedding ξ̃′ must
still be chosen. It takes the form of an L-isomorphism of G′ with LG′ that is uniquely
determined up to the action of the group H1(Γun, Z(Ĝ′)), where Γun is the Galois group
of the maximal unramified extension of F . Having made these choices, we set

∆K(�′, k) = ∆K(δ′(�′), γ(k)), �′ ∈ LG- reg(Ḡ′), k ∈ Kreg(Ḡ),

for the unramified endoscopic datum G′. As a function on LG- reg(Ḡ′) × Kreg(Ḡ), ∆K is
independent of both the character ζ and the choice of ξ̃′.

Suppose that M is a Levi subgroup of G that is in good position relative to K. As in
§ 2, we set

rG
M (k) = JM (k, u), k ∈ KG- reg(M̄),

where u = uζ is the unit in the Hecke algebra attached to K and ζ. The function
rG
M depends of course on K, but it is independent of Z and ζ. If M ′ is an unramified

endoscopic datum for M , the transfer factor

∆K∩M (�′, k), �′ ∈ LG- reg(M̄ ′), k ∈ KG- reg(M̄),

is defined. If we sum its product with rG
M (k) over k, we obtain a function of �′ that is

easily seen to be independent of K, as well as Z and ζ.
We now state the generalized fundamental lemma as a conjecture on the unramified

groups G and M . We may as well take Z and ζ to be trivial, since the functions we
have defined are independent of these objects. The conjecture takes the form of a family
of identities, indexed by unramified, elliptic endoscopic data M ′ for M . The identity
corresponding to M ′ is given by a sum over the set EM ′(G) of endoscopic data for G

introduced in [11, § 4] and [12, § 3], with coefficients

ιM ′(G, G′) = |Z(M̂ ′)Γ /Z(M̂)Γ ||Z(Ĝ′)Γ /Z(Ĝ)Γ |−1, G′ ∈ EM ′(G).

Conjecture 5.1. For each G and M , there is a function

sG
M (�), � ∈ LG- reg(M),

with the property that for any G, M and K, any unramified elliptic endoscopic datum
M ′ for M , and any element �′ ∈ LG- reg(M ′), the transfer∑

k∈KG- reg(M)

∆K∩M (�′, k)rG
M (k) (5.1)
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equals ∑
G′∈EM′ (G)

ιM ′(G, G′)sG′

M ′(�′). (5.2)

Observe that the function sG
M (�) is uniquely determined by the required identity. For if

M ′ = M , the quasisplit group G belongs to EM ′(G). The required identity can be written

sG
M (�) =

∑
k

∆K∩M (�, k)rG
M (k) −

∑
G′ �=G

ιM (G, G′)sG′

M (�)

in this case, and serves as an inductive definition of sG
M (�). To establish the conjecture,

one would need to prove the additional identities that come from elements M ′ �= M .
Consider the case that M = G. Then G′ = M ′ is an elliptic endoscopic datum for

G, and EM ′(G) consists of G′ alone. The expression (5.2) equals sG′(�′) = sG′

G′(�′). If
G′ �= G, this has to satisfy two formulae. On the one hand, sG′(�′) is supposed to equal
the stable orbital integral on G′(F ), and on the other hand, it is required to equal the
unstable orbital on G(F ). This is the standard fundamental lemma that was conjectured
by Langlands, and that assumed a precise form with the definition of the transfer factors
in [31] (normalized as in [17]). It has been established in a limited number of cases.
If G = GL(n) or PGL(n), G′ = G is the only elliptic endoscopic group, and there is
nothing to prove. For SL(2) and U(3), the fundamental lemma was established in [26]
and [33], respectively, in the course of stabilizing the trace formulae for these groups. For
G = SL(n), the standard fundamental lemma was established by Waldspurger [36], and
for G = Sp(4), GSp(4) and SO(5), it was established by Hales [18] and Waldspurger [37].

At the other extreme, we could take M to be a minimal Levi subgroup. The assertion
of the conjecture is then trivial, since M ′ = M is the only endoscopic datum. If M is
neither minimal nor equal to G, there can be non-trivial elliptic endoscopic data M ′ for
M . The general identities have not been investigated in this case, and seem to be as
difficult as in the standard case that M = G. However, there are a few examples in which
there is nothing more to prove. If G = GSp(4), SO(5) or SL(p), with p prime, no Levi
subgroup M �= G has a proper elliptic endoscopic datum. The conjecture then holds in
these examples, since it has been established for M = G.

We have really to be more precise in discussing whether the conjecture applies to a
given case, since the definition is inductive. We shall introduce some sets that include
the unramified endoscopic groups for a given G. To allow room for future constructions,
we ask that the sets include groups taken over unramified extensions, and groups that
are centralizers of semisimple elements. Consider a collection U of pairs (G, F ) such that
if U contains (G, F ), then it contains any pair (G1, F1) obtained from (G, F ) in one of
the following three ways.

(i) F1 equals F , and G1 is an unramified endoscopic group for G.

(ii) F1 is an unramified extension of F , and G1 = G ×F F1.

(iii) F1 equals F , and G1 = Gc is the connected centralizer of a semisimple element
c ∈ G(F ) such that D(c) ∈ od

F , and |D(c)| = 1. (It follows from [22, Proposition
7.1] that G1 is quasisplit.)
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If G∗ is a fixed unramified group over a local field F∗, let U(G∗, F∗) denote the smallest
family U that contains (G∗, F∗), and satisfies the hereditary properties (i), (ii) and (iii).
We shall say that Conjecture 5.1 holds for U(G∗, F∗) if the given identities hold for any
(G, M), where (G, F ) belongs to U(G∗, F∗), and M is a Levi subgroup of G.

Conjecture 5.1 has an analogue for the Lie algebra g of G. The assertion is essentially
the same, except that K is replaced by a hyperspecial lattice in g(F ). We shall be
concerned only with the standard case that M = G, which we require in order to apply
the results of Waldspurger [38]. The case of the Lie algebra is closely related to that of
the group, but we shall not consider the question of how to pass from one to the other. We
shall simply impose the Lie algebra variant as an extra condition on the family U(G∗, F∗).

Having completed our discussion of the fundamental lemma, we return to the case that
F is an arbitrary local or global field. We shall introduce a formal assumption on which
future results will rest. We state it first as a hypothesis on a pair (G, F ), where G is a
connected reductive group over F .

Assumption 5.2.

(i) If F is global, both Conjecture 5.1 and the standard form of its Lie algebra analogue
hold for any of the families

U(Gv, Fv), v �∈ Vfund(G),

where Vfund(G) is some finite set of valuations of F that contains Vram(G).

(ii) If F is local, (G, F ) is isomorphic to a localization (Ġu, Ḟu) of some global pair
(Ġ, Ḟ ) that satisfies (i).

We have set things up so that the conditions remain in force for groups derived from
G by natural operations. For example, if (G, F ) satisfies Assumption 5.2, so do any pairs
(G̃, F ) and (Ḡ, F ) obtained from extensions and quotients of G by induced central tori.
This is clear if F is global, and can be established for local F by a global approximation
argument. Other examples are given in the following lemma, which is modelled on the
properties of the sets U above.

Lemma 5.3. Suppose that Assumption 5.2 holds for (G, F ). Then it also holds for any
pair (G1, F1) obtained from (G, F ) in one of the following three ways.

(i) F1 equals F , and G1 is an inner twist of an endoscopic group for G.

(ii) F1 is a finite extension of F , and G1 = G ×F F1.

(iii) F1 equals F , and G1 = Gc is the connected centralizer of a semisimple element
c ∈ G(F ).

Proof. Suppose that F is global. For (i), we take Vfund(G1) to be the union of Vfund(G)
with Vram(G1). For (ii), we take Vfund(G1) to be the set of places of F1 that either ramify
in F1, or lie above a place in Vfund(G). For (iii), we take Vfund(G1) to be any finite set
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S ⊃ Vfund(G) such that c is S-admissible. The global form of the lemma then follows
from the properties of the sets U(Gv, Fv).

Suppose that F is local. The lemma in this case follows from a standard local–global
argument. We shall just give a brief sketch. Let E ⊃ F be a finite Galois extension over
which G and G1 both split, and which contains F1 in case (ii). Let (Ġ, Ḟ ) be the global
pair provided by part (ii) of Assumption 5.2, and let Ė be a finite Galois extension over
which Ġ splits. Enlarging E and Ė, if necessary, we can assume that E = Ėw, for some
place w over u. Then

Gal(E/F ) = Gal(Ėw/Ḟu) ⊂ Gal(Ė/Ḟ ).

Replacing Ḟ by the fixed field in Ė of Gal(Ėw/Ḟu), we can assume that Gal(Ė/Ḟ )
actually equals Gal(E/F ). The local forms of (i) and (ii) then follow from the global
versions we have established. To deal with (iii), we replace (Ė, Ḟ ) by (ĖḞ ′, Ḟ ′), where
Ḟ ′ is a suitable extension of Ḟ in which u splits completely. This allows us to assume
that Gal(Ė/Ḟ ) = Gal(Ėui

/Ḟui
) for several places ui of Ḟ . It then follows from [23,

Lemma 1(b)] that Ġ(Ḟ ) is dense in Ġ(Ḟu). A simple argument, whose details we shall
omit, then establishes the local form of (iii) from its global version. �

Suppose that G is a K-group over the local or global field F . We shall say that G

satisfies Assumption 5.2 if the assumption holds for each of the components

(Gα, F ), α ∈ π0(G).

The main results of this and subsequent papers will apply to any such G. For example,
G could be an inner K-form of one of the split groups SO(5), GSp(4) or SL(p), with p

prime. Then Assumption 5.2, or at least the group theoretic part of it, holds for G. The
Lie algebraic part of the assumption can undoubtedly be established from this, so we can
be confident that the results of the paper apply at least to these groups.

From now on, unless we state otherwise, G will stand for a K-group over F that
satisfies Assumption 5.2. We return to the general setting of § 4, in which Z is a central
induced torus in G over F , and ζ is a character on Z(F ) or Z(A)/Z(F ) (according to
whether F is local or global). We recall also that if G′ ∈ E(G) is an endoscopic datum, G̃′

stands for a central extension of G′ by a central induced torus C̃ ′, and ζ̃ ′ is a character
on either Z̃ ′(F ) or Z̃ ′(A)/Z̃ ′(F ).

Suppose that F is local. Then we can assume that the Langlands–Shelstad conjecture
holds for G(F ). In the formulation at the end of § 4, this means that for any G′ ∈ E(G),
the map that takes f ∈ H(G, ζ) to the function

f ′(δ′) = fG′
(δ′) =

∑
γ∈Γreg(G,ζ)

∆(δ′, γ)fG(γ), δ′ ∈ ∆G- reg(G̃′, ζ̃ ′),

on ∆G- reg(G̃′, ζ̃ ′) sends H(G, ζ) continuously to the space SI(G̃′, ζ̃ ′). If F is non-archi-
medean, this is the main result of Waldspurger’s paper [38]. It depends on the Lie alge-
braic part of Assumption 5.2. If F is archimedean, the result was proved unconditionally
in the paper [35] of Shelstad.
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The existence of the local transfer mapping will be used repeatedly throughout the
paper. In particular, we shall make use of results and constructions of [10] and [14] that
are conditional of the Langlands–Shelstad conjecture.

We first recall a convention from [12]. Two elements x1 ∈ Gα1,reg(F ) and x2 ∈
Gα2,reg(F ) in Greg(F ) are said to be stably conjugate if for any frame (ψ, u), ψα1α2(x2)
is conjugate in Gα1(F̄ ) to x1. A stable distribution on G(F ) can then be defined as a
distribution that lies in the closed linear span of the set of stable orbital integrals, taken
over strongly regular stable conjugacy classes in G(F ). We write SD(G, ζ) and SF(G, ζ)
for the subspaces of stable distributions in D(G, ζ) and F(G, ζ), respectively. If the basis
Γreg(G, ζ) is suitably chosen, it has a partition whose equivalence classes ∆reg(G, ζ) are
bijective with the strongly regular stable conjugacy classes in Ḡ(F ), and parametrize
distributions

f → fG(δ) =
∑
γ∈δ

fG(γ), δ ∈ ∆reg(G, ζ), f ∈ C(G, ζ),

that are stable. There is a canonical injection δ → δ∗ from ∆reg(G, ζ) to ∆reg(G∗, ζ∗),
which is a bijection if G is quasisplit, such that

fG(δ) = f∗(δ∗), f ∈ C(G, ζ).

In particular, we can identify ∆reg(G, ζ) with the subset

∆E
reg(G, ζ) ∩ SD(G, ζ)

of the basis ∆E
reg(G, ζ) defined at the end of § 4. In general, we shall say that a linear

form S on H(G, ζ) is stable if its value at any f depends only on f∗. This matches the
definition above. If G is quasisplit, there is a unique linear form Ŝ on SI(G∗, ζ∗) attached
to any such S, with the property that

Ŝ(f∗) = S(f), f ∈ H(G, ζ).

This convention is familiar from the earlier case of invariant distributions. We shall use
it both in the form described here, and also as it applies to global K-groups.

The existence of transfer mappings allows one to construct extended transfer factors.
These are functions

∆(δ′, γ), G′ ∈ E(G), δ′ ∈ ∆(G̃′, ζ̃ ′), γ ∈ Γ (G, ζ),

defined for fixed bases ∆(G̃′, ζ̃ ′) of the spaces SD(G̃′, ζ̃ ′), such that

f ′(δ′) =
∑

γ∈Γ (G,ζ)

∆(δ′, γ)fG(γ), δ′ ∈ ∆(G̃′, ζ̃ ′), f ∈ H(G, ζ).

The rest of the discussion at the end of § 4 extends to this setting. One defines the set
∆E(G, ζ) as a quotient of the subset of G-relevant pairs in

{(G′, δ′) : G′ ∈ E(G), δ′ ∈ ∆(G′, ζ ′)}.
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If δ belongs to ∆E(G, ζ), the extended transfer factor

∆(δ, γ) = ∆(δ′, γ)

and the linear form
f → fE

G(δ) = f ′(δ′), f ∈ H(G, ζ),

are both independent of whatever triplet (G′, ξ̃′, δ′) is used to represent δ. In particular,
∆E(G, ζ) can be identified with a family of ζ-equivariant distributions on G(F ), which
one proves is a basis of D(G, ζ). The subset

∆(G, ζ) = ∆E(G, ζ) ∩ SD(G, ζ)

of ∆E(G, ζ) forms a basis of the subspace SD(G, ζ) of D(G, ζ). It corresponds to pairs of
the form (G∗, δ∗), and comes with an injection δ → δ∗ into ∆(G∗, ζ∗) that is a bijection
if G is quasisplit. Obviously,

fE
G(δ) =

∑
γ∈Γ (G,ζ)

∆(δ, γ)fG(γ), f ∈ H(G, ζ), (5.3)

and since fG → fE
G is an isomorphism from I(G, ζ) to SI(G, ζ), we can also write

fG(γ) =
∑

δ∈∆E(G,ζ)

∆(γ, δ)fE
G(δ), f ∈ H(G, ζ),

for complex numbers ∆(γ, δ). The extended transfer factor ∆(δ, γ) and its adjoint com-
panion ∆(γ, δ) satisfy adjoint relations∑

δ∈∆E(G,ζ)

∆(γ, δ)∆(δ, γ1) = δ(γ, γ1), γ, γ1 ∈ Γ (G, ζ), (5.4)

and ∑
γ∈Γ (G,ζ)

∆(δ, γ)∆(γ, δ1) = δ(δ, δ1), δ, δ1 ∈ ∆E(G, ζ). (5.5)

We refer the reader to the forthcoming paper [14] for details of the various constructions.
Suppose that M is a Levi subgroup of G. The canonical induction map γ → γG from

D(M, ζ) to D(G, ζ) sends the subspace SD(M, ζ) of D(M, ζ) to the subspace SD(G, ζ)
of D(G, ζ). The endoscopic basis ∆E(G, ζ) of D(G, ζ) provides an adjoint restriction map
δ → δM from D(G, ζ) to D(M, ζ), which sends the subspace SD(G, ζ) to SD(M, ζ), and
satisfies the analogue of (1.9). Unlike induction, however, the restriction operator depends
on the basis in question. The map δ → δM here is different from the map γ → γM of § 1,
even though we have not made a distinction in the notation. The generalized transfer
factors for G and M do satisfy natural reciprocity formulae

∆G(νG, γ) = ∆M (ν, γM ), ν ∈ ∆E(M, ζ), γ ∈ Γ (G, ζ),
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and

∆G(δ, µG) = ∆M (δM , µ), δ ∈ ∆E(G, ζ), µ ∈ Γ (M, ζ),

These are a reflection of the fact that the canonical maps fG → fM and fE
G → fE

M com-
mute with the corresponding two transfer maps.

The situation on the spectral side is entirely parallel. Here we have an endoscopic basis
ΦE(G, ζ) of F(G, ζ), and a subset

Φ(G, ζ) = ΦE(G, ζ) ∩ SF(G, ζ)

that forms a basis of SF(G, ζ). These objects are studied in [10] and [15]. We recall that
they are defined in terms of abstract bases Φell(M, ζ) of the cuspidal spaces SIcusp(M, ζ),
and similar objects for endoscopic groups M ′ of M . In the special case that the Levi
subgroup M is abelian [30], or the field F is archimedean [29], we can take the particular
bases afforded by Langlands parameters. In these cases, Φell(M, ζ) is to be identified with
the set of equivalence classes of cuspidal Langlands parameters

φ : WF → LM

that are compatible with ζ, in the sense that the composition of φ with the projection
LM → LZ is the Langlands parameter defined by ζ. The stable distribution associated
with such a parameter is then the sum of the standard characters in the corresponding
L-packet. In general, if φ′ is an element in Φ(G̃′, ζ̃ ′) with image φ in ΦE(G, ζ), we have
spectral transfer factors

∆(φ, π) = ∆(φ′, π), π ∈ Π(G, ζ),

in terms of which the linear form

f → fE
G(φ) = f ′(φ′), f ∈ H(G, ζ),

has an expansion
fE

G(φ) =
∑

π∈Π(G,ζ)

∆(φ, π)fG(π). (5.6)

There is also an inverse expansion

fG(π) =
∑

φ∈ΦE(G,ζ)

∆(π, φ)fE
G(φ), f ∈ H(G, ζ),

for complex numbers ∆(π, φ) that satisfy adjoint relations∑
φ∈ΦE(G,ζ)

∆(π, φ)∆(φ, π1) = δ(π, π1), π, π1 ∈ Π(G, ζ), (5.7)

and ∑
π∈Π(G,ζ)

∆(φ, π)∆(π, φ1) = δ(φ, φ1), φ, φ1 ∈ ΦE(G, ζ). (5.8)
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For archimedean F , these results are implicit in [35], while for p-adic F , they follow
from [10, Theorems 6.1 and 6.2]. We refer the reader to the forthcoming paper [15] for
more details.

