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In this paper, the lateral migration of a neutrally buoyant spherical particle in
the pressure-driven rectangular channel flow of an Oldroyd-B fluid is numerically
investigated with a fictitious domain method. The aspect ratio of the channel
cross-section considered is 1 and 2, respectively. The particle lateral motion
trajectories are shown for the bulk Reynolds number ranging from 1 to 100, the ratio
of the solvent viscosity to the total viscosity being 0.5, and a Weissenberg number
up to 1.5. Our results indicate that the lateral equilibrium positions located on the
cross-section midline, diagonal line, corner and channel centreline occur successively
as the fluid elasticity is increased, for particle migration in square channel flow with
finite fluid inertia. The transition of the equilibrium position depends strongly on the
elasticity number (the ratio of the Weissenberg number to the Reynolds number) and
weakly on the Reynolds number. The diagonal-line equilibrium position occurs at
an elasticity number ranging from roughly 0.001 to 0.02, and can coexist with the
midline and corner equilibrium positions. When the fluid inertia is negligibly small,
particles migrate towards the channel centreline, or the closest corner, depending on
their initial positions and the Weissenberg number, and the corner attractive area
first increases and then decreases as the Weissenberg number increases. For particle
migration in a rectangular channel with an aspect ratio of 2, the transition of the
equilibrium position from the midline, ‘diagonal line’ (the line where two lateral
shear rates are equal to each other), off-centre long midline and channel centreline
takes place as the Weissenberg number increases at moderate Reynolds numbers. An
off-centre equilibrium position on the long midline is observed for a large blockage
ratio of 0.3 (i.e. the ratio of the particle diameter to the channel height is 0.3) at
a low Reynolds number. This off-centre migration is driven by shear forces, unlike
the elasticity-induced rapid inward migration, which is driven by the normal force
(pressure or first normal stress difference).
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1. Introduction
The lateral migration of particles in pipe or channel flows has been a classic and

important problem in the field of fluid mechanics since Segre & Silberberg (1961)
observed that spherical particles moved into a thin annular region located at roughly
0.6 tube radius away from the tube axis in tube flow. The perturbation analyses
revealed that the inertia-induced lift force is responsible for the particle migration in
Newtonian shear flows (Ho & Leal 1974; Matas, Morris & Guazzelli 2009). Matas,
Morris & Guazzelli (2004) extended the Segre–Silberberg experiments to moderately
high Reynolds numbers up to 2400. They observed that the Segre–Silberberg particle
annulus equilibrium radial position moved towards the wall as the Reynolds number
(Re) was increased, and an additional inner annulus appeared at Re larger than
around 600. The numerical results of Shao, Yu & Sun (2008) confirmed the presence
of the inner particle equilibrium position, which shifted closer to the tube axis with
increasing Reynolds number, in association with the particle-induced flow structure in
pipe flow at moderately high Reynolds numbers. On the other hand, Karnis & Mason
(1966) observed that the particle migrated towards the tube axis in a viscoelastic
fluid. Both three-dimensional numerical simulations and microfluidic experiments of
D’Avino et al. (2012) demonstrated the presence of a bistability scenario for the
migration of particles suspended in a viscoelastic liquid flowing in a pipe: particles
migrated either towards the centreline or to the wall, depending on the rheological
properties of the suspending liquid and the relative dimensions of the particle and
tube. They also provided simple design rules for particle viscoelastic focusing under
flow in micro-pipes.

The inertial and viscoelastic migration of particles has attracted substantial attention
in the microfluidic community since the pioneering works of Di Carlo et al. (2007)
and Leshansky et al. (2007), who implemented particle inertial and viscoelastic
migration, respectively, in microchannels for particle separation. This particle
separation technology is promising due to its advantages of simple, continuous and
high-throughput manipulation. Straight square- or rectangular-shaped microchannels
have been widely used for inertial and viscoelastic focusing, but the fundamentals of
particle migration in square or rectangular channel flows are not yet fully understood,
particularly for the viscoelastic case. In the following, we first summarize work on
the particle inertial migration in square or rectangular channel flows of Newtonian
fluids.

Regarding the square channel, the experiments of Choi, Seo & Lee (2011) at
relatively low Reynolds numbers indicated that the particles first migrated rapidly
towards the channel walls along the cross-stream direction and then migrated slowly
to the face centres. The numerical results of Chun & Ladd (2006) showed that there
existed eight lateral particle equilibrium positions at Re= 100 (based on the channel
width and average velocity), including four face centres and four channel corners,
and the face-centre equilibrium positions became unstable as the Reynolds number
increased. Abbas et al. (2014) investigated experimentally and numerically the particle
lateral migration in square channels for Re up to 120, and their numerical results for
Re= 120 showed that the particles migrated to the face centre in a long computational
domain, whereas they migrated to the corner in a very short computational domain,
thus providing an explanation for the stable corner equilibrium position at Re= 100 of
Chun & Ladd (2006), who employed a relatively short channel for the determination
of the equilibrium positions of one particle. Kazuma, Tomoaki & Masako (2014)
examined experimentally the inertial migration of neutrally buoyant spherical particles
in square channel flows in the range of Reynolds numbers from 100 to 1200, and
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observed that the particles migrated to eight equilibrium positions located at the
centres of the channel faces and the channel corners at high Reynolds numbers. For
a rectangular duct with an aspect ratio not being unity, Zhou & Papautsky (2013)
claimed that the particles migrate rapidly towards the longer channel sidewalls at the
first stage and then migrate slowly to the face centres of the longer sidewalls at the
second stage. Liu et al. (2015a) observed additional stable equilibrium positions at
the face centres of the shorter walls when the Reynolds number exceeded a critical
value, which depended on the aspect ratio of the channel cross-section and the particle
size.

In rectangular- or square-shaped channels, the fluid viscoelasticity, coupled with
fluid inertia and wall confinement effects, leads to more complex dynamics of the
particle migration. Leshansky et al. (2007) conducted an experiment on the particle
migration in viscoelastic fluids in a rectangular micro-slit with a large aspect ratio,
and observed that particles migrated towards the channel midplane parallel to the
longer walls at low Reynolds numbers. Villone et al. (2011) investigated numerically
the effects of fluid rheological properties on the particle migration in a micro-slit by
adopting the Giesekus model and the Phan-Thien–Tanner (PTT) model. Their results
showed that, for small confinement ratios (i.e. particle/channel size ratio), the particle
migrated towards the channel centre-plane or the closest wall, depending on its initial
position. For large confinement ratios, the particle migrated towards the wall in a PTT
fluid, whereas the particle migrated towards the centre-plane in a Giesekus fluid with
a comparable amount of shear thinning. For the square channel flow without inertial
effects, the numerical results of Villone et al. (2013) showed that the particle in a PTT
fluid migrated towards the channel centreline or the closest corner depending on its
initial position, and the centre attractive region was reduced as the fluid viscoelasticity
was increased. For a Giesekus fluid, the secondary flow could trap some particles in
the vortex structure, and as the particle size was increased or the Deborah number
was reduced, the cross-streamline migration velocity overcame the secondary flow
velocity and most of the particles were driven towards the channel centreline. Multiple
equilibrium positions (channel centreline and corners) were experimentally observed
for rigid colloidal particles in a square channel, whereas a single array along the
centreline of the channel was observed for flexible DNA molecules (Kim et al. 2012)
and red blood cells (Yang et al. 2012) presumably due to the flexibility-induced wall
lift force.

