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Abstract

We apply to logic programming some recently emerging ideas from the field of reduction-
based communicating systems, with the aim of giving evidence of the hidden interactions and
the coordination mechanisms that rule the operational machinery of such a programming
paradigm. The semantic framework we have chosen for presenting our results is tile logic,
which has the advantage of allowing a uniform treatment of goals and observations and of
applying abstract categorical tools for proving the results. As main contributions, we mention
the finitary presentation of abstract unification, and a concurrent and coordinated abstract
semantics consistent with the most common semantics of logic programming. Moreover, the
compositionality of the tile semantics is guaranteed by standard results, as it reduces to check
that the tile systems associated to logic programs enjoy the tile decomposition property. An
extension of the approach for handling constraint systems is also discussed.

Introduction

Logic programming (Lloyd, 1987) is a foundational research field that has been
extensively investigated throughout the last 25 years. It can be said that, in logic
programming, theory and practice meet together since its very beginning, as each
innovation on one side contributes many insights to the other side thanks to the
basic principle of logic programming, which is ‘writing programs by expressing their
properties.” This symbiosis has also facilitated the study and the prototyping of
interdisciplinary applications that either extend the ‘kernel’ of the framework with
additional features or transfer helpful techniques from a large variety of paradigms. A
typical example is the embedding of constraints within logic programming (Marriott
& Stuckey, 1998; Jaffar & Maher, 1994), which retains the declarative and clean
semantics of logic programming, as well as its typical problem solving features,
while extending its applicability to many practical domains; in fact, Constraint
Logic Programming (CLP) is now considered as a major programming paradigm.

More interestingly, very often these flows of ideas have been profitably bidirec-
tional and continuous, thus allowing one to establish strong connections between
different areas (bringing useful analogies) and also to bridge gaps between different
formalisms.
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Interaction via contextualization and instantiation

In this paper, inspired by recent progress in the fields of communicating systems and
calculi for concurrency, we want to focus on an interactive view of logic program-
ming. The idea is to understand logical predicates as (possibly open) interacting
agents whose local evolutions are coordinated by the unification engine. In fact,
the amount of interaction arises from the unification mechanism of resolution, as
subgoals can share variables and therefore ‘local’ progress of a component can in-
fluence other components by further instantiating such shared variables. One central
aspect of this view is to understand what kind of information we should observe
to characterize interaction and how far the approach can be extended to deal with
different semantic interpretations of logic programs. For example, one interesting
issue is compositionality. Having a compositional semantic framework is indeed very
convenient for formal reasoning on program properties and can facilitate the devel-
opment of modular programs (Bossi et al, 1994a; Brogi et al, 1992; Gaifman &
Shapiro, 1989; Mancarella & Pedreschi, 1987).

We sketch here the main ideas concerning the role played by ‘contexts’ in reduction
systems, but for a more precise overview we invite the interested reader to join us
in the little detour, from the logic programming world to the process description
calculi area, inserted in the last part of this introductory section (with links to related
literature).

Generally speaking, the issue we focus on is that of equipping a reduction
system with an interactive semantics. In fact, although reduction semantics are often
very convenient because of a friendly presentation, they are not compositional ‘in
principle” The problem is that they are designed having in mind a progressive
reduction of the initial state to a suitable normal form, i.e. one focuses on a
completely specified system that can be studied in isolation from all the rest. In logic
programming, this would correspond to studying the refutation of ground goals only
and to develop an ad hoc system to this aim. Then, if one wants to study the semantics
of partially specified components the framework is no longer adequate and some
extensions become necessary. For example, in process description calculi, a partially
specified component can be a process term (called open process or context) that
contains suitable process variables representing generic subprocesses. However, also
a closed term (i.e. without free process variables) can be considered an open system
when it evolves as part of a broader system, by interacting with the environment. In
logic programming we can distinguish two main kinds of openness and interaction.
A first kind is due to goals with variables (rather than ground) that can obviously
be regarded as partially specified systems. A second kind consists of regarding an
atomic goal as part of a larger conjoined goal with which it must interact.

The obvious way to deal with partially specified components is to transform
the problem into the reduction case, which we know how to solve. This means
that (1) the variables of open processes will be instantiated in all possible ways
to obtain closed systems that can be studied; (2) to study the semantics of closed
subprocesses we will insert them in all possible contexts and then study their
reductions. Moreover, the operations of contextual and instantiation closure can
be rendered dynamically, provided that one defines a labeled transition system (LTS)
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whose labels record the information on the performed closure, and this has originated
the idea of observing contexts and instantiations (sometimes called external and
internal contexts, respectively).

Even if these views can look semantically adequate, it can be noted, as their main
drawback, that they are not applicable in practice, because all considered closures
are infinitary. The situation can be improved if one is able to identify a small finite
set of contexts and/or instances that contains all useful information, since this can
make the approach operationally satisfactory. While a general methodology for
accomplishing this task in communicating and mobile calculi is difficult to find (e.g.
see Leifer & Milner (2000)), we think that logic programming represents the perfect
situation where it is possible to fully develop the closure approach.

When dealing with the interactive view of logic programs, the idea is that unifi-
cation is the basic action taking place during computation, and therefore the observed
information must rely on such an action. We have seen that two kinds of closure
can be distinguished that are dual to each other, namely contextualization and
instantiation. The former can be used to embed components in a larger environment,
while the latter serves to specialize an open system to some particular instance.

We shall concentrate our efforts on pure logic programming (i.e. classical Horn
clauses, without any additional ‘gadgets’). Hence contextualization corresponds to
putting the goal in conjunction with other goals,! ie. given a goal G we should
put it in the context _ A G’ for all possible G'. With respect to instantiation, our
proposal is to regard the computed substitutions for the variables in the (sub)goals
as observable internal contexts, which further instantiate the system components.
Thus, given a goal G, we can apply the substitution ¢ to the free variables of G and
study the consequent changes in the semantics.

The analogy and distinction between internal and external contexts become clear
if we look at the term algebra over a signature Z from a categorical perspective: the
objects of the category are underlined natural numbers, an n-tuple of terms over m
variables corresponds to an arrow from m to n, and composition of arrows t;:m — k
and t,:k — n is given by substituting the k variables in ¢, by the corresponding
terms in the tuple t;. Then, composing to the right means inserting in a context,
‘while composing to the left means providing an internal context (e.g. t; above is
external to t;, while ¢; is internal to t;).

Tile logic as a semantic framework

For pursuing this research programme, we have chosen to rely on tile logic (Gadducci
& Montanari, 1996; Gadducci & Montanari, 2000) that can provide a convenient
abstract computational model for logic programming, where many of the discussed
aspects can be suitably represented and managed.

!'In pure logic programming, contextualization does not provide any additional information on the
possible reductions, as the head of each clause consists of only one predicate. The situation would be
different if generalized multi-head Horn clauses were considered, a topic that will be discussed in the
conclusions, or if second order logic were considered (other predicate contexts should be considered
beside conjunction).
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The tile framework takes inspiration from and bears many analogies with various
sos formats (Plotkin, 1981; De Simone, 1985; Bloom et al., 1995; Groote & Vaan-
drager, 1992; Bernstein, 1998), context systems (Larsen & Xinxin, 1990), structured
transition systems (Corradini & Montanari, 1992), and rewriting logic (Meseguer,
1992). It allows us to define models that are compositional both in ‘space’ {(ie.
according to the structure of the system) and in ‘time’ (i.e. according to the compu-
tation flow). In particular, tile logic extends rewriting logic with a built-in mechanism,
based on observable effects, for coordinating local rewrites. The effects are in some
sense the counterparts of labels in LTS operational semantics. However, since tiles are
designed for dealing with open states (as opposed to the ordinary ‘ground’ view of
LTS’s generated from sos rules), they seem more apt for many applications. The idea
is to employ a set of rules (called tiles) to define the behavior of partially specified
components (i.e. components that can contain variables), called configurations, only
in terms of the possible interactions with the internal/external environment. In this
way, the behavior of a system must be described as a coordinated evolution of its
local subconfigurations. The name ‘tile’ is due to the graphical appearance of such

rules, which have the form in Figure 1, also written « : t—:’s, stating that the initial
configuration t evolves to the final configuration s via the tile «, producing the effect
v, which can be observed by the rest of the system, but such a step is allowed only
if the subcomponents of ¢ (i.e. the arguments to which t is connected via its input
interface) evolve to the subcomponents of s, producing the effect u, which acts as
the trigger for the application of «. Triggers and effects are called observations and
tile vertices are called interfaces. The arrows t, u, v and s form the border of a.

Tiles can be composed horizontally, vertically, and in parallel to generate larger
steps. The three compositions are illustrated in Figure 2. Horizontal composition
yields rewriting synchronization (e.g. between the evolution of an argument via x«
and the evolution of its environment via f§, as the effect of « provides the trigger for
B). Vertical composition models the sequential composition of computations. The
operation of parallel composition corresponds to building concurrent steps, where
two (or more) disjoint configurations can concurrently evolve. Of course, the border
of a concurrent step is the parallel composition of the borders of each component
of the step.

Given a set of basic tiles, the associated tile logic 1s obtained by adding some
canonical ‘auxiliary’ tiles and then closing by (the three kinds of) composition
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Fig. 2. Horizontal, vertical and parallel tile compositions.

both auxiliary and basic tiles. As an example, auxiliary tiles may be introduced
that accommodate isomorphic transformations of interfaces, yielding consistent
rearrangements of configurations and observations (Bruni et al., 1998; Bruni, 1999).

Tile logic deals with algebraic structures on configurations that can be different
from the ordinary, tree-like presentation of terms employed in most LTS’s. All these
structures, ranging from graphs and term graphs to partitions and relations, give
rise to monoidal categories and, therefore, possess the two basic operations needed
by tile configurations. This is very convenient, as the models of the logic can be
formulated in terms of monoidal double categories. In this paper, we assume the
reader to be familiar with the basic concepts of category theory, though we shall
not push their usage too far (employing categories in a mild way) and shall give
informal explanations of most categorical constructs introduced.

Likewise context systems (Larsen & Xinxin, 1990) and conditional transition sys-
tems (Rensink, 2000), tile logic allows one to reason about terms with variables
(Bruni et al., 2000a). This means, for example, that trace semantics and bisimilarity
can be extended straightforwardly to open terms by taking as observation the pair
(trigger, effect), whereas ordinary r18’s deal with transitions from closed terms to
closed terms for which triggers are trivial identities. The compositionality of ab-
stract semantics {either based on traces or on bisimilarity) can then be guaranteed
by algebraic properties of the tile system or by suitable specification formats (Bruni
et al., 2000a). In particular, we shall see that the decomposition property (Gadducci
& Montanari, 2000) yields a very simple proof of the compositionality of the tile
logic associated to a logic program.

The tile approach to logic programming

A well-known fact (cf. the discussion in Section 2 and in Burstall & Rydeheard (1985)
and Corradini & Montanari (1992)) that is exploited in the construction we propose
is that in categorical terms the construction of the most general unifier (mgu) between
a subgoal and the head of a clause can be expressed as a pullback in the syntactic
category associated to the signature under consideration. One of the contributions of
this paper is in fact to provide a constructive, modular way of building the pullback
construction. It is similar to the ordinary unification mechanism but formulated in a
completely abstract way by means of coordination rules. This translates immediately
in terms of tile logic, completing the first part of our research programme, that is,
understanding the extent of interaction we shall observe, and expressing it in a
formal system.
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For the rest, we define a transformation from logic programs to tile systems by
associating a basic tile to each Horn clause in the program. Then, the resulting tile
models are shown to provide a computational and semantic framework where the
program and its tile representation yield exactly the same set of computed answer
substitutions for any goal. It is remarkable that all aspects concerning the control
flow are now automatically handled by tiles (e.g. generation of fresh variables,
unification, construction of resolvents).

One of the advantages of tile logic is to make evident the duality between con-
textualization and instantiation, still being able to deal in a uniform way with both
perspectives. The same thing can be said for the uniform treatment of configurations
and observations that facilitates the use of contexts as labels, providing many insights
on the way the basic pieces can be put together to form a whole computation.

The tile presentation of a program allows us not only to transfer to logic pro-
gramming abstract semantic equivalences based on traces and bisimilarity, but also
to show that these equivalences are compositional (i.e. they are congruences) via an
abstract proof based on the decomposition property of the underlying tile system.
More concretely, denoting by ~ any of the two equivalences (on goals) mentioned
above, we have almost for free that if G; ~ G, then: (1) ¢(Gy) ~ 6(G3) for any
substitution ¢, and (2) G; A G ~ G, A G for any goal G. (This lifts also to the case
where the simpler ‘success’ semantics is considered.)