Suppose that F is global. Let V be a finite set of valuations that contains the set
Vram(G, ζ) of ramified places. We define bases ∆E(GV , ζV ), ∆(GV , ζV ), ΦE(GV , ζV ) and
Φ(GV , ζV ) of the respective spaces D(GV , ζV ), SD(GV , ζV ), F(GV , ζV ) and SF(GV , ζV ),
as tensor products over v ∈ V of the local bases chosen above. We can then define
extended transfer factors as corresponding products

∆(δ, γ) =
∏
v∈V

∆(δv, γv), δ ∈ ∆E(GV , ζV ), γ ∈ Γ (GV , ζV ),

and

∆(φ, π) =
∏
v∈V

∆(φv, πv), φ ∈ ΦE(GV , ζV ), π ∈ Π(GV , ζV ),

of their local analogues. We can define adjoint transfer factors ∆(γ, δ) and ∆(π, φ) the
same way, and it is clear that the obvious variants of the relations (5.3)–(5.8) all hold.
The operations of induction and restriction exist in this context, and are compatible with
the extended transfer factors. Suppose that δ ∈ ∆E(GV , ζV ) is the image of an element
δ′ ∈ ∆(G̃′

V , ζ̃ ′
V ), where G′ ∈ E(G) is a global endoscopic datum (as opposed to a general

element in E(GV )). Then ∆(δ, γ) is independent of any choice of base point, although it
does of course depend on a choice of bases ∆E(GV , ζV ) and Γ (GV , ζV ). A similar remark
applies to the spectral transfer factors ∆(φ, π).

Suppose that H ⊃ Z is as in § 1. Then we can arrange that subsets ∆E(GH
V , ζV ) and

∆(GH
V , ζV ) of ∆E(GV , ζV ) and ∆(GV , ζV ) give bases of D(GH

V , ζV ) and SD(GH
V , ζV ),

respectively, and that quotients ΦE(GH
V , ζV ) and Φ(GH

V , ζV ) of ΦE(GV , ζV ) and Φ(GV , ζV )
form bases of F(GH

V , ζV ) and SF(GH
V , ζV ). We can also arrange that each of these four

bases has a chain of subsets that is parallel to (1.2) or (1.5). For elements δ ∈ ∆E(GH
V , ζV )

and γ ∈ Γ (GH
V , ζV ), the extended transfer factors ∆(δ, γ) and ∆(γ, δ) are defined sim-

ply as the restrictions of the ones above. For spectral objects φ ∈ ΦE(GH
V , ζV ) and π ∈

Π(GH
V , ζV ), however, we have to define ∆(φ, π) and ∆(π, φ) as an average of transfer

factors above. We may as well assume that H = Z at this point, and that φ and π have
unitary central characters. This allows us to identify φ and π with orbits φλ and πλ of
ia∗

G,Z in ΦE(GV , ζV ) and Π(GV , ζV ), respectively. We then define the transfer factors by
formulae

∆(φ, π) =
∑

λ

∆(φ, πλ) =
∑

λ

∆(φλ, π)

and

∆(π, φ) =
∑

λ

∆(πλ, φ) =
∑

λ

∆(π, φλ),
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in which λ is summed over ia∗
G,Z . Each of the sums has at most one non-zero term, and the

resulting functions depend only on φ and π. The extended transfer factors we have just
introduced describe the correspondence fG ↔ fE

G between I(GZ
V , ζV ) and IE(GZ

V , ζV ),
through the appropriate variant of (5.3) or (5.6). We shall use them in § 10 to stabilize
the geometric and spectral sides of the trace formula.

On the spectral side, we shall also require adelic transfer factors. It is clear how to
define adelic families Φ(G(A)Z , ζ) and ΦE(G(A)Z , ζ). One simply augments elements in
local families Φ(GZ

V , ζV ) and ΦE(GZ
V , ζV ) by products of unramified Langlands parameters

{φv : v �∈ V }. Suppose that π̇ ∈ Π(G(A)Z , ζ), and that for some G′ ∈ E(G), φ̇′ is an
element in Φ(G̃′(A)Z̃′

, ζ̃ ′) with image φ̇ in ΦE(G(A)Z , ζ). We then define

∆(φ̇′, π̇) = ∆(φ̇, π̇) = lim−→
S

∆(φ̇S , π̇S)

and

∆(π̇, φ̇) = ∆(π̇, φ̇) = lim−→
S

∆(π̇S , φ̇S),

where the limits are over large finite sets of valuations S, and φ̇S and π̇S denote the images
of φ̇ and π̇ in ΦE(GZ

S , ζS) and Π(GZ
S , ζS), respectively. The limits actually stabilize, since

if φ′
v is an unramified Langlands parameter for an unramified endoscopic datum G′

v,
the function ∆(φv, πv) equals either 0 or 1. This property does not hold in general for
geometric elements δv and γv, which is the reason we cannot work with adelic transfer
factors on the geometric side.

6. Statement of Local Theorems 1 and 2

As we mentioned in the introduction, this paper is the first of a series of three articles
designed to stabilize the terms in the trace formula. We are in a position now to state the
main theorems. They apply to objects F , G and ζ, chosen as in the last section. Thus,
F is a local or global field (of characteristic 0), G is a K-group over F that satisfies
Assumption 5.2, and ζ is a character attached to a central induced torus Z for G over F .

There are four basic theorems, of which two are local and two are global. Within each
of the two categories, there is in turn of a geometric result and a spectral result. The four
theorems are in fact designed for the four different kinds of terms in the trace formula. It
will be convenient to supplement each of the four theorems with a companion result that
more directly describes the relevant terms. We will be able to describe how to resolve the
supplementary theorems in terms of the original ones before the end of this paper. The
proofs of the primary theorems, however, will require a long and detailed comparison of
trace formulae that will have to be carried out over the full course of the three articles.

We shall state the local theorems in this section, and the global theorems in the next.
The local results will be stated as separate theorems, following the scheme above, but
they will actually all be consequences of the main transfer identity that was stated as
a conjecture in [12, § 3]. Local Theorem 1 is in fact the assertion that this conjecture
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holds (for any local K-group that satisfies Assumption 5.2). This is to be regarded as
the fundamental local result.

We are going to describe endoscopic and stable analogues of the local terms in geo-
metric expansion (2.9). The full construction, which is given in [12] and [14], is a more
elaborate version of the definition of the functions used to state Conjecture 5.1. In par-
ticular, it is based on a global form of the set EM ′(G) that indexes the sum in (5.2). We
recall some properties of this set.

At this point, G stands for a K-group over a global field F , with a fixed Levi subgroup
M , while M ′ represents an elliptic endoscopic datum (M ′,M′, s′

M , ξ′
M ) for M . It is

assumed that M′ is an L-subgroup of LM and that ξ′
M is the identity embedding of M′

into LM . Then EM ′(G) is the set of endoscopic data (G′,G′, s′, ξ′) for G over F , taken up
to translation of s′ by Z(Ĝ)Γ , in which s′ lies in s′

MZ(M̂)Γ , Ĝ′ is the connected centralizer
of s′ in Ĝ, G′ equals M′Ĝ′, and ξ′ is the identity embedding of G′ into LG. The definition
is taken from [13, § 3], and is identical to its local analogue in [11, § 4] and [12, § 3]. The
one possible complication for the global case is easily resolved [13, Lemma 2], and one
sees that EM ′(G) is in bijection with the set Z(M̂)Γ /Z(Ĝ)Γ [13, Corollary 3]. It follows
that for any valuation v of F , there is a map G′ → G′

v from EM ′(G) to EM ′
v
(Gv). The

endoscopic datum M ′
v for Mv here need not actually be elliptic over Fv, but this property

is not required for the construction of EM ′
v
(Gv).

Following the notation in [12] for local fields, we introduce the subset

E0
M ′(G) =

{
EM ′(G) − {G∗}, if G is quasisplit,

EM ′(G), otherwise,

of EM ′(G), and the factor

E(G) =

{
1, if G is quasisplit,

0, otherwise.

We also form coefficients

ιM ′(G, G′) = |Z(M̂ ′)Γ /Z(M̂)Γ ||Z(Ĝ′)Γ /Z(Ĝ)Γ |−1, G′ ∈ EM ′(G).

These are not to be confused with the Langlands global coefficients

ι(G, G′) = ι(Gα, G′), α ∈ π0(G), G′ ∈ Eell(G),

which have a more interesting formula [21, Theorem 8.3.1]. We shall use the latter in the
next section, along with obvious variants of the notation such as

E0
ell(G, V ) =

{
Eell(G, V ) − {G∗}, if G is quasisplit,

Eell(G, V ), otherwise,

to state the global theorems.
The elements in EM ′(G) have to be fitted with extra structure before they can be used

to construct new linear forms. For each G′ in EM ′(G), we fix an embedding M ′ ⊂ G′
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as a Levi subgroup for which M̂ ′ ⊂ Ĝ′ is a dual Levi subgroup. We also fix the usual
auxiliary data G̃′ → G′ and ξ̃′: G′ → LG̃′ for G′. Given these data, we set M̃ ′ equal to
the preimage of M ′ in G̃′. Then M̃ ′ is a Levi subgroup of G̃′ for which ˆ̃M ′ = M̂ ′Z( ˆ̃G′)
is a dual Levi subgroup. The restriction of ξ̃′ provides an L-embedding of M′ into an
L-group LM̃ ′ = ˆ̃M ′WF of M̃ ′. The pair M̃ ′ → M ′ and ξ̃′: M′ → LM̃ ′ are auxiliary data
for M ′, for which the objects C̃ ′, Z̃ ′, η̃′ and ζ̃ ′ described in § 4 match the corresponding
objects for G′.

The data (M̃ ′, ξ̃′) for M ′ vary with G′. However, for our purposes, they are really
equivalent. The point is that for any V , the vector spaces SD(M̃ ′

V , ζ̃ ′
V ) are all canonically

isomorphic. To see this in concrete terms, we can choose auxiliary data ˜̃M ′ → M ′ and
˜̃
ξ′

M : M′ → L ˜̃M ′ for M that are independent of G′, but for which ˜̃M ′ is equipped with a
factorization ˜̃M ′ → M̃ ′ → M ′, for each G′ ∈ EM ′(G). For example, we could take ˜̃M ′ to
be the fibre product of the extensions M̃ ′ → M ′, as G′ ranges over the finite set of elliptic
elements in EM ′(G). Given the choice of ( ˜̃M ′, ˜̃

ξ′
M ), we obtain an admissible L-embedding

ε̃′
M : LM̃ ′ → L ˜̃M ′,

for each G′, with the property that

˜̃
ξ′

M = ε̃′
M ξ̃′.

Now ε̃′
M differs from the standard embedding LM̃ ′ → L ˜̃M ′ by a 1-cocycle from WF to

Z(
ˆ̃

M ′). This in turn determines an automorphic character χ̃′
M in ˜̃M ′(A). Identifying any

function on M̃ ′
V with its pullback to ˜̃M ′

V , we obtain a topological isomorphism

f → χ̃′
Mf, f ∈ C(M̃ ′

V , ζ̃ ′
V ),

from C(M̃ ′
V , ζ̃ ′

V ) onto C( ˜̃M ′
V ,

˜̃
ζ ′

V ). This determines an isomorphism from D( ˜̃M ′
V ,

˜̃
ζ ′

V ) onto
D(M̃ ′

V , ζ̃ ′
V ) that maps SD( ˜̃M ′

V ,
˜̃
ζ ′

V ) onto SD(M̃ ′
V , ζ̃ ′

V ). We can obviously compose any
one such isomorphism with the inverse of another. In this way, we obtain an isomor-
phism between any two of the spaces SD(M̃ ′

V , ζ̃ ′
V ) that is easily seen to be independent

of the choice of ˜̃M ′ and ˜̃
ξ′

M . We can assume that the bases ∆(M̃ ′
V , ζ̃ ′

V ) of the spaces
SD(M̃ ′

V , ζ̃ ′
V ) are compatible with the isomorphisms.

We are interested in linear forms in f ∈ H(G, V, ζ), where V is a finite set of valuations
that contains Vram(G, ζ). We may as well assume at this point that the data M ′ and
{(G̃′, ξ̃′)} are also unramified away from V .

If δ belongs to the endoscopic basis ∆E(MZ
V , ζV ), we first construct a linear form

IM (δ, f) =
∑

γ

∆M (δ, γ)IM (γ, f) (6.1)

from IM (γ, f), simply by summing γ over Γ (MZ
V , ζV ). However, the true endoscopic

analogue of IM (γ, f) is a more interesting object, which is constructed from the elements
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in EM ′(G). It is based on an inductive definition of linear forms

ŜG̃′

M̃ ′(δ′, f ′), G′ ∈ EM ′(G), δ′ ∈ ∆(M̃ ′
V , ζ̃ ′

V ),

on the spaces SI(G̃′
V , ζ̃ ′

V ). Suppose that

{(G′, δ′) : G′ ∈ EM ′(G), δ′ ∈ ∆((M̃ ′
V )Z̃′

, ζ̃ ′
V )}

is a family of matching elements, relative to the bijections among the bases ∆(M̃ ′
V , ζ̃ ′

V ).
We can write δ′ for both the family, and the corresponding element in the set
∆((M̃ ′

V )Z̃′
, ζ̃ ′

V ) attached to a given G′. We define linear forms IE
M (δ′, f) and SG

M (M ′, δ′, f)
inductively by the basic formula

IE
M (δ′, f) =

∑
G′∈E0

M′ (G)

ιM ′(G, G′)ŜG̃′

M̃ ′(δ′, f ′) + ε(G)SG
M (M ′, δ′, f), (6.2)

together with the supplementary requirement that

IE
M (δ′, f) = IM (δ, f), (6.3)

in the case that G is quasisplit and δ′ maps to the element δ in ∆E(MZ
V , ζV ). The

coefficient ιM ′(G, G′) vanishes unless G′ belongs to the finite subset of elliptic elements
in E0

M ′(G), so the sum in (6.2) can be taken over a finite set. Since SG
M (M ′, δ′, f) is

defined only if G is quasisplit, the two identities determine the two linear forms uniquely.
To complete the inductive definition, one has still to prove something in the special

case that G is quasisplit and M ′ equals M∗. Then δ′ = δ∗ belongs to ∆((M∗
V )Z∗

, ζ∗
V ),

and the image δ of δ′ in ∆E(MZ
V , ζV ) lies in the subset ∆(MZ

V , ζV ). The problem in this
case is to show that the linear form

SG
M (δ, f) = SG

M (M∗, δ∗, f)

is stable. Only then would one have a linear form

ŜG∗

M∗(δ∗, f∗) = SG
M (δ, f)

on SI((G∗
V )Z∗

, ζ∗
V ) that is the analogue for (G∗, M∗) of the terms ŜG̃′

M̃ ′(δ′, f ′) in (6.2).
This stability condition will be part of the local theorems we are preparing to state. It
will not be established until a future article, in which the theorems will be proved. In
the meantime, we carry it as an induction hypothesis on the groups G̃′ that occur in the
sum (6.2).

Remark. The definitions (6.1)–(6.3) are taken from [14]. They extend the earlier treat-
ment in [11, § 4] and [12, § 3], which applies to G-regular conjugacy classes, rather than
distributions in the general bases ∆(M̃ ′

V , ζ̃ ′
V ). We were a bit careless in setting up the

definitions in [12] (and [11]). The remark at the top of p. 242 of [12] notwithstanding,
it is not generally possible to choose the auxiliary data (G̃′, ξ̃′) so that (M̃ ′, ξ̃′) is inde-
pendent of G′. The definitions do make sense in the context of [12],but one has to take
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δ′ to be an element in ∆G- reg(
˜̃M ′

V ). The results of [12] remain valid as stated, with the
understanding that the linear forms ŜG̃′

M̃ ′(δ′) in the analogue [12, (3.5)] of (6.2) depend
on the embeddings ε̃′

M : LM̃ ′ → L ˜̃M ′, as well as δ′. It is easy to see from the definition
in [12] that

ŜG̃′

M̃ ′(δ′, f ′) = χ̃′
M (δ′)ŜG̃′

M̃ ′(δ′
G, f ′),

where δ′
G is the image in M̃ ′

V of the element δ′ ∈ ˜̃M ′
V , and ŜG̃′

M̃ ′(δ′
G) is taken with respect

to the standard embedding LM̃ ′ → LM̃ ′.

The distribution SG
M (δ, f) is meant to be a stable form of the local term IM (γ, f) on

the geometric side of the trace formula. The endoscopic form is a distribution

IE
M (γ, f), γ ∈ Γ (MZ

V , ζV ),

that like the original term, depends on an element in Γ (MZ
V , ζV ). It has the property

that if δ′ is relevant to MV , then

IE
M (δ′, f) =

∑
γ

∆M (δ′, γ)IE
M (γ, f), (6.4)

with γ summed over Γ (MZ
V , ζV ). In particular, the distribution

IE
M (δ, f) = IE

M (δ′, f) (6.5)

depends only on the image δ of δ′ in ∆E(MZ
V , ζV ). Observe that IE

M (γ, f) is not uniquely
determined by (6.4), since the endoscopic datum M ′ ∈ Eell(M) was assumed to be over
F . However, the construction makes sense if M ′ is replaced by an endoscopic datum
M ′

V ∈ E(MV ) over FV . The distribution IE
M (γ, f) can then be defined by inversion from

(6.4). (See [12, § 5], [14].)
Local Theorem 1 actually applies to a simpler version of the linear forms above. To

state it, we take F to be a local field, and M ′ to be a local endoscopic datum for M . We
also take δ, δ′ and γ to be elements in the subsets ∆E

G- reg,ell(M, ζ), ∆G- reg,ell(M̃ ′, ζ̃ ′)
and ΓG- reg,ell(M, ζ) of G-regular, F -elliptic elements in the general bases ∆E(M, ζ),
∆(M̃ ′, ζ̃ ′) and Γ (M, ζ) attached to F . The associated distributions IM (δ, f), IE

M (δ′, f),
SG

M (M ′, δ′, f), IE
M (γ, f), and IE

M (δ, f) are essentially those of [12, § 3]. They are defined
by the equations (6.1)–(6.5), stated exactly as above, but with the sums taken over γ

and G′ in the local sets ΓG- reg,ell(M, ζ) and EM ′(G).

Local Theorem 1. Assume that F is local.

(a) If G is arbitrary,

IE
M (γ, f) = IM (γ, f), γ ∈ ΓG- reg,ell(M, ζ), f ∈ H(G, ζ).

(b) Suppose that G is quasisplit, and that δ′ belongs to ∆G- reg(M̃ ′, ζ̃ ′), for some M ′ ∈
Eell(M). Then the linear form

f → SG
M (M ′, δ′, f), f ∈ H(G, ζ),

vanishes unless M ′ = M∗, in which case it is stable.
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As we mentioned above, this theorem is essentially Conjecture 3.3 of [12] (which was
a slight generalization of Conjecture 4.1 of [11]). Our supplementary theorem will have
a similar statement, except that it applies to the compound linear forms.

Local Theorem 1′. Suppose that F is global, and that V is a finite set of valuations
containing Vram(G, ζ).

(a) If G is arbitrary,

IE
M (γ, f) = IM (γ, f), γ ∈ Γ (MZ

V , ζV ), f ∈ H(G, V, ζ).

(b) Suppose that G is quasisplit, and that δ′ belongs to ∆((M̃ ′
V )Z̃′

, ζ̃ ′
V ), for some

M ′ ∈ Eell(M, V ). Then the linear form

f → SG
M (M ′, δ′, f), f ∈ H(G, V, ζ),

vanishes unless M ′ = M∗, in which case it is stable.

The next proposition is a consequence of the general results of [14], which extend the
splitting and descent formulae in [12, § 6-7], and reduce the compound linear forms of
Local Theorem 1′ to the simple linear forms of Local Theorem 1. For the special case of
strongly G-regular conjugacy classes, the reader can refer to [12, Proposition 7.4].

