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Abstract

We prove a constructive existence theorem for abelian envelopes of non-abelian
monoidal categories. This establishes a new tool for the construction of tensor cate-
gories. As an example we obtain new proofs for the existence of several universal tensor
categories as conjectured by Deligne. Another example constructs interesting tensor
categories in positive characteristic via tilting modules for SL2.

Introduction

Fix a field k. A k-linear symmetric rigid monoidal Karoubian category in which the endomor-
phisms of the tensor identity 1 constitute k will be called a ‘pseudo-tensor category’. When the
category is abelian, it is called a ‘tensor category’, following [Del90]. The canonical example of
the latter is the category of algebraic representations of an affine group scheme over k. It is often
easy to construct specific examples of pseudo-tensor categories, for instance diagrammatically
or via generators and relations. On the other hand, constructing tensor categories with certain
requested properties is typically more challenging. In many recent constructions of important
new tensor categories (see [BE19, CEH19, CO14, Del07, EHS20]) the desired tensor categories
happen to be ‘abelian envelopes’ of straightforward pseudo-tensor categories. We review these
examples below via applications of our main result.

A tensor category is the abelian envelope of a pseudo-tensor subcategory if every faithful
monoidal functor from the subcategory to a tensor category lifts to an exact monoidal functor out
of the original category. Not every pseudo-tensor category admits an abelian envelope. A classical
example is given in [Del07, § 5.8] and we will give an example of a different nature below.
A powerful ‘recognition theorem’ for abelian envelopes was obtained in [EHS20]. However, the
construction of abelian envelopes in [BE19, CO14, EHS20] drew from a rich variety of different
methods, rather than some standard approach, and moreover at present there is no ‘existence
theorem’ in the literature for abelian envelopes.

The latter is precisely the aim of the current paper. We derive sufficient internal conditions
on a pseudo-tensor category for its abelian envelope to exist, along with a unifying construction
of the envelope. We apply this to recover old and construct new abelian envelopes. To state
our main theorem, we call an object X with dual X∨ in a pseudo-tensor category D ‘strongly
faithful’ if the evaluation X∨ ⊗X → 1 is the coequaliser of the two evaluation morphisms X∨ ⊗
X ⊗X∨ ⊗X ⇒ X∨ ⊗X. We show that this is equivalent to the property that X ⊗− : D→ D
reflects all kernels and cokernels in D.
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Monoidal abelian envelopes

Theorem A. If for every morphism f in D there exists a strongly faithful X ∈ D for which

X ⊗ f is split, then D admits an abelian envelope T. Moreover, the ind-completion IndT
is monoidally equivalent to the category ShD of all presheaves Dop → Veck which send the

sequences

D ⊗X∨ ⊗X ⊗X∨ ⊗X → D ⊗X∨ ⊗X → D → 0,

for all D ∈ D and strongly faithful X ∈ D, to exact sequences in Veck.

A slightly more general version of this is proved in Theorem 4.1.1. In the following sense
Theorem A cannot be improved. In Lemma 2.3.4 we provide a category D where all assump-
tions are satisfied but with ‘strongly faithful’ replaced by the weaker ‘faithful’ in ordinary sense
(X ⊗− is faithful) and which does not admit an abelian envelope. We also demonstrate that the
recognition theorem from [EHS20] can be derived from Theorem A. In particular, Theorem A
gives an explicit construction of the abelian envelope in all cases where one might apply said
recognition theorem.

Note that, under the assumptions in Theorem A, one can prove that every non-zero object
in D is strongly faithful; in particular, the definition of ShD can then be adjusted. However, we
demonstrate that ShD as defined above is always (without the splitting condition in Theorem A)
the category of sheaves with respect to some k-linear Grothendieck topology on D. This shows
that ShD is always a symmetric closed monoidal Grothendieck category. We also observe that
whenever ShD is the ind-completion of some tensor category, the latter must be the abelian
envelope of D. Moreover, we determine an intrinsic criterion for when ShD is the ind-completion
of a tensor category.

Simultaneously and independently, Benson, Etingof and Ostrik have obtained related results
in [BEO20]. On the one hand, the scope of their paper is more general in the sense that it does
not require braidings and includes analogues of envelopes in which the subcategory is not full. On
the other hand, [BEO20] is restricted to tensor categories which have enough projective objects,
which for instance does not include the ones in [EHS20].

Application I: Deligne’s universal monoidal categories
Let k be a field of characteristic 0. In [Del07], Deligne introduced three one-parameter families
of universal pseudo-tensor categories [St, k], [GLt, k] and [Ot, k], for t ∈ k, and embedded them
into tensor categories. He also formulated conjectures about the universality of the latter. As
observed in [CO14, EHS20], the conjectures can be reformulated, via the Tannakian formalism
of [Del90], into the existence of abelian envelopes.

These conjectures were proved for [St, k] in [CO14] and for [GLt, k] in [EHS20]. In [CO14]
the envelope is constructed as the heart of a t-structure on the homotopy category Kb([St, k]),
and in [EHS20] the envelope of [GLt, k] is realised as a limit of truncations of representation
categories of general linear supergroups of growing rank.