The application of our ‘tile’ techniques to logic programming can serve as a basis
for establishing useful connections and studying analogies with the process calculi
paradigm. For example, it comes out that there is a strong resemblance between
the parallel operator of many process calculi and the conjunction operator on
goals. As another example, it would be interesting to transfer to logic programming
concepts like ‘explicit substitution’ and ‘term graph’, which play important roles in
the implementation of distributed systems.

A digression: sources of inspiration

Before illustrating the organization of the material, we want to explain more precisely
the intuition that motivated our research on interactive semantics for reduction sys-
tems and its application to logic programming. As already pointed out, our sources
of inspiration mostly come from contributions in the theory of communicating sys-
tems. The first fact to note is that there are two well recognized and widely studied
schools of thought for giving semantics to process description calculi, namely via
reduction rules (especially popular after Berry and Boudol’s cHam (Berry & Boudol,
1992)) and via LTSs.

The first approach relies on the assumption that it is possible to observe and ma-
nipulate the global state of a complex system. In particular, the current state can be
inspected for finding a redex, i.e. a candidate for the application of a reduction step.
The redexes usually coordinate the activity of several logically distinct components of
the system, and therefore, to some extent, the reduction step synchronizes their local
activities into a global atomic move. For dealing with compositionality, one would
be interested in deriving the semantics of a whole entity in terms of the semantics
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of its very basic component parts, which can become a hard task when reductions
are global actions. The problem is that a redex may lie in between a component
and the external environment, and therefore to understand the behavior of a com-
ponent as a stand alone entity, we have to consider its interactions with all possible
environments, in the style of testing semantics (De Nicola & Hennessy, 1984).

Instead, the point of view of observational equivalences based on LTs semantics is
to use observations (transition labels) to derive observational equivalences on pro-
cesses, as, for instance, bisimilarity (Park, 1981; Milner, 1980). Moreover, the formats
for specifying LTS operational semantics can exploit inductively the structure of a
complex state to define its semantics in terms of the actions that can be accomplished
by subcomponents, guaranteeing compositionality properties like ‘bisimilarity is a
congruence.’

One emerging idea to provide reduction semantics with an interactive, observa-
tional view is that of ‘observing contexts’ (Milner, 1992; Montanari & Sassone, 1992;
Milner, 1996; Bernstein, 1998; Sewell, 1998; Leifer & Milner, 2000; Cattani et al.,
2000). Basically, starting from a reduction system, one has to define the semantics of
a local component by embedding it in all possible contexts and by considering those
contexts as observations. Then, when several components are assembled together, it
is possible to predict the semantics of the result simply by inspecting the behaviors
of each component in the environment contributed by all the remaining components.
This approach gives rise to a special kind of bisimulation, called dynamic bisimilar-
ity (Montanari & Sassone, 1992), which is the coarsest congruence that is also an
ordinary bisimulation. This approach corresponds to some extent to give the possi-
bility to dynamically reconfigure the system and has also some applications to open
ended systems (Bruni et al., 2000b). Though theoretically sound, this solution leaves
open many operational questions, because the semantics must take into account all
possible contexts.

Many people attempt to define a general and clever methodology for passing
from reduction semantics to (compositional) LTS semantics (Sewell, 1998; Leifer &
Milner, 2000; Cattani et al., 2000). In particular, Leifer and Milner show in (Leifer
& Milner, 2000) that a minimal set of contexts is definable whenever sufficiently
many relative pushouts exist in the category of configurations. Roughly speaking, it
must be the case that for any configuration ¢ and any reduction rule with which
t can react in a suitable environment C, then there exists a minimal observable
context C’ that makes such reduction possible.

Dual to the problem of ‘contextualization’ is the problem of ‘instantiation. It
arises when one wants to extend the compositionality from ground processes to
open processes. In fact, the equivalence on open terms is usually defined via the
equivalence on closed terms, by saying that two contexts are equivalent if their
closures under all possible ground instantiations are so. Again, it is preferable
to avoid the instantiation closure and find a more compact way to enforce the
modularity of the framework. This issue has been pursued in two recent works
(Rensink, 2000; Bruni et al., 2000a) for providing general specification formats that
guarantee the compositionality of open systems. They are based on the idea of
recording in the transition labels not only the effects of each move, but also the
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triggers provided by the subcomponents for applying the transition to the global
state. Consequently, in the ‘dynamic’ version, instantiation becomes a sort of ‘internal
contextualization’” and substitutions can be used as labels (in the trigger part).

In the case of logic programming, many of the above concepts find a natural
meaning. Thus, for example, goal instantiation is a relevant internal contextual-
ization that can modify the semantics of the goal (e.g. by making impossible the
unification with the head of a clause which can otherwise be applicable), while ex-
ternal contextualization is given by conjunction with other goals (it can be relevant
when multi-headed clauses are allowed).

Structure of the paper

We fix the notation and recall the necessary background in Section 1. Due to the
heterogeneity of the material, its presentation is separated in four parts: Section 1.1
summarizes a few elementary definitions about signatures, substitutions and Horn
clauses; Section 1.2 recalls the operational machinery of logic programming; Sec-
tion 1.3 presents the tile notation and the categorical models based on double
categories; Section 1.4 presents the concepts of Section 1.1 under a different light
{exploiting Lawvere’s pioneering work (Lawvere, 1963)), which will offer a more
convenient notation for representing logic programs in tile logic. While the contents
of Sections 1.1 and 1.2 are standard, the notions recalled in Sections 1.3 and 1.4
might be not so familiar to the logic programming community.

In Section 2 we recall the ways in which most general unifiers, equalizers and
pullbacks intertwine. This should provide the reader with the formal knowledge
for understanding the technical details of the correspondence between unification
in logic programming and coordination via pullback tiles, which is explained in
Section 3. In particular, we think that the results in Section 3.1 are the key to the
application of tiles to logic programming.

Section 4 exploits the notation and results from Section 3 to establish the connec-
tion between logic programming and tile logic. The transformation is described
in Section 4.1, together with a simple example that illustrates the correspon-
dence between the two views. The main advantages of the tile approach are ex-
amined separately in Section 4.2 (connections with ongoing research on process
calculi), Section 4.3 (formal correspondence with ordinary semantics), Section 4.4
{goal compositionality via abstract congruences), Section 4.5 (comparison between
goal equivalences obtained by considering different instantiation closures), and in
Section 4.6 (insights on concurrency and coordination). The compositionality of
the resulting framework strongly depends on the representation results of Sec-
tion 3.1, that allow one to decompose a complex coordination along its basic
bits.

While the paper focuses on pure logic programs, we think that the approach can
be extended to take into account many variants of logic programming. Some of these
extensions are discussed in Section 5 (devoted to constraint logic programming) and
in the concluding section.
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1 Background
1.1 Notation

Let T be a two sorted signature over the set of sorts {t,p}. Provided that the sort
p does not appear in the arity of any operator, we call X a logic program signature
and we denote by ¢ = J, X3 and Zp = J, Z}; the ranked sets of function symbols
f:t" — t and of predicate symbols p:t" — p, respectively.

As usual, given a set X of (term) variables, we denote with Tg(X) the free Z-
algebra generated by X. A term over X is an element of Tyx,(X). The set of all
ground terms (ie., terms without variables) is called the Herbrand universe for X.
An atomic formula over X has the form p(ty,...,t,) where p € X}, and 1y,...,t, are
terms over X. A conjunctive formula is just a tuple of atomic formulas. The set of
all ground atomic formulas is called the Herbrand base for X.

If X ={x,....x,} and Y are sets of variables, a substitution from Y to X is a
function 0: X — Tg,(Y), usually denoted by [o(x1)/x1,...,0(x,)/x,]). If t is a term
over X and ¢ is a substitution from Y to X then the term over Y obtained by
simultaneously substituting in ¢ all the occurrences of the variables in X with their
images through o is called the application of ¢ to t and written a;t.

If ¢ is a substitution from Y to X and ¢’ is a substitution from Z to Y, their
composition is the substitution ¢’;0 from Z to X defined by applying ¢’ to each
image of the variables in X through o. A substitution ¢ is said to be more general
than ¢’ if there exists a substitution 6 such that ¢’ = 0;¢. It is worth noticing
that since substitution composition is associative with the identity substitutions
{x1/x1,...,xp/xy] as neutral elements, then substitutions form the arrows of a
category having finite sets of variables as objects.

Two terms (also atomic formulas) ¢ and s unify if there exists a substitution 6
such that 6;¢ = 6;s. In this case 0 is called a unifier of t and s. If t and s unify there
exists also a most general unifier (unique up to variable renaming), mgu for short.

The mgu can be computed by employing, e.g. the following (nondeterministic)
algorithm that operates on a set of equations (at the beginning the set is the singleton
{t =s}).

e Apply one of the following steps until stability is reached:

1. eliminate the equation x = x from the set for some variable x;

2. eliminate the equation f(ty,...,t,) = f(51,...,S,) from the set and insert the
equations t; = Sy,...,ty = s, in it;

3. if the equation x = t with x a variable not appearing in t is contained in
the current set, apply the substitution [t/x] to all the other equations (but
do not remove x =1t ).

The algorithm always terminates. It terminates with success if the resulting set
of equations has the form {x; = f1,...,x, = ¢,} with x; not appearing in ¢; for all
i,j € [1,n]. The algorithm can be efficiently computed if it cyclically executes the
sequence of steps 1, 3 (with x = y), 2, 3 (with x =1).
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Table 1. Operational rules for SLD-resolution (small step semantics ).

empty goal
Pir 0,G=4G PI GO=y6 v

(H:—F)eP o=mgu(4,p;H)
P+ A=,0;p;F

atomic goal

Pir G=,F P G=,F
P+ G,G =, F,(6;G)Y P+ G,G=,(0;G),F

conjunctive goal

1.2 Syntax and operational semantics of logic programs

In this section we briefly recall the basics of the operational semantics of logic
programs. We refer to Lloyd (1987) for a more detailed introduction to the subject.
A definite Horn clause ¢ is an expression of the form

H:—B,...,B,

with n > 0, where H is an atomic formula called the head of ¢ and (Bi,...,B,) is a
(conjunctive) formula called the body of c¢. A logic program P is a finite collection
of clauses {c1,...,Cm}.

A goal is an expression of the form

1— Ay,..., Ag

with k > 0, where G = {4,,...,4,) is a (conjunctive) formula and the A4;’s are the
atomic subgoals of G. If k = 0, then G is called the empty goal and is denoted by ‘T3

Given a goal G = {4y,...,4;) and a clause ¢ = H :— By,...,B, (with all
variables in the latter possibly renamed to avoid confusion with those in G) an
(SLD )-resolution step involves the selection of an atomic goal A; such that H and
A; unify and the construction of their mgu 0. The step leads to a new goal

G = 0;{(A1,...,Ai_1,B1,....Bp, Airy,. . Ak)
= 0;41,...,0;4i-1,0;By,...,0;B,,0; 4iyy,..., 0, 4k

which is called the resolvent of G and c. In this case we say that G’ is derived from
G and c via 0 and we write G =g G’ or simply G = G'.

Given a logic program P = {¢,...,cm} and a goal Gy, an (SLD-)derivation of
Go in P is a (finite or infinite) sequence G° G',G?,... of goals, a sequence c;,c;,,. ..
of (renamed) clauses and a sequence 01,0,,... of mgu’s such that G*! is derived
from G' and ¢;, via 6;. An (SLD- )refutation of Gy is a finite derivation of G, ending
with the empty goal. In this case the substitution 6 = (0;;- - ;61 )vang is called a
computed answer substitution for G, written G =; . The ‘small-step’ operational
semantics is formalized in Table 1 (but in the rule for atomic goal we must be certain
that p renames the variables in the clause by globally fresh names).

The inductive definition of computed answer substitution and refutation in the
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Table 2. Operational rules for SLD-resolution (big step semantics ).

empty goal
Pt O Py e

(H:—F)eP o=mgu(4,p;H) Ptyo;p;F
Plos A

atomic goal

PrsA Plyo; F

conjunctive goal
Plrys, AF

‘big-step’ style is given by the rules in Table 2. The notation P 3 G means that
P G =, 0, ie. that the goal G can be refuted by using clauses in the program
P. The first rule says that the empty goal can always be refuted with the empty
computed answer substitution e. The second clause says that an atomic goal can
be refuted provided that it can be unified with the head H of a clause (suitably
renamed by p to avoid name conflicts with A4) in the program P via the mgu ¢ and
that the goal obtained by applying o to the (renamed) body F of the clause can be
refuted with 6. The third rule says that a conjunctive goal can be refuted provided
that its leftmost subgoal can be refuted first with o, and then the goal obtained
by applying ¢ to the other subgoals can be refuted with 6. Although imposing a
sequentialization in the resolution process can appear as an arbitrary choice, the
fact that refutation involves finite derivations and the well known switching lemma
guarantee the completeness of the formal system.