The fluid inertial effect was found to be beneficial to the particle focusing on the
channel centreline in a viscoelastic fluid – so-called elasto-inertial particle focusing
(Lim et al. 2014; Seo, Kang & Lee 2014; Kim & Kim 2016). Lim et al. (2014)
observed particle migration towards the channel centreline in weakly elastic fluids
(El∼ 0.1, El being the elasticity number, i.e. the ratio of the Weissenberg number to
the Reynolds number) over a wide range of Reynolds numbers 10 6 Re 6 104. The
viscoelastic force normally drives the particles towards the channel centreline or the
corners, and it was assumed by Yang et al. (2011) and Seo et al. (2014) that the fluid
inertia provides a wall repulsive force (or lift force) which pushes the particles out
of the corners. Li, McKinley & Ardekani (2015) simulated the elasto-inertial particle
migration in the midplane of a square channel with the Oldroyd-B and Giesekus
viscoelastic models. Their results indicated that the equilibrium position depended
on the interplay between the elastic and inertial effects, and particle focusing at
the centreline occurred in flows with strong elasticity and weak inertia for the
Oldroyd-B fluid. Both shear-thinning effects and secondary flows tended to move the
particle away from the channel centreline, and the effect was more pronounced as
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inertia and elasticity effects increased. Raffiee, Dabiri & Ardekani (2017) investigated
numerically both inertial and elasto-inertial migration of a deformable capsule in a
square channel. They observed that the equilibrium position of the capsule was on
the channel diagonal line, in contrast to that of a rigid particle, which was on the
centre of the channel faces for the same range of Reynolds number in a Newtonian
fluid, and the constant-viscosity viscoelastic fluid (an Oldroyd-B fluid) tended to push
the cells towards the centreline. Trofa et al. (2015) investigated the elasto-inertial
particle migration in a two-dimensional Poiseuille flow with a finite-element method,
and observed that, for comparable values of the Deborah and Reynolds numbers, the
migration was dominated by fluid elasticity and that at moderately high Reynolds
numbers the regime transition occurred through two bifurcations.

There are few fundamental works on the elasto-inertial particle migration in a
rectangular channel with a moderate aspect ratio AR= 2–4. The experimental results
of Liu et al. (2015b) demonstrated that large particles (particle/channel size ratio
being 0.3) migrated towards the lateral positions near the shorter sidewalls, whereas
smaller particles migrated towards the channel centreline. Xiang, Dai & Ni (2016)
observed in their experiments that the particles migrated towards two off-centre
positions in the planes parallel to the shorter walls, and with further increasing flow
rate, a third focusing position occurred at the channel centre. Di, Lu & Xuan (2016)
observed off-centre particle focusing positions for a rectangular channel with the
aspect ratio of 2 filled with polyethylene oxide (PEO) fluid at low Reynolds numbers.
Recently, Wang, Yu & Lin (2018) investigated numerically the lateral migration
of a neutrally buoyant spherical particle in a rectangular channel flow of Giesekus
viscoelastic fluids with a fictitious domain method. It was shown that, when both fluid
inertial and elastic effects were important, most particles migrated towards the face
centres of the shorter walls and the particle migration trajectories were significantly
affected by the secondary flow. We note that nice reviews on the particle migration
in viscoelastic liquids were presented by D’Avino & Maffettone (2015), D’Avino,
Greco & Maffettone (2017), Lu et al. (2017) and Yuan et al. (2018).

In the present study, we aim to investigate the elasto-inertial particle migration
in rectangular (including square) channel flow of an Oldroyd-B viscoelastic fluid by
means of three-dimensional direct numerical simulations. We are concerned with the
particle migration behaviour in the entire channel. Owing to the drawback of our code
being incapable of dealing with relatively high Weissenberg numbers and the difficulty
in exactly modeling the rheological properties of the actual fluids in the experiments,
we do not intend to reproduce or unambiguously explain the experimental results
mentioned earlier. In the experiments of Liu et al. (2015b) and Xiang et al. (2016),
the typical Reynolds number was in the range of 0.1–10, and the elasticity number
was much larger than unity. Nevertheless, we have managed to reproduce some
experimental observations in a qualitative sense. The primary merits of the present
study are that an equilibrium position located on the line in the channel cross-section
where the shear rates in two lateral directions are the same (i.e. the diagonal line
for the square duct) is revealed for the elasto-inertial migration of a rigid spherical
particle in rectangular channel flow at low elasticity numbers, and that an off-centre
elasticity-induced equilibrium position on the long midline of a rectangular channel
is reproduced numerically for a large particle at low Reynolds numbers.

The rest of paper is organized as follows. The numerical method is outlined and
validated in § 2. In § 3, the results on the particle migration trajectories in a square
channel and a rectangular channel with an aspect ratio of 2 at different Reynolds
and Weissenberg numbers are presented and discussed successively. The concluding
remarks are given in § 4.
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2. Numerical model
2.1. Fictitious domain method

The direct forcing/fictitious domain (DF/FD) method proposed by Yu & Shao (2007)
is employed here to simulate the particle motion in a rectangular channel. This method
is an improved version of the earlier distributed Lagrange multiplier/fictitious domain
(DLM/FD) code (Yu et al. 2002; Yu, Wachs & Peysson 2006; Yu & Wachs 2007).
The DLM/FD method was originally developed by Glowinski et al. (1999). The main
idea of this method is that the interior of the particle is filled with the fluid and a
pseudo body force (i.e. distributed Lagrange multiplier) is introduced over the particle
inner domain to force the fictitious fluid to satisfy the rigid-body motion constraint.
We only briefly describe the algorithm of the DF/FD method in the following; the
reader is referred to Yu & Shao (2007) for further details of the method.

For simplicity of description, we consider only one particle in the following
formulae. Suppose that the particle density, volume, moment of inertia, translational
velocity and angular velocity are ρs, Vp, J, U and ωp, respectively. The fluid solvent
viscosity and polymer viscosity are ηs and ηp, respectively. The fluid density is
ρf . Let P(t) represent the solid domain and Ω the entire domain including the
interior and exterior of the solid body. We introduce the following scales for
the non-dimensionalization: H for length, U0 for velocity, H/U0 for time, ρf U2

0
for pressure and ρf U2

0/H for the pseudo body force. Thus, the dimensionless FD
formulation for an incompressible fluid comprises the following three parts:

(1) Combined momentum equations

∂u
∂t
+ u · ∇u=

ηr∇
2u

Re
−∇p+

(1− ηr)∇ · B

ReWi
+ λ in Ω, (2.1)

u=U+ωp × r in P(t), (2.2)

(ρr − 1)V∗p
dU
dt
=−

∫
P
λ dx, (2.3)

(ρr − 1)J∗
dωp

dt
=−

∫
P

r× λ dx. (2.4)

(2) Continuity equation
∇ · u= 0 in Ω. (2.5)

(3) Oldroyd-B constitutive equation

∂B

∂t
+ u · ∇B− B · ∇u− (∇u)T · B+

B− I

Wi
= 0 in Ω. (2.6)

In the above equations, u represents the fluid velocity, p the fluid pressure, λ the
Lagrange multiplier that is defined in the solid domain P(t), r the position vector with
respect to the centre of mass of the particle, ρr the particle/fluid density ratio defined
by ρr = ρs/ρf , Re the Reynolds number defined by Re = ρf U0H/η0 (η0 being the
total zero-shear-rate viscosity of the fluid η0 = ηs + ηp), V∗p the dimensionless particle
volume defined by V∗p = Vp/H3, J∗ the dimensionless moment of inertia defined by
J∗ = J/ρsH5, ηr the ratio of the solvent viscosity (ηs) to the total zero-shear-rate
viscosity of the fluid (η0), Wi the Weissenberg number defined as Wi = λtU0/H
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(λt being the fluid relaxation time), and B the polymer configuration tensor which is
related to the polymer stress tensor τ via τ = ηp(B− I)/λt.