Since Theorem A applies to [St, k], [GLt, k] and [Ot, k], it gives a new and unifying proof
and construction of all the abelian envelopes, so of all corresponding universal tensor categories.
Moreover, we do not require k̄ = k, contrary to [EHS20]. The construction of the abelian envelope
of [Ot, k] is new, although one would expect that the methods from [EHS20] can be extended to
this case.

Yet another construction of the abelian envelope of [GLt, C], described in [Har16], realises
it inside an ultraproduct

∏
U [GLti , F̄pi ]. However, recognising the tensor category inside the
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product as the abelian envelope requires the knowledge of the existence of the latter (as proved
first in [EHS20]).

Application II: tensor categories in positive characteristic
The structure theory of tensor categories over fields of positive characteristic is in full develop-
ment; see for instance [BE19, BEO20, Cou20, EG19, EO19, Ost20]. An important tool developed
in [Cou20, EO19, Ost20] is the ‘Frobenius twist’ in arbitrary tensor categories. In [BE19] a family
of tensor categories in characteristic 2 was constructed in which this functor is not exact. One
way to interpret those categories is as the abelian envelopes of the monoidal quotients of the
pseudo-tensor category TiltSL2 of tilting modules of the reductive group SL2. We will show that
these quotients also admit abelian envelopes when p > 2 by application of Theorem A.

These envelopes are also constructed independently in [BEO20], and studied in full detail
there. In particular, they provide the first examples of tensor categories for p > 2 on which the
Frobenius twist is not exact.

Structure of the paper
In § 1 we recall the necessary background. In § 2 we introduce and study the notions of strongly
faithful objects and monoidal splitting of morphisms. As an application, we show that the con-
ditions in Theorem A are satisfied for [GLt, k] and [Ot, k]. In § 3 we study the category ShD. In
§ 4 we prove Theorem A and apply it to the above examples.

In the appendix we recall the notions of Grothendieck topologies and sheaves on k-linear
sites. An alternative approach to the methods in § 3 would be to argue that our set-up allows us
to apply a general theory developed in [Sch20] by Schäppi. Since our case is rather specific, it
is more transparent to use a direct approach, but in order to highlight this connection we also
recall some results from [Sch20] in the appendix.

1. Preliminaries

We set N = {0, 1, 2, . . .}. Throughout the paper we let k denote an arbitrary field, unless further
specified.

1.1 Exactness and split morphisms
Let A be a preadditive category.

1.1.1 We denote by Ξ = Ξ(A) the class of all exact sequences

X2
p→ X1

q→ X0 → 0 (1)

in A, that is, all sequences (1) where q is the cokernel of p, which is equivalent to

0→ A(X0, A)
−◦q−−→ A(X1, A)

−◦p−−→ A(X2, A)

being exact in Ab for each A ∈ A.

1.1.2 A morphism f : X → Y in A is split if there exists g : Y → X such that f ◦ g ◦ f = f .
Note that this implies that f ◦ g and g ◦ f are idempotents. If A is Karoubi (idempotent com-
plete) it thus follows that f is split if and only if we have X � A⊕X0 and Y � A⊕ Y0 and f is
the composition of these isomorphisms with (idA, 0).
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Monoidal abelian envelopes

1.2 Symmetric monoidal categories
Let K be a commutative ring.

1.2.1 By a K-linear symmetric monoidal (K-LSM or LSM) category (C,⊗,1, σ), we mean
a monoidal category (C,⊗,1) with a symmetric braiding σ with a fixed K-linear structure on
C for which −⊗− is K-linear in each variable. As is customary, we suppress the associativity
constraints and unitors from all notation. Correspondingly we do not place brackets in iterated
tensor products. Furthermore, in order to keep long expressions legible, the functor X ⊗−, for
X ∈ C, will sometimes be shortened to X−. So we might write XY or Xf for an object Y or
morphism f in C.

1.2.2 An LSM functor between two K-LSM categories is a K-LSM functor. Usually we will
denote the LSM functor simply by the underlying functor. For two K-LSM categories (C,⊗,1, σ)
and (C′,⊗′,1′, σ′), we denote by LSM(C,C′) the category of LSM functors C→ C′ and use
LSMfaith for the subcategory of faithful functors.

1.2.3 For a K-LSM category (C,⊗,1, σ) and X ∈ C, a dual of X is a triple (X∨, evX , coX)
of an object X∨ ∈ C and morphisms evX : X∨ ⊗X → 1 and coX : 1→ X ⊗X∨, such that

idX = (X ⊗ evX) ◦ (coX ⊗X) and idX∨ = (evX ⊗X∨) ◦ (X∨ ⊗ coX). (2)

An object which admits a dual is called rigid. If every object in C admits a dual, then C is called
rigid. The dimension dim(X) ∈ End(1) of a rigid object is given by evX ◦ σXX∨ ◦ coX .

1.2.4 A tensor ideal J in a K-LSM category (C,⊗,1, σ) is an assignment of K-submodules
J (X, Y ) ⊂ C(X, Y ) for each X, Y ∈ C such that the corresponding class of morphisms is closed
under composing or taking the tensor product with any morphism in C. For a tensor ideal
J , the quotient category C/J has by definition the same objects as C and as morphism sets
the quotient K-modules C(X, Y )/J (X, Y ). By construction, C/J is again K-LSM, such that
C→ C/J is a LSM functor. We can therefore alternatively define tensor ideals as the kernels
of LSM functors.