1.3 Double categories and tile logic

The point of view of tile logic (Gadducci & Montanari, 2000; Bruni, 1999) is that the
dynamics of a complex system can be better understood if we reason in terms of its
basic components and of the interactions between them. Therefore, reductions must
carry observable information about the triggers and the effects of the local step. This
extends the point of view of rewriting logic, where reductions can be freely nested
inside any context (and also freely instantiated): In tile logic, contextualization and
instantiation are subordinated to the synchronization of the arguments with the
environment, ie. the effect of the tile defining the evolution of the former must
provide the trigger for the evolution of the second. When the coordination is not
possible, then the step cannot be performed.

An abstract account of the connections between states and dynamics can be given
via (monoidal) double categories, by exploiting their two-fold representation: one
dimension is for composing states and the second dimension is for composing com-
putations. In fact, the models of tile logic are suitable double categories (Gadducci
& Montanari, 2000; Bruni et al.,, 2001), and the basic tiles of a tile system provide a
finitary presentation — which is more convenient to work with — of the initial model.

Since we do not want to introduce unnecessary complexity overhead to readers
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Fig. 3. Graphical representation of a cell.

not acquainted with double categories, we shall present a gentle introduction to
the subject. For more details we refer to (Ehresmann, 1963a; Ehresmann, 1963b;
Meseguer & Montanari, 1998; Bruni et al., 1998; Bruni et al., 2001).

A double category contains two categorical structures, called horizontal and
vertical respectively, defined over the same set of cells. More precisely, double
categories admit the following naive definition.

Definition 1.1 (Double Category)

A double category D consists of a collection o0,09,0,... of objects, a collection
hoho, W, ... of horizontal arrows, a collection v,vg,v’,... of vertical arrows and a
collection 4, B, C,... of double cells (also called cells, for short).

e Objects and horizontal arrows form the horizontal 1-category H, with identity
id, for each object 0, and composition _

e Objects and vertical arrows form also a category, called the vertical I-category
V, with identity id, for each object o, and composition - _

e Cells are assigned horizontal source and target (which are vertical arrows)
and vertical source and target (which are horizontal arrows); furthermore
sources and targets must be compatible, in the sense that they must satisfy
the equalities on source and target objects graphically represented by the

square-shaped diagram in Figure 3, for which we use the notation 4 : ho%hl.
e Cells can be cornposed both horizontally ( * ‘) and vertically (_- ) as follows:
given A : hy—~ hl, B : hz h3, and C : h1 h4, then A*B : hg* hz‘—>h1 * hs3,

and A-C : ho—’h4 are cells. Moreover, given a fourth cell D : h3—>h5,
horizontal and vertlcal compositions satisfy the following exchange law (see
Figure 4):

(A-C)*(B-D)=(4*B) (C*D)

Under these rules, cells form both a horizontal category D* and a vertical

: id,
category D, with identities 1, : id(,%’idof and 1" : hjjj’h, respectively, with
thothi = ko x 1k and 1,04, = 1y - 1y
o Furthermore, horizontal and vertical identities of identities coincide, ie. 1;;, =
1 and the cell is simply denoted by 1I,,.

We shall use monoidal categories (e.g. see MacLane (1971) for basic definitions) for
horizontal and vertical 1-categories. As a matter of notation, sequential composition
and monoidal tensor product on 1-categories are denoted by _; . and _® , respectively.
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Fig. 4. Exchange law of double categories.

A monoidal double category is a double category together with an associative tensor
product - ® _ and a unit element e.

Tile logic gives a computational interpretation of (monoidal) double categories,
where (see Figure 1 for terminology):

e the objects represent the (initial/final, input/output) interfaces through which
system components can be connected;

e the arrows of H describe (initial/final) configurations, sources and targets
corresponding to input and output interfaces;

e the arrows of V are the observations (trigger/effect), sources and targets
corresponding to initial and final interfaces;

e the cells represent the possible transformations (tiles) that can be performed
by the system.

Thus, a cell ho-i-?*hl says that the state hy can evolve to hy via an action triggered
by vy and with effect v;. The way in which observations and configurations of a
cell are connected via their interfaces expresses the locality of actions, i.e. the places
where triggers are applied to and effects are produced by.

A basic distinction concerns whether one is interested in the cells or just in their
borders. The second alternative has a more abstract flavor, in line with behavioral
equivalences, and corresponds to the so-called flat tile logic (Bruni, 1999). In this
paper we shall concentrate on flat tiles only.

Tile logic gives also the possibility of presenting in a constructive way the double
category of interest. This is in some sense analogous to presenting a term algebra
by giving only the signature: A standard set of rules tells how to build all the
elements starting from the basic ones. For tile logic, the basic elements consist of:
(1) the category H of configurations; (ii) the category V of observations; and (iii)
the set of basic tiles (i.e. cells on H and V). Starting from basic tiles, more complex
tiles can be constructed by means of horizontal, vertical and parallel composition.
Moreover, the horizontal and vertical identities are always added and composed
together with the basic tiles. All this is illustrated by the rules in Figure 5, where
tiles are seen as logic sequents. As explained in the Introduction, each operation has
a precise computational meaning: horizontal composition coordinates the evolution
of a context with that of its arguments; parallel composition models concurrent
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Fig. 5. Composition and identity rules for tile logic.
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activities; vertical composition concatenates computations. For both terms and tiles,
the operation of building all the elements starting from the basic ones can be
represented by a universal construction corresponding to a categorical left adjoint.

Definition 1.2 (Tile system)

A tile system is a tuple R = (H,V,N,R) where H and V are monoidal categories
with the same set of objects Oy = Oy, N is the set of rule names and R:N —
Ay X Ay x Ay X Ay is a function such that for all « € N, if R(x) = {t,u,v,s) then
t:0g — 01, U109 — 03, V:0y — 03, and s:0; — 03 for suitable objects oy, 01, 07 and

03 (see Figure 6). We will denote such rule by writing o: t—:*s.

Depending on the chosen tile format, H and V can be specialized (e.g. to cartesian
categories) and suitable auxiliary tiles are added and composed with basic tiles and
identities in all the possible ways. The set of resulting sequents ( flat tiles) define

u
the flat tile logic associated to R. We say that t— s is entailed by the logic, written

RE t—:—>s, if the sequent t*Z-’s can be expressed as the composition of basic and
auxiliary tiles. Flat tiles form the cells of a suitable double category, which is freely
generated by the tile system.

Being interested in tile systems where configurations and observations are freely
generated by suitable horizontal and vertical signatures X and A, in what follows
we shall present tile systems as tuples of the form R = (X, A, N, R). In particular,
we shall employ categories of substitutions on £ and A as horizontal and vertical
1-categories. In the literature several tile formats have been considered (Gadducci &
Montanari, 2000; Ferrari & Montanari, 2000; Bruni et al., 1999; Bruni & Montanari,
1999; Bruni et al., 2000a). They are all based on the idea of having as underlying
categories of configurations and effects two categories that are freely generated start-
ing from suitable (hyper)signatures whose operators model the basic components
and observations, respectively. Varying the algebraic structure of configurations and
observations, tiles can model many different aspects of dynamic systems, ranging
e.g. from synchronization of Petri net transitions (Bruni & Montanari, 2000), to
causal dependencies for located calculi and finitely branching approaches for name-
passing calculi (Ferrari & Montanari, 2000), to actor systems (Montanari & Talcott,
1998), names abstraction and creation and higher order structures (Bruni & Mon-
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tanari, 1999). A comparison between the various formats is out of the scope of this
presentation and can be found in Bruni et al. (2000a).

Ordinary trace semantics and bisimilarity semantics can be extended to tiles by
considering the transition system whose states are (possibly open) configurations

and whose transitions are the entailed tile sequents: a tile t—:*s defines a transition
from ¢ to s with label (u,v). An interesting question concerns suitable conditions
under which such abstract equivalences yield congruences (w.r.t. the operations of
the underlying horizontal structure). Tile decomposition is one such condition that
has a completely abstract formulation applicable to all tile systems.

Definition 1.3

A tile system R = (H,V, N, R) enjoys the decomposition property if for all arrows
u

t € H and for all sequents t— s entailed by R, then: (1) if ¢ = ¢;;t, then Iw € V),
u

51,52 € ‘H such that R - 55— 2s;, R F tz—:>sz and s = s1;8; Q) ift =101

u u
then Juy, up, v, v2 € V, 81,5 € ‘H such that R + tlT:’sl, R F lsz’Sz, uU=u ® up,
v=01Qv; and s = s; ® 57.

Condition (1) is called sequential decomposition and condition (2) is called par-
allel decomposition. The decomposition property characterizes compositionality: It
amounts to saying that if a system t can undergo a transition «, then for every
subsystem t; of t there exists some transition o/, such that o« can be obtained by
composing o with a transition of the rest.

Proposition 1 (cf. Gadducci & Montanari (2000))
If R enjoys the decomposition property, then tile bisimilarity (and also tile trace
equivalence) are congruences.

When only instantiation/contextualization are considered as meaningful oper-
ations of the system, then sequential decomposition is enough for guaranteeing
the congruence of tile bisimilarity and tile trace equivalence w.r.t. these closure
operations.

1.4 Algebraic theories

An alternative presentation of the category of substitutions discussed in Section 1.1
can be obtained resorting to algebraic theories (Lawvere, 1963).

Remark 1.1

For simplicity we illustrate here the constructions for one-sorted signatures. This
can be extended to many sorted signatures by considering the free strict monoid on
the set of sorts (e.g. strings of sorts) in place of underlined natural numbers.

Definition 1.4 (Algebraic theory)
The free algebraic theory associated to a signature X is the category Th[X] defined
below:

e its objects are ‘underlined’ natural numbers;
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Fig. 7. The inference rules for the generation of Th{X].

e the arrows from m to n are n-tuples of terms in the free XZ-algebra with (at
most) m canonical variables, and composition of arrows is term substitution.
The arrows of Th{X] are generated from Z by the inference rules in Figure 7,
modulo the axioms in Table 3.

The category Th[X] is isomorphic to the category of finite substitutions on X
(with canonical sets of variables), and the arrows from 0 to 1 are in bijective
correspondence with the closed terms over Z.

An object n (interface) can be thought of as representing the » (ordered) canonical
variables xi,...,x,. This allows us to denote [t;/xi,...,t,/x,] just by the tuple
(t1,...,ty), since a standard naming of substituted variables can be assumed. We
omit angle brackets if no confusion can arise.

Remark 1.2

To avoid confusion, it must be clear that the canonical variabies are just placeholders,
i.e. their scope is only local. For example, in [ f(x{)/x;] the two x, are different,
while in [ f(x1)/x1,g(x1)/x2] only the two occurrences of x; in f(x{) and g(x;) refer
to the same placeholder. Note that [ f(x{)/x1,g(x2)/x1] is inconsistent (because x;
is assigned twice) and in fact cannot be expressed in the language.

The rule op defines basic substitutions [ f(xy,...,x,}/x1] = f(xy,...,x,) for all
f € Z,. The rule id yields identity substitutions {xi,..., x,). The rule seq represents
application of o to . The rule mon composes substitutions in paralle! (in 2 ® f5, «
goes from xy,...,x, to Xq,..., X, while § goes from x,,1,..., Xnsk 1O Xpnits-++» Xmet):
Three ‘auxiliary’ operators (i.e. not dependent on X) are introduced that recover the
cartesian structure (rules sym, dup and dis). The symmetry vy, is the permutation

(Xnt1s- -« » Xnpmms X1, - - - » Xy The duplicator V, = (x1,..., Xy, X1,- .., X,) introduces shar-
ing and hence nonlinear substitutions. The discharger !, is the empty substitution
on Xxi,..., X, recovering cartesian projections.