A fractional-step time scheme is used to decouple systems (2.1)–(2.6) into the
following three subproblems.

(1) Fluid subproblem for u∗f and p:

u∗ − un

1t
−
ηr∇

2u∗

2Re
=−∇p+

1
2
[3Gn
−Gn−1

] +
ηr∇

2un

2Re
+ λn, (2.7)

∇ · u∗ = 0, (2.8)

where G = −u · ∇u + [(1 − ηr)/ReWi]∇ · B. This subproblem is essentially
the solution of the Navier–Stokes equation. An efficient finite-difference-based
projection method on a homogeneous half-staggered grid is employed Yu &
Shao (2007). All spatial derivatives are discretized with the second-order central
difference scheme.

(2) Particle subproblem for Un+1, ωn+1
p , λn+1, un+1:

ρrV∗p
Un+1

1t
= (ρr − 1)V∗p

Un

1t
+

∫
P

(
u∗

1t
− λn

)
dx, (2.9)

ρr
J∗ωn+1

p

1t
= (ρr − 1)

J∗ωn
p

1t
+

∫
P

r×
(

u∗

1t
− λn

)
dx. (2.10)

Note that the above equations have been reformulated so that all the terms on the
right-hand side are known quantities and consequently the particle velocities Un+1

and ωn+1
p are obtained without iteration. Then, the Lagrange multipliers defined

at the Lagrangian nodes are determined from

λn+1
=

Un+1
+ωn+1

p × r− u∗

1t
+ λn. (2.11)

Finally, the fluid velocities un+1 at the Eulerian nodes are corrected from

un+1
= u∗ +1t(λn+1

− λn). (2.12)

In the above manipulations, the tri-linear function is used to transfer the fluid
velocity from the Eulerian nodes to the Lagrangian nodes, and distribute the
pseudo body force from the Lagrangian nodes to the Eulerian nodes. For the
spherical particle studied, the Lagrangian nodes are distributed on a sequence of
spherical surface (Yu & Shao 2007).

(3) Constitutive equation subproblem for B

Bn+1
− Bn

1t
+ un+1

· ∇Bn
− Bn

· ∇un+1
− (∇un+1)T · Bn

+
Bn+1
− I

Wi
= 0. (2.13)

In the above equation un+1 has been obtained from the first two subproblems.
For simplicity, only the first-order time scheme is used for the constitutive
equation. For the spatial schemes, the convective term is discretized with a
third-order upwinding MUSCL scheme (van Leer 1979) and the velocity gradient
is discretized with the central difference scheme.
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FIGURE 1. (Colour online) (a) Time development of the lateral velocity and (b) the
trajectory of the particle in a two-dimensional Poiseuille flow of Oldroyd-B fluids obtained
from our fictitious domain method and the ALE finite element method of Hu et al. (2001).
Here Re= ρf U0H/(2η0)= 1.0, Wi= 2λtU0/H = 0.5 and d/H = 0.15.

Our fictitious domain method has been widely used and verified in previous work
(Yu et al. 2002, 2006; Yu & Shao 2007; Yu & Wachs 2007; Shao et al. 2008). Here,
we further validate our FD method by comparing the numerical results on particle
migration in a two-dimensional Poiseuille flow of Oldroyd-B fluids to those obtained
from the ALE finite element code of Hu, Patankar & Zhu (2001). The length and
the time are scaled as the half channel height H/2 and the maximum velocity at
the channel centre U0, respectively. The parameters are Re = ρf U0H/(2η0) = 1.0,
Wi = 2λtU0/H = 0.5 and ηr = ηs/η0 = 0.5. The ratio of the particle diameter to
the channel height is d/H = 0.15. The computational domain size is 2H × H, with
the dimensionless values of 4 × 2, and the y-coordinate ranging from −1 to 1.
The particle is released at y0 = 0.5. For the fictitious domain method, two grid sizes
h=H/128 (i.e. h= d/19.2, d being particle diameter) and h=H/256 (i.e. h= d/38.4)
are used, respectively, and the time step 1t = 5 × 10−4 is employed. For the ALE
code, there are 36 segments on the particle surface and in total 21 723 nodes for
the mesh, and the time step is 0.005. The ALE results have been found to be
perfectly independent of the mesh and time resolutions. The time development of the
lateral velocity and the trajectory of the particle obtained from the two methods are
compared in figure 1(a) and 1(b), respectively. It can be seen that our FD results are
in good agreement with the ALE results, particularly on the particle trajectory. From
figure 1(a), the FD result from h= d/38.4 is more accurate and smooth compared to
that from h= d/19.2. Nevertheless, we choose typically h= d/19.2 for the following
three-dimensional computations, due to the use of the homogeneous mesh and our
limited computational resources. The ALE method is better suited to the present
problem where only one particle is involved; however, the ALE code of Hu et al.
(2001) is currently incapable of dealing with the three-dimensional pressure-driven
flow because it cannot generate the periodic mesh in three dimensions.

2.2. Simulation set-up
In the present study, we are concerned with the lateral motion of a solid neutrally
buoyant particle in a straight rectangular channel filled with an Oldroyd-B viscoelastic
fluid. A Cartesian reference frame is considered with its origin at the channel centre.
The schematic diagram of the channel is shown in figure 2. The periodic boundary
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FIGURE 2. (Colour online) Schematic diagram of the rectangular channel flow.

condition is imposed in the streamwise direction and a constant pressure gradient is
introduced to sustain the channel flow. The channel height, width and length (period)
are denoted by H, W and L, respectively. The computational domain spans over
[−W/2,W/2], [−H/2,H/2] and [−L/2,L/2] in the x, y and z directions, respectively.
The characteristic length is the channel height H, and the characteristic velocity is the
maximum velocity at the channel centreline U0 under a given pressure gradient. The
latter is U0= 16κ(−dp/dx)H2/η0π

3, where κ is a constant depending on the geometry
of the channel (κ≈0.143 for a square channel and κ≈0.221 for a rectangular channel
with the aspect ratio of 2, filled with the Newtonian or Oldroyd-B fluid). The Reynolds
and Weissenberg numbers (Wi and Re) are based on the maximum velocity U0 and
the channel height, i.e. Re = ρf U0H/η0 and Wi = λtU0/H. The ratio of Wi to Re is
defined as the elasticity number, El = Wi/Re = λtη0/ρf H2, which depends only on
the channel dimension and fluid properties. The ratio d/H of the particle diameter
d to the channel height H is defined as the blockage ratio; typically, d/H = 0.15.
Throughout this study, ηr = 0.5. The mesh size is h = H/128, corresponding to
19.2 grid points across the particle diameter for d/H = 0.15, and the time step is
1t = 5 × 10−4. Because we adopt a homogeneous grid, a relatively short channel
is chosen, L = H, in order to save on computational cost. For the case of a typical
rectangular channel with the mesh number being 256 × 128 × 128, it took around
one month to run 600 time units (i.e. 1.2 million time loops). The distance between
the particles in two neighbouring periodic cells is around 6.7 particle diameters for
d/H= 0.15. Our test presented later shows that this channel length is not sufficiently
large to eliminate the hydrodynamic interactions between neighbouring particles, but
the effect is not so significant to produce qualitatively different results (see figure 9).
In practical particle focusing or separation applications, many particles are involved
and particle hydrodynamic interactions normally exist.