Proposition 6.1. Local Theorem 1 implies Local Theorem 1′.

The proof of Local Theorem 1 will have to wait. We shall establish it in a subsequent
article by global methods, as in the special case treated in [16].

There is an important point to mention before we turn to the local spectral terms.
The element δ′ in (6.2) does not have to be relevant to M . More generally, the definition
(6.2) makes sense if we assume that the endoscopic datum M ′ belongs to Eell(M∗, V ),
rather than the subset Eell(G, V ) of Eell(M∗, V ). However, the more general linear forms
are subject to the following vanishing property, which we shall require in § 10.

Proposition 6.2. Suppose that V ⊃ Vram(G, ζ), that M ′ represents a class in
Eell(M∗, V ), and that δ′ belongs to ∆((M̃ ′

V )Z̃′
, ζ̃ ′

V ). Then IE
M (δ′, f) vanishes unless M ′

and δ′ are both locally relevant to M .

Proof. Using the appropriate splitting and descent formulae, together with the relevant
germ expansions [14], it is easy to translate the proposition to a corresponding assertion
in which F is a local field, M ′ is an elliptic endoscopic for M∗ over F , and δ′ ∈ ∆(M̃ ′, ζ̃ ′) is
strongly G-regular. In the local case, an elliptic endoscopic datum for M∗ is automatically
relevant to M . If δ′ is not relevant to M , the local vanishing theorem [12, Theorem 8.6]
asserts that IE

M (δ′, f) = 0. The proposition follows. �

The proposition asserts that IE
M (δ′, f) equals zero unless δ′ maps to an element δ

in ∆E(MZ
V , ζV ). In this case, as we have already noted (6.5), the distribution depends

only on δ. Recall that as a function of δ′, the transfer factor ∆M (δ′, γ) also has these
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properties. It follows that (6.4) remains valid for M ′ and δ′ chosen according to the
general criteria of Proposition 6.2.

The other two local theorems have the same form, except that they apply to the
residual linear forms on the spectral side. If F is global, there are stable and endo-
scopic analogues of the linear forms IM (π, f) in the spectral expansion (3.13). They are
defined [15] by a construction that is dual to the one above. In fact, one defines linear
forms IM (φ, f), IE

M (φ′, f), SG
M (M ′, φ′, f), IE

M (π, f) and IE
M (φ, f) simply by replacing the

elements δ, δ′ and γ in (6.1)–(6.5) by elements φ ∈ ΦE(MZ
V , ζV ), φ′ ∈ Φ((M̃ ′

V )Z̃′
, ζ̃ ′

V ) and
π ∈ Π(MZ

V , ζV ). These objects are actually specializations at X = 0 of more general lin-
ear forms that depend on a point X in aZ

M . If F is local, one constructs simpler but more
fundamental objects, in which it is convenient to consider the dependence on this extra
parameter. For elements φ ∈ ΦE(M, ζ), φ′ ∈ Φ(M̃ ′, ζ̃ ′) and π ∈ Π(M, ζ), and a point X

in the subgroup
aM,F = {HG(x) : x ∈ G(F )}

of aM , one defines linear forms IM (φ, X, f), IE
M (φ′, X, f), SG

M (M ′, φ′, X, f), IE
M (π, X, f)

and IE
M (φ, X, f) on H(G, ζ) once again by the obvious variants of the formulae (6.1)–(6.5).

(See [15].)

Local Theorem 2. Assume that F is local, and that X lies in aM,F .

(a) If G is arbitrary,

IE
M (π, X, f) = IM (π, X, f), π ∈ Π(M, ζ), f ∈ H(G, ζ).

(b) Suppose that G is quasisplit, and that φ′ belongs to Φ(M̃ ′, ζ̃ ′), for some M ′ ∈
Eell(M). Then the linear form

f → SG
M (M ′, φ′, X, f), f ∈ H(G, ζ),

vanishes unless M ′ = M∗, in which case it is stable.

Again we have a supplementary theorem, which applies to the compound linear forms
that arise from the local terms in the spectral expansion.

Local Theorem 2′. Assume that F is global, and that V is a finite set of valuations
containing Vram(G, ζ).

(a) If G is arbitrary,

IE
M (π, f) = IM (π, f), π ∈ Π(MZ

V , ζV ), f ∈ H(G, V, ζ).

(b) Suppose that G is quasisplit, and that φ′ belongs to Φ((M̃ ′
V )Z̃′

, ζ̃ ′), for some M ′ ∈
Eell(M, V ). Then the linear form

f → SG
M (M ′, φ′, f), f ∈ H(G, V, ζ),

vanishes unless M ′ = M∗, in which case it is stable.
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In the forthcoming paper [15], we shall establish spectral splitting and descent formulae
that are parallel to the geometric formulae in [14]. They yield the following proposition.

Proposition 6.3. Local Theorem 2 implies Local Theorem 2′.

Similarly, the results of [15] yield a spectral vanishing property that is parallel to
Proposition 6.2.

Proposition 6.4. Suppose that V and M ′ are as in Proposition 6.2, and that φ′ belongs
to Φ((M̃ ′

V )Z̃′
, ζ̃ ′

V ). Then IE
M (φ′, f) vanishes unless M ′ and φ′ are both locally relevant to

M .

It follows that the spectral analogue

IE
M (φ′, f) =

∑
π

∆M (φ′, π)IE
M (π, f) (6.6)

of (6.4), in which π is summed over Π(MZ
V , ζV ), is valid for any M ′ and φ′ chosen as in

Proposition 6.4.

7. Statement of Global Theorems 1 and 2

The main global theorems concern the coefficients on each side of the trace formula. We
shall define endoscopic and stable forms of the various coefficients. The theorems will
then assert identities among these new objects.

We are assuming that G is a K-group over the global field F . Before we define the new
coefficients, we should first take care of a point having to do with the objects G̃′ → G′

and ξ̃′: G′ → LG̃′ attached to any given G′. We assume henceforth these auxiliary data
have been chosen according to the following lemma.

Lemma 7.1. Suppose that G′ ∈ Eell(G, V ), for a finite set V ⊃ Vram(G). Then the global
auxiliary data G̃′ and ξ̃′ for G′ can be chosen so that they are unramified at any v �∈ V .

Proof. We have to be able to choose (G̃′, ξ̃′) in such a way that for any v �∈ V , the local
embedding ξ̃′

v: G′
v → LG̃′

v is unramified. This means that G̃′
v is an unramified group over

Fv, and that ξ̃′
v maps any Frobenius element in G′

v to a Frobenius element in LG̃′
v. A

Frobenius element is of course one that projects into the Frobenius coset in WFv . The
proof of the property is implicit in the discussion on pp. 718–720 of the Langlands’s
paper [27]. In particular, we shall take G̃′ to be a z-extension of G′. The centre Z( ˆ̃G′)
of ˆ̃G′ is then connected. By [27, Lemma 4], the inflation to the Weil group WF of any
2-cocycle from Γ = ΓF to Z( ˆ̃G′) splits.

Let K be a finite Galois extension of F over which G′ splits, and which is unramified
outside of V . Let T ′

sc be a maximally split, maximal torus in G′
sc over F . Since G′ is

quasisplit, T ′
sc is an induced torus, which splits over K. The construction in [27, pp. 721,

722] then yields a z-extension G̃′ of G′ by the torus C̃ ′ = T ′
sc, which is quasisplit over F

and splits over K. As in [27] and [24, § 2.2], the groups G′ and LG̃′ determine a 2-cocycle
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a from ΓK/F = Gal(K/F ) to Z( ˆ̃G′). One obtains an embedding ξ̃′: G′ → LG̃′ from any
splitting of this cocycle over the Weil group WK/F . The embedding will be unramified
outside of V if and only if the splitting is defined over the largest quotient WK/F,V of
WK/F that is unramified outside of V . Our task is therefore to show that the inflation
of a to the extension WK/F,V of ΓK/F splits.

Following the proof of [27, Lemma 4], we set X = X∗(Z( ˆ̃G′)), and we form a short
exact sequence

1 → X2 → X1 → X → 1

of ΓK/F -modules that are free over Z, such that X1 is also free over ΓK/F . At this stage
of the argument in [27], Langlands introduces the idele class group CK of K. We shall
instead use the quotient

CK,V = A
∗
K/K∗(OV

K)∗,

where OV
K is the maximal compact subring of A

V
K . In particular, we apply the functor

HomΓK/F
(—, CK,V )

to the dual short exact sequence

1 ←− X∨
2 ←− X∨

1 ←− X∨ ←− 1.

This yields a short exact sequence

1 → T2(CK,V )ΓK/F → T1(CK,V )ΓK/F → T (CK,V )ΓK/F ,

where T∗ denotes the torus Hom(X∨
∗ ,−) (regarded as a Z-scheme with action of ΓK/F ).

It follows from the injectivity of the middle arrow, and standard facts about extensions
of characters, that the dual map

(T1(CK,V )ΓK/F )∗ → (T2(CK,V )ΓK/F )∗

of character groups is surjective. The main global theorem of [30] gives a functorial
isomorphism from (T∗(CK)ΓK/F )∗ onto the continuous cohomology group H1

c (WK/F , T̂∗).
The long exact sequence of cohomology implies that

T∗(CK,V )ΓK/F = T∗(CK)ΓK/F /T∗(OV
F ),

since H1(ΓK/F , T∗(OV
K)) is trivial, so that the group (T∗(CK,V )ΓK/F )∗ is a subgroup of

(T∗(CK)ΓK/F )∗. The main point for us is that the global isomorphism takes this subgroup
onto the subgroup H1

c (WK/F,V , T̂∗) of H1
c (WK/F , T̂∗). This follows easily from the local

correspondence in [30] for unramified characters. We therefore conclude that the map

H1
c (WK/F,V , T̂1) → H1

c (WK/F,V , T̂2)

is surjective.
The rest of the proof is identical to the last paragraph in the proof of Lemma 4

of [27]. We obtain a splitting over WK/F,V for the original 2-cocycle a. This yields an
L-embedding ξ̃′ that is unramified outside of V . �
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We remark that if Gder is simply connected, we can choose the auxiliary data G̃′ and
ξ̃′ of the lemma in such a way that G̃′ = G′. For if a is the 2-cocycle from ΓK/F to
Z(Ĝ′) described in the proof above, the argument in [27, pp. 705–715] establishes that
the projection of a onto Z(Ĝ′)/Z(Ĝ) splits. Since Z(Ĝ) = Z(Ĝ′)0 is connected, one can
construct required embedding ξ̃′: G′ → LG′ as in the proof of the lemma. It follows that
for arbitrary G, we can choose the auxiliary data G̃′ and ξ̃′ of the lemma in such a way
that G̃′ is the endoscopic datum for a fixed z-extension G̃ → G attached to G′.

We consider now the global coefficients. We shall begin with the general family of
geometric coefficients aG(γ). Recall that aG(γ) is defined on Γ (GZ

V , ζV ), and is in fact
supported on the discrete subset Γ (G, V, ζ) of this domain. We shall construct parallel
families of coefficients aG,E(γ) and bG(δ), the latter only in the case that G is quasisplit,
on the respective domains Γ (GZ

V , ζV ) and ∆E(∆Z
V , ζV ). If γ lies in Γ (GZ

V , ζV ), we set

aG,E(γ) =
∑
G′

∑
δ′

ι(G, G′)bG̃′
(δ′)∆G(δ′, γ) + ε(G)

∑
δ

bG(δ)∆G(δ, γ), (7.1)

with G′, δ′ and δ summed over E0
ell(G, V ), ∆((G̃′

V )Z̃′
, ζ̃ ′

V ) and ∆E(GZ
V , ζV ), respectively,

and with coefficients bG̃′
(δ′) defined inductively by the requirement that

aG,E(γ) = aG(γ), (7.2)

in the case that G is quasisplit. The process is similar to those of § 6. If G is quasisplit,
the relations (7.1) and (7.2), together with the local inversion formulae (5.5), provide a
formula for bG(δ) as a function on ∆E(GZ

V , ζV ). To complete the inductive definition, we
define the function

bG∗
(δ∗) = bG(δ), δ ∈ ∆(GZ

V , ζV ),

from the restriction of bG to the subset ∆(GZ
V , ζV ) of ∆E(GZ

V , ζV ). Since G∗ determines
G uniquely up to weak isomorphism, Corollary 4.4 tells us bG∗

(δ∗) depends only on G∗.
As in § 2, it is instructive to introduce more manageable domains for the new coeffi-

cients. We shall construct discrete subsets Γ E(G, V, ζ) and ∆E(G, V, ζ) of Γ (GZ
V , ζV ) and

∆E(GE
V , ζV ), respectively, that contain the supports of aG,E(γ) and bG(δ).

We are first to introduce ‘elliptic’ subsets ∆E
ell(G, V, ζ), ∆ell(G, V, ζ), Γ E

ell(G, V, ζ) of
∆E(GZ

V , ζV ), ∆(GZ
V , ζV ), Γ E(GZ

V , ζV ), respectively. As we might expect, we have to
give an inductive definition that is based on the sets ∆ell(G̃′, V, ζ̃ ′) attached to groups
G′ ∈ E0

ell(G, V ). We define the first set ∆E
ell(G, V, ζ) to be the collection of δ in ∆E(GZ

V , δV )
such that either ∆G(γ, δ) �= 0, for some γ ∈ Γell(G, V, ζ), or δ is the image in ∆E(GZ

V , ζV )
of an element δ′ in the subset ∆ell(G̃′, V, ζ̃) of ∆((G̃′

V )Z̃′
, ζ̃ ′

V ), for some G′ ∈ E0
ell(G, V ).

The second set is then just the intersection

∆ell(G, V, ζ) = ∆E
ell(G, V, ζ) ∩ ∆(GZ

V , ζV ).

We define the third set Γ E
ell(G, V, ζ) to be the collection of γ in Γ (GZ

V , ζV ) such that
∆G(δ, γ) �= 0, for some δ ∈ ∆E

ell(G, V, ζ). Then Γ E
ell(G, V, ζ) contains Γell(G, V, ζ). Having

constructed the elliptic sets, we can then define the larger subsets ∆E(G, V, ζ), ∆(G, V, ζ),
Γ E(G, V, ζ) of ∆E(GZ

V , ζV ), ∆(GZ
V , ζV ), Γ (GZ

V , ζV ), respectively, exactly as in § 2. For
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example, Γ E(G, V, ζ) is the set of elements γ in Γ (GZ
V , ζV ) that are constituents of induced

classes µG, where µ belongs to Γ E
ell(M, V, ζ), for some M ∈ L. It is easy to see that the

coefficient aG,E(γ) is supported on Γ E(G, V, ζ), and in case G is quasisplit, that bG(δ) is
supported on ∆E(G, V, ζ). Moreover, the sums over δ′ and δ in the definition (7.1) can
be taken over the smaller sets ∆(G̃′, V, ζ̃ ′) and ∆E(G, V, ζ), respectively.

We shall also need to consider endoscopic and stable analogues of the more fundamental
elliptic coefficients aG

ell(γ̇S). Recall that aG
ell(γ̇S) was defined in (2.6) for any large finite set

of valuations S ⊃ Vram(G, ζ), and for any admissible element γ̇S in Γell(G, S, ζ). We con-
struct parallel coefficients aG,E

ell (γ̇S) and bG
ell(δ̇S), for admissible elements γ̇S ∈ Γ E

ell(G, S, ζ)
and δ̇S ∈ ∆E

ell(G, S, ζ), by the natural variants of the inductive definitions (7.1) and (7.2).
In other words, we set

aG,E
ell (γ̇S) =

∑
G′

∑
δ̇′

S

ι(G, G′)bG̃′

ell (δ̇
′
S)∆G(δ̇′

S , γ̇S) + ε(G)
∑
δ̇S

bG
ell(δ̇S)∆G(δ̇S , γ̇S), (7.3)

with G′, δ̇′
S and δ̇S summed over E0

ell(G, S), ∆ell(G̃′, S, ζ̃ ′) and ∆E
ell(G, S, ζ), respectively,

and with the coefficients bG̃′

ell (δ̇
′
S) defined inductively by the requirements that

aG,E
ell (γ̇S) = aG

ell(γ̇S) (7.4)

and

bG∗

ell (δ̇∗
S) = bG

ell(δ̇S),

in case G is quasisplit. As in the earlier case, we know from Corollary 4.4 that the last
coefficient depends only on G∗.

Global Theorem 1.

(a) For any G, we have
aG,E
ell (γ̇S) = aG

ell(γ̇S),

for any admissible element γ̇S in Γ E
ell(G, S, ζ).

(b) If G is quasisplit, bG
ell(δ̇S) vanishes for any admissible element δ̇S in the complement

of ∆ell(G, S, ζ) in ∆E
ell(G, S, ζ).

Global Theorem 1 pertains to the basic elliptic coefficients that are the global founda-
tion of the geometric expansion in § 2. For the actual comparison of trace formulae, we
also require the corresponding theorem for the general coefficients.

Global Theorem 1′.

(a) For any G, we have

aG,E(γ) = aG(γ), γ ∈ Γ E(G, V, ζ).

(b) If G is quasisplit, bG(δ) vanishes for any δ in the complement of ∆(G, V, ζ) in
∆E(G, V, ζ).
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Global Theorems 1 and 1′ describe the basic identities satisfied by the geometric coef-
ficients. As the original definition (2.8) suggests, they are closely related. In § 10, we shall
show that Global Theorem 1 implies Global Theorem 1′ by establishing endoscopic and
stable analogues of the expansion (2.8).

It is useful to note that Global Theorems 1 and 1′ can be reformulated in terms
of endoscopic and stable analogues of the linear forms Iell(ḟS) and Iorb(f) of § 2. We
define invariant linear forms IE

ell(ḟS) = IG,E
ell (ḟS) and IE

orb(f) = IG,E
orb (f), for functions

ḟS ∈ Hadm(G, S, ζ) and f ∈ H(G, V, ζ), by setting

IE
ell(ḟS) =

∑
G′∈E0

ell(G,S)

ι(G, G′)ŜG̃′

ell (ḟ
′
S) + ε(G)SG

ell(ḟS) (7.5)

and

IE
orb(f) =

∑
G′∈E0

ell(G,V )

ι(G, G′)ŜG̃′

orb(f ′) + ε(G)SG
orb(f). (7.6)

The terms ŜG̃′

ell and ŜG̃′

orb on the right are linear forms on the spaces SIadm(G̃′, S, ζ̃ ′)
and SI(G̃′, V, ζ̃ ′), respectively, which are defined inductively by the requirements that
IE
ell(ḟS) = Iell(ḟS) and IE

orb(f) = Iorb(f) in the case that G is quasisplit. The definition
includes the induction hypothesis that SG̃′

ell and SG̃′

orb are stable, for data G′ in E0
ell(G, S)

and E0
ell(G, V ), respectively.

Lemma 7.2.

(a) If G is arbitrary,

IE
ell(ḟS) =

∑
γ̇S∈Γ E

ell(G,S,ζ)

aG,E
ell (γ̇S)ḟS,G(γ̇S)

and

IE
orb(f) =

∑
γ∈Γ E(G,V,ζ)

aG,E(γ)fG(γ).

In particular, the statements (a) of Global Theorems 1 and 1′ are equivalent to the
general identities IE

ell(ḟS) = Iell(ḟS) and IE
orb(f) = Iorb(f).