Let us briefly comment on the axiomatization in Table 3. The first two rows say
that Th[X] is a strict monoidal category, with tensor product ® and neutral element
ido. The third row and the naturality axiom for symmetries (first axiom of the last
row) say that Th[X] is also symmetric. In particular, the axioms in the third row state
the coherence of symmetries y,,, namely that all the equivalent ways of swapping
the first n variables with the following m variables built out of the basic symmetry
y11 (that swaps two adjacent variables) are identified. The axioms in the fourth row
accomplish a similar task for duplicators, and those in the fifth row for dischargers.
The naturality of duplicators and dischargers (second and third axioms of the last
row) makes Th[Z] cartesian.
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Table 3. Axiomatization of Th[Z].
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category 2;(B:0) = (x:B):0 o idpy = o = idp;
tensor (1) (B: )= (2@ B);(* ® ) idpim = idy ® idy
product 1R (PRO)=(1®P)®S AQidyg =a =idg @«
symmetries Ttk = (Jam ® idy.); (idy ® Jni) Vo = idy Tnm Ymn = id,.j_,,,
duplicators ~ Vyym = (Vp ® V)i (idn @ Yy ® idp) Vo = idy

Vyitidy ® Vi) = Vi3 (V,, ® idp) Vuivnn = Vn
discharger  lpim =4 ®!nm lo = idy Vi3 (idy®1p) = idy
naturality (2 ® B);ym = vax; (S © %) %V = Vy;(2©0) o5ty =1y

This presentation shows that all the auxiliary structure can be generated by
composing together three basic constructors (y1,1, Vi and !y), i.e. it admits a finitary
specification. Moreover, we think that this construction nicely separates the syntactic
structure of the signature from the additional auxiliary structure common to all
cartesian models.

The axiomatization of Th{X] has been exploited in (Bruni et al., 2000a) for defining
a taxonomy of tile formats as certain axioms or operators are omitted from the
configuration and observation categories. In particular the auxiliary tiles needed in all
such formats can be characterized as the bidimensional counterparts of symmetries,
duplicators and dischargers. For example, let us mention that the auxiliary tiles
of term tile logic (Bruni et al., 1998) (where the categories of configurations and
observations are freely generated cartesian categories Th[Z] and Th[A]) are the
commuting squares of the category Th[&] generated by the empty signature.

2 Resolution via pullbacks

As we have briefly recalled in the Introduction, the construction of the mgu has a
clear mathematical meaning: It can be formulated in the terminology of category
theory as a well-known universal construction called pullback (taken in a suitable
category).

Universal constructions play a fundamental role in category theory, as they
express the best way to accomplish a certain task. They usually involve a diagram
that imposes certain constraints on the construction and then require the existence
and uniqueness in the category of certain arrows satisfying such constraints, i.e.
representing a possible solution to the problem. Among these solutions, one is of
course interested in the optimal one (if it exists), e.g. the least upper bound. Cat-
egorically speaking, this is achieved by taking the solution that uniquely factorizes
all the other solutions. Note that since many such optimal solutions can exist, any of
them is completely equivalent to all the others (they are indeed pairwise isomorphic).
Universal constructions allow one to recast ordinary set-theoretic constructions (e.g.
cartesian product, disjoint sum) in a more general, abstract formulation that can
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Fig. 8. The pullback of & and g.

serve as a uniform guide for catching analogies and pursuing comparisons between
different frameworks. p

Definition 2.1 (Pullback)

Given a category C and two arrows h:0g — 03 and g:0; — 03 in C, the pullback of
h and g in C is an object o together with two projections pg:0 — 0p and p;:o — oy
such that

1. po;h=pi;g, and

2. for any object o’ and arrows go: 0’ — 0p and q1:0’ — 01 such that qo;h = q;; g,
then there must exist a unique arrow ¢:0' — o such that g;py = go and
q;p1 =41

The two arrows h and g encode the instance of the problem, posing constraints on
the admissible solutions. The first condition says that o, po and p; yield a solution
(called a cone in category theory). The second condition states that o, po and p; form
the best solution among those contained in C. The commuting diagram in Figure 8
illustrates the definition (as usual in category theory, universal arrows are dotted).

Example 2.1 (Pullbacks in Set)

The category Set has sets as objects and functions as arrows. Given h: X — Z and
g:Y — Z, then their pullback is the set U = {(x,y) € X x Y | h(x) = g(y)} with the
obvious projections on the first and second components of each pair in U.

The category we are interested in is the category of substitutions on the signature
Z. It is well known that the mgu of a set of equations is an equalizer in the category
of substitutions (e.g. see Burstall & Rydeheard (1985) and Goguen (1989), though
there the authors work with the opposite category Th{X]°P of Th{X], and therefore
the mgu’s are given by coequalizers).

Definition 2.2 (Equalizer)
Given a category C and two arrows h:o; — 02 and g:01 — 03, the equalizer of h
and g in C is an object o together with a projection p:o — o; such that

1. p;h=p;g, and
2. for any object o’ and arrow g:0’ — 0; such that gq;h = g;g, then there must
exist a unique arrow ¢q’: ¢’ — o such that ¢’;p = g.

The diagram summarizing the equalizer construction is given in Figure 9(a).
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Fig. 9. The equalizer (a) and the pullback of » and g in the same homset (b).

Example 2.2 (Equalizers in Set)
Given h: X — Z and g:X — Z, then their equalizer is the subset U = {x € X |
h(x) = g(x)} of X with the obvious inclusion U — X as projection.

Note that, in general, for A, g:0; — 0, the pullback of 4 and g is not isomorphic to
their equalizer. Moreover, when both exist, the cone (o, p, p) (obtained by taking twice
the projection of the equalizer) uniquely factorizes through the pullback (o}, p1,p})
(see Figure 9(b)).

For a given set of equations {t; = s1,t2 = $2,...,t, = Sy}, We can consider the
substitutions ¢ = [t;/z1,t2/z2, -, tu/2s] and ¢’ = [s1/z1,$2/22,- -, Sn/zn], Where the
z;’s are fresh variables not appearing in the ¢;’s and s;’s. The substitutions ¢ and ¢’
can be seen as arrows going from the set of variables appearing in the ¢’s and s;’s
to the set Z = {z1,23,...,2,}. To see how the definition of equalizer matches that
of mgu, just observe that (1) it requires the existence of a substitution # such that
8;0 = 0;06’ and (2) the fact that 6 is the most general such substitution corresponds
to the universal property of equalizers.

However, in the case of logic programming, we are not really interested in finding
the mgu of a generic set of equations, because we know that the variables in the
head of the selected clause have been renamed on purpose to be different from
those in the selected goal, i.e. they are fresh. Thus, we want to find the mgu of
a set of equations {t; = si,t; = $2,...,t, = Sn} such that the variables appearing
in t; and s; are disjoint for i,j € [1,n]. Then, we can consider the substitutions
6s = [t1/z1,t2/22,** , ta/2n] and 6. = [s1/21,52/22, -, S/ zn], where the z;’s are fresh
variables not appearing in the t/s and s;’s. If we denote by X the set of variables
appearing in the t;’s, by Y the set of variables used in the s;’s, and by Z the set
{z1,22,...,2,}, then we can write 6.:X — Z and ¢,:Y — Z. Their pullback (when
it exists) is thus given by a pair of substitutions w.:U. — X and y.,:U. — Y such
that

® Y.;0. = Y.;0., and

e for any substitutions p:V — X and p’:V — Y such that p;o. = p;0., then
there must exist a unique substitution ¢:V — U. such that ¢;yp. = p and
d;p. =o'

Since the fact that the notion of pullback of ¢. and ¢, coincides with the notion
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Fig. 10. From equalizer to pullback.

of equalizer of ¢ and ¢’ is not completely straightforward, we illustrate below such
a correspondence.

From equalizers to pullbacks. Consider the arrows 6: XUY —» Z and ¢’: XUY — Z
that are defined exactly as 0. and o, but have different domains. Then, we know that
their mgu is the equalizer : U — X U Y discussed above. Since 6 is a substitution
and since X = {x1,...,xx} and Y = {y,...,ys} are disjoint, then § must have the
form

ri/x1, re /X r /v, /vl

Then, 0x = [r1/x1, -, re/xk]: U — X and 8y = [r|/y1,- . r/yn]: U — Y satisfy
Ox ;0. = Oy ;o.. We want to show that U, 0y and 0y define a pullback of ¢. and
o.. In fact, suppose that there exist V with p:V — X and p":V — Y such that
p;0x = p'; 0., then since X and Y are disjoint, p and p’ can be combined together in
a substitution p.: ¥V — XUY such that p.;o = p.;o’. By definition of equalizer, then
there exists a unique arrow ¢:V — U such that ¢;60 = p.. But the last condition is
equivalent to imposing that ¢;0x = p and ¢;0y = p’ concluding the proof. All this
is illustrated in Figure 10.

From pullbacks to equalizers. It remains to show that to each pullback (U, wx,wy)
of ¢. and o, there corresponds an mgu (i.e. an equalizer) of ¢ and ¢’. By arguments
similar to those employed above, it is evident that ypyx and py can be merged to
define a substitution y.: U’ — X UY such that y.;0 = y.;¢". Then, we must show
that this candidate is indeed an equalizer. Thus, we assume the existence of V and
p-V — X UY such that p.;6 = p.;0’. As before, we can decompose p. into
px:V — X and py:V — Y with px;0. = py;o.. By definition of pullback, then
there exists a unique arrow ¢.:V — U’ such that ¢.;px = px and ¢.;py = py,
and the last two conditions are equivalent to the constraint ¢.;y. = p., concluding
the proof. All this is illustrated in Figure 11.

Of course, it might well be the case that no such arrows y and ' exist, e.g. when
one tries to solve the sets {f(x) = f'(y)} or {f(x) = x} for unary operation symbols
f and f’. There can also exist more solutions than one, and this is always the case
as the names of the variables in U are not important at all.

The different flavors corresponding to the equalizer and the pullback views rely
on the fact that in the equalizer construction we have to work with the full universe
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X of all variables, while in the pullback construction only the variables of interest
for a particular mgu creation must be considered. Therefore, the equalizer approach
is completely centralized, while the pullback construction is as much distributed as
possible. Nevertheless, the result above proves that the two views are equivalent.

3 The double category of pullbacks

In this section we show that the construction of pullbacks in the category of
substitutions can be presented in a modular way, by composing together a finite set
of basic pullbacks. We start by showing that the pullback squares in a category C
form a double category. To see this, let us remind a few classical results.

Proposition 2

Given a category C and three arrows h:oy — 03, g1:0;1 — 03 and g2:02 — 03, let
(0, po, p2) be the pullback of h and g, and let (0/, qo, q1) be the pullback of p; and g;
{(see Figure 12). Then, (¢, qo; po, ¢1) is a pullback of h and g;;g>.

Proposition 3

Given a category C and three arrows h:op — 03, g1:0; — 02 and g2:02 — 03, let
(0, po, p2) be the pullback of & and g», and let (o', go; po, q1) be the pullback of & and
215 g2. Then, (0, qo,q;) is a pullback of p; and g;.

Proposition 4
The pullback of h:0y — o0; and id, :0; — o; exists in any category. Moreover,
(00,1d4,, h) 1s a pullback of h and id,,.

Definition 3.1 (Double category of pullbacks)
Given a category C, the double category of pullbacks in C, denoted by 2(C), is
defined as follows:

its objects are the objects of C;

its horizontal 1-category is C;

its vertical 1-category is C;

the cells are the squares (py, p1, h, g) (see Figure 13) such that py and p; define

a pullback of h and g;

e given two cells (q,¢’,p’,g1) and (p,p’, h, g>) their horizontal composition is the
cell (9;p,q",h, 815 82);

e given two cells (q,q’, hy, p) and (p, p', h2, g) their vertical composition is the cell

(9:9';p' hisha, 8).
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o ——0—30

T

01 81 02 82 03

Fig. 12. Composition of pullbacks.

01 T>02

Fig. 13. Pullback square as double cell.

To see that 2(C) is indeed a double category, observe that both horizontal and
vertical compositions of cells return pullback squares (Proposition 2). Moreover, the
trivial pullback squares (id,,, p, p,id,,) and (p,id,,, id,,, p) behave as identities w.r.t.
the horizontal and vertical composition, respectively. The exchange law of double
categories holds trivially, as the cells are completely identified by their borders.

For the arguments presented in the previous section, it follows that pullbacks
are a fundamental ingredient in the operational semantics, as they provide a char-
acterization of the mgu construction, which clearly separates the goal dimension
(horizontal) from the resolution mechanism (the vertical dimension) focusing on
their interaction (the substitutions yielding the pullback).

However, dealing with all this machinery at the computational level is too heavy,
as there are infinitely many pullbacks. Therefore, a finitary presentation of #(C) is
a main issue.

3.1 Finitary presentation of pullbacks

Our first contribution consists of recovering in a finitary way the double category
2(Th[Z]). We start by focusing on the small set of commuting squares depicted in
Figure 14. We want to show that any pullback can then be obtained by composing
these basic squares (and horizontal and vertical identity pullbacks), i.e. that the basic
squares in Figure 14 form a basis for the generation of arbitrary pullbacks.