3. Results and discussion
In this section, the particle lateral migration induced by fluid viscoelasticity and

inertia is examined through particle trajectories. We mainly investigated the effects
of the Reynolds, Weissenberg and elasticity numbers in the range of Re = 1–100,
Wi= 0.01–1.5 and El= 0.0002–1.0. The simulations are performed by considering the
entire channel as the computational domain. However, due to geometric symmetry, the
particle trajectories are presented only in the upper-right quadrant of the cross-section
of the rectangular channel (and a half-quadrant for the square channel, delimited
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by the midline and diagonal lines). In all trajectory figures below, the dash-dotted
lines represent the position where particles touch the wall, the big dots denote the
particle initial positions, and the small dots represent the particle positions on the
particle trajectories when the particles travel every 100 dimensionless time units. We
first examine the results on the particle migration for the square channel flow at a
low Reynolds number Re= 1, where the fluid inertia is expected to be insignificant,
and at moderate Reynolds numbers Re = 10, 50 and 100, where the fluid inertia
is significant. A phase diagram for the equilibrium positions with respect to the
Reynolds and elasticity numbers is presented. We then report the results on the
particle migration in a rectangular channel with an aspect ratio of 2, in order to show
that a similar ‘diagonal-line’ equilibrium position located on the line where the shear
rates in two lateral directions are the same also exists for the non-square rectangular
channel.

3.1. Particle migration in square channel flow
3.1.1. Viscoelasticity-induced migration at a low Reynolds number Re= 1

We now examine the particle migration in square channel flow at a low Reynolds
number Re= 1. Note that the particle Reynolds number based on the particle size and
the shear rate is around (d/H)2Re= 0.0225. Therefore, the fluid inertial effect on the
particle motion is expected to be small. Initially, both the particle and fluid are at rest.
Figure 3 shows the trajectories of particles released at different positions projected
in the channel cross-section for Re = 1, d/H = 0.15 and different Weissenberg
numbers Wi = 0.01, 0.1, 0.5 and 1.0 (the elasticity number being 0.01, 0.1, 0.5 and
1.0, respectively). For Wi = 0.01, almost all particles migrate towards the channel
centreline, except those released in a very small corner region (figure 3a). For
Wi= 0.1, the particles released near the wall move towards the corner along the wall,
and the other particles migrate towards the channel centreline (figure 3b). As Wi
increases from 0.01 to 0.5, the corner attractive region is enlarged, and as Wi further
increases to 1.0, the corner attractive region begins to shrink, as shown in figure 3
where the corner attractive region is marked by the red closed lines. From our results,
most particles initially distributed homogeneously in a square channel filled with
a viscoelastic fluid with constant viscosity even at high Weissenberg numbers and
low Reynolds numbers would migrate to the channel centre region, consistent with
previous experimental observations (Del Giudice et al. 2015; Liu et al. 2015b). It has
been recognized that the shear-thinning effect of the viscoelastic fluid tends to make
the particles move towards the wall or the corner (Villone et al. 2013; Del Giudice
et al. 2015; Liu et al. 2015b). From figure 3, the particle migration rate is overall
increased with increasing Weissenberg number.

In addition, figure 3 shows that the particles released near the corner attractive
region first migrate towards the diagonal line and then move towards the channel
centreline along the diagonal line. Particles migrate towards the channel centreline
normally along curved lines particularly for Wi > 0.1 as if they were attracted by the
diagonal line, except for the particles released directly on the midline or the diagonal
line, which migrate along a straight line due to symmetry confinement.

3.1.2. Elasto-inertial migration at Re= 10, Re= 50 and Re= 100
Figure 4 shows the particle trajectories projected in the channel cross-section

at Re = 10, and Wi = 0.01, 0.05, 0.1 and 0.5 (the elasticity number being 0.001,
0.005, 0.01 and 0.05, respectively). For Wi= 0.01 (El= 0.001), the elasticity effect is
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FIGURE 3. (Colour online) Particle trajectories for different initial positions projected in
the channel cross-section at Re= 1 and β = 0.15: (a) for Wi= 0.01, El= 0.01, almost all
particles migrate towards the channel centreline; (b) for Wi= 0.1, El= 0.1, the particles
released near the wall move towards the corner along the wall; (c) for Wi= 0.5, El= 0.5,
particles migrate faster and the corner attractive region is enlarged as Wi increases; and
(d) for Wi = 1.0, El = 1.0, the corner attractive region shrinks as Wi further increases.
Owing to symmetry, only the upper-right quadrant of the channel is considered. The
dash-dotted lines delimit the region accessible to the particles. The big dots denote the
particle initial positions, and the small dots represent the particle positions on the particle
trajectories when the particles travel every 100 dimensionless time units. In (b–d), the red
closed lines mark the corner attractive regions.

expected to be very small, and the particle migration is dominated by the fluid inertial
effect. It was shown in the experiments of Choi et al. (2011) and Abbas et al. (2014)
that the particles suspended in Newtonian square channel flow at Re≈ 100 migrated
towards the channel walls along the cross-stream direction at the first stage and then
migrated slowly towards the face centres at the second stage, with the migration rate
being around one order smaller compared to that at the first stage, and at Re≈ 10 the
second-stage migration did not occur and only the particle ring (annulus) could be
observed. In our simulations for Re = 10 and Wi = 0.01, the particles migrate along
the cross-stream direction to an annulus region located at around 0.28H away from
the channel centreline (the shaded area in figure 4a) and the second-stage migration is
not observed, consistent with the experiments of Choi et al. (2011) and Abbas et al.
(2014). Figure 4(b) shows that the particles migrate towards an equilibrium position
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FIGURE 4. (Colour online) Particle trajectories for different initial positions projected in
the channel cross-section at Re= 10 and β = 0.15: (a) for Wi= 0.01, El= 0.001, particles
migrate to the shaded ring area; (b) for Wi= 0.05, El= 0.005, there exists only a diagonal
equilibrium position; (c) for Wi= 0.1, El= 0.01, there exist both the diagonal equilibrium
position and the corner equilibrium position with small attractive region; and (d) for
Wi= 0.5, El= 0.05, there exist both the centreline and corner equilibrium positions. The
big dots denote the particle initial positions, and the small dots represent the particle
positions for every 100 dimensionless time units.

located on the diagonal line of the channel cross-section for Wi= 0.05 (El= 0.005).
For Wi= 0.1 (El= 0.01), besides the diagonal equilibrium position, which is shifted
closer to the channel centreline compared to Wi=0.05, the corner equilibrium position
with small attractive region appears and the particles released near the wall move
towards the corner along the wall, as shown in figure 4(c). From figure 4(d), the
channel centreline equilibrium position appears for Wi = 0.5 (El = 0.05), with the
diagonal-line equilibrium position shifted to the centreline. The presence of both
centreline and corner equilibrium positions is a feature of viscoelasticity-dominated
migration.