1.3 Pseudo-tensor categories
Let k be an arbitrary field.

1.3.1 A k-LSM category (D,⊗,1, σ) is a pseudo-tensor category over k if:

(i) D is essentially small;
(ii) k → End(1) is an isomorphism;
(iii) (D,⊗,1, σ) is rigid;
(iv) D is pseudo-abelian (additive and Karoubi).

A pseudo-tensor subcategory of such D is a full monoidal subcategory closed under taking
duals, direct sums and summands. It is thus again a pseudo-tensor category. The quotient of a
pseudo-tensor category with respect to a non-trivial tensor ideal is again pseudo-tensor.

Occasionally we will use categories as above except that the field k is replaced by some
commutative ring R. We will use the same terminology ‘tensor category over R’.

If only (i)–(iii) are satisfied, we can take the pseudo-abelian envelope (see [AK02, § 1.2]) by
formally adjoining direct sums and summands, to obtain a pseudo-tensor category.
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Remark 1.3.2. Let D be a pseudo-tensor category and ξ ∈ Ξ(D). For any A ∈ D, the sequence
A⊗ ξ is still exact, so A⊗ ξ ∈ Ξ, since A⊗− has a right adjoint A∨ ⊗−.

1.3.3 Following [Del90, Del02], a tensor category over k is a pseudo-tensor category which
is abelian (i.e. assumption 1.3.1(iv) is strengthened). In such a category, 1 is automatically a
simple object. A tensor functor between tensor categories is an exact LSM functor. Categories
of tensor functors will be denoted by Tens. Following [CEH19, EHS20], we use the following
terminology.

Definition 1.3.4. For a pseudo-tensor category D over k, a pair (F,T) of a tensor category T
over k and a faithful LSM functor F : D→ T constitutes an abelian envelope of D if, for each
tensor category T1/k, composition with F induces an equivalence

Tens(T,T1) � LSMfaith(D,T1).

We will indulge in the usual abuse of terminology, by referring to the tensor category T of
a pair (F,T) as in Definition 1.3.4 as ‘the abelian envelope of D’. The use of the definite article
is justified by obvious uniqueness up to equivalence.

Remark 1.3.5. By [Del90, Corollaire 2.10(ii)], functors in Tens(T,T1) are automatically faithful,
so composition with F in Definition 1.3.4, automatically lands in LSMfaith(D,T1). Furthermore,
[Del90, Corollaire 2.10(i)] shows that right exact functors in LSM(T,T1) are automatically in
Tens(T,T1).

1.3.6 For a tensor category T, the ind-completion IndT has an essentially unique LSM
structure such that −⊗− is exact and cocontinuous and T is a monoidal subcategory; see
[Del90, § 7]. Since T is assumed to be essentially small, we can define IndT also as the category
of left exact functors Top → Vec.

Lemma 1.3.7. The subcategory of rigid objects in IndT is equivalent to T.

Proof. We need to show that any rigid object N ∈ IndT is compact. Take therefore a filtered
colimit lim−→Yα in IndT. As the tensor product in IndT is cocontinuous, we find

IndT(N, lim−→Yα) � IndT(1, lim−→(N∨ ⊗ Yα)).

Since 1 ∈ T ⊂ IndT is compact, we thus find indeed that IndT(N,−) commutes with filtered
colimits. �

The following lemma is straightforward, but it will be useful to have it spelled out.

Lemma 1.3.8. Consider a pseudo-tensor category D with pseudo-tensor subcategory D0 ⊂ D,

and take X0 ∈ D0. The full subcategory D1 of objects V ∈ D for which V ⊗X0 ∈ D0 is a

pseudo-tensor subcategory of D.

Proof. That D1 is closed under taking direct sums and summands follows from the corresponding
property of D0. Clearly 1 ∈ D1. Now if V, W ∈ D1, then by definition

V ⊗X0 ⊗W ⊗X0 ∈ D0 ⇒ V ⊗W ⊗ (X0 ⊗X∨
0 ⊗X0) ∈ D0.

Since X0 is a direct summand of X0 ⊗X∨
0 ⊗X0, it follows that V ⊗W ⊗X0 is a direct summand

of an object in D0 and hence also in D0. In conclusion, V ⊗W ∈ D1. That D1 is closed under
taking duals follows similarly. �
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1.3.9 Consider a pseudo-tensor category D over k and a field extension K/k. The naive
extension of scalars of D (see [AK02, 5.1.1]) is the K-linear category with the same objects as
D, but with morphism sets given by K ⊗k D(−,−). We define DK as the Karoubi envelope of
the naive extension of scalars. Note that in [AK02, § 5.3], the notation (DK)� is used for what
we call DK . Now DK is canonically a pseudo-tensor category over K.

1.4 Deligne’s universal monoidal categories
Fix a commutative ring R and t ∈ R.

1.4.1 Following [Del07, § 10], we have the category [GLt, R]0, which is the free rigid R-LSM
monoidal category on one object Vt of dimension t. Its objects are (up to isomorphism) tensor
products of Vt and V ∨

t .
The pseudo-abelian envelope [GLt, R] of [GLt, R]0 is thus a pseudo-tensor category over R.