There are a few points for which some explanation is worth. First of all, note that
we have depicted the pullback cells with the direction of the arrows reversed with
respect to the usual presentation. The reason for this will become much clearer in
Section 4, where we will show that this representation matches the intuitive direction
of computation flow (from up to down) and aiso of internal contextualizations,
which now compose to the right of the current state. From the point of view of
the notation this is not problematic in tile logic, as we can assume to work with
opposite categories of configuration and observations. As a matter of notation, the
tiles in Figure 14 can be written as the sequents
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f®id;
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Fig. 14. The basic pullbacks.

f
Rf 2de_)idﬂ,
n o
. : —
Ds:f ®idiy 1400/
. f®id,
Df . Vl—?vﬂ; (idﬂ ® f),
Vi
Ry: Vlz)idl’
711
R,:y117, i), and
id; ®V;
Dy:V, ®id; ? Vi.

The second point to notice is that the cells Ry, R,, and Dy do not depend
on Z, ie.they form in some sense the intrinsic auxiliary structure of the pullback
construction.

Definition 3.2
We let B = {Ry, R,, Dy} be the signature-independent pullback basis, and let B(f) =
{Rf,Df,ﬁf} be the pullback basis for the operator f. Given a signature X, we call

BZ) = BUU;‘GE B(f) the pullback basis for £. We say that the cell s—:’t is generated
by B(X), if it can be expressed as the parallel and sequential composition of cells in
B(Z) and identity cells.

There are some cells that one might expect to see in Figure 14, but are instead
missing. Trying to guess the intuition of the reader, we have listed some of them in
Figure 15.

The first cell we consider is R,. Its absence might be surprising, because there are
analogous cells for all the other basic constructors (operators f € Z, symmetries
and duplicators). But R, is not a pullback. In fact the pullback of !; and !; is
(2,id|®!),!; ®id;), yielding a cell that can in fact be obtained by composing in
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'y id) ®V) v
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‘-;\ R id vl@dl\ by “ v id) ®f by s
1+—1 2+—1 l+ne— 2n¢——n
idy v, f®id, T Va
Fig. 15. Q: Are these three basic cells missing? A:No.
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o7 7 T T
(id ®71,1)i712 A idy A idy Az L idy
\ | i
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T T T T
idy ®711 \ Ay id) ®y1 }ﬁl Ag idy
[ ‘ \
3——idy 3 As 2 ¢——idy 2
7 T -
721 idLng Vi Ag vy
\ \ 7
3 Ay 2 711 2 vy 1 id) 1
V@idl\ 711 Aqg i}; Alo i]; Apy \’ id;
i | | | 1
2 2 . 24— 1 . 1
- idy idy 7 id) -

Fig. 16. How to compose the cell Dy.

parallel the horizontal and vertical identities of !; (ie. by putting idQT;‘*idl in
idg
parallel with !171’ ).

The second cell Dy defines a pullback, but it can be obtained by composition of
other basic cells and identities, as illustrated in Figure 16. Let us comment on the
composition. At the centre of the figure we find the cell As = Dy, in fact we recall
that by the coherence axioms for duplicators (cf. Table 3) we have V;;y;; = V|, and
by functoriality of tensor product we have, for example,

(idl ® Vl);(idl ®711) = (idl;idl) ®(Vi;y11) = idl ® V.

On the bottom-right part of the figure, we find the cells Ag and Ao that are the
horizontal and vertical identities of V;, while Ay; is the trivial identity for the object
1. Then, note that 4¢ = A9 = R,. The cell A7 is a horizontal identity, in fact by
naturality of the symmetries, we have

yl,l;(idl ® Vl) = (Vl ® idl);’y;’l.

Likewise, the cell A5 is a vertical identity. Also A, and A4 are obvious identities.
The tile A; deserves more attention. The first thing to note is that by naturality of
symmetries we have that

(y11 ®id1);y21 = 7215 (id; ® 711)
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Fig. 17. How to obtain the cell 4, in Figure 16.

and then, by coherence of symmetries, we have

= (id; ®7v11);

72, (71
(y11 ® idy); ( 11)

Y

=

—
[[38)

and therefore it follows that

y21:0idy @ y11) = (idy ® y1.1); (Y11 ® id1); (id; ® y11) = (id1 ® y1,1)3712-

We can thus construct A, as illustrated in Figure 17, where A is the vertical identity
of idi ® y;1 and A} is the horizontal identity of y;; ® id; (for simplicity we omit
to specify the borders of the cells, as they should be evident from the discussion
above). To conclude that the composition in Figure 16 yields Dy we have to check
that their borders are equal, and in fact observe that

id
ids.

712, (711 ®idy); (711 ® 1d1)sy21 = Y123
y2.15 (idy ® 711); (idy @ y11)s712 =

\N
~2

72,

=

%)

2,

~2
|>—
~2
I
[N

I
o

The third cell 13} illustrated in Figure 15 is a pullback, but it can be composed
starting from D; as shown in Figure 18, where unnamed cells are obvious (horizontal
or vertical) identities. In writing the border of D; we have exploited the coherence
axiom

Vi tan = Va.

The cells By and B, are identities that exploit the naturality of symmetries. Finally,
the cell B is obtained by a construction analogous to that of 4, employing R, as
a building block.
We hope that the few examples above can help the reader in understanding the
compositional mechanism of basic cells, as it will be especially useful in Section 4.
For instance, we can state a few technical lemmata that can be proved by tile

pastings 51m11ar to the cell compositions discussed above. As a shorthand, for any
v

two cells A:t id, —id, and B: S, —id,, with s,v:n — m, we denote by 4 <t B the
composition (4 * 1°)- B =(4-1,) * B.
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iy idy1n F@idy =

Fig. 18. How to compose the cell ﬁ’f.

Lemma 1
Given any arrow t:n — m € Th{Z] that can be obtained without using dischargers,

t
the cell t?ﬂ’idn can be generated by B(Z).

Proof

By hypothesis, the arrow t can be expressed as the parallel and sequential com-
position of arrows in X U {y;,V},id;}; therefore, by functoriality of tensor product,
t can be finitely decomposed as o1;06;; - ;06; where o; = idlﬂ ® ti ® idp,, with

t
ti € LU {yy1,V1,id1}. Then, the cell t7;~id, is just the (diagonal) composition
A1<1A2<l...<1A1,WithA,~=1&®Rt,.®1ﬂ_i. O

Note that by adding the cells Ry just for the operators of the signature, then we
are able to construct the analogous cells for generic contexts ¢.

Lemma 2
Tnk
Given any arrows t:h — k and s:m — n in Th[X], the cells t ® SISO and
t®s

Vnk st Ymh €an be generated by B(Z).

Proof
Ynk Yhm
By Lemma 1, we know that the cells 4 = yn,k@’idﬂ and B = yh,mmzidm are

generated by the basis B. By vertically composing B with the horizontal identity of

idyih Tnk . .
Ymh, We get the cell C = B+ 1,,, :ynm 5 idm+n. Then, the cell t®s-*s®t is obtained

t®s
as the composition 4 * 1°®* * C, because Yam; (s ® 1);ynk =t ® 5. The cell ypi 5 Vmn

can be generated by a similar construction. [

The second part of the previous lemma is an instance of a more general result.
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Lemma 3

u s
If the cell s—t is generated by the basis B(Z), then also the cell u— v does.

Proof
Obvious, by observing that the property holds for all cells in B(X) except Dy, for
which however we have shown how to generate its counterpart Dy. [

Lemma 4

Given any arrow t:m — n € Th[Z] that can be obtained without using dischargers,
t®t Va
the cells V,—?V,, and ¢ ® t; 't can be obtained by composition of basic cells.

Theorem 1
The basis B(X) generates all and only pullback squares of Th[X].

Proof
The fact that all composed cells are pullbacks is straightforward, as all basic tiles
are pullbacks and such a property is preserved by the three operations of the tile
model (horizontal and vertical sequential compositions and parallel composition).
The proof that all pullbacks can be obtained in this way is more subtle. We exploit
the fact that, in the category Th[Z], whenever the pullback of ¢ and 6 exists and o
can be decomposed as g ;65, then also the pullback of g, and 8 exists (because o,
is less instantiated than o). Since each arrow ¢ in Th[X] can be finitely decomposed
as 61,02, - ;0, where o; = idy, ® t; ® idy,, with t; € Z U {y11,Vy,!1,id;}, then the
pullback of 8 and g, if it exists, can be cgmputed stepwise. In fact, the proof is by
induction on the length n of a fixed decomposition of ¢. Thus, it reduces to prove
that if the pullback of 6 and idy ® t ® id,, (with t € Z U {y11, V1, !1,id1}) exists, then
it is generated by B(Z). We proceed by case analysis on ¢ and, for each case, by
induction on the length of the decomposition of 6, exploiting the basic cells in B(X)
to cover all possible combinations. [

3.2 Pullbacks as tiles

The finitary presentation of pullbacks can be straightforwardly used to build a tile
system that generates the double category of pullbacks.

Definition 3.3 (Tile system for pullbacks)

Given a signature X, we define the tile system Rpp(z) such that its horizontal category
is Th[Z]°P, its vertical category is Th[X]°P and the basic cells are those in B(X) (see
Figure 14 and remember that horizontal and vertical identity tiles will be freely
generated in the model).

The representation theorem can then be rephrased as below.

Theorem 2
A cell t“:—>s is in #(C) if and only if Rpp) + t—:—’s.
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4 Tile systems for logic programs

The idea is to transform a logic program into a tile system which is able to compute
the same computed answer substitutions for each goal. To this aim, we will exploit
the tiles presented for building pullbacks in the category of substitutions, which
provide the unification mechanism for goal resolution.

4.1 From logic programs to a logic of tiles
The tile system that we propose can be sketched as follows:

Definition 4.1 (Tile system for logic programming)
Given a pure logic program P on the alphabet X, we denote by Rp the tile system
specified by the following rules:

e There are two basic sorts t (for terms) and p (for predicates). Correspondingly,
the interfaces are elements of {t, p}* (as a matter of notation, we let € denote the
empty string of sorts, and denote by t" the string composed by n occurrences
of t, and similarly for p).

e To each functional symbol f with arity » in the alphabet, we associate an
operator f:{" — t in the signature of configurations, and to each predicate
symbol p (here [] can be viewed as a nullary predicate) with arity k in the
alphabet, we associate an operator p:t* — p in the signature of configurations.
Then, we add the symbol _ A _:p? — p for modeling conjunction. (We will
show that, without loss of generality, the conjunction operator can be more
conveniently defined to be associative and with unit 0.) The configurations
are the arrows (of the op-category) of the free cartesian category generated by
the signature of configurations.

o To each functional symbol f with arity n in the alphabet, we associate an
operator f:t" — t in the signature of observations (note that the symbol f is
thus overloaded, since it also appears in the horizontal dimension; however,
this will not create any confusion). Then, the observations are the arrows (of
the op-category) of the free cartesian category generated by the signature of
observations.

e To each clause

c=pt,.., ) 1= qi(81),--., gml3m)
(over n variables {xi,...,x,}) in the logic program we associate a basic tile T, in
our system whose initial configuration is p:t* — p (representing the predicate
symbol in the head of ¢), whose final configuration is q;(3;)A.. . Agu(Sm):t" = p
(representing the body of the clause), whose trigger is the identity idp:p — p
and whose effect is the tuple (ty,...,t;):t" — t* (representing the pattern to be
matched by the arguments of predicate p). Note that the body of the clause
may contain variables not appearing in the head (i.e. some of the x;’s might not
appear in the ;’s) and consequently some discharger will be used in the effect
of the tile. Moreover, since the same variable can be used more than once,
duplicators can also be necessary (this is to remark the difference between the
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Fig. 19

tupling (¢1,.... 1) and the tensorial product t; ® - - - ® t;, as the former involves
duplicators for expressing variable sharing). Since we take the op-categories
the direction of all arrows is reversed w.r.t. the standard representation (see
the tile T, in Figure 19).

o Finally, we add the basic tiles contained in Rpps) (see Figure 14) for building
pullbacks. We recall that just three of them depend on the alphabet under
consideration, while the other three are common to all programs, i.e.they can
be considered auxiliary to the framework.

Remark 4.1

When it is obvious from the context, we shall abuse the notation by avoiding to
specify the involved sorts in the subscripts of id, V, y and !, writing just the numbers
of involved arguments (e.g. instead of 5, we shall write y2;:tpp — ptp).

We can assume the operator A to be associative and with unit O because all the
basic tiles associated to the clauses have an identity as trigger. This, together with
the fact that they are the only rewrite rules involving predicate symbols, means that
rewrites are always enabled for predicates nested in conjunctions. For example in
the expression q;(31) A ... A gm(3,) it is not important the way in which the g;’s are
conjoined, as their evolutions do not interact with the ‘tree’ of conjunctions. Thus,
go N (g1 A q2) is equivalent to (go A g1) A 2. Moreover, we make the special symbol
0 be the unit for A. These assumptions do not alter the ‘behavior’ of the system,
but allow us to simplify the notation and the presentation of main results.