(b) If G is quasisplit,

SG
ell(ḟS) =

∑
δ̇S∈∆E

ell(G,S,ζ)

bG
ell(δ̇S)ḟE

S,G(δ̇S)

and

SG
orb(f) =

∑
δ∈∆E(G,V,ζ)

bG(δ)fE
G(δ).

In particular, the statements (b) of Global Theorems 1 and 1′ are equivalent to the
assertions that SG

ell(ḟS) and SG
orb(f) are stable.
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Proof. By varying the test functions ḟS and f , we see immediately that the given
expansions imply that Global Theorems 1 and 1′ can be reformulated as claimed. It is
enough, then, to establish the expansions.

Consider the case of IE
orb(f) and SG

orb(f). We can assume inductively that the expan-
sions in (b) hold for quasisplit inner K-forms of groups G̃′, with G′ ∈ E0

ell(G, V ). We are
also assuming that ŜG̃′

orb comes from a stable distribution on a quasisplit inner K-form of
G̃′, from which it follows that bG̃′

is supported on the subset ∆(G̃′, V, ζ̃ ′) of ∆E(G̃′, V, ζ̃ ′).
Therefore,

ŜG̃′

orb(f ′) =
∑

δ′∈∆(G̃′,V,ζ̃′)

bG̃′
(δ′)f ′(δ′),

for any f ∈ H(G, V, ζ). It follows from the various definitions that

IE
orb(f) − ε(G)SG

orb(f) =
∑

G′∈E0
ell(G,V )

ι(G, G′)ŜG̃′

orb(f ′)

=
∑
G′

ι(G, G′)
∑

δ′∈∆(G̃′,V,ζ̃′)

bG̃′
(δ′)f ′(δ′)

=
∑
G′,δ′

ι(G, G′)bG̃′
(δ′)

∑
γ∈Γ E(G,V,ζ)

∆G(δ′, γ)fG(γ)

=
∑

γ

( ∑
G′,δ′

ι(G, G′)bG̃′
(δ′)∆G(δ′, γ)

)
fG(γ)

=
∑

γ

(
aG,E(γ) − ε(G)

∑
δ∈∆E(G,V,ζ)

bG(δ)∆G(δ, γ)
)

fG(γ)

=
∑

γ

aG,E(γ)fG(γ) − ε(G)
∑

δ

bG(δ)fE
G(δ).

If ε(G) = 0, the required expansion for IE
orb(f) follows. If ε(G) = 1, the expansion for

IE
orb(f) is just part of the definition, so we also obtain the required expansion for SG

orb(f).
The expansions for IE

ell(ḟS) and SG
ell(ḟS) follow in the same way. �

We turn now to the spectral coefficients. The discussion will depend on a fixed non-
negative number t, as in § 3, but will otherwise be parallel to that above. In particular, we
shall use the global information at hand to construct suitable domains for the coefficients
we are about to define.

We first construct discrete subsets ΦE
t,disc(G, ζ), Φt,disc(G, ζ) and ΠE

t,disc(G, ζ) of the
respective adelic sets ΦE(G(A)Z , ζ), Φ(G(A)Z , ζ) and Π(G(A)Z , ζ). The inductive def-
inition is similar to that of the ‘elliptic’ sets above. Thus, ΦE

t,disc(G, ζ) is the set of φ̇

in ΦE(G(A)Z , ζ) such that either ∆G(π̇, φ̇) �= 0, for some π̇ in the set Πt,disc(G, ζ), or
φ̇ is the image of an element φ̇′ in the subset Φt,disc(G̃′, ζ̃ ′) of Φ(G̃′(A)Z̃′

, ζ̃ ′), for some
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G′ ∈ E0
ell(G). The second set is defined by

Φt,disc(G, ζ) = ΦE
t,disc(G, ζ) ∩ Φ(G(A)Z , ζ),

while the third set ΠE
t,disc(G, ζ) is the set of π̇ in Π(G(A)Z , ζ) such that ∆G(φ̇, π̇) �= 0,

for some φ̇ ∈ ΦE
t,disc(G, ζ). Then ΠE

t,disc(G, ζ) contains Πt,disc(G, ζ).
Now suppose that V ⊃ Vram(G, ζ) is a finite set of valuations as above. We define dis-

crete subsets ΦE
t,disc(G, V, ζ), Φt,disc(G, V, ζ) and ΠE

t,disc(G, V, ζ) of ΦE(GZ
V , ζV ), Φ(GZ

V , ζV )
and Π(GZ

V , ζV ) in exactly the same way, except with Πt,disc(G, ζ) replaced by its ana-
logue Πt,disc(G, V, ζ) for V . From these discrete subsets, we construct larger subsets
ΦE

t (G, V, ζ), Φt(G, V, ζ) and ΠE
t (G, V, ζ), with corresponding Borel measures, as in § 3.

Thus, if M belongs to L, ΠG,E
t,disc(M, V, ζ) stands for the set of ia∗

G,Z-orbits in the preimage
Π̃E

t,disc(M, V, ζ) of ΠE
t,disc(M, V, ζ) in Π(MV , ζV ). We define ΠE

t (G, V, ζ) to be the union,
over M ∈ L and ρ ∈ ΠG,E

t,disc(M, V, ζ), of the irreducible constituents of the induced rep-
resentations ρG. The Borel measure dπ on ΠE

t (G, V, ζ) is defined by setting∫
ΠE

t (G,V,ζ)
h(π) dπ =

∑
M∈L

|WM
0 ||WG

0 |−1
∑

ρ∈ΠE
t,disc(M,V,ζ)

∫
ia∗

M,Z/ia∗
G,Z

h(ρG
λ ) dλ,

for any h ∈ Cc(ΠE
t (G, V, ζ)). The sets

Φt(G, V, ζ) ⊂ ΦE
t (G, V, ζ)

are defined in exactly the same way. For example, Φt(G, V, ζ) is the union, over M ∈ L
and χ ∈ ΦG

t,disc(M, V, ζ), of the induced elements χG. (By construction [10], the induced
elements χG are irreducible, in the sense that they lie in the basis Φ(GZ

V , ζV ).) The Borel
measure dφ is defined by∫

Φt(G,V,ζ)
h(φ) dφ =

∑
M∈L

|WM
0 ||WG

0 |−1
∑

χ∈Φt,disc(M,V,ζ)

∫
ia∗

M,Z/ia∗
G,Z

h(χG
λ ) dλ,

for any h ∈ Cc(Φt(G, V, ζ)).
We now construct global coefficients aG,E(π) and hG(φ) inductively on the domains

ΠE
t (G, V, ζ) and ΦE

t (G, V, ζ). If π belongs to ΠE
t (G, V, ζ), we set

aG,E(π) =
∑
G′

∑
φ′

ι(G, G′)bG̃′
(φ′)∆G(φ′, π) + ε(G)

∑
φ

bG(φ)∆G(φ, π), (7.7)

with G′, φ′ and φ summed over E0
ell(G, V ), Φt(G̃′, V, ζ̃ ′) and ΦE

t (G, V, ζ), respectively, and
with coefficients bG̃′

(φ′) defined inductively by the requirement that

aG,E(π) = aG(π), (7.8)

in the case that G is quasisplit. The construction is obviously identical to that of the
geometric coefficients. In particular, bG(φ) exists only when G is quasisplit, in which case

bG∗
(φ∗) = bG(φ), φ ∈ ΦE

t (G, V, ζ),

https://doi.org/10.1017/S1474748002000051 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748002000051


A stable trace formula. I 243

is defined by the relations (7.7) and (7.8), together with the local inversion formulae
(5.8).

The arithmetic information in the trace formula is concentrated in the fundamental
adelic coefficients

aG
disc(π̇), π̇ ∈ Πt,disc(G, ζ).

We shall therefore want to consider endoscopic and stable analogues of these objects.
We construct coefficients aG,E

disc(π̇) and bG
disc(φ̇), for elements π̇ ∈ ΠE

t,disc(G, ζ) and φ̇ ∈
ΦE

t,disc(G, ζ), by the natural variants of the inductive definitions (7.7) and (7.8). We set

aG,E
disc(π̇) =

∑
G′

∑
φ̇′

ι(G, G′)bG̃′

disc(φ̇
′)∆G(φ̇′, π̇) + ε(G)

∑
φ̇

bG
disc(φ̇)∆G(φ̇, π̇), (7.9)

with G′, φ̇′ and φ̇ summed over E0
ell(G), Φt,disc(G̃′, ζ̃ ′) and ΦE

t,disc(G, ζ), respectively, and
with coefficients bG̃′

disc(φ̇
′) defined inductively by the requirements that

aG,E
disc(π̇) = aG

disc(π̇) (7.10)

and

bG∗

disc(φ̇
∗) = bG

disc(φ̇),

in case G is quasisplit.

Global Theorem 2.

(a) For any G, we have

aG,E
disc(π̇) = aG

disc(π̇), π̇ ∈ ΠE
t,disc(G, ζ).

(b) If G is quasisplit, bG
disc(φ̇) vanishes for any φ̇ in the complement of Φt,disc(G, ζ) in

ΦE
t,disc(G, ζ).

Global Theorem 2 will be the most important result from a purely arithmetic stand-
point. It can be regarded as a reciprocity law between automorphic spectra on different
groups. For the comparison of trace formulae, however, we again require the correspond-
ing theorem for the general coefficients.

Global Theorem 2′.

(a) For any G, we have

aG,E(π) = aG(π), π ∈ ΠE
t (G, V, ζ).

(b) If G is quasisplit, bG(φ) vanishes for any φ in the complement of Φt(G, V, ζ) in
ΦE

t (G, V, ζ).

https://doi.org/10.1017/S1474748002000051 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748002000051


244 J. Arthur

In § 10 we shall show that Global Theorem 2 implies Global Theorem 2′ by establishing
endoscopic and stable analogues of the expansion (3.12).

Following the discussion of the geometric coefficients, we shall reformulate Global The-
orems 2 and 2′ in terms of the basic distributions It,disc(ḟ) and It,unit(f) of § 3. The
transfer mapping entails a shift in archimedean infinitesimal characters that must be
reflected in the norms t = ‖ Im(ν)‖. For any G′ ∈ E(G), there is a canonical embedding
of h∗

C into the associated space (h̃′)∗
C for G̃′. This gives an embedding

h
∗
C/a

∗
G,Z,C → (h̃′)∗

C/a
∗
G̃′,Z̃′,C

of the quotient spaces whose Weyl orbits parametrize infinitesimal characters. We write

ν → ν′ = ν + dη̃′
∞,

as on p. 561 of [10], for the transfer of infinitesimal characters, and

t = ‖ Im(ν)‖ → t′ = ‖ Im(ν′)‖ = t + ‖ Im(dη̃′
∞)‖, t � 0,

for the corresponding shift in norms. With this notation, we define invariant linear
forms IE

t,disc(ḟ) = IG,E
t,disc(ḟ) and IE

t,unit(f) = IG,E
t,unit(f), for functions ḟ ∈ H(G, ζ) and f ∈

H(G, V, ζ), by setting

IE
t,disc(ḟ) =

∑
G′∈E0

ell(G)

ι(G, G′)ŜG̃′

t′,disc(ḟ
′) + ε(G)SG

t,disc(ḟ) (7.11)

and

IE
t,unit(f) =

∑
G′∈E0

ell(G,V )

ι(G, G′)ŜG̃′

t′,unit(f
′) + ε(G)SG

t,unit(f). (7.12)

The terms ŜG̃′

t′,disc and ŜG̃′

t′,unit on the right are linear forms on the respective spaces
SI(G̃′, ζ̃ ′) and SI(G̃′, V, ζ̃ ′), which are defined inductively by the requirements that
IE
t,disc(ḟ) = It,disc(ḟ) and IE

t,unit(f) = It,unit(f) in the case that G is quasisplit. The defi-
nition depends on the induction hypothesis that SG̃′

t′,disc and SG̃′

t′,unit are stable, for data
G′ in E0

ell(G) and E0
ell(G, V ), respectively.

The next lemma is obviously parallel to Lemma 7.2, and is proved the same way.

Lemma 7.3.

(a) If G is arbitrary,

IE
t,disc(ḟ) =

∑
π̇∈ΠE

t,disc(G,ζ)

aG,E
disc(π̇)ḟG(π̇)

and

IE
t,unit(f) =

∫
ΠE

t (G,V,ζ)
aG,E(π)fG(π) dπ.

In particular, the statements (a) of Global Theorems 2 and 2′ are equivalent to the
general identities IE

t,disc(ḟ) = It,disc(ḟ) and IE
t,unit(f) = It,unit(f).
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(b) If G is quasisplit,

SG
t,disc(ḟ) =

∑
φ̇∈ΦE

t (G,ζ)

bG
disc(φ̇)ḟE

G(φ̇)

and

SG
t,unit(f) =

∫
ΦE

t (G,V,ζ)
bG(φ)fE

G(φ) dφ.

In particular, the statements (b) of Global Theorems 2 and 2′ are equivalent to the
assertions that SG

t,disc(ḟ) and SG
t,unit(f) are stable.

We have now stated all the main local and global theorems. We shall prove them, for
any K-group G that satisfies Assumption 5.2, in a subsequent article. In the meantime,
we shall have to carry some implicit induction assumptions, in order that the inductive
definitions of the last two sections make sense. To be precise, we assume that assertions
(b) of the various local and global theorems are valid if G is replaced by a group G̃′

attached to any endoscopic datum G′ in E0
ell(G).

8. Stabilization of the unramified terms

We have spent the last two sections stating a series of closely related theorems. State-
ments (a) of the theorems represent identities between terms in the trace formula of
§§ 2 and 3, and corresponding terms of an endoscopic trace formula. The statements (b)
describe properties of terms in a stable trace formula. In the remaining part of the paper,
we shall derive the expansions that will form the endoscopic and stable trace formulae.
This can be regarded as the first stage of a long process, which will end in a subsequent
paper with a proof of the theorems.

In this section, we shall deal with the unramified terms. These are the functions rG
M (k)

in (2.8), and the functions rG
M (c) in (3.12). The stabilization of the geometric terms

rG
M (k) will be a consequence of the generalized fundamental lemma we have taken on

as an assumption. The stabilization of the spectral terms rG
M (c) is essentially the main

result of [13].
We fix the global field F . We shall consider triplets (G, M, ζ) over F , as in earlier

sections. Then G is a global K-group over F , M is a Levi subgroup of G, and ζ is an
automorphic character of a central induced torus Z in G. Remember that, unless stated
otherwise, (G, F ) is supposed to satisfy Assumption 5.2. In particular, the generalized
fundamental lemma is assumed to hold at every place v outside some finite set of valua-
tions Vfund(G) that contains Vram(G).

For the geometric terms, we fix finite sets V ⊂ S of valuations of F . We take S to be
suitably large, as before, but at this point we assume only that V contains the set V∞ of
archimedean places. Given G and ζ, we write K(ḠV

S ) as in § 2 for the set of conjugacy
classes in ḠV

S = GV
S /ZV

S that are bounded. The places v in S − V are non-archimedean.
We can therefore arrange that any distribution in the basis

Γ (GV
S , ζV

S ) =
∏

v∈S−V

Γ (Gv, ζv)
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is defined by a (signed) measure on the preimage in GV
S of a conjugacy class in ḠV

S .
We have not assumed that V contains Vram(G, ζ), but for simplicity, let us suppose that
the subset Γss(ḠV

S , ζV
S ) of Γss(ḠS

V ) defined in § 1 actually equals Γss(ḠS
V ). There is then

an injection k → γS
V (k) from K(ḠV

S ) into Γ (GV
S , ζV

S ). We also attach a set L(ḠV
S ) to the

‘bounded’ elements in ∆(GV
S , ζV

S ). It is the family of formal linear combinations of classes
in K(ḠV

S ) that correspond to distributions in ∆(GV
S , ζV

S ) under the linear extension of the
map γV

S , and can be identified with a subset of the corresponding family L((Ḡ∗)V
S ) for

G∗ by means of a canonical embedding � → �∗. More generally, we attach a set LE(ḠV
S )

to the ‘bounded’ elements in ∆E(GV
S , ζV

S ). It is a quotient of the set of G-relevant pairs
in

{(G′, �′) : G′ ∈ E(GV
S ), �′ ∈ L((G̃′)V

S ) = L((Ḡ′)V
S )},

and comes with an injection � → δV
S (�) into ∆E(GV

S , ζV
S ) that takes the subset L(ḠV

S )
into ∆(GV

S , ζV
S ). The sets L(ḠV

S ) and LE(ḠV
S ) are independent of ζV

S . In other words,
they are equal to the corresponding sets in which ζV

S is the trivial character on ZV
S . This

amounts to a compatibility condition on the original choice of bases that we are taking
for granted.

Suppose that (G, M, ζ) is given, and that V now contains Vram(G, ζ). As in § 2, we
form the function

rG
M (k) = JM (γV

S (k), uV
S ), k ∈ K(M̄V

S ),

on K(M̄V
S ). This function depends on a choice of hyperspecial maximal compact subgroup

KV
S =

∏
v∈S−V

Kv

of GV
S , which we assume is in good position relative to MV

S . The intersection

KV
S ∩ MV

S =
∏

v∈S−V

(Kv ∩ Mv)

is a hyperspecial maximal compact subgroup of MV
S , which we use to form the normalized

transfer factor

∆KV
S ,M (�, k) = ∆KV

S ∩MV
S

(δV
S (�), γV

S (k)) =
∏
v

∆Kv∩Mv (δv(�v), γv(kv)),

for elements k and � in K(M̄V
S ) and LE(M̄V

S ), respectively. This provides us in turn with
a function

rG
M (�) =

∑
k∈K(M̄V

S )

∆KV
S ,M (�, k)rG

M (k), � ∈ LE(M̄V
S ), (8.1)

on LE(M̄V
S ), which is easily seen to be independent of KV

S .
The functions rG

M (k), ∆KS
V ,M (�, k) and rG

M (�) are all independent of ζV
S , so ζ plays

no role in the following proposition. We include it in the assertion only to emphasize
that the proposition is a special case of Local Theorem 1. Similarly, we include the extra
structure on elements in EM ′(G) implicit in the notation M̃ ′ and G̃′, even though it also
plays no role.
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Proposition 8.1. For each triple (G, M, ζ) with G quasisplit, there is a function

sG
M (�) = sG∗

M∗(�∗), � ∈ L(M̄V
S ),

which vanishes unless V contains Vram(G), and satisfies the following condition. For any
triplet (G, M, ζ) with Vfund(G) ⊂ V , any elliptic endoscopic datum M ′ for M , and any
element �′ ∈ L((M̄ ′)V

S ) with image � in LE(M̄V
S ), the identity

rG
M (�) =

∑
G′∈EM′ (G)

ιM ′(G, G′)sG̃′

M̃ ′(�′) (8.2)

holds.

Proof. As we recall from § 5 and elsewhere, the required function is uniquely determined
by (8.2). To be precise, suppose that G is quasisplit, and that � belongs to L(M̄V

S ). If
V does not contain Vram(G), we set sG

M (�) = 0. If V does contain Vram(G), the function
rG
M (k) is defined, and we define sG

M (�) inductively by setting

sG
M (�) = rG

M (�) −
∑

G′∈E0
M∗ (G)

ιM∗(G, G′)sG̃′

M∗(�∗).

Since the coefficient ιM ′(G, G′) vanishes unless G′ is elliptic, the sum can be taken over
a finite set.

