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Abstract

We solve the problem of factoring polynomials Vn(x) ± 1 and Wn(x) ± 1, where Vn(x) and Wn(x) are
Chebyshev polynomials of the third and fourth kinds, in terms of the minimal polynomials of cos(2π/d).
The method of proof is based on earlier work, D. A. Wolfram, [‘Factoring variants of Chebyshev
polynomials of the first and second kinds with minimal polynomials of cos(2π/d)’, Amer. Math. Monthly
129 (2022), 172–176] for factoring variants of Chebyshev polynomials of the first and second kinds. We
extend this to show that, in general, similar variants of Chebyshev polynomials of the fifth and sixth kinds,
Xn(x) ± 1 and Yn(x) ± 1, do not have factors that are minimal polynomials of cos(2π/d).

2020 Mathematics subject classification: primary 12E10; secondary 12D05.
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1. Introduction

The significance of the widespread applications of Chebyshev and related polynomials
in mathematics, engineering and numerical modelling motivates the study of the
properties of these polynomials.

In earlier work, Wolfram [17] solved an open factorisation problem for Chebyshev
polynomials of the second kind Un(x) ± 1 and gave a more direct proof of the result for
Chebyshev polynomials of the first kind, Tn(x) ± 1. We apply this method to solve the
analogous factorisation problems for Chebyshev polynomials of the third and fourth
kinds. These factorisations are also expressed in terms of the minimal polynomials
of cos(2π/d). We then show that, in general, there are no factorisations of variants of
the Chebyshev polynomials of the fifth and sixth kinds, Xn(x) ± 1 and Yn(x) ± 1, with
these minimal polynomials. Additionally, we give an equation that relates Un(x) to the
monic form of Yn(x) in Theorem 5.1.

Chebyshev polynomials of the first and second kinds, Tn(x) and Un(x), were
introduced by Pafnuty Chebyshev (1821–1894) in 1854. Gautschi [8] named the
Chebyshev polynomials of the third and fourth kinds Vn(x) and Wn(x) in 1992 [13].
They are also called airfoil polynomials [7, 13]. They are used in areas such as
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solving differential equations [1], numerical integration [5, 7, 13], approximations
[13], interpolation [8] and combinatorics [6].

In 2006, Masjed-Jamei [12] defined orthogonal polynomials called Chebyshev
polynomials of the fifth and sixth kinds, Xn(x) and Yn(x), that satisfy a generalised
recurrence equation for monic Chebyshev polynomials (see [3, Equations (6)–(7)])
with an exception for T̄2(x) where A1,−1,0,−1,1 is indeterminate and should equal − 1

2 .
Abd-Elhameed and Youssri [3] specifically related Vn(x) and Wn(x) to the monic form
of Xn(x).

Chebyshev polynomials of the fifth and sixth kinds are active research areas. In
2018, shifted Chebyshev polynomials of the fifth kind were used to solve problems
involving fractional-order differential equations [3]. In 2021, connection formulas and
other properties of the polynomials of the fifth [2] and sixth [4] kinds were given. Also,
Sadri and Aminikhah defined two-variable shifted Chebyshev polynomials of the sixth
kind of the form Ȳi(2x − 1)Ȳj(2t − 1) in [14, Equation (4.7)], and used them to solve
fractional-order partial differential equations numerically.

1.1. Chebyshev polynomials of the second kind. Chebyshev polynomials of the
second kind can be defined by

Un(x) =
sin((n + 1)θ)

sin(θ)
, (1.1)

where x = cos θ and n ≥ 0 (see [13, Equation (1.4)]). It follows that

Un(x)2 − 1 = Un−1(x)Un+1(x), (1.2)

where n ≥ 1, by applying the trigonometric identity

sin2 A − sin2 B = sin(A + B) sin(A − B) with A = (n + 1)θ and B = θ.

These polynomials satisfy the recurrence (see [13, Equations (1.6a)–(1.6b)])

U0(x) = 1, U1(x) = 2x, Un(x) = 2xUn−1(x) − Un−2(x), for n > 1. (1.3)

DEFINITION 1.1. The polynomials Ψd(x) are

Ψd(x) =
∏

k∈Sd/2

2
(
x − cos

(
2π

k
d

))
, (1.4)

where Sd/2 = {k | (k, d) = 1, 1 ≤ k < d/2} and d > 2. They have degree φ(d)/2 where φ
is Euler’s totient function [9]. The polynomials Ψ1(x) = 2(x − 1) and Ψ2(x) = 2(x + 1)
were defined in Wolfram [17, Definition 1]. These are polynomials with roots cos(2π)
and cos(π), respectively.