By construction, every object X in [GLt, R] is a direct summand of a direct sum of objects
⊗iVt ⊗⊗jV ∨

t . We denote by deg X the minimal d ∈ N such that X is a direct summand of a
direct sum of ⊗aVt ⊗⊗bV ∨

t with a + b ≤ d. By [Del07, Théorème 10.5], [GLt, k] is a semisimple
tensor category when char(k) = 0 and t �∈ Z.

The following is a reformulation of [Del07, Proposition 10.3].

Lemma 1.4.2. Consider a pseudo-tensor category D over R. Evaluation at Vt yields an equiv-

alence between LSM([GLt, R],D) and the groupoid of objects of dimension t in D with their

isomorphisms.

1.4.3 Set D := [GLt, k] for an algebraically closed field k of characteristic 0, for t ∈ Z ⊂ k.
Consider the tensor category svec of finite-dimensional super vector spaces; see [Del90, § 1.4]. Let
GL(m|n) be the affine group scheme in svec of automorphisms of the super space km|n of even
dimension m and odd dimension n. As in [Del02, § 0.3], we have the tensor category RepkGL(m|n)
of its representations in svec which restrict to the canonical Z/2-action along the homomorphism
Z/2→ GL(m|n) defining the grading on GL(m|n). As an application of Lemma 1.4.2, there exists
an LSM functor

Hm|n : D→ RepkGL(m|n), Vt �→ km|n,

for every m, n ∈ N with m− n = t.

Lemma 1.4.4. Retain the notation of § 1.4.3.

(i) The functor Hm|n is full.

(ii) For X, Y ∈ D with deg X + deg Y < 2(m + 1)(n + 1), Hm|n induces an isomorphism

D(X, Y ) ∼→ HomGL(m|n)(Hm|n(X), Hm|n(Y )).

(iii) There exists an indecomposable object Q in D with deg Q = mn, such that Hm|n(Q) is

projective in RepkGL(m|n).

Proof. These statements are well known; see, for example, [Hei17, Ser84]. The precise statements
can also be found in [Cou18, Theorem 7.2.1], the paragraph above [Cou18, Corollary 7.2.2], and
[Cou18, Proposition 8.2.3(i)]. �

1.4.5 A rigid object X in a LSM category is symmetrically self-dual if we can take X∨ = X

and we have evX = evX ◦ σX,X . Following [Del07, § 9], we have the category [Ot, R]0, which is
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the free R-LSM category on one symmetrically self-dual object Ut of dimension t. Its objects are
tensor powers of Ut.

The pseudo-abelian envelope [Ot, R] of [Ot, R]0 is thus a pseudo-tensor category over R. By
construction, every object X in [Ot, R] is a direct summand of a direct sum of objects ⊗iUt. We
denote by deg X the minimal d ∈ N such that X is a direct summand of a direct sum of ⊗iUt

with i ≤ d. By [Del07, Théorème 9.7], [Ot, k] is a semisimple tensor category when char(k) = 0
and t �∈ Z.

Lemma 1.4.6 [Del07, Proposition 9.4]. Consider a pseudo-tensor category D over R. Evaluation

at Ut yields an equivalence between LSM([Ot, R],D) and the groupoid of symmetrically self-dual

objects of dimension t in D.

1.4.7 Set D := [Ot, k] for an algebraically closed field k of characteristic 0, for t ∈ Z ⊂ k.
Consider a non-degenerate (super)symmetric bilinear form on km|2n ∈ svec and let OSp(m|2n)
be the closed subgroup of GL(m|2n) which preserves the form. As an application of Lemma 1.4.6,
there exists an LSM functor

Fm|2n : D→ RepkOSp(m|2n), Ut �→ km|2n

for every m, n ∈ N with m− 2n = t.

Lemma 1.4.8. Retain the notation of § 1.4.7.

(i) The functor Fm|2n is full.

(ii) For X, Y ∈ D with deg X + deg Y < 2(m + 1)(n + 1), Fm|2n induces an isomorphism

D(X, Y ) ∼→ HomOSp(m|2n)(Fm|2n(X), Fm|2n(Y )).

(iii) There exists an indecomposable object Q in D with deg Q = mn, such that Fm|2n(Q) is

projective in RepkOSp(m|2n).

Proof. Claim (i) is [LZ17, Theorem 5.3]. Claim (ii) is [Cou18, 7.1.1(ii) and 8.1.3(i)] or follows
from [Zha18, Theorem 5.12]. If m ≤ 1 or n = 0, then RepOSp(m|2n) is semisimple, so claim
(iii) becomes trivial. The case m > 1 and n > 0 follows from the observation in [CH17] that the
objects in D sent to projective objects under Fm|2n are the same ones which are sent to zero by
Fm−2|2n−2, and the description of that kernel as in [Cou18, Theorem 7.1.1]. �

2. Monoidal splitting and faithfulness

We fix a field k and a pseudo-tensor category (D,⊗,1, σ) over k.

2.1 Splitting of morphisms
Definition 2.1.1. An object X ∈ D splits a morphism f : A→ B in D if X ⊗ f is split. The
category D is self-splitting if, for every morphism h in D, there exists a non-zero object which
splits h.