The intuition is that for each goal, we can compute a refutation in the tile system
by starting from the associated configuration and constructing a tile whose final
configuration is the empty goal (possibly in parallel with some dischargers that
act as placeholders for the free variables in the computed answer substitution), i.e.
the final configurations must have the form O®!, (without monoidality of A we
should have considered as final configurations for termination any possible finite
conjunction of empty goals). The effect of such a tile corresponds to the computed
answer substitution. The tiles with initial input interface p and final configuration
O®!, for n € N are called refutation tiles.

The following example should illustrate how the tile system can simulate logic
programming computations,

Example 4.1
Let us consider the simple alphabet consisting of constants a and b, unary function
symbol f, unary predicate g and binary predicates p and r.
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Program clauses translation.
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Auxiliary pullback tiles associated to the signature.
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té——— 1t t2 — t2 tZ — t
idy idy vy

Fig. 20. The tile system associated to the logic program P.

Given the logic program P defined by the three clauses

g = p(£(X1),X2) :- q(X1), r(X1,X2).
¢ = r(a,a).
¢z = q(b).

the corresponding tile system is illustrated in Figure 20. The tiles in the first row are
those associated to the three clauses of the program. The tiles in the second row are
the basic pullbacks associated to the constants a, b of the alphabet, while the tiles
in the third row are the basic pullbacks associated to the unary function symbol f
of the alphabet. The tiles in the fourth row are the auxiliary tiles common to all
representations of logic programs. Note that, once the signature of terms is fixed,
then all the auxiliary tiles are fixed, and the tiles for representing the logic program
are in bijection with the clauses of the program.

Now suppose one wants to compute the goal 7— p(xi, x»). The idea is to compute
all possible tiles that have p:t> — p as initial configuration and the empty goal
as conclusion. The effect of such tiles should in fact correspond to the computed
answer substitutions of the program execution on the given goal. It is easy to argue
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Fig. 21. The incomplete derivation for p.
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¢ €
P A P Oed A idg

Fig. 22. The refutation for p.

that no such tile exists for the given goal. In fact, the only tile having p as initial
configuration is T, that leads to the configuration (V| ®id;);(q®r); A. Then T, and
T., can be (concurrently) applied respectively to ¢ and to r, but the computation
cannot be completed, as the coordination of the two resolutions is not possible. In
fact the pullback of b ® a and V; does not exist, and hence also the pullback of
b®a®a and (V; ®id;) does not exist as well. The partial computation is illustrated
in Figure 21.

If the third clause c3 is replaced by ¢; = q(a), then we can compute the tile

refutation illustrated in Figure 22, where the tile a: V; "%l’idg can be obtained in any
of the two ways illustrated in Figure 23. The computed answer substitution f(a) ® a
(representing [ f(a)/x1,a/x>]) is given by the effect of the composed tile. Note that
¢y and ¢, can be applied concurrently, ie. the order in which they are applied is
not relevant and moreover, they can also be performed in parallel, their outputs
being coordinated by means of the tile a. The two ways of building « show that the
coordination mechanism does not depend on the order of execution of T, and T,
which is in fact immaterial.

Notice that the use of tiles, thanks to its abstract flavour, completely frees the user
from managing fresh variables, taking care in an automatic way of all the problems
connected to name handling via the use of local placeholders.

4.2 From clauses to tiles

We try to explain here informally the intuition that lies behind the definition of Rp.
Basically, it is strictly related to the idea of building an LTS out of a reduction system
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Fig. 23. Two ways for composing the tile o of Figure 22.

to study the interactions between composed components. From one point of view,
it is evident that the reduction system of goal resolution summarized in Section 1.2
considers the whole goal as an atomic entity, whose parts must all be coordinated.
From this point of view, the clauses define the basic reduction steps that can be
conveniently instantiated and contextualized. Indeed, the reduction perspective of
logic programs has been investigated in (Corradini & Montanari, 1992). However,
to accomplish this view, one usually assumes to start with a set of variables large
enough to contain all names that will be needed by all clause instances used in
the refutation, as their dynamic creation cannot be modeled. This is a very strong
assumption that somehow clashes against the desirable constructive presentation of
computation, where fresh variables can be introduced by need.

In Sewell (1998) and Leifer & Milner (2000) it is suggested that instead of studying
the behavior of a process in all possible contexts, the basic reduction rules of the
system can be used to catch the least set of contexts that should be considered. This is
obtained by considering all subterms of the sources of reduction rules. For example,
if a reduction rewrites f(g(a)) to h(b), then the essential contexts are () and f(g(_)),
but not h(_), because only by embedding a term within these contexts a reduction
may happen (unless it is already enabled inside the term itself). Unfortunately,
this task is hard to accomplish in general, as the reduction semantics for process
calculi usually impose suitable structural axioms on the processes. Nevertheless, the
presence of sufficiently many relative pushouts in the category of states is enough
for guaranteeing that the universal constructions exist (Leifer & Milner, 2000).

For logic programming, the problem of contextualization is reversed to the prob-
lem of instantiation, and we know in advance what are the interesting ‘internal’ con-
texts, namely the pullback projections. This allows us to transform all clauses (seen as
reduction rules) by moving as much internal context as possible to the observational
part: We separate the topmost operator of the head of the clause (ie. the predicate
symbol) from its arguments (that are moved to the observational part, i.e.the effect
of the tile) and then the basic pullbacks allow us to build incrementally all the other
decompositions (in particular, we are speaking about tiles Ry, Ry and R.).

Proposition 5
id
For each tile T.:p~”G and all arrows ¢y, t; such that ¢ = ¢, ;¢ (with t; not involving
id

dischargers), then the tile t5; pT’G is entailed by Rp.
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Fig. 24. Graphical proof of Proposition 5.
Proof

153
The proof follows from Lemma 1, ie., from the existence of the tile tz‘i;*id that

t
can be vertically composed with id—f*id (the horizontal identity for ¢,), and with T,
being horizontally composed with the result (see Figure 24). [

Example 4.2
Let us consider the simple program

¢y = sum(0,X1,X1).
¢y = sum(s(X1),X2,s(X3)) :- sum(X1,X2,X3).

over the signature consiting of constant 0, unary symbol s and ternary predicate
symbol sum. The possible interactive decompositions of the heads of the two clauses
are:

o forc;: (1) sum(0, xy, x2) with observation Vy, (2) sum(x1, x2, x2) with observation
0 ® id}, (3) sum(xy,x2,x3) with observation 0 ® V;, and (4) sum(0, x{, x;) with
observation id; ;

o for ca: (1) sum(s(xy), x2, x3) with observation idy ® s, (2) sum(x;, x2,s(x3)) with
observation s ® ids, (3) sum(xy, x2, x3) with observation s ® id; ® s, and finally
(4) sum(s(xy), x, s(x3)) with observation ids.

Although the basic tiles of the tile system associated to the program just consider
decompositions of kind (3), which are the most general, by parallel and sequential
composition with (basic) pullback tiles, the tile logic associated to the tile system
will entail all the other decompositions.

Note that tiles allow one to move contexts along states and observations in a very
natural and uniform way. The interactivity of the tile representation relies on the
fact that the effects of basic tiles associated to the clauses must be accepted by the
current instantiation of the matched predicate in the goal, otherwise the step cannot
take place.

Theorem 3 (Correspondence between (SLD- )derivations and tiles)
Let P be a logic program and G a goal. Then,
id
Lif Pir G=, G, then Rp + GG with 0 = ayar(6);
id
2. if Rp + G, G, then there exists ¢ with 6 = g}y, such that P i+ G =] G'.
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Proof

The proof of point 1 proceeds by rule induction. For the ‘empty goal’ rules we rely
on the fact that (0 is the unit for A and that the vertical identities always exist.
For the ‘atomic goal’ we rely on the results of Section 2 on the correspondence
between mgu’s and pullbacks while applying the tile Ty._f to the goal 4. For the
‘conjunctive goal’ rules, the difficulty is that G and G’ might share some variables.

In fact, by inductive hypothesis we can assume that Rp + G*-’F and therefore
we must employ the pullback tiles for propagating o to G Thls can be done by
exploiting the tiles D; and Dy.
id
For proving the point 2, we fix a decomposition of G™,”G’ in terms of basic tiles

of Rp and then we proceed by induction on the number of tiles T, used for building
id
G,°G. O

Note that a tile can represent in general a whole sequence of derivation steps.

Corollary 1
Let P be a logic program and G a goal. Then,
id
L. if P+, G, then Rp - G~,"0®!, with 6 = 0)y4) and n the number of free

variables in 6;
id
2. if Rp - G101, then there exists ¢ with § = 0y4,(g) such that Pk, G.

4.3 Recovering ordinary semantics

From the tile system Rp we are able to recover several well-known semantics for
logic programs.

e The least Herbrand model, which gives the ordinary model-theoretic semantics
for logic programs (Emden & Kowalski, 1976), is given by refutation tiles
whose initial configuration is a ground atomic goal:

Op(P)={A:e > p|Rp F A7 0!}

e The correct answer substitutions are given by the instances of initial configur-

ations of refutation tiles that are (possibly non-ground) atomic goals:

1d1

Opy(P)={A:t* 5 p|RpFA O®!}.

idg® lin

e The computed answer substitutions, which define a useful semantic framework
for addressing compositionality, concrete observables and program analysis
(Falaschi et al., 1989; Bossi et al., 1994b), can be immediately obtained by
considering the refutation tiles with a single predicate as initial configuration:

idy
Opy(P) = {6;p:t' > p| p € Zn, Rp b g8 liun}-
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o The resolvents can be obtained by considering also non refutation tiles:

idy
Ops(P)={(6;p,G) | p€ Zn, Rp Fp 5 G}.

All the correspondences above follow as easy corollaries to the representation
Theorem 3.

4.4 Goal compositionality

Though compositionality issues for the classical semantics have been extensively
studied in the literature, we want to focus here on compositionality of goals w.r.t.
the two main operations discussed in the Introduction, namely instantiation and
conjunction (AND-compositionality). We focus on goal equivalence for a given
program P; thus, the main questions are: (1) When are two goals equivalent? (2) Is
equivalence a congruence?

Inspired by the connections with the area of process description calculi that
motivated our approach, and having at hand an established theory developed for
trace equivalence and bisimilarity in the tile setting, the natural step is to try to apply
general existing techniques to our special case. Therefore, we can answer question
(1) by defining the two equivalences:

idy
a. G =p G if Tp(G) = Tp(G'), where Tp(G) & {0 | Rp F 6,0 ® idy}.
b. G=p ¢’ if G and G’ are tile bisimilar in Rp.

These equivalences are reminiscent of the analogous notions on the processes of
a fixed process description calculus modeled with tiles. The interactive part of the
underlying tile system tells what can be observed during the computation, and then
the equivalences arise naturally as behavior-based concepts.

Now, question (2) corresponds to ask whether G ~ G’ implies that GAF ~ G'AF
and 6;G ~ ¢;G' for all F and ¢ or not (the same for =).

Though proving directly these properties is not too complicate, we can exploit
Proposition 1 and just prove that the tile system Rp enjoys the decomposition
property for any logic program P.

Proposition 6
For any logic program P, the corresponding tile system Rp enjoys the sequential
decomposition property.

Proof
idy
We want to prove that for any goal ¢;G and tile Rp F a;GTF , there exist &',
idl [
o’ and F’ such that Rp F G, ”F' and Rp + 67, ¢’. Fixed a decomposition of
id,
0;G™, F in terms of basic tiles, the proof proceeds by induction on the number of
tiles associated to the clauses that are considered in the decomposition. [
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Corollary 2
For any logic program P, the equivalences ~p and =p are congruences with respect
to conjunction of goals and instantiation of free variables.

4.5 Three goal equivalences via instantiation closures

One of the main motivations for the research presented in this paper concerns the
application of logic programming as a convenient computational model for interac-
tive systems. In particular, the unification mechanism typical of resolution steps is
particularly interesting because it differs from the ordinary matching procedures of
reduction semantics (Berry & Boudol, 1992; Milner, 1980; Meseguer, 1992). To some
extent, mgu’s characterizes the minimal amount of dynamic interaction with the rest
of the system that is needed to evolve. In this section we compare other operational
alternatives, which are commonly used in many concurrent systems and calculi, by
means of the equivalences they induce on goals. Each alternative is obtained by
slightly modifying the operational rule for atomic goals.