Gürtaş [9] showed that

Un−1(x) =
∏
d|2n
d>2

Ψd(x), for n ≥ 1. (1.5)
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LEMMA 1.2. The minimal polynomial in Q[x] of cos(2π/d) is Ψ̄d(x) = 2−φ(d)/2Ψd(x)
where d > 2. We also have Ψ̄1(x) = 2−1Ψ1(x) and Ψ̄2(x) = 2−1Ψ2(x).

PROOF. This follows from the proof of [11, Theorem 1] and the definition of minimal
polynomial. �

1.2. Chebyshev polynomials of the third and fourth kinds. Chebyshev polynomi-
als of the third kind can be defined by

Vn(x) =
cos(n + 1/2)θ

cos θ/2
, (1.6)

and of the fourth kind by

Wn(x) =
sin(n + 1/2)θ

sin θ/2
, (1.7)

where x = cos θ and n ≥ 0. They can also be defined with respect to Chebyshev
polynomials of the second kind by

Vn(x) = Un(x) − Un−1(x) (1.8)

and

Wn(x) = Un(x) + Un−1(x), (1.9)

where n ≥ 1 (see [13, Equations (1.17)–(1.18)]).

2. Solution

The method of solution follows that by Wolfram [17]. The first step is to express
Vn(x)2 − 1 and Wn(x)2 − 1 in terms of the polynomials Ψd(x) where d ≥ 1.

LEMMA 2.1. For n ≥ 1,

Vn(x)2 − 1 = Ψ1(x)
∏
d|2n
d>2

Ψd(x)
∏

d|2n+2
d>2

Ψd(x), (2.1)

Wn(x)2 − 1 = Ψ2(x)
∏
d|2n
d>2

Ψd(x)
∏

d|2n+2
d>2

Ψd(x).

PROOF. From (1.8),

Vn(x)2 − 1 = (Un(x) − Un−1(x) + 1)(Un(x) − Un−1(x) − 1)

= Un(x)2 − 1 − 2Un(x)Un−1(x) + Un−1(x)2

= Un+1(x)Un−1(x) − 2Un(x)Un−1(x) + Un−1(x)2 from (1.2)

= Un−1(x)(Un+1(x) − 2Un(x) + Un−1(x))

= Un−1(x)(2xUn(x) − 2Un(x)) from (1.3)
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= Ψ1(x)Un−1(x)Un(x) from Definition 1.1

= Ψ1(x)
∏
d|2n
d>2

Ψd(x)
∏

d|2n+2
d>2

Ψd(x) from (1.5).

Similarly, from (1.9),

Wn(x)2 − 1 = (Un(x) + Un−1(x) + 1)(Un(x) + Un−1(x) − 1)

= Un(x)2 − 1 + 2Un(x)Un−1(x) + Un−1(x)2

= Un+1(x)Un−1(x) + 2Un(x)Un−1(x) + Un−1(x)2 from (1.2)

= Un−1(x)(Un+1(x) + 2Un(x) + Un−1(x))

= Un−1(x)(2xUn(x) + 2Un(x)) from (1.3)

= Ψ2(x)Un−1(x)Un(x) from Definition 1.1

= Ψ2(x)
∏
d|2n
d>2

Ψd(x)
∏

d|2n+2
d>2

Ψd(x) from (1.5)

as required. �

The following theorem solves the factorisation problem for Vn(x)2 − 1. The second
step of the method involves defining the mapping that splits the 2n factors of Vn(x)2 − 1
into the n factors of Vn(x) + 1 and the other n factors of Vn(x) − 1. The factorisations
are unique up to associativity and commutativity of multiplication.

THEOREM 2.2. If n ≥ 1, then

Vn(x) + 1 =
∏
d|2n
d>2

2n/d odd

Ψd(x)
∏

d|2n+2
d>2

(2n+2)/d odd

Ψd(x) (2.2)

and

Vn(x) − 1 = Ψ1(x)
∏
d|2n
d>2

2n/d even

Ψd(x)
∏

d|2n+2
d>2

(2n+2)/d even

Ψd(x). (2.3)

PROOF. The polynomial Ψ1(x) = 2(x − 1) is a factor of Vn(x)2 − 1 from (2.1), and
Ψ1(cos(2π)) = 0. It follows from (1.6) that Vn(cos(2π)) = 1 and so Ψ1(x) is a factor
of Vn(x) − 1.