The particle trajectories projected in the channel cross-section at Re = 50
and Wi= 0.01, 0.25, 0.5 and 1.0 (the elasticity number being 0.0002, 0.005, 0.01 and
0.02, respectively) are shown in figure 5. For Re= 50 and Wi= 0.01 (El= 0.0002), the
fluid inertia dominates the particle migration, and one can see from figure 5(a) that the
particles migrate to the ring and then migrate slowly towards the midline equilibrium
position. For Wi = 0.25 (El = 0.005), only the diagonal equilibrium position exists

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

18
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.188


Elasto-inertial particle migration in rectangular channel flow 327

y

y

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5

0.5

0.4

0.3

0.2

x

0.1

0
0 0.1 0.2 0.3 0.4 0.5

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5

0.5

0.4

0.3

0.2

x

0.1

0
0 0.1 0.2 0.3 0.4 0.5

(a) (b)

(c) (d)

FIGURE 5. (Colour online) Particle trajectories for different initial positions projected in
the channel cross-section at Re = 50 and d/H = 0.15: (a) for Wi = 0.01, El = 0.0002,
particles migrate to the ring marked with the yellow dotted line along the cross-stream
direction, and then migrate slowly towards the midline equilibrium position; (b) for
Wi = 0.25, El = 0.005, only the diagonal equilibrium position exists; (c) for Wi = 0.5,
El = 0.01, both diagonal and corner equilibrium positions exist; and (d) for Wi = 1.0,
El= 0.02, both centreline and corner equilibrium positions exist. The big dots denote the
particle initial positions, and the small dots represent the particle positions for every 100
dimensionless time units.

(figure 5b). For Wi= 0.5 (El= 0.01), both diagonal and corner equilibrium positions
occur (figure 5c). For Wi = 1.0 (El = 0.02), both centreline and corner equilibrium
positions exist (figure 5d).

The particle trajectories projected in the channel cross-section at Re= 100 and Wi=
0.02, 0.1, 0.5 and 1.5 (the elasticity number being 0.0002, 0.001, 0.005 and 0.015,
respectively) are shown in figure 6. As the fluid elasticity is enhanced, the equilibrium
position undergoes the transition from midline (figure 6a), both midline and diagonal
line (figure 6b), diagonal line (figure 6), to both centreline and corner (figure 6d).

The comparison between figures 4(a), 5(a) and 6(a) shows that the inertia-induced
migration towards the midline equilibrium position becomes faster as the Reynolds
number increases. Our results in figures 3, 4(d), 5(d) and 6(d) indicate that the
rate of the elasticity-induced migration towards the channel centreline depends much
more strongly on the Weissenberg number than on the elasticity number, although
the Reynolds number plays a negative role for the elasticity-induced migration.
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FIGURE 6. (Colour online) Particle trajectories for different initial positions projected in
the channel cross-section at Re = 100 and a/H = 0.15: (a) for Wi = 0.02, El = 0.0002,
particles migrate towards the midline equilibrium position; (b) for Wi = 0.1, El = 0.001,
both the midline and diagonal equilibrium positions exist; (c) for Wi=0.5, El=0.005, only
the diagonal equilibrium position exists; and (d) for Wi= 1.5, El= 0.015, both centreline
and corner equilibrium positions exist. The big dots denote the particle initial positions,
and the small dots represent the particle positions for every 100 dimensionless time units.

In addition, the corner attractive area for the same Weissenberg number becomes
smaller for a higher Reynolds number, as expected.

3.1.3. Phase diagram for the equilibrium positions
We have shown that the midline, diagonal line, corner and centreline equilibrium

positions occur successively as the fluid elasticity is enhanced, when the fluid
inertia is significant. The diagonal-line EP (abbreviation for ‘equilibrium position’
or ‘equilibrium positions’) can exist alone or coexist with the midline and corner
EP. The numerical results of Li et al. (2015) showed that the transition between
the off-centreline (or midline) and centreline EP depended on both elasticity and
Reynolds numbers (but more strongly on the elasticity number than on the Reynolds
number) for the particle elasto-inertial migration in the midplane of a square channel.
Here, we examine the dependence of our EP on the elasticity and Reynolds numbers,
and the phase diagram is plotted in figure 7(a). It can be seen that the equilibrium
position depends strongly on the elasticity number and weakly on the Reynolds
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FIGURE 7. (Colour online) (a) Phase diagram for the equilibrium positions as a function
of Re and El. ‘EP’ is the abbreviation of ‘equilibrium position’. (b) Schematic diagram
for the equilibrium positions changing with Re and El. The arrows guide the transition
of the equilibrium position from midline, diagonal line and to centre and corner of the
channel cross-section, as El increases.
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FIGURE 8. (Colour online) The distances away from the channel centreline of the
diagonal-line equilibrium positions as a function of El at different Reynolds numbers.

number. For Re = 10–100, the diagonal-line EP occurs largely at El = 0.001–0.15.
For El = 0.015, the equilibrium position for Re = 10 is located on the diagonal
line, whereas those for Re = 50 and 100 are located on the channel centreline,
indicating that the critical elasticity number for the centreline EP decreases with
increasing Reynolds number, in qualitative agreement with the observation of Li
et al. (2015). A schematic diagram for the equilibrium positions changing with Re
and El is presented in figure 7(b). The arrows therein guide the transition of the
equilibrium position from midline, diagonal line and to centre and corner of the
channel cross-section, as El increases.

The distances away from the channel centreline of the diagonal-line equilibrium
positions as a function of El at Re = 10, 50 and 100 are plotted in figure 8. The
midline EP and the diagonal-line EP at very low elasticity numbers are located farther
away from the channel centreline at a larger Reynolds number. However, the diagonal-
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line equilibrium positions are shifted towards the channel centreline more rapidly with
increasing elasticity number at a larger Reynolds number, leading to a lower critical
transition elasticity number for a higher Reynolds number.

Li et al. (2015) compared their numerical prediction of the critical transition
elasticity number to the theoretical value from the balance between the elastic force
and the inertia-induced force. We here conduct similar analysis, following their work.
The elastic force derived by Ho & Leal (1976) has the form for two-dimensional
Poiseuille flow of an Oldroyd-B fluid (Li et al. 2015):

Fe =
40
3

πρf U2
0d2 d

H
El(1− ηr)y∗, (3.1)

where y∗ is the dimensionless lateral position in the range of −0.5 to 0.5. The inertia-
induced force derived by Ho & Leal (1974) for the two-dimensional Poiseuille flow
at low particle Reynolds numbers is

Fi =C(y∗)ρf U2
0d2

(
d
H

)2

, (3.2)

where C is a function of y∗ and has the maximum value of around 0.24 at y∗≈ 0.15.
The balance between the elastic and inertial forces at y∗ = 0.15 yields the critical
elasticity number Elc≈ 0.038(d/H)(1/(1− ηr)), which is around 0.011 for d/H= 0.15
and ηr = 0.5, comparable to our prediction for Re= 100 in figure 8.