For an object X ∈ D, we will encounter the morphism

EX := X∨ ⊗X ⊗ evX − evX ⊗X∨ ⊗X : X∨ ⊗X ⊗X∨ ⊗X → X∨ ⊗X

several times, hence we give it a name.
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Lemma 2.1.2.

(i) The morphisms evX and coX are split by X and by X∨.

(ii) The morphism EX is split by X ⊗X∨.

Proof. It follows from (2) that f := X ⊗ evX is split, with g := coX ⊗X, proving part (i). It
follows similarly that f := X ⊗ EX ⊗X∨ is split, with

g := X ⊗X∨ ⊗X ⊗X∨ ⊗ coX − coX ⊗X ⊗ evX ⊗X∨ ⊗ coX ,

which proves part (ii). �

The following lemma is well known.

Lemma 2.1.3. Assume D is a tensor category and take X ∈ D. The following assertions are

equivalent.

(i) X is projective.

(ii) X is injective.

(iii) X ⊗ f is split for every morphism f in D.

Proof. First we show that (i) implies (iii). For a morphism f : M → N we denote the image
and cokernel by A and B. By adjunction, X ⊗D is projective, for every D ∈ D. Consequently
X ⊗M � X ⊗A and X ⊗N � X ⊗B split, from which it follows that X ⊗ f is split. That (ii)
implies (iii) is proved similarly.

Now if (iii) is satisfied, then it follows by adjunction that X∨ is both projective and injective.
Also by adjunction, the fact that X∨ is projective (respectively, injective) implies that X is
injective (respectively, projective). Hence (iii) implies (i) and (ii). �

2.2 Faithfulness of objects
Definition 2.2.1. An object X ∈ D is faithful if one of the following two equivalent conditions
is satisfied.

(i) The functor X ⊗− : D→ D is faithful.
(ii) The evaluation evX : X∨ ⊗X → 1 is an epimorphism in D.

Definition 2.2.2. An object X ∈ D is strongly faithful if one of the following two equivalent
conditions is satisfied.

(i) For every M, N ∈ D, the sequence

0→ D(M, N) X⊗−−−−→ D(XM, XN)
(X⊗−)−(s⊗N)(X⊗−)(s⊗M)−−−−−−−−−−−−−−−−−−→ D(XXM, XXN),

with s = σXX , is exact in Vec.
(ii) The sequence

γX : X∨ ⊗X ⊗X∨ ⊗X
EX−−→ X∨ ⊗X

evX−−→ 1→ 0

is exact in D, meaning γX ∈ Ξ(D).
(iii) The evaluation evX : X∨ ⊗X → 1 is a strict epimorphism in D.

By definition, (ii) implies (iii). We briefly explain why (iii) implies (ii). Assume that evX is a
strict epimorphism and consider f : X∨ ⊗X → A in D with f ⊗ evX = evX ⊗ f (i.e. f ◦ EX = 0).
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Now take an arbitrary g : Y → X∨ ⊗X with evX ◦ g = 0. It follows that

(f ◦ g)⊗ evX = (evX ◦ g)⊗ f = 0.

Since evX is an epimorphism, it follows that f ◦ g = 0. Since g was arbitrary with evX ◦ g = 0,
strictness of the epimorphism evX implies that f factors through evX .

Clearly X is (strongly) faithful if and only if X∨ is (strongly) faithful.

Example 2.2.3.

(i) The unit 1 is strongly faithful in any pseudo-tensor category D.
(ii) The objects Vt and Ut in [GLt, k] and [Ot, k] are strongly faithful. This follows easily from

the diagrammatic calculus.

We say that X ∈ D reflects cokernels when every sequence γ as in (1) is exact if and only if
X ⊗ γ is exact. Note that one direction of the condition is automatic by Remark 1.3.2. Reflecting
kernels is defined similarly. Remark 1.3.2 also shows that X ⊗ Y reflects cokernels if and only if
both X and Y reflect cokernels, a fact that we will use freely.

Lemma 2.2.4. For any X ∈ D, the sequence X∨ ⊗X ⊗ γX is split exact.

Proof. By Lemma 2.1.2, the sequence ξX := X∨ ⊗X ⊗ γX is split. Set t = dimX. Then ξX is
the image of ξVt under the LSM functor [GLt, k]→ D corresponding to Vt �→ X in Lemma 1.4.2.
Since ξVt is split exact, by Example 2.2.3(ii), and LSM functors are additive, ξX is also split
exact. �

Proposition 2.2.5. The following are equivalent for X ∈ D.

(i) X is strongly faithful.

(ii) X ⊗X∨ reflects cokernels.

(iii) X reflects both kernels and cokernels.

Proof. Assume first that X is strongly faithful and consider a sequence X2 → X1 → X0 in D.
Tensoring with γX yields a commutative diagram

0 0 0

X2
��

��

X1
��

��

X0
��

��

0

X∨XX2
��

��

X∨XX1
��

��

X∨XX0
��

��

0

X∨XX∨XX2
��

��

X∨XX∨XX1
��

��

X∨XX∨XX0
��

��

0

with exact columns. If the second row is exact, then so is the third, by Remark 1.3.2. It then
follows from elementary diagram chasing that the first row is also exact. Hence X∨ ⊗X reflects
cokernels.
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Now assume that X∨ ⊗X reflects cokernels. By Lemma 2.2.4, application of the functor
X∨ ⊗X ⊗− to the sequence γX yields an exact sequence. Hence γX is also exact and X is
strongly faithful by definition. This already shows that (i) and (ii) are equivalent.