If d | 2n and d > 2, let θ = 2πk/d where (k, d) = 1, 1 ≤ k < d/2 and a = 2n/d. We
have θ = πak/n and Ψd(cos(θ)) = 0. From (1.6),

Vn(cos(θ)) =
cos((n + 1/2)πak/n)

cos(θ/2)
=

cos(πak) cos(θ/2) − sin(πak) sin(θ/2)
cos(θ/2)

.

The denominator cos(θ/2) � 0 because θ/2 = πk/d cannot equal π/2 when d > 2. The
numbers ak and a have the same parity. This is immediate when a is even. If a is odd,
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it follows that d is even and k is odd because (k, d) = 1. We have cos(πak) = cos(πa)
and Vn(cos(θ)) = cos(πa).

Hence, if a is even, then Vn(cos(θ)) = 1 and Ψd(x) is a factor of Vn(x) − 1. Similarly,
if a is odd, then Vn(cos(θ)) = −1 and Ψd(x) is a factor of Vn(x) + 1.

If d | 2n + 2 and d > 2, let b = (2n + 2)/d. We have θ = πbk/(n + 1) where k is such
that (k, d) = 1 and 1 ≤ k < d/2. From (1.6),

Vn(cos(θ)) =
cos((n + 1/2)θ)

cos(θ/2)
=

cos((n + 1)θ − θ/2)
cos(θ/2)

=
cos(πbk) cos(θ/2) + sin(πbk) sin(θ/2)

cos(θ/2)
.

Similarly to the previous case, the denominator cos(θ/2) � 0, the numbers bk and b
have the same parity and Vn(cos(θ)) = cos(πb). It follows that if b is odd then Ψd(x) is
a factor of Vn(x) + 1 and if b is even then Ψd(x) is a factor of Vn(x) − 1.

From (1.3) and (1.8), Vn(x) has degree n. It follows that the right-hand side of (2.1) of
the factorisation of Vn(x)2 − 1 has degree 2n. It has 2n factors of the form 2(x − cos(θ))
from (1.4) and Definition 1.1, half of which are the factors of Vn(x) + 1 and the other
half are the factors of Vn(x) − 1. The mapping defined above maps every such factor
of Vn(x)2 − 1 to either Vn(x) + 1 or Vn(x) − 1 depending on whether cos(θ) is a root
of Vn(x) + 1 or Vn(x) − 1, respectively. The right-hand sides of (2.2) and (2.3) are the
products of these mapped factors and so both have degree equal to n.

From (1.3) and (1.8), the leading coefficients of Vn(x) ± 1 are 2n. The expansions
of the factorisations on the right-hand sides of (2.2) and (2.3) both have 2n as leading
coefficients also. Each is a product of n factors of the form 2(x − cos(θ)). �

COROLLARY 2.3. If n ≥ 1, then the factorisations of Vn(x) ± 1 in terms of the minimal
polynomials of cos(2π/d) are

Vn(x) + 1 = 2n
∏
d|2n
d>2

2n/d odd

Ψ̄d(x)
∏

d|2n+2
d>2

(2n+2)/d odd

Ψ̄d(x)

and

Vn(x) − 1 = 2n Ψ̄1(x)
∏
d|2n
d>2

2n/d even

Ψ̄d(x)
∏

d|2n+2
d>2

(2n+2)/d even

Ψ̄d(x).

The following theorem solves the factorisation problem for Wn(x)2 − 1. These
factorisations are also unique up to associativity and commutativity of multiplication.

THEOREM 2.4. If n ≥ 1, then

Wn(x) + 1 =
∏
d|2n
d>1

2n/d odd

Ψd(x)
∏

d|2n+2
d>2

(2n+2)/d even

Ψd(x) (2.4)
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and

Wn(x) − 1 =
∏
d|2n
d>1

2n/d even

Ψd(x)
∏

d|2n+2
d>2

(2n+2)/d odd

Ψd(x). (2.5)

PROOF. The structure of the proof is similar to that of Theorem 2.2. If d | 2n and
d > 1, let a = 2n/d and k be such that (k, d) = 1 where 1 ≤ k < d/2. From (1.7),

Wn(cos(θ)) =
sin((n + 1/2)πak/n)

sin(θ/2)
=

cos(πak) sin(θ/2) + sin(πak) cos(θ/2)
sin(θ/2)

.