3.1.4. Effects of channel length, blockage ratio and Giesekus model
The diagonal-line EP for a rigid spherical particle in a viscoelastic channel flow

has not been reported previously, to the best of our knowledge. The experiments on
particle migration in viscoelastic square channel flow were conducted for relatively
large elasticity numbers (typically El > 0.1). We attempt to examine whether the
presence of the diagonal-line EP is dependent on other factors that have not been
considered so far, such as the effects of the channel length, the particle size and
the fluid rheological property. The channel length of L = H is relatively small, and
the hydrodynamic interactions between the particle and its periodic images might
be important. In order to examine the effect of the channel length, simulations for
L = 2H at Re = 50 and Wi = 0.5 are performed, and the results on the particle
trajectories are shown in figure 9(b). The particle trajectories for L = H at Re = 50
and Wi= 0.5 are shown in figure 9(a) for comparison. For L= 2H, the diagonal-line
EP still exists, although its position is shifted a little closer to the channel centreline,
compared to the case of L=H.

Figure 9(c) shows the particle trajectories for the blockage ratio of 0.1 (the blockage
ratio being defined as the ratio of the particle diameter to the channel width, d/H),
and the particles migrate towards the diagonal-line EP, which is closer to the centreline
compared to the case of d/H= 0.15. This is consistent with the theoretical prediction
(Ho & Leal 1974, 1976) that the inertial effect decreases more significantly than the
elastic effect as the particle size decreases, since the elastic force is proportional to
d3 (equation (3.1)), while the inertial force is proportional to d4 (equation (3.2)).

The Oldroyd-B model is characterized by a constant viscosity. The Giesekus model
is a typical constitutive model for various polymer solutions with the shear-thinning
property and a non-zero second normal stress difference, which leads to the secondary
flow in a square channel (Villone et al. 2013; Li et al. 2015). The secondary flow is
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FIGURE 9. (Colour online) Particle trajectories for different initial positions projected in
the channel cross-section at Re= 50 and Wi= 0.5 (i.e. El= 0.01): (a) L=H, d/H= 0.15;
(b) L= 2H, d/H = 0.15; (c) L=H, d/H = 0.1; and (d) L=H, d/H = 0.15 and Giesekus
model with α= 0.2. The big dots denote the particle initial positions, and the small dots
represent the particle positions for every 100 dimensionless time units.

characterized by eight circulations in the cross-section with the flow direction pointing
to the channel centreline along the diagonal line. The Giesekus constitutive equation
can be written as follows:

∂B

∂t
+ u · ∇B− B · ∇u− (∇u)T · B+

α

Wi
(B− I)2 +

B− I

Wi
= 0 in Ω, (3.3)

where α is a parameter in the Giesekus model, which reduces to the Oldroyd-B model
for α = 0. The particle trajectories projected in the cross-section of a channel filled
with a Giesekus fluid with α= 0.2 for L=H, d/H = 0.15, Re= 50 and Wi= 0.5 are
plotted in figure 9(d). The diagonal-line EP can also be observed in the Giesekus fluid,
which is located farther away from the channel centreline compared to the Oldroyd-B
case. Li et al. (2015) also observed that the equilibrium position in the midline for the
Giesekus fluid was closer to the wall than that for the Oldroyd-B fluid at the same
flow conditions. They attributed the reason to the effects of the shear-thinning and
secondary flow. The secondary flow points to the wall on the midline and thus tends
to push the particle on the midline towards the wall. By contrast, the secondary flow
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FIGURE 10. (Colour online) Particle trajectories for different initial positions projected
in the channel cross-section: (a) at Re = 1, Wi = 0.5, El = 0.5, the fluid viscoelasticity
drives particles towards the cross-section corner or shaded area; (b) at Re= 50, Wi= 0.5,
El = 0.01, particles migrate towards the diagonal-line EP (equilibrium position); (c) at
Re= 50, Wi= 1.0, El= 0.02, an off-centre long-midline EP occurs; and (d) at Re= 100,
Wi=0.5, El=0.005, particles migrate towards the diagonal-line and short-midline EP. Here
d/H = 0.15.

points to the channel centreline on the diagonal line and consequently tends to push
the particle on the diagonal line towards the centreline. Therefore, the shear-thinning
effect should be the primary reason for the equilibrium position being shifted farther
away from the channel centreline. In addition, the elastic effect of the Giesekus fluid
for the same Reynolds and Weissenberg numbers is weaker than that of the Oldroyd-
B fluid, which is expected to be partly responsible for the shift of the equilibrium
position observed above. We note that this section (§ 3.1.4) is the only one in the
present study to discuss the effect of the Giesekus fluid.

3.2. Particle migration in rectangular channel flow
3.2.1. Elasto-inertial migration equilibrium positions

Our results have revealed a diagonal-line EP for the particle migration in square
channel flow. We now further investigate the particle migration in a rectangular
channel with an aspect ratio of 2, to see whether similar EP would exist in rectangular
channel flow. The results on the particle trajectories for (Re, Wi, El) = (1, 0.5, 0.5),
(50, 0.5, 0.01), (50, 1.0, 0.02) and (100, 0.5, 0.005) are shown in figure 10. It is
interesting that similar ‘diagonal-line’ EP does occur for the cases of (Re,Wi, El)=
(50, 0.5, 0.01) (figure 10b) and (100, 0.5, 0.005) (figure 10d), the same parameters at
which the diagonal-line EP occur for the square channel flow (see figures 5c and 6c).
For (Re, Wi, El) = (50, 1.0, 0.02), the ‘diagonal-line’ EP disappears in figure 10(c),
as the El number is increased to 0.02. The diagonal-line EP is shifted to the channel
centreline for the square channel (figure 5d), whereas it is shifted to an off-centre
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FIGURE 11. (Colour online) (a) Contour map for (du/dx)2 + (du/dy)2. (b) Contour lines
for (du/dx)2 − (du/dy)2, with values marked on the lines, showing that the particle
equilibrium positions are located on the line where (du/dx)2 = (du/dy)2. The red and
violet circles represent the particle equilibrium positions for (Re, Wi) = (50, 0.5) and
(Re,Wi)= (100, 0.5), respectively.

position located on the long midline. The channel centreline EP is expected if the
elasticity number is further increased above a critical value. Since a relatively large
Wi number is limited by our code, the viscoelasticity-dominated particle migration
behaviour is examined at a low-Reynolds-number case of (Re,Wi, El)= (1, 0.5, 0.5).
The results are shown in figure 10(a), from which the particles released near the wall
or the corner migrate towards the corner, and the other particles migrate towards a
region on the long midline with the distance away from the centreline being less than
roughly 0.35H. Further migration along the long midline cannot be identified clearly
with our code, and it is not clear whether this is a numerical artifact. Migration
towards the centreline is expected if the fluid elasticity is further enhanced. In
addition, it is shown later that the particle size has significant effects on the particle
migration along the long midline at low Reynolds numbers, and smaller particles
with d/H = 0.1 migrate towards the channel centreline (figure 12a).

For Wi= 0.5, as Re is increased from 50 to 100, the ‘diagonal-line’ EP is shifted
farther away from the centreline (see figure 10b and 10d), and, on the other hand,
an EP on the short midline appears (figure 10d). It is known that, for Newtonian
rectangular channel flow, the fluid inertia drives particles to move towards the EP
located on the short midline (Zhou & Papautsky 2013), and also the EP on the long
midline if Re exceeds a critical value (Liu et al. 2015a). Our results indicate that the
important elasto-inertia EP for relatively small particles undergoes the transition from
midline, ‘diagonal line’, off-centre long midline and channel centreline. The corner EP
may appear together with the off-centre long-midline EP and the centreline EP, but is
not so important for the non-shear-thinning fluids since its attractive region is always
small compared to the area of the channel cross-section.