Claim (ii) is equivalent to the claim that both X and X∨ reflect cokernels. By adjunction,
X∨ reflects cokernels if and only if X reflects kernels. Hence (ii) and (iii) are equivalent. �

Proposition 2.2.6. Let X, Y be objects in D.

(i) X and Y are strongly faithful if and only if X ⊗ Y is strongly faithful.

(ii) If dimX �= 0, then X is strongly faithful.

(iii) If D is a tensor category and X �= 0, then X is strongly faithful.

Proof. Part (i) follows from Proposition 2.2.5.
If d := dimX is invertible, then consider the morphisms

f :=
1
d
σX,X∨ ◦ coX : 1→ X∨ ⊗X

and
((f ⊗ f) ◦ evX −X∨ ⊗X ⊗ f) : X∨ ⊗X → X∨ ⊗X ⊗X∨ ⊗X.

It follows from direct computation that these ensure the sequence in Definition 2.2.2(ii) is split
exact. This proves part (ii).

Part (iii) follows from Proposition 2.2.5, since all non-zero objects in tensor categories reflect
cokernels. �

We can also prove Proposition 2.2.6(i) directly from Definition 2.2.2, using a ‘monoidal
analogue’ of the diagram in [SGA3, IV.1.7]. The following corollary is a direct consequence of
Proposition 2.2.6(iii).

Corollary 2.2.7. If D admits a fully faithful LSM functor into a tensor category, every non-

zero object in D is strongly faithful.

Lemma 2.2.8. Consider a field extension K/k.

(i) If X ∈ D is strongly faithful in DK , it is also strongly faithful in D.

(ii) If f ∈ D(X, Y ) interpreted in DK is split, then f is also split in D.

Proof. Part (i) follows from applying either version of Definition 2.2.2 and using the fact that
the functor K ⊗k − from Veck to VecK is faithful and exact.

For part (ii), by assumption, there exists g ∈ K ⊗k D(Y, X) with f ◦ g ◦ f = f . We fix a
complement V in K of the canonical k-subspace k ⊂ K. We have g = g0 + g1 with g0 ∈ D(Y, X)
and g1 ∈ V ⊗k D(Y, X). It follows immediately that f ◦ g0 ◦ f = f . �

Lemma 2.2.9. Consider X, Y, Z ∈ D such that Y is a direct summand of X ⊗ Z. Then the

sequence D(γX , Y ) is exact in Vec.

Proof. Since X is a direct summand of X ⊗X∨ ⊗X, it follows that Y is also a direct summand of
X∨ ⊗X ⊗ Z ′, for Z ′ := X ⊗ Z. By functoriality and adjunction, it therefore suffices to prove that

D(X∨ ⊗X ⊗ γX , Z ′)

is exact. The latter is a consequence of Lemma 2.2.4. �
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2.3 Examples
Theorem 2.3.1. If char(k) = 0 and t ∈ Z, the categories [GLt, k] and [Ot, k] are self-splitting

and every non-zero object is strongly faithful.

Proof. By Lemma 2.2.8 and the fact that [GLt, k]K � [GLt, K] and [Ot, k]K � [Ot, K] for any
field extension K/k, it is sufficient to prove the theorem for algebraically closed k.

Set D := [Ot, k]. We start by proving the claim about strong faithfulness. It follows immedi-
ately from Definition 2.2.1(ii) and the diagrammatic calculus that all objects in D are faithful.
For 0 �= X ∈ D we need to demonstrate that for a given morphism f : X∨ ⊗X → Y in D with
f ◦ EX = 0, there exists g : 1→ Y such that f = g ◦ evX . Set a = deg X and b = deg Y . Take
m, n ∈ N with m− 2n = t and 2a + b < 2(m + 1)(n + 1) and consider the LSM functor

Fm|2n : D→ RepkOSp(m|2n)

from § 1.4.7. By Proposition 2.2.6(iii) and the fullness of Fm|2n in Lemma 1.4.8(i), there exists a
morphism g : 1→ Y in D such that Fm|2n(f) = Fm|2n(g ◦ evX). By Lemma 1.4.8(ii), this implies
that f = g ◦ evX , as desired.

Now consider an arbitrary morphism f : A→ B in D and set a = deg A and b = deg B. Take
m, n ∈ N with m− 2n ∈ t and a + b ≤ m + n. The latter inequality implies

a + b + 2mn < 2(m + 1)(n + 1). (3)

We consider again the functor Fm|2n. By Lemma 1.4.8(iii), there exists Q in D, with deg Q = mn,
such that Fm|2n(Q) is projective. By Lemma 2.1.3,

f ′ := Fm|2n(Q⊗ f) : Fm|2n(Q⊗A)→ Fm|2n(Q⊗B)

is split. Thus there exists a morphism g′ in RepOSp(m|2n) such that f ′g′f ′ = f ′. By
Lemma 1.4.8(ii) and the inequality (3), there thus exists a morphism Q⊗B → Q⊗A which
ensures that Q⊗ f is split. Hence D is self-splitting.