The denominator sin(θ/2) � 0 because θ/2 = πk/d cannot equal π when d > 1.
Similarly, ak and a have the same parity and Wn(cos(θ)) = cos(πa). Hence, if a
is even, then Wn(cos(θ)) = 1 and Ψd(x) is a factor of Wn(x) − 1. If a is odd, then
Wn(cos(θ)) = −1 and Ψd(x) is a factor of Wn(x) + 1.

If d | 2n + 2 and d > 2, let b = (2n + 2)/d and k be such that (k, d) = 1 where 1 ≤
k < d/2. We have θ = πbk/(n + 1) and θ/2 = πk/d. From (1.7),

Wn(cos(θ)) =
sin((n + 1/2)θ)

sin(θ/2)
=

sin((n + 1)θ − θ/2)
sin(θ/2)

=
− cos(πbk) sin(θ/2) + sin(πbk) cos(θ/2)

sin(θ/2)
.

The denominator sin(θ/2) � 0 and b and bk have the same parity, as above. Hence, if
b is even, then Wn(cos(θ)) = −1 and Ψd(x) is a factor of Wn(x) + 1. If b is odd, then
Wn(cos(θ)) = 1 and Ψd(x) is a factor of Wn(x) − 1.

It is straightforward to show that the degrees of the right-hand sides of (2.4)
and (2.5) are both n and the leading coefficients of both sides of these equations
are 2n. �

COROLLARY 2.5. If n ≥ 1, then the factorisations of Wn(x) ± 1 in terms of the minimal
polynomials of cos(2π/d) are

Wn(x) + 1 = 2n
∏
d|2n
d>1

2n/d odd

Ψ̄d(x)
∏

d|2n+2
d>2

(2n+2)/d even

Ψ̄d(x)

and

Wn(x) − 1 = 2n
∏
d|2n
d>1

2n/d even

Ψ̄d(x)
∏

d|2n+2
d>2

(2n+2)/d odd

Ψ̄d(x).

3. Examples with V

The polynomial V12(x)2 − 1 has 24 factors, and V12(x) + 1 and V12(x) − 1
each are the products of half of these factors. The mapping in the proof of
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Theorem 2.2 gives

V12(x) + 1 = Ψ8(x)Ψ24(x)Ψ26(x),
V12(x) − 1 = Ψ1(x)Ψ3(x)Ψ4(x)Ψ6(x)Ψ12(x)Ψ13(x)

= (2(x − 1))(2x + 1)(2x)(2x − 1)(4x2 − 3)

· (64x6 + 32x5 − 80x4 − 32x3 + 24x2 + 6x − 1)

= 212(x − 1)
(
x + 1

2
)
x
(
x − 1

2
)(

x2 − 3
4
)
Ψ̄13(x).

4. Examples with W

The polynomial W12(x)2 − 1 has 24 factors, and W12(x) + 1 and W12(x) − 1 each are
the products of half of these factors. The mapping in the proof of Theorem 2.4 gives

W12(x) + 1 = Ψ8(x)Ψ24(x)Ψ13(x),
W12(x) − 1 = Ψ2(x)Ψ3(x)Ψ4(x)Ψ6(x)Ψ12(x)Ψ26(x)

= (2(x + 1))(2x + 1)(2x)(2x − 1)(4x2 − 3)

· (64x6 − 32x5 − 80x4 + 32x3 + 24x2 − 6x − 1)

= 212(x + 1)
(
x + 1

2
)
x
(
x − 1

2
)(

x2 − 3
4
)
Ψ̄26(x).

When n is odd, Ψ2(x) is a factor of Wn(x) + 1:

W11(x) + 1 =Ψ2(x)Ψ22(x)Ψ3(x)Ψ4(x)Ψ6(x)Ψ12(x).

5. Chebyshev polynomials of the fifth and sixth kinds

Masjed-Jamei [12] defined the Chebyshev polynomials of the fifth kind, Xn(x),
and sixth kind, Yn(x). Similarly to the other four kinds of Chebyshev polynomials,
they are orthogonal polynomials with integer coefficients. The polynomials Xn(x) and
Yn(x) have degree n where n ≥ 0 [3, 4], and have definite parity, that is, they have the
form

�n/2�∑
v=0

avxn−2v.

Monic Chebyshev polynomials of the fifth and sixth kinds, X̄n(x) and Ȳn(x), can be
defined by the following recurrences which we simplify from [3]:

G0,m(x) = 1,
G1,m(x) = x,
Gn,m(x) = xGn−1,m(x) + An−1,m Gn−2,m(x), n > 1,
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where

An,m =
(2n + m − 2)(−1)n + (2n − (m − 2)) − nm − n2

(2n + m − 1)(2n + m − 3)
,

X̄n(x) = Gn,3(x),
Ȳn(x) = Gn,5(x).