We have then to establish (8.2). We fix the data (G, M, ζ), M ′, �′ and �. Our task is
to show that rG

M (�) equals the endoscopic expression

rG,E
M (�′) =

∑
G′∈EM′ (G)

ιM ′(G, G′)sG̃′

M̃ ′(�′)

on the right-hand side.
The problem separates into two cases, according to whether V contains Vram(M, ζ)

or not. Our assumption that S is suitably large means in this context that S contains
Vram(M ′). If V does not contain Vram(M ′), then M ′ ramifies at some place v in S − V .
In this case, the functions

sG̃′

M̃ ′(�′), G′ ∈ EM ′(G),

all vanish by definition, and the problem is to show that rG
M (�) vanishes.

Suppose that S − V is a union of two disjoint subsets F1 and F2. By construction,
L((M̄ ′)V

S ) is a Cartesian product of sets attached to the places in S −V , and the transfer
factors decompose accordingly. In particular, we can write

�′ = �′
1 × �′

2, �′
i ∈ L(M̄ ′

Fi
).

Then � equals a product �1 × �2, where �i is the image of �′
i in LE(M̄Fi). Since rG

M (�)
comes from the weighted orbital integral rG

M (k), it satisfies a splitting formula. It follows
from [7, Corollary 7.4] that

rG
M (�) =

∑
L1,L2∈L(M)

dG
M (L1, L2)rL1

M (�1)rL2
M (�2).
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The right-hand side of (8.2) also satisfies a splitting formula. By a simple variant of [12,
Theorem 6.1], we obtain

rG,E
M (�′) =

∑
L1,L2∈L(M)

dG
M (L1, L2)r

L1,E
M (�′

1)r
L2,E
M (�′

2).

The two formulae together reduce the problem to the case that S − V contains one
element.

We can therefore assume that S − V = {v}. We have to show that rG
M (�) vanishes if

M ′ ramifies at v, and that rG
M (�) equals rG,E

M (�′) if M ′ is unramified at v. One purpose
of the paper [14] is to reduce such questions to a simpler situation. The germ expansions
of [14] reduce the problem to the case that � is semisimple and strongly G-regular. The
descent formulae of [14] reduce the problem further to the case that � is elliptic, and that
G, M and M ′ are replaced by the corresponding local objects Gv, Mv and M ′

v. If M ′
v is

unramified, the required identity (8.2) becomes the formula (5.2) of our basic assumption.
If M ′

v is ramified, the corresponding vanishing assertion is just a variant of Proposition 7.5
of [22]. We leave the reader to extend the proof of this proposition from the special case
in [22] that M = G and Gder is simply connected. (For the extension to arbitrary M ,
one chooses the element g1 at the top of p. 389 of [22] so that it normalizes Mv as well
as Kv. From the symmetry of JMv

(·, ·) under the automorphism θ = Int(g1) [11, Lemma
3.3], one deduces that

rGv

Mv
(k) = JMv (γv(k), uv) = JθMv (θγv(k), θuv)

= JMv
(γv(θk), uv) = χ(c)JMv

(γv(k), uv)

= χ(c)rGv

Mv
(k),

for the complex number χ(c) �= 1 defined on p. 389 of [22]. Therefore, rGv

Mv
(k) = 0.) The

proposition follows. �

In the special case that M = G, the proposition is essentially the assertion that the
map f → ḟS = f × uV

S commutes with transfer. To state this precisely, let uV,G
S be the

image of the unit uV
S in SI(GV

S , ζV
S ), for S ⊃ V ⊃ Vram(G, ζ). Assuming only that V

contains V∞, we define a map aG → (aG)·S from SI(GV , ζV ) to SI(GS , ζS) by setting

(aG)·S =

{
aG × uV,G

S , if V ⊃ Vram(G, ζ),

0, otherwise,

for any aG ∈ SI(GV , ζV ). Setting M = G in the proposition, we obtain the following
corollary.

Corollary 8.2. For any pair (G, ζ) such that V contains both Vfund(G) and Vram(G, ζ),
any endoscopic datum G′ ∈ Eell(G), and any function f ∈ H(GV , ζV ), we have

ḟ ′
S = (f ′)·S . (8.3)

In particular, the function ḟ ′
S = (f × uV

S )′ vanishes unless G′ belongs to Eell(G, V ).
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Proposition 8.1 is really just a restatement of the generalized fundamental lemma in
a form we can apply. Its role will become clear in § 10, where we will derive endoscopic
and stable analogues of the expansion (2.8). Actually, for reasons of induction, the term
with M = G in the expansion is best treated separately. We may as well take care of it
now.

We write aG
ell(γ, S) for the term with M = G in the expansion (2.8) for aG(γ). That is,

aG
ell(γ, S) =

∑
k∈KV

ell(Ḡ,S)

aG
ell(γ × k)rG(k). (8.4)

Here, V is a finite set of valuations that contains Vram(G, ζ), and S is a large finite set
of valuations that contains V . The associated linear form

Iell(f, S) =
∑

γ∈Γell(G,V,ζ)

aG
ell(γ, S)fG(γ) (8.5)

can be regarded as the ‘elliptic’ part of the linear form I(f) of § 2. As the notation
suggests, it depends on the choice of S. One sees directly from the definitions that

Iell(f, S) = Iell(ḟS), ḟS = f × uV
S ,

for any S large enough such that ḟS belongs to Hadm(G, S, ζ).
To define endoscopic and stable analogues of the coefficients (8.4), we write

δ × � = δ × δV
S (�),

for the element in ∆E(GZ
S , ζS) associated to a pair δ ∈ ∆E(GZ

V , ζV ) and � ∈ LE(ḠV
S ).

Following § 2 further, we may as well write LV,E
ell (Ḡ, S) for the set of � ∈ LE(ḠV

S ) such that
δ × � belongs to ∆E

ell(G, S, ζ) for some δ, and LV
ell(Ḡ, S) for the intersection of LV,E

ell (Ḡ, S)
with L(ḠV

S ). We also write KV,E
ell (Ḡ, S) for the set of k in K(ḠV

S ) such that γ × k belongs
to Γ E

ell(G, S, ζ) for some γ. We then define the analogues of (8.4) by setting

aG,E
ell (γ, S) =

∑
k∈KV,E

ell (Ḡ,S)

aG,E
ell (γ × k)rG(k), (8.6)

for G arbitrary and γ ∈ Γ E
ell(G, V, ζ), and

bG
ell(δ, S) =

∑
�∈LV,E

ell (Ḡ,S)

bG
ell(δ × �)rG(�), (8.7)

for G quasisplit and δ ∈ ∆E
ell(G, V, ζ). We can also define endoscopic and stable analogues

of the linear form Iell(f, S). Following (7.5) and (7.6), we set

IE
ell(f, S) =

∑
G′∈E0

ell(G,V )

ι(G, G′)ŜG̃′

ell (f
′, S) + ε(G)SG

ell(f, S),

for linear forms ŜG̃′

ell (·, S) on SI(G̃′, V, ζ̃ ′), which are defined inductively by requiring that
IE
ell(f, S) = Iell(f, S) in case G is quasisplit. Suppose that V contains Vfund(G), and that
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S is large enough that the function ḟS = f ×uV
S belongs to Hadm(G, S, ζ). It then follows

inductively from Corollary 8.2 and the definition (7.5) that

IE
ell(f, S) = IE

ell(ḟS),

and

SG
ell(f, S) = SG

ell(ḟS),

with ḟS = f×uV
S . From the expansions of IE

ell(ḟS) and SG
ell(ḟS) in Lemma 7.2, we conclude

that

IE
ell(f, S) =

∑
γ∈Γ E

ell(G,V,ζ)

aG,E
ell (γ, S)fG(γ) (8.8)

and

SG
ell(f, S) =

∑
δ∈∆E

ell(G,V,ζ)

bG
ell(δ, S)fE

G(δ). (8.9)

These formulae represent a stabilization of the term with M = G in the original expansion
(2.8).

We turn now to the unramified spectral terms. The stabilization of these terms does
not rely on Assumption 5.2. It was proved unconditionally in [13]. We have only to state
the main result of [13] in the form we shall use.

The spectral terms require only one set of valuations V . We fix V , and consider a
pair (G, ζ) with V ⊃ Vram(G, ζ). We can then form the general set C(GV , ζV ) of families
of conjugacy classes, and the subset CV

disc(G, ζ) of families associated with the discrete
part of the trace formula. These sets were actually defined only for connected groups
in § 3. For the K-group G, here, we simply take the union of the corresponding sets
attached to the components Gα of G. As in [13], it is necessary to construct a possibly
larger subset CV,E

disc(G, ζ) of C(GV , ζV ), in order to accommodate induction arguments.
We define CV,E

disc(G, ζ) = CV,E
disc(G

∗, ζ∗) inductively as the union, over all inner K-forms
G1 of G∗, of the sets CV

disc(G1, ζ1), together with the union, over all elliptic endoscopic
data G′ ∈ E0

ell(G
∗, V ), of the images in C(GV , ζV ) of the sets CV,E

disc(G̃
′, ζ̃ ′). We recall here

that there is a canonical map from C((G̃′)V , (ζ̃ ′)V ) to C(GV , ζV ) for any G′, which by
the definition takes CV,E

disc(G̃
′, ζ̃ ′) to CV,E

disc(G, ζ). We refer the reader to [13, § 2] for more
detail. The construction of [13, § 2] actually uses larger sets CV

aut(·) in place of CV
disc(·).

It provides a subset CV,E
aut (G, ζ) of C(GV , ζV ), which was denoted CV

+ (G, ζ) in [13], and
which properly contains CV,E

disc(G, ζ).
Suppose that M is a Levi subgroup of G. The discussion prior to Lemma 3.2 of this

paper was carried out in greater generality at the beginning of § 4 of [13]. It applies
to any element c in the larger set CV,E

aut (M, ζ). In particular, we obtain a meromorphic
function

rG
M (cλ), λ ∈ a

∗
M,Z,C,
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for any c in CV,E
disc(M, ζ).

The next proposition is clearly parallel to Proposition 8.1. As stated, it is a special
case of [13, Theorem 5]. It applies to triplets (G, M, ζ) with Vram(G, ζ) ⊂ V , and with
(G, F ) is not being required to satisfy Assumption 5.2.

Proposition 8.3. For each triplet (G, M, ζ) with G quasisplit, and each c ∈ CV,E
disc(M, ζ),

there is a meromorphic function

sG
M (cλ) = sG∗

M∗(cλ), λ ∈ a
∗
M,Z,C,

with the property that for any triplet (G, M, ζ), any endoscopic datum M ′ ∈ Eell(M, V ),
and any element c′ ∈ CV,E

disc(M̃
′, ζ̃ ′) with image c in CV (M, ζ), the identity

rG
M (cλ) =

∑
G′∈EM′ (G)

ιM ′(G, G′)sG̃′

M̃ ′(c′
λ) (8.10)

holds.

Corollary 8.4. Suppose that c belongs to CV,E
disc(M, ζ). Then rG

M (cλ) is an analytic func-
tion of λ ∈ ia∗

M,Z that satisfies an estimate of the form (3.9). Similar assertions apply to
the function sG

M (cλ), in the case that G is quasisplit.

Proof. If c belongs to CV
disc(M1, ζ1), for an inner K-form M1 of M∗, the required prop-

erties of rG
M (cλ) follow from Lemma 3.2. We can therefore assume that c is the image of

an element c′ ∈ CV,E
disc(M̃

′, ζ̃ ′), for some M ′ ∈ E0
ell(M

∗, V ), Since M ′ �= M∗, the datum G∗

does not belong to EM ′(G). We can assume inductively that for any G′ ∈ EM ′(G), the
function sG̃′

M̃ ′(c′
λ) has the required properties. The properties for rG

M (cλ) then follow from
(8.10).

If G is quasisplit, consider the identity (8.10), with M ′ = M∗. We obtain

sG
M (cλ) = sG∗

M∗(cλ) = rG
M (cλ) −

∑
G′∈E0

M∗ (G)

ιM∗(G, G′)sG̃′

M∗(c∗
λ).

The required properties for sG
M (cλ) then follow by induction, and what we have just

established for rG
M (cλ). �

If c belongs to CV,E
disc(M, ζ), the corollary allows us to write rG

M (c) and sG
M (c) for the

values of rG
M (cλ) and sG

M (cλ) at λ = 0. The identity (8.10) then takes the form

rG
M (c) =

∑
G′∈EM′ (G)

ιM ′(G, G′)sG̃′

M̃ ′(c′). (8.11)

Proposition 8.3 is a kind of spectral analogue of the generalized fundamental lemma.
It is of course much easier. It is actually a tautology if M = G, since in this case

sG(cλ) = rG(cλ) = 1,
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and there is nothing to prove. We shall use Proposition 8.3 in § 10 to derive endoscopic
and stable analogues of the expansion (3.12). As before, it will be best to separate the
term with M = G from the rest of the expansion.

Following the discussion of the geometric terms, we write aG
disc(π) for the term with

M = G in the definition (3.12) of aG(π). In other words,

aG
disc(π) =

∑
c∈CV

disc(G,ζ)

aG
disc(π × c), (8.12)

since rG(c) = 1. The associated linear form

It,disc(f) =
∑

π∈Πt,disc(G,V,ζ)

aG
disc(π)fG(π) (8.13)

can be regarded as the ‘discrete’ part of the linear form It(f) in § 3. It follows directly
from the definitions that

It,disc(f) = It,disc(ḟ),

where ḟ = f × uV . Note the contrast with the geometric side, in that It,disc(f) does not
depend on a choice of a finite set S ⊃ V .

If c belongs to C(GV , ζV ), let φV (c) be the corresponding product of unramified Lang-
lands parameters

φv(cv) : WFv → LGv, v �∈ V.

We also write
φ × c = φ × φV (c)

for the element in ΦE(G(A), ζ) associated to a pair φ ∈ ΦE(GZ
V , ζV ) and c ∈ C(GV , ζV ).

We then define endoscopic and stable analogues of the coefficients (8.12) by setting

aG,E
disc(π) =

∑
c∈CV,E

disc(G,ζ)

aG
disc(π × c), (8.14)

for G arbitrary and π ∈ ΠE
disc(G, V, ζ), and

bG
disc(φ) =

∑
c∈CV,E

disc(G,ζ)

bG
disc(φ × c), (8.15)

for G quasisplit and φ ∈ ΦE
disc(G, V, ζ). We can also define endoscopic and stable analogues

IE
t,disc(f) and SG

t,disc(f) of It,disc(f). Following (7.11) and (7.12), we set

IE
t,disc(f) =

∑
G′∈E0

ell(G,V )

ι(G, G′)ŜG̃′

t′,disc(f
′) + ε(G)SG

t,disc(f),

for linear forms ŜG̃′

t′,disc on SI(G̃′, V, ζ̃ ′), which are defined inductively by requiring that
IE
t,disc(f) = It,disc(f) in case G is quasisplit. It follows inductively from Corollary 8.2 and

the definition (7.11) that

IE
t,disc(f) = IE

t,disc(ḟ)
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and

SG
t,disc(f) = SG

t,disc(ḟ),

for ḟ = f×uV . From the expansions of IE
t,disc(ḟ) and SG

t,disc(ḟ) in Lemma 7.3, we conclude
that

IE
t,disc(f) =

∑
π∈ΠE

t,disc(G,V,ζ)

aG,E
disc(π)fG(π) (8.16)

and

SG
t,disc(f) =

∑
φ∈ΦE

t,disc(G,V,ζ)

bG
disc(φ)fE

G(φ). (8.17)

These formulae represent a stabilization of the term with M = G in (3.12).

9. A global vanishing theorem

In preparation for the global expansions of the next section, we shall prove a vanishing
theorem. It is the general form of the global vanishing property [2, Theorem 14.2] for
inner twists of GL(n), which was used in the proof of [16, Proposition 2.5.1]. It can
also be regarded as a global analogue of Theorem 8.3 of [12]. The proof has the same
general structure as that of the local theorem in [12]. However, there are additional
considerations that come from the global transfer factors.

We fix the global field F , and objects G, Z ζ, G∗, Z∗, ζ∗ and V , as in earlier sections.
Then G is a global K-group with central character data Z and ζ, G∗ is a quasisplit inner
twist of G with corresponding central character data Z∗ and ζ∗, and V is a finite set of
valuations that contains Vram(G, ζ). In this section, we fix a Levi subgroup R of G∗, with
dual Levi subgroup R̂ ⊂ Ĝ. (As always, Ĝ represents a dual group for both G and G∗.)
We shall say that R comes from G if R corresponds to some Levi subgroup M of G, in
the sense of the statement of Corollary 4.2 and the definitions of [12, § 1]. This means
that M  R has the structure of a Levi subgroup of the multiple group G  G∗, and in
particular, that R is a quasisplit inner twist of M .

Let R′ be a fixed element in Eell(R, V ), or, more precisely, a suitable representative
(R′,R′, s′

R, ξ′
R) of such an element. Suppose that σ′ belongs to ∆((R̃′

V )Z̃′
, ζ̃ ′

V ). The results
of this section will be trivial if G is quasisplit, so we assume that ε(G) = 0. The linear
form

IE
R(σ′, f) =

∑
G′∈ER′ (G∗)

ιR′(G∗, G)ŜG̃′

R̃′ (σ′, f ′), f ∈ H(G, V, ζ), (9.1)

is then defined, according to our implicit induction assumption that the linear forms on
the right have been defined. The transfer mappings f → f ′ are defined by the canonical
transfer factors for G′. However, R′ need not come from G. Therefore, (9.1) is really a
hybrid for G and G∗ of the linear form (6.2).
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Suppose for a moment that R does come from G. Then R corresponds to a Levi
subgroup M of G, and

IE
R(σ′, f) = IE

M (δ′, f),

for the element δ′ as in (6.2) that is defined by σ′. The local vanishing property in Propo-
sition 6.2 tells us that this linear form vanishes unless δ′ itself actually comes from M .

The following theorem applies to the other case.

Theorem 9.1. Suppose that R does not come from G. Then

IE
R(σ′, f) = 0,

for R′ and σ′ as above.

Proof. Recall that σ′ depends on auxiliary data R̃′ and ξ̃′
R attached to R. We shall

assume that for any endoscopic datum G′ ∈ E(G∗), the extension G̃′ is the associated
endoscopic datum in E(G̃∗) [31, (4.4)], for a fixed z-extension G̃ of G. This condition is
purely for simplicity, and entails no loss of generality. It allows us to assume that the
extensions R̃′ → R′ attached to elements G′ ∈ ER′(G∗) are all equal.

The notation will also be simpler if we write

ŜG∗

R (σ′, f ′) = ιR′(G∗, G′)ŜG̃′

R̃′ (σ′, f ′), G′ ∈ ER′(G∗).

(See [12, Corollary 7.2].) This was the notation used to state the basic splitting formula
of [12, Theorem 6.1]. To exploit the formula, we order the valuations v1, . . . , vn in V ,
and agree to replace any subscript vi simply by i.

We can assume that

f =
n∏

i=1

fi,

where fi belongs to the local Hecke algebra

H(Gi, ζi) = H(Gvi
, ζvi

)

= H(G(Fvi), ζvi).