The claims for [GLt, k] are similarly proved using Lemma 1.4.4. �

Remark 2.3.2. That non-zero objects in [GLt, k] are strongly faithful when char(k) = 0, also
follows from Corollary 2.2.7 and [Del07, Proposition 10.17], which states that [GLt, k] admits a
fully faithful LSM functor into a tensor category.

2.3.3 For a commutative k-algebra K, consider the subcategory C of [GL0, K]0 which has
the same objects and for which the inclusion functor C→ [GL0, K]0 is full on each morphism set,
except that on C(1,1) it realises the unit morphism k → K. That C constitutes a (monoidal)
subcategory of [GL0, K]0 follows from the fact that the collection of all morphisms in [GL0, K]0
excluding the ones 1→ 1 form a (tensor) ideal.

Now the pseudo-abelian envelope D of C is a pseudo-tensor category over k.

Lemma 2.3.4.

(i) The object V0 in D is faithful but not strongly faithful, unless K = k.

(ii) If char(k) = 0 and K/k is a field extension then D is self-splitting and every non-zero object

is faithful.

Proof. Part (ii) can be derived from Theorem 2.3.1.
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For part (i), we consider the sequence in Definition 2.2.2(i) for M = N = 1 and X = V0,
which yields

0→ k → K → KS2,

where S2 is the symmetric group on two symbols, the morphism k → K is the unit morphism
and the morphism K → KS2 is zero. This follows either by direct computation or from the fact
that V0 is strongly faithful in [GL0, K], which shows that the kernel of the morphism K → KS2

is K, the endomorphism ring of 1 in [GL0, K]. �

3. A closed monoidal Grothendieck category

Fix an arbitrary pseudo-tensor category D over a field k.

3.1 The category of sheaves
3.1.1 We consider the k-linear presheaf category PShD of k-linear functors Dop → Veck.

Then PShD is symmetric closed monoidal for the Day convolution �; see, for example, [Sch20,
§ 3.2]. The tensor product of two presheaves F, G is given by the co-end expression

F � G :=
∫ X,Y ∈D

F (X)⊗k G(Y )⊗k D(−, X ⊗ Y ),

and the internal Hom is given by

[G, H] =
∫

Y ∈D
Homk(G(Y ), H(Y ⊗−)).

The Yoneda embedding Y : D→ PShD is canonically LSM. By construction, the tensor product
− �− is cocontinuous in each variable.

3.1.2 We define the full subcategory ShD of F ∈ PShD for which F (D ⊗ γX) is exact in
Vec, for every exact sequence

D ⊗ γX : DX∨XX∨X → DX∨X → D → 0, (4)

with X strongly faithful and D arbitrary in D. Since ‘limits commute’, it follows that the
inclusion functor from ShD to PShD is continuous and hence (by Freyd’s special adjoint functor
theorem) admits a left adjoint

S : PShD→ ShD, (5)

the sheafification or reflection. The restriction of S to ShD is the identity. If F ∈ ShD, then clearly
the functor F (Z ⊗−) is also in ShD, for each Z ∈ D. It then follows as a direct application
of Day’s reflection theorem [Day72, Theorem 1.2(2)] that there is a unique closed symmetric
monoidal structure on ShD which makes S LSM. We denote the tensor product on ShD again
by ⊗. The Yoneda embedding Y : D→ PShD factors through the embedding of the subcategory
ShD. We will denote the corresponding fully faithful functor by Y0 : D→ ShD. It is isomorphic
to the composite S ◦ Y , so, in particular, Y0 is LSM.

3.1.3 We refer to the appendix for the notions of sieve, Grothendieck topology, the category
of sheaves with respect to a topology and localisations of Grothendieck categories.
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For each D ∈ D, denote by T (D) the set of all sieves R ⊂ D(−, D) such that there exists a
strongly faithful X ∈ D for which D ⊗ evX ∈ R(DX∨X). Our notation ShD is justified by the
following theorem.

Theorem 3.1.4.

(i) The assignment D �→ T (D) from § 3.1.3 is a k-linear Grothendieck topology on D and the

subcategory ShD of PShD is precisely the category of T -sheaves Sh(D, T ).
(ii) ShD is a localisation of PShD, so, in particular, a Grothendieck category.

(iii) Every object in D is compact in ShD and every object in ShD is a quotient of a (possibly

infinite) coproduct of objects in D.

(iv) Given a functor F : J→ ShD out of a filtered category J, its colimit taken in PShD is

contained in ShD (and hence equal to the colimit of F in there).

(v) The functor Y0 : D→ ShD sends D ⊗ γX to an exact sequence in ShD, for every D ∈ D
and strongly faithful X ∈ D.

Proof. Part (i) will be proved in § 3.2. We explain how (i) implies (ii) in the usual fashion. As a
left adjoint, the reflection S in (5) is cocontinuous. This already implies that ShD is cocomplete.
It also follows that the coproduct in ShD over the set of isomorphism classes of objects in D,

G :=
⊕

X∈ObD/�
X,

is a generator of ShD, meaning that ShD(G,−) : ShD→ Vec is faithful. Hence it suffices to
show that ShD is abelian and that direct limits of short exact sequences are (left) exact. Both
properties follow easily if S : PShD→ ShD is (left) exact, that is, when ShD is a localisation of
PShD. Hence claim (ii) follows from claim (i) and Theorem A.1.4.