The first seven Chebyshev polynomials of the fifth kind over Z are

X0(x) = 1,
X1(x) = x,

X2(x) = 4x2 − 3,

X3(x) = 6x3 − 5x,

X4(x) = 16x4 − 20x2 + 5,

X5(x) = 80x5 − 112x3 + 35x,

X6(x) = 64x6 − 112x4 + 56x2 − 7.

They are orthogonal over [−1, 1] with weight function x2/
√

1 − x2 [3]. An interesting
property is

Vn(x) = 22nX̄2n

(√1 + x
2

)
, Wn(x) = (−1)n22nX̄2n

(√1 − x
2

)

where n ≥ 0 [3, Section 2.2]. The term (−1)n is missing in Abd-Elhameed and Youssri
[3], but it follows because Vn(−x) = (−1)nWn(x) where n ≥ 0 (see [13, Equation
(1.19)]).

The first seven Chebyshev polynomials of the sixth kind over Z are

Y0(x) = 1,
Y1(x) = x,

Y2(x) = 2x2 − 1,

Y3(x) = 8x3 − 5x,

Y4(x) = 16x4 − 16x2 + 3,

Y5(x) = 24x5 − 28x3 + 7x,

Y6(x) = 16x6 − 24x4 + 10x2 − 1.

These polynomials are orthogonal over [−1, 1] with weight function x2
√

1 − x2

[4]. Their monic forms have been expressed explicitly as sums [4, Equations (3)
and (4)].

The monic Chebyshev polynomials of the sixth kind can be related to Chebyshev
polynomials of the second kind.
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THEOREM 5.1. We have

Un(x) = 22nȲ2n

(√1 + x
2

)
, for n ≥ 0.

PROOF. From [4, Equation (3)], the monic form of Ȳ2n(x) is

Ȳ2n(x) =
Γ( 3

2 + n)
(2n + 1)!

n∑
k=0

(−1)k
(

n
n−k

)
(1 + 2n − k)!

Γ( 3
2 + n − k)

x2n−2k

where n ≥ 0. After simplifying 22nȲ2n(
√

(1 + x)/2) with a computer algebra program,
and then substituting cos θ for x and simplifying manually, we find

22nȲ2n

(√1 + x
2

)
= cos(nθ) + cot θ (sin(nθ)) = Un(cos θ).

The last step follows from the identity sin(A + B) = sin A cos B + cos A sin B, with A =
nθ and B = θ, and (1.1). �

THEOREM 5.2. In general, the polynomials Xn(x) ± 1 and Yn(x) ± 1 do not have
factorisations using the minimal polynomials of cos(2π/d).

PROOF. The polynomials X5(x) ± 1 and Y5(x) ± 1 are irreducible over Z. We can check
this by using a computer algebra program.

It suffices to show that none of them is a polynomial Ψd(x) where Ψd(x) has degree
5. This is because, similarly to Ψd(x), their coefficients are integers, the greatest
common factor of the coefficients in each polynomial is 1 and the leading coefficients
are positive.

The degree of Ψd(x) = φ(d)/2 where d > 2 from (1.4), and from Definition 1.1,
φ(d) = 1 when d = 1 or d = 2.

From Vaidya [16], φ(n) ≥
√

n except for n = 2 and n = 6. Therefore, the values of
d such that φ(d) = 10 are in the interval 3 ≤ d ≤ 100. They are d = 11 and d = 22 by
checking an enumeration of φ. We have

Ψ11(x) = 32x5 + 16x4 − 32x3 − 12x2 + 6x + 1,

Ψ22(x) = 32x5 − 16x4 − 32x3 + 12x2 + 6x − 1.

The result follows from these counterexamples. �

REMARK 5.3. The original paper by Vaidya [16] is difficult to find. The result appears
in Sándor et al. [15, Section 1.1, Equation (1)]. A proof of the lower bound depends
on finding the conditions for (1 − 1/p)pα/2 ≥ 1 where p is a prime factor of n with
multiplicity α.

Another lower bound is φ(n) > n2/3 when n > 30 in Kendall and Osborn [10]. This
bound also appears in Sándor et al. [15, Section 1.1, Equation (2)]. It would have
reduced the upper bound of the interval from 100 to 31. However, it is not generally
correct: φ(42) = 12 and 422/3 > 12.
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