We apply the splitting formula [12, (6.3)] (or rather, its singular analogue in [14]) recur-
sively to the summands on the right-hand side of (9.1). For a given G′ ∈ ER′(G∗), we
obtain

ŜG∗

R (σ′, f ′) =
∑
L

eG∗

R (L)ŜL
R(σ′, (f ′)L′

),

where L ranges over n-tuples (L1, . . . , Ln) of Levi subgroups in L(R), eG∗

R (L) is a constant
that vanishes unless the natural map

a
L1
R ⊕ · · · ⊕ a

Ln

R → a
G∗

R

is an isomorphism, and

ŜL
R(σ′, (f ′)L′

) =
n∏

i=1

ŜLi

R (σ′
i, (f

′
i)

L′
i).
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For a given G′ and L, L′ = (L′
1, . . . , L

′
n) is the element in

E1 × · · · × En, Ei = ER′
i
(L∗

i ) = ER′
vi

(L∗
vi

),

obtained by projecting the point s′ ∈ s′
RZ(R̂)Γ /Z(Ĝ)Γ that defines G′ onto

s′
RZ(R̂)Γ1/Z(L̂1)Γ1 × · · · × s′

RZ(R̂)Γn/Z(L̂n)Γn .

Observe that for any G′, L and i, L′
i can be canonically identified with a Levi subgroup

of G′
i that contains the image of R′, and that the preimage L̃′

i of L′
i in G̃′

i is a Levi
subgroup of G̃′

i. We shall interchange the sums over G′ and L in the expression

IE
R(σ′, f) =

∑
G′∈ER′ (G∗)

∑
L

eG∗

R (L)ŜL
R(σ′, (f ′)L′

) (9.2)

obtained from (9.1).
We fix an element L = (L1, . . . , Ln), and an associated endoscopic datum L′ =

(L′
1, . . . , L

′
n) in E1 × · · · × En. We can then consider the sum over those G′ in (9.2)

that map to L′. We are free to choose the L-embedding

ξ̃′
L =

∏
i

ξ̃′
Li

: L′ =
∏

i

L′
i → LL̃′ =

∏
i

L̃′
i

independently of G′. In particular, ξ̃′
L does not have to be inherited from the embedding

ξ̃′: G′ → LG̃′ attached to G′, so long as the map f ′ → (f ′)L′
is interpreted as a transfer

from G̃′
V to the Levi subgroup L̃′

V that is taken with respect to a non-standard embedding
of LL̃′

V into LG̃′
V . We assume the coefficient eG∗

R (L) is non-zero. The group

Z(L̂1)Γ ∩ · · · ∩ Z(L̂n)Γ /Z(Ĝ)Γ

is then finite, and has an action
s : G′ → G′

s

on the set of G′ that map to L′. We shall actually restrict our attention to a certain
subgroup. Recall that L̂i,sc stands for the preimage of the Levi subgroup L̂i in Ĝsc. The
group

Z(L̂1,sc)Γ ∩ · · · ∩ Z(L̂n,sc)Γ /ẐΓ
sc (9.3)

then maps injectively into Z(L̂1)Γ ∩· · ·∩Z(L̂n)Γ /Z(Ĝ)Γ , and hence acts on the set of G′

that map to L′. We shall consider the orbit under (9.3) of a given G′. The contribution
of the orbit to (9.2) equals the product of eG∗

R (L) with∑
s

ŜL
R(σ′, (f ′

s)
L′

), (9.4)

where s is summed over the group (9.3), and where

f ′
s = fG′

s =
∏

i

(fi)G′
s,i =

∏
i

(f ′
i,s).
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It will be enough to show that (9.4) vanishes.
We can assume that there is an s such that the function

(f ′
s)

L′
=

∏
i

(f ′
i,s)

L′
i

in (9.4) does not vanish. This means that the local endoscopic data L′
i for G∗

i each contain
points that are images of elements in Gi = Gvi . In particular, the Levi subgroup Li of
G∗

i corresponds to a Levi subgroup Mi = Mvi of the local K-group Gi = Gvi
. As we

noted earlier, the choice of Mi includes structure that makes Li a quasisplit inner twist
of Mi. This allows us to identify L̂i with the dual group of Mi. We obtain a character

ζ̂i = ζ̂Mi

Gi

on π0(Z(L̂i,sc)Γi) that is independent of the choice of Mi. (See [12, Corollary 2.2] and the
remark following Corollary 4.2.) We can of course restrict ζ̂i to the subgroup Z(L̂i,sc)Γ

of Z(L̂i,sc)Γi . The product
ζ̂V (s) = ζ̂1(s) . . . ζ̂n(s),

is then defined for any s in the intersection of the groups Z(L̂i,sc)Γ . It follows from
[22, Proposition 2.6 and Theorem 2.2], and the fact that V contains Vram(G), that the
character ζ̂V is trivial on Ẑsc. It can therefore be identified with a character on the group
(9.3).

To study (9.4), we have to investigate the canonical transfer map

f → (f ′
s)

L′
.

It will be enough to deal with the normalized Langlands–Shelstad transfer factors,
described in § 4, that are attached to strongly G-regular conjugacy classes. Let

∆s(δ′, γ), δ′ ∈ ∆G- reg(L̃′
V ), γ ∈ Γreg(GV ),

be the restriction to L̃′
V of the canonical transfer factor for GV and G′

s,V , modified
to the extent that the ∆2(δ′, γ) term in [31, (3.5)] is taken relative to an embedding
ξ̃′
L : L′ → LL̃′ that is independent of s. Then

(f ′
s)

L′
(δ′) =

∑
γ∈Γreg(GV )

∆s(δ′, γ)fG(γ).

We would like to compare ∆s(δ′, γ) with the corresponding transfer factor ∆(δ′, γ) for
GV and G′

V .

Lemma 9.2. The transfer factors satisfy

∆s(δ′, γ) = ζ̂V (s)∆(δ′, γ),

for any δ′ ∈ ∆G- reg(L̃′
V ) and γ ∈ ΓG- reg(GV ), and any s in the group (9.3).

https://doi.org/10.1017/S1474748002000051 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748002000051


A stable trace formula. I 257

Proof. Replacing G by a z-extension if necessary, we can assume that G̃′
s = G′

s for each
s. (See [31, (4.4)].) In so doing, we suppress the embedding ξ′

s from the notation, and
simply identify G′

s with an L-group LG′
s of G′

s. We can also assume that δ′ in an image
of γ, in the usual sense of [31, (1.3)].

We fix δ′ and γ. We also choose a global base point

(δ̄′, γ̄), δ̄′ ∈ G′
s(F ), γ̄ ∈ G(A),

for (G, G′
s), as in § 4. The absolute transfer factor is then a product

∆s(δ′, γ) = ∆s(δ′, γ; δ̄′
V , γ̄V )∆s(δ̄′

V , γ̄V ),

of the corresponding relative transfer factor with its preassigned value at the image
(δ̄′

V , γ̄V ) of (δ̄′, γ̄) in G′
s,V × GV . The preassigned value ∆s(δ̄′

V , γ̄V ) equals the canonical
product

ds(δ̄′, γ̄)−1
∏
v �∈V

(∆s,Kv
(δ̄′

v, γ̄v))−1 (9.5)

defined by (4.3). The relative transfer factor ∆s(δ′, γ; δ̄′
V , γ̄V ) is of course also canonical.

It is defined as a product of the relative local transfer factors of [31, (3.7)] (modified for
local K-groups as in [12, § 2].) As such, it can be written as a product

∆I,s(δ′, γ)
∆I,s(δ̄′

V , γ̄V )
· ∆II,s(δ′, γ)
∆II,s(δ̄′

V , γ̄V )
· ∆2,s(δ′, γ)
∆2,s(δ̄′

V , γ̄V )
· ∆1,s(δ′, γ, δ̄′

V , γ̄V ) (9.6)

of four factors, corresponding to the local factors in [31, (3.2), (3.3), (3.5) and (3.4)].
(We continue to index the various terms by s, to emphasize their dependence on G′

s.)
Consider the three quotients in (9.6). If ∆∗,s(δ′, γ) is one of the three numerators, we

have a decomposition

∆∗,s(δ′, γ) =
n∏

i=1

∆∗,s(δ′
i, γi)

into local terms attached to the valuations vi in V . For each i, δ′
i is a class in L̃′

i(Fi),
and s belongs to Z(L̂i,sc)Γi . It follows easily from the definitions in the relevant sections
(3.2), (3.3) or (3.5) of [31] that ∆∗,s(δ′

i, γi) is independent of s, and can be ignored. In
the case of the numerator ∆2,s(δ′

i, γi), we are relying on the fact that the embedding
ξ̃′
L,i : L′

i → LL̃′
i is independent of s. If ∆∗,s(δ̄′

V , γ̄V ) is one of the three denominators in
(9.6), we write

∆∗,s(δ̄′
V , γ̄V ) = ∆∗,s(δ̄′, γ̄) ·

∏
v �∈V

∆∗,s(δ̄′
v, γ̄v)−1.

Since δ̄′ is defined over F , and since ∆∗,s(δ̄′, γ̄) depends only on δ̄′, we deduce that
∆∗,s(δ̄′, γ̄) = 1, as in the proof of [31, Theorem 6.4.A(ii)]. Now Gv is quasisplit for any
v �∈ V , and therefore has an absolute local transfer factor

∆s(δ̄′
v, γ̄v) = ∆I,s(δ̄′

v, γ̄v)∆II,s(δ̄′
v, γ̄v)∆1,s(δ̄′

v, γ̄v)∆2,s(δ̄′
v, γ̄v).

https://doi.org/10.1017/S1474748002000051 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748002000051


258 J. Arthur

The extra term ∆1,s(δ̄′
v, γ̄v) here is defined in [31, (3.4)], while the splitting for Gv on

which the absolute factor depends is assumed to come from a fixed splitting of G∗ over
F . We have thus far shown that (9.6) equals the product of the expression

∆1,s(δ′, γ; δ̄′
V , γ̄V )

(∏
v �∈V

∆1,s(δ̄′
v, γ̄v)−1

)(∏
v �∈V

∆s(δ̄′
v, γ̄v)

)
(9.7)

with a factor that is independent of s.
Consider the product of (9.5) with (9.7). The terms ∆s,Kv (δ̄′

v, γ̄v) and ∆s(δ̄′
v, γ̄v) in

these two expressions both represent transfer factors for Gv. They differ only insofar as
they are defined with respect to two different splittings of the quasisplit group G∗

v. Recall
that it is the term ∆I, defined in [31, (3.2)], that depends on the splitting. However, the
dependence is mild, and is uniform in (δ̄′

v, γ̄v). More precisely, if (¯̄δ′
v, ¯̄γv) is any other base

point for (G′
s,v, Gv), we obtain

∆s,Kv
(δ̄′

v, γ̄v)−1∆s(δ̄′
v, γ̄v) = ∆I,s,Kv (δ̄′

v, γ̄v)−1∆I,s(δ̄′
v, γ̄v)

= ∆I,s,Kv
(¯̄δ′

v, ¯̄γv)−1∆I,s(¯̄δ′
v, ¯̄γv),

from [31, Lemma 3.2.A]. The second base point (¯̄δ′
v, ¯̄γv) need only be local. We can choose

¯̄δ′
v to lie in R′

v, and still be an image of a point ¯̄γv in Gv. Since s belongs to Z(R̂sc)Γv ,
the definitions in [31, (3.2)] imply immediately that ∆I,s(¯̄δ′

v, ¯̄γv) and ∆I,s,Kv (¯̄δ′
v, ¯̄γv) are

both independent of s. The term

∆s,Kv (δ̄′
v, γ̄v)−1∆s(δ̄′

v, γ̄v)

in the product of (9.5) with (9.7) can therefore be ignored. We conclude that the original
transfer factor ∆s(δ′, γ) can be written as the product of

∆1,s(δ′, γ; δ̄′
V , γ̄V )

(∏
v �∈V

∆1,s(δ̄′
v, γ̄v)

)−1

ds(δ̄′, γ̄)−1 (9.8)

with a factor that is independent of s.
We turn now to the relative term ∆1,s(δ, γ; δ̄′

V , γ̄V ). It of course depends on s through
the semisimple element

s′
s = s′s

in Ĝ that is part of the endoscopic datum G′
s. As usual, s′ = s′

1 denotes the corresponding
element attached to the fixed endoscopic datum G′ = G′

1. The term also depends on s

through the global base point (δ̄′, γ̄). To keep track of this secondary dependence, we
shall write

(δ̄′, γ̄) = (δ̄′
s, γ̄s).

The relative term is defined as a product

∆1,s(δ′, γ; δ̄′
s,V , γ̄s,V ) =

n∏
i=1

∆1,s(δ′
i, γi; δ̄′

s,i, γ̄s,i)

https://doi.org/10.1017/S1474748002000051 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748002000051


A stable trace formula. I 259

of local factors for the valuations vi in V . As in § 4, we write T̄ ′
s for the centralizer of δ̄′

s

in G′
s, and we fix an admissible embedding of T̄ ′

s into a maximal torus T̄s of G∗. Then T̄s

depends on s, but has the compensation of being defined over the global field F . For each
i, we write T ′

i for the centralizer of δ′
i = δ′

vi
in L′

i, and we fix an admissible embedding of
T ′

i into a maximal torus Ti of the Levi subgroup Li of G∗. Then Ti is defined only over
the local field Fi, but is independent of s. Following [31, (3.4)], we form the torus

Ui,s = Ti,sc × T̄s,sc/{(z−1, z) : z ∈ Z(G∗
sc)}

over Fi. The local factor ∆1,s(δ′
i, γi; δ̄′

s,i, γ̄s,i) is then defined by the pairing of an element

inv
(

δ′
i, γi

δ̄′
s,i, γ̄s,i

)
= v−1

i × v̄s,i (9.9)

in H1(Fi, Ui,s) with a point

(s′
s)Ui,s = (s̃′s)Ti × (s̃′s)T̄s

(9.10)

in (Ûi,s)Γi . The element s̃′ here is any point in Ĝsc whose image in Ĝad coincides with
that of s′.

The element s ranges over the group (9.3). In particular, we have objects δ̄′
1, γ̄1, T̄ ′

1, T̄1

and Ui,1 corresponding to the element s = 1. To compare the local relative factor ∆1,s

with its specialization ∆1,1 at s = 1, we introduce a torus

Us = T̄1,sc × T̄s,sc/{(z−1, z) : z ∈ Z(G∗
sc)},

which is defined over F . Now there is no simple relation between the points (s̃′)T̄1
and

(s̃′s)T̄s
in ˆ̄T1,sc and ˆ̄Ts,sc. However, since s is a Γ -invariant element Ĝsc, Γ acts on the

two points by translating each of them by identical elements in Ẑsc. The product

(s̃′)T̄1
× (s̃′s)T̄s

therefore represents a Γ -invariant point us in the dual torus

Ûs = ˆ̄T1,sc × ˆ̄Ts,sc/{(z, z) : z ∈ Ẑsc}.

We write ∆1(δ̄′
1,i, γ̄1,i, δ̄

′
s,i, γ̄s,i) for the factor obtained by pairing the element

inv
(

δ̄′
1,i, γ̄1,i

δ̄′
s,i, γ̄s,i

)
= v̄−1

1,i × v̄s,i

in H1(Fi, Us) with us.
We can write

(s̃′s)Ti = (s̃′)Tis,

since s lies in the centre of L̂i,sc. The point (9.10) therefore equals the product of a point

(s̃′)Ti × (s̃′s)T̄s
(9.11)
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with s × 1. There is a canonical map of (T̂i,sc)Γi into (Ûi,s)Γi , and s × 1 is by definition
the image of the point s ∈ (T̂i,sc)Γi . The dual map of H1(Fi, Ui,s) into H1(Fi, Ti,ad) takes
the class (9.9) to an element inv(δ′

i, γi) in H1(Fi, Ti,ad) that depends only on (δ′
i, γi). The

pairing of (9.9) with s×1 is then equal to the pairing of inv(δ′
i, γi) with s. It follows that

∆1,s(δ′
i, γi; δ̄′

s,i, γ̄s,i) equals the product of

〈inv(δ′
i, γi), s〉

with the value of the pairing of (9.9) with (9.11). The value of this last pairing can be
rewritten according to a general transitivity property [31, (4.1)]. It equals the product of
∆1,1(δ′

i, γi; δ̄′
1,i, γ̄1,i) with ∆1(δ̄′

1,i, γ̄1,i; δ̄′
s,i, γ̄s,i), by a natural variant of the proof of [31,

Lemma 4.1.A], and the definitions above. (The transitivity property does apply here,
even though the endoscopic groups G′

s and G′ are distinct. The point is that they share
the Levi subgroup L′

i that contains δ′
i.) We conclude that ∆1,s(δ′

i, γi; δ̄′
s,i, γ̄s,i) equals

〈inv(δ′
i, γi), s〉∆1(δ̄′

1,i, γ̄1,i; δ̄′
s,i, γ̄s,i)∆1,1(δ′

i, γi; δ̄′
1,i, γ̄1,i).

Observe that the third term in the product is independent of s, and can be ignored.
We have obtained a decomposition of the first term in the product (9.8). Combining

this with the other two terms in (9.8), to which we add subscripts s, we see that ∆s(δ′, γ)
equals the product of

n∏
i=1

〈inv(δ′
i, γi), s〉, (9.12)

( n∏
i=1

∆1(δ̄′
1,i, γ̄1,i; δ̄′

s,i, γ̄s,i)
)(∏

v �∈V

∆1,s(δ̄′
s,v, γ̄s,v)

)−1

ds(δ̄′
s, γ̄s)−1, (9.13)

and a factor that is independent of s. To complete the proof of the lemma, we shall show
that (9.13) is independent of s, and that (9.12) equals ζ̂V (s).

Consider the expression (9.13). The relative pairings that constitute the factors of the
first product have been defined for valuations vi in V , but they make sense for any v.
Suppose that v is not in V . Since Gv is quasisplit, the relative pairing for v splits into a
product of two absolute pairings. We obtain

∆1(δ̄′
1,v, γ̄1,v; δ̄′

s,v, γ̄s,v) = ∆1,1(δ̄′
1,v, γ̄1,v)∆1,s(δ̄′

s,v, γ̄s,v)−1,

by a simple variant of the formula stated prior to Lemma 3.4.A of [31]. The adelic relative
pairing

∆1(δ̄′
1, γ̄1; δ̄′

s, γ̄s) =
∏
v

∆1(δ̄′
1,v, γ̄1,v; δ̄′

s,v, γ̄s,v),

defined by a product over all v, also splits. This is because it factors through the image
of the map ⊕

v

H1(Fv, Us) → H1(F, Us(A)/Us(F̄ )).
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Recalling the definition of ds(δ̄s, γ̄s) in § 4, we obtain

∆1(δ̄′
1, γ̄1; δ̄′

s, γ̄s) = d1(δ̄′
1, γ̄1)−1ds(δ̄′

s, γ̄s),

from the natural variant of the formula [31, (6.3.2)]. It follows that (9.13) equals(∏
v �∈V

∆1,1(δ̄′
1,v, γ̄1,v)−1

)−1

d1(δ̄′
1, γ̄1)−1,

and, in particular, is independent of s.
To deal with (9.12), we have to evaluate the complex number obtained by pairing

the class inv(δ′
i, γi) in H1(Fi, Ti,ad) with the point s in (T̂i,sc)Γi . Since s lies in the group

(9.3), it can be represented by an element in Z(L̂i,sc)Γi . It follows from [22, Theorem 1.2]
that the pairing factors through the image of inv(δ′

i, γi) in H1(Fi, Li,ad). Now inv(δ′
i, γi)

is the class of the cocycle obtained by composing a function

vi : Γi → Ti,sc

with the projection of Ti,sc onto Ti,ad. There is no harm in letting γi stand for a repre-
sentative in

Mi,αi(Fi), αi ∈ π0(Mi),

of the given conjugacy class, of which δ′
i is an image relative to Mi. The function vi is

then defined as
vi(τ) = hiui,αi

(τ)τ(hi)−1, τ ∈ Γi,

where (ψi, ui) is a frame for the multiple group Mi  Li, and hi is a point in Li,sc such
that

hiψi,αi
(γi)h−1

i

equals the image of δ′
i in Ti. (See [31, (3.4)] and [12, § 2].) The image of inv(δ′

i, γi) in
H1(Fi, Li,ad) is actually independent of hi. It is just the class of the cocycle obtained
by composing the function ui,αi

with the projection of Li,sc onto Li,ad. This class is the
element in H1(Fi, Li,ad) that defines Mi,αi as an inner twist of Li. Its pairing with s

equals ζ̂i(s), by definition. Taking the product over i, we conclude that (9.12) equals the
product

ζ̂V (s) = ζ̂1(s) . . . ζ̂n(s).