For the non-square rectangular channel, the ‘diagonal-line’ EP is actually not
located on the diagonal line, as shown in figure 10. Considering that the shear of
the flow is the driving factor for the particle lateral migration, we conjecture that
the ‘diagonal-line’ EP is related to the competition between the shear effects from
two lateral directions. Figure 11(b) shows the contours of (du/dx)2 − (du/dy)2 (here
u being the mainstream velocity of the undisturbed channel flow for Wi = 0.5) and
the particle equilibrium positions for (Re, Wi) = (50, 0.5) and (100, 0.5). One can
see that both equilibrium positions are located on the line where the shear rates in
two lateral directions are equal to each other, i.e. (du/dx)2 = (du/dy)2. The contour
map for (du/dx)2 + (du/dy)2 is shown in figure 11(a), which indicates that the
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FIGURE 12. (Colour online) Particle trajectories for different initial positions projected in
the channel cross-section for (a) d/H = 0.1 and (b) d/H = 0.3, showing the particle-size-
dependent focusing behaviour. Here Re= 1, Wi= 0.5 and El= 0.5.

equilibrium positions are located in the region of low total shear rates. It has been
well recognized that the elastic force drives particles from the high-shear-rate region
to the low-shear-rate region (Ho & Leal 1976; Leshansky et al. 2007; Seo et al. 2014;
Liu et al. 2015b). The inertial force pushes particle away from the channel centreline.
The ‘diagonal-line’ EP can be easily understood by considering the combined effects
of the elastic and inertial forces.

3.2.2. Particle-size-dependent focusing behaviour
Liu et al. (2015b) observed in their experiments that the particles with the blockage

ratio of 0.1 in rectangular microchannels with the aspect ratio of 1–4 were focused
along the channel centreline, whereas the focusing position of the particles with the
blockage of 0.3 was shifted away from the centreline in the direction of the long
midline for Reynolds numbers of order 1 and large elasticity numbers. Di et al. (2016)
and Xiang et al. (2016) also observed off-centreline focusing positions in planes
parallel to the shorter walls at Re< 1. The presence of the off-centreline equilibrium
position at low Reynolds numbers is surprising, since the inertial effect that drives
particles away from the centreline is expected to be small. Here, simulations are
performed for d/H = 0.1 and 0.3 at Re = 1 and Wi = 0.5, in an attempt to check
whether the observation of Liu et al. (2015b) can be reproduced numerically. The
results on the particle trajectories are presented in figure 12. It is interesting that
the observation of Liu et al. (2015b) is reproduced successfully: the particles with
d/H= 0.1 migrate towards the channel centreline, while the particles with d/H= 0.3
migrate towards an off-centreline EP located in the long midline, as shown in
figure 12. Liu et al. (2015b) provided an explanation for their observation, which
was proposed by Huang et al. (1997) to account for the effect of the blockage
ratio on the viscoelasticity-induced particle migration in plane Poiseuille flow. The
numerical results of Huang et al. (1997) indicated that the particle in plane Poiseuille
flow with d/H = 0.025 migrated all the way towards the channel centre, whereas
the particle with d/H = 0.25 migrated towards the wall for Re = 0 and different
Weissenberg numbers. Huang et al. (1997) assumed that for a small blockage ratio
the migration of the particle is controlled by the normal stresses through the curvature
of the velocity profile which push the particle towards the centreline, as predicted by
the perturbation solution of Ho & Leal (1976), and in contrast, for a large blockage
ratio, the strong effects of the wall blockage overwhelm the effects of the curvature
of the velocity profile and increase the effects of the compressive normal stresses
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acting on the particle surface so as to drive the particle towards the wall. This
mechanism cannot fully explain the off-centre position on the long midline for the
three-dimensional rectangular channel flow, because according to this mechanism
the particle released near the short midline (the pink trajectory in figure 12b for
d/H = 0.3) should move towards the long wall, instead of moving towards the long
midline. Nevertheless, the numerical results of Huang et al. (1997) indicated that the
elastic effects on the particle migration can be strongly modulated by the blockage
ratio, and therefore it is not impossible that the elastic effects drive a large particle
in rectangular channel flow with bidirectional shear actions towards an off-centre
position on the long midline, rather than on the short midline. The inertial effect
could push the particle away from the channel centreline, but the results are similar
when we decrease the Reynolds number from 1 to 0.2.

3.2.3. Force analysis
Finally, we attempt to determine which type of force is mainly responsible for the

particle migration. For this purpose, we fix the lateral position (x0, y0) of a particle
which moves in the streamwise direction and rotates freely, and then calculate
the different types of forces on the particle. Our fictitious domain method is a
non-boundary-fitted method, and thus interpolation is needed to compute the stresses
on the particle surface. For a particle with a fixed lateral position (x0, y0)= (0.2, 0),
the total hydrodynamic force in the x direction, Fx, can be decomposed into the
pressure force, Fp, the viscous force, FV , and the polymer force, FE, which have the
following forms:

Fp =

∫
∂P
−nxp dS, (3.4)

FV = ηs

∫
∂P

[
2nx

∂ux

∂x
+ ny

(
∂ux

∂y
+
∂uy

∂x

)
+ nz

(
∂ux

∂z
+
∂uz

∂x

)]
dS, (3.5)

FE =

∫
∂P
(nxτxx + nyτxy + nzτxz) dS. (3.6)

The polymer force, FE, can be further decomposed into the polymer normal force, FEn,
and the polymer shear force, FEs:

FEn =

∫
∂P

nxτxx dS, (3.7)

FEs =

∫
∂P
(nyτxy + nzτxz) dS. (3.8)

Note that the pressure force in (3.4) is calculated from the pressure that serves to
make the fluid satisfy the incompressibility constraint. For the viscoelastic fluid, the
average polymer normal stresses or the polymer isotropic stress (τxx + τyy + τzz)/3 can
also be regarded as ‘pressure’, and the elasticity-induced force is related to the normal
stress differences (Ho & Leal 1976). Therefore, we decompose the polymer normal
force, FEn, into the polymer ‘pressure’ force, FEnp, the force from the first normal
stress difference, FEn1, and the force from the second normal stress difference, FEn2:

FEn =

∫
∂P

nx
(τxx + τyy + τzz)

3
dS︸ ︷︷ ︸

FEnp

+

∫
∂P

nx
(τxx − τzz)

3
dS︸ ︷︷ ︸

FEn1

+

∫
∂P

nx
(τxx − τyy)

3
dS︸ ︷︷ ︸

FEn2

. (3.9)
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Case Total force Fp FV FE FEs FEn FEnp FEn1 FEn2

RecWi05Re1d03Y, ×10−2
−2.3 −3.1 0.85 −0.10 0.0051 −0.11 3.8 −3.7 −0.23

RecWi05Re1d03X, ×10−3 0.43 −0.25 1.15 −0.47 0.77 −1.24 1.15 −2.37 −0.013
SquWi05Re1CS, ×10−3

−2.85 −2.65 −0.22 0.01 0.62 −0.61 5.10 −5.40 −0.30
SquWi15Re100CS, ×10−2

−0.64 −0.67 0.45 −0.43 −0.47 0.044 1.10 −1.03 −0.03
SquWi0Re100CS, ×10−3 5.96 4.12 1.84 0 0 0 0 0 0
SquWi0Re100CL, ×10−4

−7.00 1.36 −8.36 0 0 0 0 0 0
SquWi05Re100CL, ×10−3 1.27 0.006 0.062 1.20 1.88 −0.68 −3.35 1.90 0.77