The first model allows for applying only ground instances of the clauses (to
ground goals only):

(H:—F)eP A=o;H ground o;F ground

(1)
P A=,0:F

Then, two goals G and G, (not necessarily ground) are equivalent, written G; ~(;, G2
if and only if for any ground substitution ¢ on Var(G,, G;), whenever o; G, is refuted
then also o; G, is refuted, and vice versa. This equivalence is the most widely used
for interactive systems (closing open systems in all possible ways), since it is the
coarser ‘correct’ equivalence that can be defined according to the operational rules.
The disadvantage is that to check goal equivalence we must instantiate w.r.t. all
ground substitutions, i.e. proving goal equivalence is in general very expensive.

The second model allows for applying any instance of the clause to any matching
instance of the goal:

(H:—F)eP o;A=o0;p;H
0 B
Pi- A=, 0;p;F
In this case, two goals Gy and G, are equivalent, written Gy ~3, G, if and only if
whenever G, can be refuted with o, then also G, can be refuted with o, and vice
versa. This equivalence extends the previous one to a uniform treatment of open
and ground goals, but of course equivalence proofs become even more complicated
and inefficient.

The third model is the ordinary one, where the substitution ¢ in (2) must be
the mgu between A and p; H. Hence, two goals G; and G» are equivalent, written
G1 ~3) G2 if and only if they have the same set of computed answer substitutions
(i.e. ~(3 is the equivalence ~p discussed in Section 4.4). This equivalence is very
convenient, because it makes the transition system finitely branching (as opposed to
(1) and (2)) and therefore facilitates equivalence proofs.

If we work with an infinite set of function symbols, it can be easily verified that
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~1) and ~, define exactly the same equivalence classes. The inclusion of ~(3, into
~(1, is obvious, because ground substitutions are just a particular case of generic
substitutions. The converse holds because the existence of a refutation with ground
substitution o; y, where y contains function symbols not appearing in the program,
implies the existence of another refutation with non-ground substitution ¢. Therefore,
the equivalence over ground substitutions (~q)) together with the assumption of an
infinite set of function symbols imply the equivalence over non-ground substitutions
(~2)-

The equivalence ~3, is instead stricter than the other two. Again, the inclusion
of ~3, in ~(;) is obvious, while it is easy to find an example of a logic program P
where two goals have different sets of computed answer substitutions but have the
same sets of ground refutations. Just consider a logic program with the following
three facts:

pX).
pla).
q(X).

If we take the goals p(X) and ¢(X), it is immediate to see that p(X) ~g, q(X).
However, the set of computed answer substitutions of p(X) is {, [a/X]}, while for
q(X) we just have {¢} (with ¢ denoting the empty substitution).

4.6 Concurrency and causality

If we look at the system Rp from a concurrent viewpoint then atomic goals
can be regarded as distributed components that can evolve separately and where
variable sharing provides the means to exchange information between components.
According to this perspective, e.g. for backtracking, it is essential to keep track of
the causal dependencies among components.

To accomplish this view we slightly modify the associated tile system for defining
more concrete observations on the causal dependencies among replaced and inserted
goals. To this aim, to each clause

c= P(tlam,lk) L= q1(§1)»o~~,qm(§m)

in the logic program, we associate an operator ¢:p™ — p in the signature of
observations. Then, since we want to be aware of the components distributed in the
system, we do not consider the operator A and associate to each clause C the tile

CL' == P<r::><Q1(§1), e sQin(§t71)>‘

Note that by using the trigger ¢ we can now observe that the initial configuration p
generates m new components that causally depends on it.

For the rest, we add as before the pullback tiles that provide the coordination
mechanism about local instantiations. In the new setting, equivalent computations
from the point of view of concurrency and coordination are identified, whereas
computations that return the same computed answer substitution but that employ
different concurrent reduction strategies are distinguished. This also allows one to
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observe causal dependencies among resolution steps, since the triggers of refutation
tiles describe the ‘concurrent strategy’ employed for achieving the result.
Of course, the notion of refutation tile slightly changes according to the above
S

modification: A refutation tile is an entailed tile of the form G—,”1"®!,, i.. empty
goals become nil processes distributed around system locations.

The trigger of the refutation tile for a generic goal is a tuple of terms (without
shared variables), i.e. it corresponds to an ordered forest of (ordered) trees, whose
nodes are labeled with clause names. We denote by C the obvious partial order on
nodes such that x E y iff y descends from x. Moreover, since the tree is ordered, we
have an immediate correspondence between each clause instance and the subgoal
it was applied to. Then, we can characterize the concurrency of the framework by
means of the following theorem.

Theorem 4

5
Let GT’D"‘@!Q be a tile refutation for the goal G, and let C be the partial order
(forest) associated to s. Moreover, let < be any total order that extends C. Then by
applying the clauses associated to the nodes of the tree in the order specified by <
we obtain again the computed answer substitution 0.

The proof is based on the compositional properties of pullbacks and expresses
the ‘complete concurrency’ (from the trigger side, not from the effect side) of the
framework.

Since application of clauses that do not depend on each other (in C) can be
executed in any order by choosing suitable total orders <, it follows that the order
in which they are executed is not important. Note however that this depends on the
fact that the coordination mechanism via pullbacks takes care of the side-effects of
each clause application.

5 Tiles and constraints

In this section we informally discuss how the tile-based approach can be extended
to deal with constraint logic programming (CLP) (Marriott & Stuckey, 1998; Jaffar
& Mabher, 1994). Computational equivalences between the ordinary operational se-
mantics of cLp and the tile semantics we will briefly describe in this section can be
established by results analogous to Theorem 3. The interest in constraint satisfaction
problems is centered around a powerful, declarative mechanism for knowledge rep-
resentation, as many situations can be conveniently modeled by means of constraints
on a set of objects or parameters. Therefore, constraint logic programming is not a
language in itself, but can be more precisely seen as a scheme, parametric w.r.t. the
kind of constraints that can be handled. For example, pure logic programming is to
some extent a version of cLP dealing with term equalities over a Herbrand universe.
The way in which constraints are combined and simplified is delegated to a con-
straint solver for efficiency reasons. Other formalisms, like constraint handling rules
(Frithwirth, 1995), allow for modeling solvers by means of suitable guarded clauses.
Usually, constraint programming languages are monotonic (or non-consuming ), that

https://doi.org/10.1017/51471068401000035 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068401000035

Interactive semantics 685

is constraints are never deleted from the constraint store; however, in the litera-
ture there are some variants which allow for constraint consumption (Best et al.,
1997). Both the monotonic and the consuming behaviors can be represented in our
framework.

At the abstract level (see Saraswat (1989)), a constraint system can be seen as
a pair (D,F), where D is a set of primitive constraints and F< @(D) x D is the
entailment relation, relating (finite) sets of primitive constraints to entailed primitive
constraints. Relation F must satisfy

e CU{c} I ¢ (reflexivity);
e if Chcforallee C,and C' ¢, then CF ¢ (transitivity).

The set of subsets of D which are closed under entailment is denoted by |D|, and
a constraint is just an element of |D|. As usual, we assume that a set Con = |Dj of
consistent constraints is given such that:

e if CUC' € Con, then C,C’ € Con;
e if ¢ € D then {c¢} € Con;
e if C € Con and C ¢, then CU {¢} € Con.

For our representation, a constraint system can be equivalently seen as a cat-
egory C whose arrows are constraints and whose composition is the conjunction of
constraints, in such a way that C;c = C iff C | ¢. We also assume a distinguished
arrow ff exists such that C = ff iff C ¢ Con.

In the presence of constraints, goals become pairs (G, C), where G is an ordinary
conjunctive formula and C is a constraint, while clauses can have the more general
form

H Z—Cl|B1,...,Bn,Cz

where ¢y 1s a guard for the application of the clause (similar to the ask operation of
concurrent constraint programming (cCp) (Saraswat, 1989)), and ¢, is the constraint
to be added to the store after the application of the clause (similar to the tell
operation of ccp). In the ordinary interpretation, the meaning is that the clause can
be applied only if the constraint component of the current goal entails ¢; and that,
after the resolution step, the constraint ¢; is added to the current state, provided
that the resulting constraint is consistent, i.e. the resolution can be applied only if
C + ¢ and CU {cz} € Con. Although usually cLP languages do not have guards
in their syntax but just constraints in the bodies of the clauses (which correspond
to the tell constraint ¢, above), we decide to consider this more general kind of
clauses to model also concurrent formalisms such as ccp and constraint rewriting
formalisms such as CHR.

Now, we face several alternatives for describing the interaction between ask/tell
and the current store, where each alternative corresponds to a different set of
auxiliary tiles associated with the constraint system C.

For example, likewise pure logic programming, we can take the pullback squares
in C (if any), or more generally, we can consider the relative pullbacks, dualizing the
approach of Leifer and Milner based on relative pushouts (Leifer & Milner, 2000). In
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this case, given a constraint C (the current constraint store) and another constraint

¢z (the tell part of the clause), we have coordination tiles of the form C%C/ {with
the condition that c¢;C £ ff) expressing that C’' is the minimal constraint to be
added to ¢; for entailing (all constraints in) C, and that ¢ is the minimal constraint
to be added to C for entailing ¢,. Therefore, tiles of this kind check the consistency
of ¢; with C and return the additional amount of information gained by joining
the two constraints, an operation which is suitable for interpreting tell constraints.
The guard ¢; should be considered as part of the initial configuration of the tile
associated with the clause, so that the clause can be applied only if the current store
C can be decomposed as Cy;e¢p, while ¢; is an effect of the tile (to be coordinated
with the current state). Since the ask and tell operations are not consuming, the
join of ¢; and ¢; must be inserted also in the final configuration. The resulting tile
id

associated with the clause is thus (P,cl)@(Bl,...,B,,,cz;c,), with P the predicate
symbol in H and t; P = H.

If the category describing the constraint system does not possess the pullbacks,
we can consider all commuting squares, instead of just (relative) pullbacks. This
encoding can be applied to a generic category C, but usually involves an infinite
number of possible closures.

Notice that this way of modeling cLP clauses via tiles synchronizes P and ¢; and
therefore centralizes the control, unless ¢; is the empty constraint. An alternative,
which solves this problem and gives more emphasis to the interaction between
subgoals and constraints, is to leave the consistency check of the tell operation to
the metainterpreter (e.g. by discarding all computations that reach an inconsistent
store), and use the guard ¢; as an effect, to abandon the centralized view. Now, the

auxiliary tiles for constraints have just the task of checking the entailment of the
€
guard in the current store, and therefore we can take all squares of the form CTd*C

such that C; ¢y = C (there is exactly one cell for any C, ¢; such that C + ¢;). Since C

appears in the final configuration, there is no need for reasserting ¢, and thus the
id

tile associated with the generic clause is Pm(BI,...,B,.,cz). Note that if tiles like

(Y
CT;*C’ with C’;¢; = C were considered instead, then the constraint ¢; might also
be consumed during the entailment check, unless it was reintroduced in the final
configuration.

It is worth to notice that in all these proposals to model cLP via tiles, the
tile approach allows us to clearly separate the rules of the program from the
coordination mechanism, which is dependent just on the category C of constraints
under consideration, and on the features we want to model.

6 Conclusions and future work

In this paper we have used tile logic to model the coordination and interaction
features of logic programming. Our approach differs from that of Corradini &
Montanari (1992), based on structured transition systems, by taking into account
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the computed answer substitutions instead of just the correct answer substitutions.
In fact, in Corradini & Montanari (1992), the clauses are seen as rewrite rules that
can be further instantiated in all possible ways and the computational model of a
program is a suitable 2-category (i.e. a special kind of double category, where the
vertical category is discrete and thus only identities are allowed as observations).
This means that if there exists a refutation for the goal G with computed answer
substitution 0, then in the 2-category model we can find a refutation for 8;G but
not necessarily one for G. The main advantages of our approach w.r.t. that in
Corradini & Montanari (1992) are a finite branching operational semantics and
the built-in unification mechanism. Moreover, the drawback of using 2-categories
instead of double categories is that the dynamic creation of fresh variables cannot
be modeled, i.e. the variables to be used must all be present at the beginning of the
computation.

As noted in the Introduction, the usage of tiles emphasizes the duality of instan-
tiation and contextualization of goals, allowing for a uniform treatment of both. In
particular, while instantiation plays a fundamental role since it can affect the behav-
ior of the goal, here contextualization (i.e. conjunction with disjoint goals) does not
increase the distinguishing power of the semantics, and therefore transitions labeled
with external contexts can be avoided in the model. In fact, each atomic goal can be
studied in isolation from other goals and the tiles for putting a goal in any possible
conjunction are not necessary. The reason for this absence is that goals cannot be
conjoined in Horn clauses’ heads, whereas if multi-headed clauses were considered,
then, in general, abstract semantics would not turn out to be a congruence unless
transitions for external contexts are added. Indeed, we believe that our approach
can be extended to other frameworks where multi-head clauses are allowed (see,
for example, the generalized Horn clauses of Falaschi et al. (1984) and the cHR
formalism (Frithwirth (1995)), giving us the key for dealing with contextualization
features — dually to the instantiation via pullbacks considered here.