We have shown that ∆s(δ′, γ) equals the product of ζ̂V (s) with a factor that is inde-
pendent of s. Since ∆(δ′, γ) is the value of ∆s(δ′, γ) at s = 1, we obtain

∆s(δ′, γ) = ζV (s)∆(δ′, γ).

This completes the proof of Lemma 9.2. �

Lemma 9.3. The character

ζ̂V (s), s ∈ Z(L̂1,sc)Γ ∩ · · · ∩ Z(L̂n,sc)Γ /ẐΓ
sc,

is non-trivial.
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Proof. Set A = (Z(R̂sc)Γ )0. We shall also write Ai = (Z(L̂i,sc)Γ )0, for each i. Since the
constant eG∗

R (L) is non-zero, the vector space aR equals the sum of the two subspaces aLi

and
⋂

j �=i aLj
. This implies that A can be written as the product of Ai with the group

Ai =
⋂
j �=i

Aj ,

for any i between 1 and n. Set

Z = Ẑsc ∩ A = ẐΓ
sc ∩ A.

Then ZAi is a subgroup of Z(L̂i,sc)Γ , and we have an injection

ZA1 ∩ · · · ∩ ZAn/Z → Z(L̂1,sc)Γ ∩ · · · ∩ Z(L̂n,sc)Γ /ẐΓ
sc.

It is enough to show that the character

z → ζ̂V (z), z ∈ ZA1 ∩ · · · ∩ ZAn,

is non-trivial.
Let

z → (z1, . . . , zn)

be the composition of the maps

ZA1 ∩ · · · ∩ ZAn →
∏

i

(ZAi/Ai) →
∏

i

(Z/Z ∩ Ai).

Suppose that (z1, . . . , zn) is any point in Zn. For each i, we can write

zi = aia
i, ai ∈ Ai, ai ∈ Ai.

Then ai = zia
−1
i belongs to ZAi. Since it also belongs to Aj , for each j �= i, ai lies in

the domain ZA1 ∩ · · · ∩ ZAn. The image of ai in ZAj/Aj equals 1 if j �= i, and equals zi

if j = 1. Therefore,
z = a1 . . . an

is an element in ZA1 ∩ · · · ∩ ZAn whose image in
∏

i(Z/Z ∩ Ai) is (z1, . . . , zn). For any
i, we observe that

ζ̂i(z) =
∏
j

ζ̂i(aj) = ζ̂i(ai) = ζ̂i(zi),

since aj belongs to the subgroup Ai of the kernel of ζ̂i, for any j �= i, and since ai also
lies in Ai. We conclude that

ζ̂V (z) = ζ̂1(z1) . . . ζ̂n(zn), (9.14)

for any point (z1, . . . , zn) in Zn.
The assumption from Theorem 9.1 was that the Levi subgroup R of G∗ does not come

from G. It follows from Corollary 4.2 that there is an i such that ζ̂i is non-trivial on the
group

Z = ẐΓi
sc ∩ (Z(R̂sc)Γ )0.

The character (9.14) is therefore non-trivial. The proof of Lemma 9.3 follows. �
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We can now return to the proof of the theorem. It suffices to show that the sum (9.4)
equals zero. Consider the function (f ′

s)
L′

in the summand. If δ′ belongs to ∆G- reg(L̃′
V ),

we have

(f ′
s)

L′
(δ′) =

∑
γ∈Γreg(GV )

∆s(δ′, γ)fG(γ)

=
∑

γ

ζ̂V (s)∆(δ′, γ)fG(γ)

= ζ̂V (s)(f ′)L′
(δ′),

by Lemma 9.2. It follows that

(f ′
s)

L′
= ζ̂V (s)(f ′)L′

.

The expression (9.4) then factors as a product(∑
s

ζ̂V (s)
)

ŜL
R(σ′, (f ′)L′

).

We recall that the sum here is over elements s in the group (9.3). Since the character
ζ̂V is non-trivial on this group by Lemma 9.2, the sum vanishes. As we have seen, this
implies that the original expression (9.2) for IE

R(σ′, f) also vanishes. We have completed
the proof of Theorem 9.1. �

Theorem 9.1 has a natural spectral analogue, which we can state as a corollary. With R

and R′ fixed as at the beginning of the section, we choose an element ψ′ ∈ Φ((R̃′
V )Z̃′

, ζ̃ ′
V ).

The linear form

IE
R(ψ′, f) =

∑
G′∈ER′ (G∗)

ιR′(G∗, G′)ŜG̃′

R̃′ (ψ′, f ′), f ∈ H(G, V, ζ), (9.15)

is then defined according to our implicit induction hypotheses. If R corresponds to a Levi
subgroup M of G, we have

IE
R(ψ′, f) = IE

M (φ′, f),

for the element φ′ as in the spectral analogue of (6.2) that is defined by ψ′. The local
vanishing property in Proposition 6.4 tells that this linear form vanishes unless φ′ itself
comes from M .

Corollary 9.4. Suppose that R does not come from G. Then

IE
R(ψ′, f) = 0,

for R′ and ψ′ as above.

Proof. The proof is identical to that of the theorem. The spectral analogue of the stable
splitting formula quickly reduces the problem to showing that any sum∑

s

ŜL
R(ψ′, (f ′

s)
L′

),

over s in the group (9.3), vanishes. This follows from Lemmas 9.2 and 9.3, as in the final
stage of the proof of the theorem. �

https://doi.org/10.1017/S1474748002000051 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748002000051


264 J. Arthur

10. Endoscopic and stable expansions

We now take a significant step towards a stabilization of the trace formula. We shall
establish endoscopic and stable analogues of the expansions in §§ 2 and 3. The results
of this section include global analogues of the local expansions in [12, Theorem 9.1].
The proofs will follow the same general pattern. In particular, they will depend on the
vanishing theorem we have just established. We note that our use of the term ‘stable’ is
somewhat premature. We will not be able to prove the stability of the appropriate linear
forms until a subsequent paper. Only then will we be able to claim to have stabilized the
trace formula.

We fix our global objects G, Z, ζ, G∗, Z∗, ζ∗, and V , as at the beginning of § 9. In this
section, we also fix a minimal Levi subgroup M0 of the K-group G, with a corresponding
Levi subgroup M∗

0 ⊂ G∗, as well as a minimal Levi subgroup R0 of G∗ that is contained
in M∗

0 . We then have the Weyl group W ∗
0 = WG∗

0 = WG∗
(R0) of (G∗, R0), as well as the

Weyl group W0 = WG
0 = WG(M0) for (G, M0). The former acts on the set L∗ = LG∗

of
Levi subgroups of G∗ that contain R0, while the latter acts on the set L = LG of (M0-
equivalence classes of) Levi subgroups of G that contain M0. (See [12, § 1].) The image of
L under the natural map M → M∗ is the subset L(M∗

0 ) of L∗. A general element R ∈ L∗

comes from G, in the sense of the last section, if and only if its W ∗
0 -orbit meets L(M∗

0 ).
If G′ is any endoscopic group for G, we can also form the set L′ = LG′

and the Weyl
group W ′

0 = WG′

0 . Both of these of course depend on a fixed minimal Levi subgroup of
G′.

The expansions of §§ 2 and 3 were established for connected groups, but they carry
over verbatim to the K-group G. For example, we obtain an expansion for the linear
form

I(f) =
∑

α∈π0(G)

I(fα), f =
⊕

α

fα,

on H(G, V, ζ) by taking a sum of the expansions given by Proposition 2.2. We leave the
reader to check that Proposition 2.2 and the other results of §§ 2 and 3 apply to G as
stated, even though the sets L, WM

0 , WG
0 , etc., now have a slightly different meaning.

We shall freely quote them as results on G.
We begin by applying a formal construction to the linear form I. As in the construction

preceding Lemmas 7.2 and 7.3, we set

IE(f) =
∑

G′∈E0
ell(G,V )

ι(G, G′)Ŝ′(f ′) + ε(G)SG(f), f ∈ H(G, V, ζ), (10.1)

for linear forms Ŝ′ = ŜG̃′
on the spaces SI(G̃′, V, ζ̃ ′), which are defined inductively by

the supplementary requirement that

IE(f) = I(f), (10.2)

in case G is quasisplit. As usual, we have to know that for any G′ ∈ E0
ell(G, V ), the symbol

Ŝ′ makes sense. We assume inductively that if G is replaced by a quasisplit inner K-form
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of G̃′, the corresponding analogue of SG is defined and stable. We propose to establish
expansions of these new distributions in terms of the objects constructed in §§ 6 and 7.

For the geometric expansions, we first recall the linear forms IE
orb(f) and SG

orb(f) defined
in § 7. The expansions of Lemma 7.2 for these forms are to be regarded as the purely
‘orbital’ terms of larger geometric expansions for IE(f) and SG(f). To construct the
remaining terms, we consider the differences IE(f) − IE

orb(f) and SG(f) − SG
orb(f), for a

fixed function f ∈ H(G, V, ζ).

Theorem 10.1.

(a) If G is arbitrary,

IE(f) − IE
orb(f) =

∑
M∈L0

|WM
0 ||WG

0 |
∑

γ∈Γ E(M,V,ζ)

aM,E(γ)IE
M (γ, f). (10.3)

(b) If G is quasisplit,

SG(f) − SG
orb(f)

=
∑

M∈L0

|WM
0 ||WG

0 |−1
∑

M ′∈Eell(M,V )

ι(M, M ′)
∑

δ′∈∆(M̃ ′,V,ζ̃′)

bM̃ ′
(δ′)SG

M (M ′, δ′, f).

(10.4)

Remark. If G is quasisplit, Global Theorem 1′(b) of § 7 asserts that the distributions
SG

M (M ′, δ′) are stable, and vanish unless M ′ = M∗. If this is so, the formula (10.4)
reduces to

SG(f) − SG
orb(f) =

∑
M∈L0

|WM
0 ||WG

0 |−1
∑

δ∈∆(M,V,ζ)

bM (δ)SG
M (δ, f). (10.5)

Proof. Let us write IE,0(f) and SG,0(f) for the right-hand sides of (10.3) and (10.4),
respectively. The main step is to show that the difference

(IE(f) − IE
orb(f)) − ε(G)(SG(f) − SG

orb(f)) (10.6)

of the left-hand sides of the two formulae equals the corresponding difference

IE,0(f) − ε(G)SG,0(f) (10.7)

of right-hand sides.
According to the definitions (10.1) and (7.6), the difference (10.6) equals∑

G′∈E0
ell(G,V )

ι(G, G′)(ŜG̃′
(f ′) − ŜG̃′

orb(f ′)).

We assume inductively that for any G′ ∈ E0
ell(G, V ), part (b) of the theorem holds for

any quasisplit inner K-form of G̃′. We are also carrying the general induction hypothesis
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that part (b) of Global Theorem 1′ holds for any such G̃′, so we can assume that the
analogue of (10.5) holds for G̃′. It follows that (10.6) equals∑

G′∈E0
ell(G,V )

ι(G, G′)
∑

R′∈(L′)0
|WR′

0 ||WG′

0 |−1SR′(G′),

where
SR′(G′) =

∑
σ′∈∆(R̃′,V,ζ̃′)

bR̃′
(σ′)ŜG̃′

R̃′ (σ′, f ′).

Lemma 10.2. Suppose that

SR′(G′), G′ ∈ E(G∗), R′ ∈ L′,

is a family of complex numbers that depend only on the AutG∗(G′)-orbit of R′, and that
vanish for all but finitely many G′. Then∑

G′∈Eell(G∗)

ι(G∗, G′)
∑

R′∈L′

|WR′

0 ||WG′

0 |−1SR′(G′)

equals ∑
R∈L∗

|WR
0 ||WG∗

0 |−1IR(G∗)

where
IR(G∗) =

∑
R′∈Eell(R)

ι(R, R′)
∑

G′∈ER′ (G∗)

ιR′(G∗, G′)SR′(G′).

Proof. The statement of this rearrangement lemma matches that of its local counterpart
[12, Lemma 9.2]. The proof is also the same, apart from the fact that the global coefficient
ι(G∗, G′) is slightly more complicated than the corresponding local coefficient. According
to [21, Theorem 8.3.1 and (5.1.1)], we can write

ι(G∗, G′) = | OutG∗(G′)|−1|Z(Ĝ′)Γ /Z(Ĝ∗)Γ || ker1(F, Z(Ĝ′))|| ker1(F, Z(Ĝ∗))|−1,

where
OutG∗(G′) = AutG∗(G′)/Ĝ∗,

and ker1(F, Z(Ĝ∗)) is the subgroup of locally trivial elements in H1(F, Z(Ĝ∗)). It is the
factor

| ker1(F, Z(Ĝ′))|| ker1(F, Z(Ĝ∗))|−1

that is the extra global ingredient. However, this factor equals the corresponding factor

| ker1(F, Z(R̂′))|| ker1(F, Z(R̂))|−1

in the formula for the coefficient ι(R, R′). (See, for example, [13, Lemma 2].) In other
words, the extra factors do not contribute to the quotient

ι(G∗, G′)ι(R, R′)−1.
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At the end of the proof of Lemma 9.2 of [12], various constants were seen to cancel.
The contribution of the local analogues of ι(G∗, G′) and ι(R, R′) to the argument was as
a quotient of one by the other. The argument therefore carries over to the global situation
at hand. The proof of the global lemma here thus reduces to that of the local lemma
in [12]. �

Returning to the proof of Theorem 10.1, we apply the lemma to the last expression we
obtained from (10.6). We set SR′(G′) equal to zero if G′ belongs to the complement of
E0
ell(G, V ) in E(G∗), or if R′ equals G′. Then SR′(G′) is supported on a finite collection

of groups G′. The lemma provides an expansion∑
R∈L∗

|WR
0 ||WG∗

0 |−1
∑

R′∈Eell(R)

ι(R, R′)
∑

G′∈ER′ (G∗)

ιR′(G, G′)SR′(G′),

for (10.6). Substituting for SR′(G′), we conclude that (10.6) equals∑
R∈(L∗)0

|WR
0 ||WG∗

0 |−1
∑

R′∈Eell(R,V )

ι(R, R′)
∑

σ′∈∆(R̃′,V,ζ̃′)

bR̃′
(σ′)BR′(σ′, f), (10.8)

where

BR′(σ′, f) =
∑

G′∈E0
R′ (G)

ιR′(G, G′)ŜG̃′

R̃′ (σ′, f ′).

We claim that

BR′(σ′, f) = IE
R(σ′, f) − ε(G)SG

R (R′, σ′, f).

If ε(G) = 1, the map from L to L∗ is onto, and R is the image of a group in L. The
formula in this case is just the definition (6.2). If ε(G) = 0, the image of L in L∗ is proper,
and need not contain R. However, E0

R′(G) equals ER′(G) in this case, and the formula
follows from the definition (9.1). Having justified the claim, we consider the contribution
to (10.8) of the two terms in the formula for BR′(σ′, f). The contribution of the second
term is just the product of (−ε(G)) with the right-hand side SG,0(f) of (10.4). For the
contribution of the first term IE

R(σ′, f), we appeal to Theorem 9.1. According to this
theorem, IE

R(σ′, f) vanishes unless R comes from G, which in the present context means
that (R, R′, σ′) lies in the W ∗

0 -orbit of a triplet

(M, M ′, δ′), M ∈ L0, M ′ ∈ Eell(M, V ), δ′ ∈ ∆(M̃ ′, V, ζ̃ ′).

If (R, R′, σ′) does have this property, we can write IE
R(σ′, f) = IE

M (δ′, f), ι(R, R′) =
ι(M, M ′) and bR̃′

(σ′) = bM̃ ′
(δ′). The contribution of IE

M (σ′, f) to (10.8) can therefore
be expressed in terms of a sum over M ∈ L0. By familiar counting arguments, we have
only to replace the coefficient |WR

0 ||WG∗

0 |−1 in (10.8) by |WM
0 ||WG

0 |−1. We conclude that
(10.8) equals the difference between the expression∑

M∈L0

|WM
0 ||WG

0 |−1
∑

M ′∈Eell(M,V )

ι(M, M ′)
∑

δ′∈∆(M̃ ′,V,ζ̃′)

bM̃ ′
(δ′)IE

M (δ′, f) (10.9)
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and
ε(G)SG,0(f).

According to (6.4) and Proposition 6.2, the term IE
M (δ′, f) in (10.9) has an expansion

IE
M (δ′, f) =

∑
γ∈Γ E(M,V,ζ)

∆M (δ′, γ)IE
M (γ, f).

We substitute this expansion into (10.9), and then take the sum over γ outside the sums
over M ′ and δ′. In the special case that G is quasisplit, our general induction assumption
implies that part (b) of Global Theorem 1′ holds for any M in (10.9), since M is summed
over proper Levi subgroups of G. The definition (7.1) therefore takes the form

aM,E(γ) =
∑

M ′∈Eell(M,V )

ι(M, M ′)
∑

δ′∈∆(M̃ ′,V,ζ̃′)

bM̃ ′
(δ′)∆M (δ′, γ),

in general. Substituting this into (10.9), we obtain an expression∑
M∈L0

|WM
0 ||WG

0 |−1
∑

γ∈Γ E(M,V,ζ)

aM,E(γ)IE
M (γ, f)

that is just the right-hand side IE,0(f) of (10.3). We have shown that (10.8) equals the
difference (10.7). But (10.8) equals the original expression (10.6), so we have completed
the task of showing that (10.6) equals (10.7).