TABLE 1. Forces on the particle with a fixed lateral position (x0, y0) for different cases,
normalized by η0U0H. Here Fp, FV , FE, FEs, FEn, FEnp, FEn1 and FEn2 represent the pressure
force, viscous force, polymer force, polymer shear force, polymer normal force, polymer
pressure force, first normal stress difference force and second normal stress difference force
defined in (3.4)–(3.9), respectively. RecWi05Re1d03X: rectangular channel, Wi= 0.5, Re=
1, d/H= 0.3 and (x0, y0)= (0, 0.2). RecWi05Re1d03X: rectangular channel, Wi= 0.5, Re=
1, d/H = 0.3 and (x0, y0)= (0.2, 0.0). SquWi05Re1CS: square channel, Wi= 0.5, Re= 1,
d/H= 0.15 and (x0, y0)= (0.2, 0.0). SquWi15Re100CS: square channel, Wi= 1.5, Re= 100,
d/H= 0.15 and (x0, y0)= (0.2, 0.0). SquWi0Re100CS: square channel, Wi= 0.0, Re= 100,
d/H = 0.15 and (x0, y0) = (0.2, 0.0). SquWi0Re100CL: square channel, Wi = 0.0, Re =
100, d/H = 0.15 and (x0, y0) = (0.2, 0.31). SquWi05Re100CL: square channel, Wi = 0.5,
Re= 100, d/H = 0.15 and (x0, y0)= (0.2, 0.28).

Our results on the forces on the particle with a fixed lateral position (x0, y0) at
steady state for some cases are presented in table 1. The forces are normalized by
η0U0H. Note that for the case of ‘RecWi05Re1d03Y’, where the particle lateral
position is fixed at (0, 0.2), the forces in the y direction are calculated with
the subscripts x and y exchanged in (3.4)–(3.9). Our results indicate that for the
elasticity-induced rapid cross-stream migration (RecWi05Re1d03Y, SquWi05Re1CS
and SquWi15Re100CS), the pressure force is the most important driving force for the
migration, compared to the viscous force and the polymer force, particularly for the
low-Reynolds-number cases (RecWi05Re1d03Y and SquWi05Re1CS). Nevertheless,
if one adds the polymer pressure force FEnp to the pressure Fp, then the total
pressure force plays a negative role in the particle migration, and the force from the
first normal stress difference becomes the driving force for the rapid cross-stream
migration, consistent with the theory of Ho & Leal (1976). The second normal
stress difference is zero for the pure shear flow of the Oldroyd-B fluid, and thus
its contribution to the total force is always small, though it is interesting that its
direction is always the same as that of the first normal stress difference force. For
the inertia-induced rapid cross-stream migration (SquWi0Re100CS), the pressure
is also the most important driving force. For the inertia-induced slow cross-lateral
migration to the midline EP (SquWi0Re100CL), the pressure plays a negative role,
and the viscous shear force becomes the driving force. For the elasticity-induced slow
cross-lateral migration to the diagonal-line EP (SquWi05Re100CL), the pressure is
not important and both the first normal stress difference and the polymer shear force
are important. For the elasticity-induced anomalous slow off-centre migration in the
rectangular channel (RecWi05Re1d03X), both the pressure and the first normal stress
difference still tend to drive the particle to move towards the channel centreline, and
the shear forces including both the viscous and polymer shear forces become the
driving forces for the particle off-centre migration, unlike the elasticity-induced rapid
cross-stream migration (RecWi05Re1d03Y).
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FIGURE 13. (Colour online) Flow fields in the symmetry plane for the particle with a
fixed lateral position in a rectangular channel: (a) pressure, (x0, y0)= (0, 0.2); (b) pressure,
(x0, y0)= (0.2, 0); (c) lateral fluid velocity, (x0, y0)= (0, 0.2); and (d) lateral fluid velocity,
(x0, y0) = (0.2, 0). The arrows indicate the flow direction. Here Re = 1, Wi = 0.5 and
d/H = 0.3.

The contours of the pressure and the lateral velocity in the symmetry plane for
the particles with the fixed lateral positions of (x0, y0)= (0, 0.2) (RecWi05Re1d03Y)
and (x0, y0) = (0.2, 0) (RecWi05Re1d03X) are compared in figure 13. Owing to
the significantly different distributions of the shear rate (see figure 11a), there are
differences in the distribution pattern of the pressure and the lateral velocity for
the two cases. However, it is not clear why the pressure force is important in the
inward migration (RecWi05Re1d03Y) and not important in the off-centre migration
(RecWi05Re1d03X). We leave the complete understanding of the off-centre EP on
the long midline at low Reynolds numbers to a future study.

4. Conclusions
The particle lateral migration in respectively a square channel and a rectangular

channel with an aspect ratio of 2, filled with Oldroyd-B fluid, has been simulated
numerically with a fictitious domain method. The effects of the fluid inertial and
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elastic effects are investigated, in the range of Re = 1–100, Wi = 0.01–1.5 and
El= 0.0002–1.0. Throughout this study, the ratio of the solvent viscosity to the total
viscosity is ηr=0.5. The blockage ratio is typically d/H = 0.15, and some results for
d/H= 0.1 and 0.3 have been reported to show the effects of the blockage ratio. From
our results, the following conclusions can be drawn.

For particle migration in a square channel:

(1) When the fluid inertial effect exists, the midline, diagonal-line, corner and
channel centreline EP occur successively, as the fluid elastic effects are increased.
For Re = 10–100, the diagonal-line EP occurs largely at El = 0.001–0.02, and
can coexist with the midline and corner EP. The transition of the EP depends
strongly on the elasticity number and weakly on the Reynolds number. The
critical elasticity number for the occurrence of the centreline EP decreases with
increasing Reynolds number.

(2) When the fluid inertia is negligibly small, particles migrate towards the channel
centreline, or the closest corner, depending on their initial positions and the
Weissenberg number. The corner attractive area first increases and then decreases,
as the elasticity number increases.

(3) The fluid elasticity drives particles to migrate towards the channel centreline
along curved lines particularly for Wi > 0.1 as if they were attracted by the
diagonal line, except for the particles released directly on the midline or the
diagonal line. The migration rate generally increases with increasing Weissenberg
number.

For particle migration in a rectangular channel with aspect ratio of 2:

(4) The important elasto-inertial migration EP for relatively small particles undergoes
the transition from midline, ‘diagonal-line’, off-centre long midline and channel
centreline. The ‘diagonal-line’ EP is actually located on the line where two lateral
shear rates are equal to each other and the total shear rate reaches its minimum.
The ‘diagonal-line’ EP results from the combined effects of the elastic force,
which pushes the particle towards a lower-shear-rate region, and the inertial force,
which pushes the particle away from the channel centreline.

(5) The blockage ratio has significant effects on the viscoelasticity-induced particle
migration at low Reynolds numbers. The particles migrate towards the channel
centreline for d/H= 0.1, and towards an off-centre position on the long midline
for d/H = 0.3 at Wi= 0.5 and Re= 1. The off-centre migration is driven by the
shear forces, unlike the elasticity-induced rapid inward migration, which is driven
by the normal force (pressure or first normal stress difference).

Owing to the high computational cost with our code, we have mainly focused on
the qualitative understanding of the particle migration in the Oldroyd-B rectangular
channel flow, and the quantitative determination of the EP as a function of the
parameters is beyond the scope of the present study.
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