We have also sketched some ideas for extending our approach to handle con-
straints. In this case, the constraint system and the logic program are modeled by
two separate sets of tiles, and we have shown how to handle both ask and tell
constraints.

Exploiting the built-in synchronization features of tile logic, we are confident that
our framework can be naturally extended to deal also with sequentialized commits
(i.e. goals of the form G;;G,; - ; G, where the possibly non-atomic subgoals G;
must be resolved in the order given by their indices i, giving the possibility to the
user of specifying more efficient resolution strategies). Moreover, the higher-order
version of tile logic presented in Bruni & Montanari (1999) may find application to
the modeling of higher-order logic programming (e.g. lambda prolog) (Miller, 1995;
Miller & Nadathur. 1998).

Finally, let us mention that the abstractness of the unification via pullbacks makes
the tile approach suitable for considering unification in equational theories rather
than in term algebras. For example, this would allow to develop a computational
model for rewriting logic (and hence for reduction systems on processes up to
structural congruence) based on unification.

https://doi.org/10.1017/51471068401000035 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068401000035

688 R. Bruni et al.

Acknowledgements

We would like to thank Paolo Baldan and Fabio Gadducci for their comments
on a preliminary version of this paper. We are also grateful to the anonymous
referees for their helpful suggestions and comments, which allowed us to improve
the presentation of the material.

This research has been supported by CNR Integrated Project Progettazione e
Verifica di Sistemi Eterogenei; by Esprit WG CONFER2 and COORDINA; and by
MURST project TOSCA.

References

Bernstein, K. (1998) A congruence theorem for structured operational semantics of higher-
order languages. Proceedings of LICS’98, 13th Annual IEEE Symposium on Logic In Com-
puter Science, pp. 153-164. IEEE Press.

Berry, G. and Boudol, G. (1992) The chemical abstract machine. Theoret. Comput. Sci., 96(1):
217-248.

Best, E., de Boer, S. and Palamidessi, C. (1997) Partial order and SOS semantics for linear
constraint programs. Proceedings of Coordination'97, 2nd International Conference on Co-
ordination Languages and Models: Lecture Notes in Computer Science 1282, pp. 256-273.
Springer-Verlag.

Bloom, B, Istrail, S. and Meyer, A. R. (1995) Bisimulation can’t be traced. J. ACM, 42(1):
232-268.

Bossi, A., Gabbrielli, M., Levi, G. and Meo, M. C. (1994a) A compositional semantics for
logic programs. Theoret. Comput. Sci., 122(1-2): 3-47.

Bossi, A., Gabbrielli, M., Levi, G. and Martelli, M. (1994b) The s-semantics approach: Theory
and applications. J. Logic Programming, 19/20: 149-197.

Brogi, A., Lamma, E. and Mello, P. (1992) Compositional model-theoretic semantics for logic
programs. New Generation Computing, 11(1): 1-21.

Bruni, R. (1999) Tile logic for synchronized rewriting of concurrent systems. PhD thesis, Com-
puter Science Department, University of Pisa.

Bruni, R. and Montanari, U. (1999) Cartesian closed double categories, their lambda-notation,
and the pi-calculus. Proceedings of LICS’99, 14th Annual IEEE Symposium on Logic In
Computer Science, pp. 246-265. IEEE Press.

Bruni, R. and Montanari, U. (2000) Zero-safe nets: Comparing the collective and individual
token approaches. Inform. & Comput., 156: 46--89.

Bruni, R., Meseguer, J. and Montanari, U. (1998) Process and term tile logic. Technical report
SRI-CSL-98-06, SRI International. (Also Technical Report TR-98-09, Computer Science
Department, University of Pisa.)

Bruni, R., Meseguer, J. and Montanari, U. (1999) Executable tile specifications for process
calculi. In: Finance, J.-P. (editor), Proceedings of FASE’99, Fundamental Approaches to
Software Engineering: Lecture Notes in Computer Science 1577, pp. 60-76. Springer-Verlag.

Bruni, R, de Frutos-Escrig, D., Marti-Oliet, N. and Montanari, U. (2000a) Bisimilarity
congruences for open terms and term graphs via tile logic. In: Palamidessi, C. (editor),
Proceedings of Concur 2000, 11th International Conference on Concurrency Theory: Lecture
Notes in Computer Science 1877, pp. 259-274. Springer-Verlag.

Bruni, R., Montanari, U. and Sassone, V. (2000b) Open ended systems, dynamic bisimulation
and tile logic. In: van Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P. D. and Ito,

https://doi.org/10.1017/51471068401000035 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068401000035

Interactive semantics 689

T. (editors), Proceedings of IFIP TCS 2000, IFIP International Conference on Theoretical
Computer Science: Lecture Notes in Computer Science 1872, pp. 440-456. Springer-Verlag.
Bruni, R., Meseguer, J. and Montanari, U. (2001) Symmetric monoidal and cartesian double

categories as a semantic framework for tile logic. Math. Struct. in Comput. Sci. To appear.

Burstall, R. M. and Rydeheard, D. E. (1985) A categorical unification algorithm. In: Abramsky,
S., Pitt, D., Poigne, A. and Rydeheard, D. (editors), Proceedings of Workshop on Category
Theory and Computer Programming: Lecture Notes in Computer Science 240, pp. 493-505.
Springer-Verlag.

Cattani, G. L., Leifer, J. J. and Milner, R. (2000) Contexts and embeddings for a class of action
graphs. Technical report 496, Computer Laboratory, University of Cambridge.

Corradini, A. and Montanari, U. (1992) An algebraic semantics for structured transition
systems and its application to logic programs. Theoret. Comput. Sci., 103: 51-106.

De Nicola, R. and Hennessy, M. (1984) Testing equivalences for processes. Theoret. Comput.
Sci., 34: 83-133.

De Simone, R. (1985) Higher level synchronizing devices in MEITE-SCCS. Theoret. Comput.
Sci.,, 37: 245-267.

Ehresmann, E. (1963a) Catégories structurees: I-II. Annales école normal superieur, 80: 349—
426.

Ehresmann, E. (1963b) Catégories structurées: III. Cahiers de topologie ed géométrie
différentielle, S.

Emden, M. H. van and Kowalski, R. A. (1976) The semantics of predicate logic as a
programming language. J. ACM, 23(4): 733-742.

Falaschi, M., Levi, G. and Palamidessi, C. (1984) A synchronization logic: Axiomatics and
formal semantics of generalized horn clauses. Inform. & Control, 60(1-3): 36-69.

Falaschi, M., Levi, G., Martelli, M. and Palamidessi, C. (1989) Declarative modeling of the
operational behavior of logic languages. Theoret. Comput. Sci., 69(3): 289-318.

Ferrari, G. L. and Montanari, U. (2000) Tile formats for located and mobile systems. Inform.
& Comput., 156: 173-235.

Frithwirth, T. W. (1995) Constraint handling rules. In: Podelski, A. (editor), Constraint Pro-
gramming : Basics and Trends: Lecture Notes in Computer Science 910, pp. 90-107. Springer-
Verlag,

Gadducci, F. and Montanari, U. (1996) Rewriting rules and CCS. Proceedings of WRLA’96, 1st
Workshop on Rewriting Logic and its Applications: Electronic Notes in Theoretical Computer
Science 4. Elsevier.

Gadducci, F. and Montanari, U. (2000) The tile model. In: Plotkin, G., Stirling, C. and
Tofte, M. (editors), Proof, Language and Interaction: Essays in Honour of Robin Milner.
MIT Press. (Also Technical Report TR-27/96, Dipartimento di Informatica, Universita di
Pisa, 1996.)

Gaifman, H. and Shapiro, E. (1989) Fully abstract compositional semantics for logic programs.
Proceedings of POPL’89, pp. 134-142. ACM.

Goguen, J. (1989) What is unification? a categorical view of substitution, equation and
solution. In: Nivat, M. and Ait-Kaci, H. (editors), Resolution of Equations in Algebraic
Structures, pp. 217-261. Academic Press.

Groote, J. F. and Vaandrager, F. (1992) Structured operational semantics and bisimulation as
a congruence. Inform. & Comput., 100: 202-260.

Jaffar, J. and Maher, M. J. (1994) Constraint logic programming: A survey. J. Logic Pro-
gramming, 19/20: 503-581.

Larsen, K. G. and Xinxin, L. (1990) Compositionality through an operational semantics of
contexts. In: Paterson, M. S. (editor), Proceedings of ICALP’90, 17th International Collo-

https://doi.org/10.1017/51471068401000035 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068401000035

690 R. Bruni et al.

quium on Automata, Languages and Programming: Lecture Notes in Computer Science 443,
pp- 526-539. Springer Verlag.

Lawvere, F. W. (1963) Functorial semantics of algebraic theories. Proc. National Academy of
Science, 50: 869-872.

Leifer, J. J. and Milner, R. (2000) Deriving bisimulation congruences for reactive systems.
In: Palamidessi, C. (editor), Proceedings of Concur 2000, 11th International Conference on
Concurrency Theory: Lecture Notes in Computer Science 1877, pp. 243-258. Springer-Verlag.

Lloyd, J. W. (1987) Foundations of Logic Programming. Springer-Verlag.

MacLane, S. (1971) Categories for the Working Mathematician. Springer-Verlag.

Mancarella, P. and Pedreschi, D. (1987) An algebra of logic programs. In: Kowalski, R. A.
and Bowen, K. (editors), Proceedings of ICLP’88, 5th International Conference on Logic
Programming, pp. 1006-1023. MIT Press.

Marriott, K. and Stuckey, P.J. (1998) Programming with Constraints: An introduction. MIT
Press.

Meseguer, J. (1992) Conditional rewriting logic as a unified model of concurrency. Theoret.
Comput. Sci., 96: 73-155.

Meseguer, J. and Montanari, U. (1998) Mapping tile logic into rewriting logic. In: Parisi-
Presicce, F. (editor), Proceedings of WADT 97, 12th Workshop on Recent Trends in Algebraic
Development Techniques: Lectecture Notes in Computer Science 1376, pp. 62-91. Springer-
Verlag.

Miller, D. (1995) Lambda prolog: An introduction to the language and its logic. (Available at
http://www.cse.psu.edu/ “dale/1Prolog/docs.html.)

Miller, D. and Nadathur, G. (1998) Higher-order logic programming. In: Gabbay, D. M,
Hogger, C. J. and Robinson, J. A. (editors), Handbook of Logics for Artificial Intelligence
and Logic Programming, 5: 499-590. Clarendon Press.

Milner, R. (1980) A Calculus of Communicating Systems: Lecture Notes in Computer Science
92. Springer-Verlag.

Milner, R. (1992) The polyadic pi-calculus (abstract). In: Cleaveland, R. (editor), Proceed-
ings of Concur '92, 3rd International Conference on Concurrency Theory: Lecture Notes in
Computer Science 630, pp. 499-590. Springer-Verlag.

Milner, R. (1996) Calculi for interaction. Acta Inform., 33(8): 707-737.

Montanari, U. and Sassone, V. (1992) Dynamic congruence vs. progressing bisimulation for
CCS. Fundamenta Informaticae, 16: 171-196.

Montanari, U. and Talcott, C. (1998) Can actors and n-agents live together? Proceedings of
HOOTS'98, 2nd Workshop on Higher Order Operational Techniques in Semantics. Electronic
Notes in Theoretical Computer Science 10. Elsevier.

Park, D. (1981) Concurrency and automata on infinite sequences. Proceedings of gth G-I
Conference: Lectecture Notes in Computer Science 104, pp. 167-183. Springer-Verlag.

Plotkin, G. (1981) A structural approach to operational semantics. Technical reptort DAIMI
FN-19, Aarhus University, Computer Science Department.

Rensink, A. (2000) Bisimilarity of open terms. Inform. & Comput., 156: 345-385.

Saraswat, V. A. (1989) Concurrent constraint logic programming. PhD thesis, Carnegie-Mellon
University.

Sewell, P. (1998) From rewrite rules to bisimulation congruences. In: Sangiorgi, D. and
de Simone, R. (edirors), Proceedings of Concur’98: Lecture Notes in Computer Science 1466,
pp. 269-284. Springer-Verlag.

https://doi.org/10.1017/51471068401000035 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068401000035