We can now finish the proof in the usual way from the equality of (10.6) and (10.7).
If ε(G) = 0, we see immediately that

IE(f) − IE
orb(f) = IE,0(f),

which is the required identity (10.3). Suppose that ε(G) = 1. Then IE(f)−IE
orb(f) equals

I(f) − Iorb(f) by definition. Moreover, IE,0(f) equals the expression

I0(f) =
∑

M∈L0

|WM
0 ||WG

0 |−1
∑

γ∈Γ (M,V,ζ)

aM (γ)IM (γ, f),

according to the definitions (6.3) and (7.2) (along with (6.1) and (6.5)) of the original
terms in the two expansions. Since I(f)− Iorb(f) equals I0(f), by the original expansion
(2.9) and the definition (2.11), we again have the required identity (10.3). The remaining
terms in (10.6) and (10.7) then give the identity

SG(f) − SG
orb(f) = SG,0(f),

which is just (10.4).
Observe that we have established the absolute convergence of the expansions (10.3)

and (10.4). This is a consequence of the inductive proof of the theorem, and the absolute
convergence of (2.9). One could also apply the argument of [8, § 3], together with the
appropriate splitting and descent formulae, to show directly that the summands in (10.3)
and (10.4) have finite support. �
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Theorem 10.1 provides expansions with which we can investigate the distributions
IE(f) − IE

orb(f) and SG(f) − SG
orb(f). We shall also need expansions of a similar form

for the more elementary distributions IE
orb(f) − IE

ell(f, S) and SG
orb(f) − SG

ell(f, S). This
is essentially the question of establishing formulae for the coefficients aG,E(γ) and bG(δ)
that are parallel to (2.8). The expressions (8.6) and (8.7) for aG,E

ell (γ, S) and bG
ell(δ, S) can

be regarded as the terms with M = G in such expansions. It is therefore enough to study
the differences aG,E(γ) − aG,E

ell (γ, S) and bG(δ) − bG
ell(δ, S).

For the next proposition and its corollary, we assume that V contains the finite set
Vfund(G) of Assumption 5.2.

Proposition 10.3.

(a) Suppose that γ belongs to Γ E(G, V, ζ), and that S ⊃ V is a large finite set. Then

aG,E(γ) − aG,E
ell (γ, S) =

∑
M∈L0

|WM
0 ||WG

0 |−1
∑

k∈KV,E
ell (M̄,S)

aM,E
ell (γM × k)rG

M (k).

(10.10)

(b) Suppose that G is quasisplit, that δ belongs to ∆E(G, V, ζ), and that S ⊃ V is
again a large finite set. Then

bG(δ) − bG
ell(δ, S) =

∑
M∈L0

|WM
0 ||WG

0 |−1
∑

�∈LV
ell(M̄,S)

bM
ell(δM × �)sG

M (�), (10.11)

if � lies in the subset ∆(G, V, ζ) of ∆E(G, V, ζ), while bG(δ) − bG
ell(δ, S) vanishes if δ

lies in the complement of ∆(G, V, ζ).

Proof. The required expansions clearly have the same general structure as those of
Theorem 10.1. The connection becomes more obvious if we reformulate the proposition
in terms of the distributions

IE
orb(f) − IE

ell(f, S) =
∑

γ∈Γ E(G,V,ζ)

(aG,E(γ) − aG,E
ell (γ, S))fG(γ)

and

SG
orb(f) − SG

ell(f, S) =
∑

δ∈∆E(G,V,ζ)

(bG(δ) − bG
ell(δ, S))fE

G(δ).

The two expansions are provided by Lemma 7.2, (8.8) and (8.9).
Set

IE,0
orb(f, S) =

∑
M∈L0

|WM
0 ||WG

0 |−1
∑
γ̇S

aM,E
ell (γ̇S)rG

M (γ̇S , f),

where γ̇S = γ × k is summed over the product of Γ E
ell(M, V, ζ) with KV,E

ell (M̄, S), and

rG
M (γ̇S , f) = rG

M (k)fM (γ).

Then IE,0
orb(f, S) is the linear form obtained by replacing the coefficient aG,E(γ)−aG,E

ell (γ, S)
in the first expression above by the corresponding right-hand side of (10.10), and then
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changing variables in the sum over γ. The function f ∈ H(G, V, ζ) can be allowed to vary
freely without affecting S, as long as the support of f remains bounded. Part (a) of the
proposition is therefore equivalent to the identity

IE
orb(f) − IE

ell(f, S) = IE,0
orb(f, S).

Similarly, if G is quasisplit, set

SG,0
orb (f, S) =

∑
M∈L0

|WM
0 ||WG

0 |−1
∑
δ̇S

bM
ell(δ̇S)sG

M (δ̇S , f),

where δ̇S = δ × � is summed over the product of ∆ell(M, V, ζ) with LV
ell(M̄, S), and

sG
M (δ̇S , f) = sG

M (�)fM (δ).

Then SG,0
orb (f, S) is the linear form obtained by replacing the coefficient bG(δ) − bG

ell(δ, S)
in the second expression above by 0 if δ does not lie in ∆(G, V, ζ), and by the right-hand
side of (10.11) if δ does lie in ∆(G, V, ζ). Part (b) of the proposition is then equivalent
to the identity

SG
orb(f) − SG

ell(f, S) = SG,0
orb (f, S).

We now proceed as in the proof of Theorem 10.1. According to the definitions in §§ 7
and 8, the difference

(IE
orb(f) − IE

ell(f, S)) − ε(G)(SG
orb(f) − SG

ell(f, S)) (10.12)

equals ∑
G′∈E0

ell(G,V )

ι(G, G′)(ŜG̃′

orb(f ′) − ŜG̃′

ell (f
′, S)).

We can assume inductively that

ŜG̃′

orb(f ′) − ŜG̃′

ell (f
′, S) = ŜG̃′,0

orb (f ′, S),

for any G′ ∈ E0
ell(G, V ). After making the appropriate substitution, we apply Lemma 10.2,

as in the proof of Theorem 10.1. We find that (10.12) equals∑
R∈(L∗)0

|WR
0 ||WG∗

0 |−1
∑

R′∈Eell(R,V )

ι(R, R′)
∑
σ̇′

S

bR̃′

ell (σ̇
′
S)BR′(σ̇′

S , f),

where σ̇′
S is summed over the product of ∆ell(R̃′, V, ζ̃ ′) with LV

ell(R̄
′, S), and

BR′(σ̇′
S , f) =

∑
G′∈E0

R′ (G)

ιR′(G, G′)ŝG̃′

R̃′(σ̇′
S , f ′).

As in the proof of Theorem 10.1, we shall break BR′(σ̇′
S , f) into a sum of two terms.

In this case, the decomposition takes the form

BR′(σ̇′
S , f) =

∑
G′∈ER′ (G)

ιR′(G, G′)ŝG̃′

R̃′(σ̇′
S , f ′) − ε(G)sG

R(R′, σ̇′
S , f),
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where

sG
R(R′, σ̇′

S , f) =

{
sG∗

R (σ̇S , f), if R′ = R and σ̇′
S = σ̇S ,

0, otherwise.

The contribution of the second term to (10.12) is just the product of (−ε(G)) with
SG,0

orb (f, S). The contribution of the first term will be given by the generalized fundamental
lemma, or rather its formulation in Proposition 8.1. If σ̇′

S = σ′ × �′, the first term equals

∑
G′∈ER′ (G)

ιR′(G, G′)ŝG̃′

R̃′(σ̇′
S , f ′) =

( ∑
G′∈ER′ (G)

ιR′(G, G′)sG̃′

R̃′(�′)
)

fR′
(σ′).

This vanishes if R does not come from G, by the definition of fR′
(σ′). On the other

hand, if (R, R′, σ′) lies in the WG∗

0 -orbit of a triplet (M, M ′, δ′) that comes from G,
Proposition 8.1 tells us that the first term equals

rG
M (�)fM ′

(δ′) = rG
M (�)fE

M (δ),

where δ × � is the image of δ′ × �′ in the product of ∆E
ell(M, V, ζ) with LV,E(M̄, S). By

the usual counting arguments, we can therefore write the contribution of the first term
to (10.12) as∑

M∈L0

|WM
0 ||WG

0 |−1
∑

M ′∈Eell(M,V )

ι(M, M ′)
∑
δ̇′

S

bM̃ ′

ell (δ̇′
S)rG

M (δ̇′
S , f), (10.13)

where δ̇′
S = δ′ × �′ is summed over the product of ∆ell(M̃ ′, V, ζ̃ ′) with LV

ell(M̄
′, V ), and

rG
M (δ̇′

S , f) = rG
M (�)fE

M (δ).

We have shown that (10.12) equals the difference between (10.13) and ε(G)SG,0
orb (f, S).

Consider the expression (10.13). We can actually sum M ′ over the larger set Eell(M, S),
since Proposition 8.1 asserts that the factor rG

M (�) in the corresponding summand van-
ishes if M ′ lies in the complement of Eell(M, V ) in Eell(M, S). Moreover, the term
rG
M (δ̇′

S , f) can be expanded as a sum over γ̇S . It follows from (8.1) and the definitions
above that

rG
M (δ̇′

S , f) =
∑
γ̇S

∆M (δ̇′
S , γ̇S)rG

M (γ̇S , f),

where γ̇S is summed over the product of Γ E
ell(M, V, ζ) with KV,E

ell (M̄, S). Finally, in the
special case that G is quasisplit, our general induction hypothesis implies that part (b)
of Global Theorem 1 holds for any M in (10.13). The definition (7.3) therefore takes the
form

aM,E
ell (γ̇S) =

∑
M ′∈Eell(M,S)

ι(M, M ′)
∑
δ̇′

S

bM̃ ′
(δ̇′

S)∆M (δ̇′
S , γ̇S),

in general. We conclude that the inner sum over M ′ in (10.13) equals∑
γ̇S

aM,E
ell (γ̇S)rG

M (γ̇S , f).
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The expression (10.13) itself is then equal to IE,0
ell (f, S).

We have shown that the original expression (10.12) is equal to

IE,0
orb(f, S) − ε(G)SG,0

orb (f, S).

The proof of the proposition can now be completed in the usual way, exactly as in
Theorem 10.1. �

Proposition 10.3, together with (8.6) and (8.7), reduces the study of the coefficients
aG,E(γ) and bG(δ) to that of the elliptic coefficients aG,E

ell (γ̇S) and bG
ell(δ̇S). In particular,

we obtain the following corollary.

Corollary 10.4. Global Theorem 1 implies Global Theorem 1′.

The spectral expansions depend on a non-negative number t, but will otherwise be
parallel to those above. The starting point is the linear form It of § 3. Given t, we set

IE
t (f) =

∑
G′∈E0

ell(G,V )

ι(G, G′)Ŝ′
t′(f ′) + ε(G)SG

t (f), f ∈ H(G, V, ζ), (10.14)

for linear forms Ŝ′
t′ = ŜG̃′

t′ on the spaces SI(G̃′, V, ζ̃ ′), which are defined inductively by
the supplementary requirement that

IE
t (f) = It(f), (10.15)

in case G is quasisplit. We assume inductively that if G is replaced by a quasisplit inner
K-form of G̃′, for any G′ ∈ E0

ell(G, V ), the corresponding analogue of SG̃′

t′ is defined and
stable.

The link between the geometric and spectral expansions is provided by the following
analogue of Proposition 3.1.

Proposition 10.5.

(a) If G is arbitrary, the linear forms

IE
t (f), f ∈ H(G, V, ζ), t � 0,

satisfy the multiplier convergence estimate (3.3), and the formula

IE(f) =
∑

t

IE
t (f).

(b) If G is quasisplit, the linear forms

SG
t (f), f ∈ H(G, V, ζ), t � 0,

also satisfy the estimate (3.3), as well as the formula

SG(f) =
∑

t

SG
t (f).

https://doi.org/10.1017/S1474748002000051 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748002000051


A stable trace formula. I 273

Proof. We assume inductively that (b) holds if G is replaced by a quasisplit inner K-
form of G̃′, for any G′ ∈ E0

ell(G, V ). If α ∈ C∞
c (hZ)W∞ is a multiplier for G, there is a

multiplier α′ ∈ C∞
c (h̃Z̃′

)W ′
∞ for G̃′ such that

α̂′(ν + dη̃′
∞) = α̂(ν), ν ∈ h

∗
C/a

∗
G,Z,C,

and

(fα)′ = f ′
α′ , f ∈ H(G, V, ζ).

(See [10, (7.9)].) It follows that the linear forms

IE
t (f) − ε(G)SG

t (f) =
∑

G′∈E0
ell(G,V )

ι(G, G′)Ŝ′
t′(f ′), f ∈ H(G, V, ζ), t � 0,

satisfy the estimate (3.3). Furthermore, we observe that

IE(f) − ε(G)SG(f) =
∑

G′∈E0
ell(G,V )

ι(G, G′)Ŝ′(f ′)

=
∑
G′

ι(G, G′)
∑

t

Ŝ′
t′(f ′)

=
∑

t

(IE
t (f) − ε(G)SG

t (f)).

The proposition follows from Proposition 3.1, (10.2) and (10.15). �

Suppose now that t is fixed. The expansions of the linear forms IE
t,unit(f) and SG

t,unit(f)
in Lemma 7.3 are to be regarded as purely ‘unitary’ terms of larger spectral expansions of
IE
t (f) and SG

t (f). For the remaining terms, we consider the differences IE
t (f) − IE

t,unit(f)
and SG

t (f) − SG
t,unit(f), for a fixed function f ∈ H(G, V, ζ).

Theorem 10.6.

(a) If G is arbitrary,

IE
t (f) − IE

t,unit(f) =
∑

M∈L0

|WM
0 ||WG

0 |−1
∫

ΠE
t (M,V,ζ)

aM,E(π)IE
M (π, f) dπ. (10.16)

(b) If G is quasisplit,

SG
t (f) − SG

t,unit(f) =
∑

M∈L0

|WM
0 ||WG

0 |−1
∑

M ′∈Eell(M,V )

ι(M, M ′)

×
∫

Φt′ (M̃ ′,V,ζ̃′)
bM̃ ′

(φ′)SG
M (M ′, φ′, f) dφ′. (10.17)
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Remark. If G is quasisplit, and Local Theorem 2′(b) holds for G, the formula (10.17)
simplifies to

SG
t (f) − SG

t,unit(f) =
∑

M∈L0

|WM
0 ||WG

0 |−1
∫

Φt(M,V,ζ)
bM (φ)SG

M (φ, f) dφ. (10.18)

This is obviously parallel to (10.5).

Proof. The proof is essentially the same as that of Theorem 10.1. We write IE,0
t (f) and

SG,0
t (f) for the right-hand sides of (10.16) and (10.17), respectively. The main step is to

show that the difference

(IE
t (f) − IE

t,unit(f)) − ε(G)(SG
t (f) − SG

t,unit(f)) (10.19)

of the left-hand sides of the two formulae equals the corresponding difference

IE,0
t (f) − ε(G)SG,0

t (f) (10.20)

of right-hand sides.
We have only to follow the earlier inductive argument, using Corollary 9.4 in place of

Theorem 9.1. The role of (10.9) is taken by the parallel spectral expansion

∑
M∈L0

|WM
0 ||WG

0 |−1
∑

M ′∈Eell(M,V )

ι(M, M ′)
∫

Φt′ (M̃ ′,V,ζ̃′)
bM̃ ′

(φ′)IE
M (φ′, f) dφ′,

into which we substitute the inversion formula

IE
M (φ′, f) =

∑
π∈ΠE

t (M,V,ζ)

∆M (φ′, π)IE
M (π, f)

that is provided by (6.6) and Proposition 6.4. At this point there is a minor difference in
the argument. Using the property

∆M (φ′
λ, πλ) = ∆M (φ′, π), λ ∈ ia∗

M,Z/ia∗
G,Z ,

and the definitions of the measures dφ′ and dπ in § 7, we transform the resulting integral
over Φt′(M̃ ′, V, ζ̃ ′) and sum over ΠE

t (M, V, ζ) to a sum over Φt′(M̃ ′, V, ζ̃ ′) and integral
over ΠE

t (M, V, ζ). The remaining discussion from the proof of Theorem 10.1 carries over
verbatim. It confirms the equality of (10.19) with (10.20), from which the proof of the
proposition follows. In particular, the absolute convergence of the integrals in (10.16) and
(10.17) follows inductively from the absolute convergence of the integral in (3.13). �

Finally, we shall derive expansions for the more elementary spectral distributions
IE
t,unit(f)−IE

t,disc(f) and SG
t,unit(f)−SG

t,disc(f). This is essentially the question of establish-
ing formulae for the coefficients aG,E(π) and bG(φ) that are parallel to (3.12). Since the
expressions (8.14) and (8.15) for aG,E

disc(π) and bG
disc(φ) can be regarded as the terms with

M = G in such formulae, it will be enough to study the differences aG,E(π) − aG,E
disc(π)

and bG(φ) − bG
disc(φ).
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Proposition 10.7.

(a) Suppose that π belongs to ΠE
t (G, V, ζ). Then

aG,E(π) − aG,E
disc(π) =

∑
M∈L0

|WM
0 ||WG

0 |−1
∑

c∈CV,E
disc(M,ζ)

aM,E
disc (πM × c)rG

M (c). (10.21)

(b) Suppose that G is quasisplit, and that φ belongs to ΦE
t (G, V, ζ). Then

bG(φ) − bG
disc(φ) =

∑
M∈L0

|WM
0 ||WG

0 |−1
∑

c∈CV,E
disc(M,ζ)

bM
disc(φM × c)sG

M (c), (10.22)

if c lies in the subset Φt(G, V, ζ) of ΦE
t (G, V, ζ), while bG(φ) − bG

disc(φ) vanishes if φ

lies in the complement of Φt(G, V, ζ).

Proof. The proof is parallel to that of Proposition 10.3. In particular, we reformulate
the proposition in terms of the distributions

IE
t,unit(f) − IE

t,disc(f) =
∫

ΠE
t (G,V,ζ)

(aG,E(π) − aG,E
disc(π))fG(π) dπ

and

SG
t,unit(f) − SG

t,disc(f) =
∫

ΦE
t (G,V,ζ)

(bG(φ) − bG
disc(φ))fE

G(φ) dφ,

with expansions given by Lemma 7.3, (8.16) and (8.17). We set

IE,0
t,unit(f) =

∑
M∈L0

|WM
0 ||WG

0 |−1
∫

aM,E
disc (π̇)rG

M (π̇, f) dπ̇

and

SG,0
t,unit(f) =

∑
M∈L0

|WM
0 ||WG

0 |−1
∫

bM
disc(φ̇)sG

M (φ̇, f) dφ̇.

The integrals are taken over elements π̇ = π × c in the product of ΠE
t,disc(M, V, ζ) with

CV,E
disc(M, ζ) and elements φ̇ = φ × c in the product of Φt,disc(M, V, ζ) with CV,E

disc(M, ζ),
relative to the natural measures, while

rG
M (π̇, f) = rG

M (c)fM (π)

and

sG
M (φ̇, f) = sG

M (c)fM (φ).

Part (a) of the proposition is equivalent to the identity

IE
t,unit(f) − IE

t,disc(f) = IE,0
t,unit(f),
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while (b) is equivalent to the identity

SG
t,unit(f) − SG

t,disc(f) = SG,0
t,unit(f).

The proof of these identities proceeds as in Proposition 10.3. The role of Proposition 8.1
is taken by its spectral analogue Proposition 8.3. If φ̇′ = φ′ × c′ belongs to the product of
∆disc(M̃ ′, V, ζ̃ ′) with CV,E

disc(M̃
′, ζ̃ ′), and has image φ × c in the product of ∆E

disc(M, V, ζ)
with CV,E

disc(M, ζ), Proposition 8.3 tells us that the expression

∑
G′∈EM′ (G)

ιM ′(G, G′)ŝG̃′

M̃ ′(φ̇′, f ′) =
(∑

G′

ιM ′(G, G′)sG̃′

M̃ ′(c′)
)

fM ′
(φ′)

equals
rG
M (c)fE

M (φ).

Combining this formula with the other steps in the proof of Proposition 10.3, we deduce
that the required identities are valid. �

Corollary 10.8. Global Theorem 2 implies Global Theorem 2′.
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