For part (v), we can observe that by definition and the Yoneda lemma,

ShD(Y0(D ⊗ γX), F ) = PShD(Y (D ⊗ γX), F ) = F (D ⊗ γX),

for arbitrary F ∈ ShD. Hence Y0(D ⊗ γX) is indeed exact.
Part (iv) follows easily from the fact that in Vec, a filtered colimit of short exact sequences

is exact.
Finally, we prove part (iii). Objects in D are compact in PShD, so part (iv) implies that

Y0 : D→ ShD sends every object in D to a compact object in ShD. That every object is a
quotient of coproduct of objects in D follows from the above fact that G is a generator. �

3.2 Proof of Theorem 3.1.4(i)
Here we complete the proof of Theorem 3.1.4. As a heuristic explanation of Theorem 3.1.4(i) we
also present a non-enriched but similar site in Analogy 3.2.3.

3.2.1 First we prove that T from § 3.1.3 constitutes a topology as in Definition A.1.2.
Condition (T1) is immediate from Example 2.2.3(i). For condition (T2), consider A ∈ D, R ∈
T (A) and a morphism f : B → A in D. By definition, there exists a strongly faithful X ∈ D
such that A⊗ evX is in R. It then follows that B ⊗ evX is in f−1R, so f−1R ∈ T (B).

For condition (T3), consider S ⊂ D(−, A) and R ∈ T (A) as in (T3). Since there exists f :=
A⊗ evX in R(AX∨X), for some strongly faithful X, there must exist a strongly faithful Y ∈ D
such that AX∨XevY is in f−1S(AX∨XY ∨Y ). The latter just means that A⊗ evX ⊗ evY is in
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S(AX∨XY ∨Y ), which means that A⊗ evX⊗Y is also in S(AY ∨X∨XY ). It then follows from
Proposition 2.2.6(i) that S ∈ T (A).

3.2.2 We now prove the equality ShD = Sh(D, T ). Take an arbitrary presheaf F ∈ PShD.
By a ‘pair’ (D, X) we mean an arbitrary D ∈ D and a strongly faithful X ∈ D. For each pair
(D, X), denote by RD

X the sieve on D generated by the morphism D ⊗ evX . This is the minimal
sieve on D containing D ⊗ evX , or equivalently the image of

D(−, DX∨X)
(D⊗evX)◦−−−−−−−−→ D(−, D).

Since the representable functors yield a set of generators for PShD, we can complete the
epimorphism D(−, DX∨X) � RD

X to give an exact sequence
⊕

g:B→DX∨X,f◦g=0

D(−, B)→ D(−, DX∨X)→ RD
X → 0

in PShD with f := D ⊗ evX . Consequently, F (D)→ Nat(RD
X , F ) is an isomorphism if and only

if the sequence

0→ F (D)
F (f)−−−→ F (DX∨X)→

∏
g:B→DX∨X,f◦g=0

F (B) (6)

is exact. On the other hand, by definition, F ∈ ShD if and only if

0→ F (D)
F (f)−−−→ F (DX∨X)

F (DEX)−−−−−→ F (DX∨XX∨X) (7)

is exact for every pair (D, X).
Clearly, if (7) is exact, then so is (6). On the other hand, assume that (6) is exact, for a

fixed X but for every D ∈ D. For any g : B → DX∨X with f ◦ g = 0, we have the following
commutative diagram.

DX∨XX∨X
D⊗EX �� DX∨X

BX∨X
B⊗evX

��

g⊗X∨X

��

B

g

��

Applying F yields the following commutative diagram.

F (DX∨XX∨X)

��

F (DX∨X)
F (DEX)

��

F (g)

��
F (BX∨X) F (B)� ���

The fact that the lower horizontal arrow is a monomorphism follows from our assumption that
(6) with D replaced by B is exact. Consider a ∈ F (DX∨X) such that F (DEX)(a) = 0. By
commutativity of the diagram (and using the monomorphism) we also find that F (g)(a) = 0.
Exactness of (6) thus implies that a is the image of F (f) and therefore (7) is exact too.

By the above two paragraphs we find that when F ∈ Sh(D, T ), it follows that (6) is exact
for all pairs (D, X), so (7) is exact for all pairs and consequently F ∈ ShD. Next, assume that
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F ∈ ShD. Then by the reverse reasoning we find that F (D)→ Nat(RD
X , F ) is an isomorphism

for all pairs (D, X). Now take an arbitrary R ∈ T (D). It is of the form RD
X ⊂ R ⊂ D(−, D) for

some strongly faithful X. We have already found that the composite

F (X)→ Nat(R, F )→ Nat(RD
X , F )

is an isomorphism, so we only need to show that Nat(R, F )→ Nat(RD
X , F ) is a monomorphism

to be able to conclude that F is a T -sheaf. Take therefore arbitrary A ∈ D and h ∈ R(A) ⊂
D(A, X). In PShD, we can expand the commutative square of morphisms AX∨X ⇒ D to give
the following commutative diagram.

D(−, A) �� R
� � �� D(−, D)

D(−, AX∨X)

��������������
�� D(−, DX∨X) �� �� RD

X

��

��

Evaluation of Nat(−, F ) yields the commutative diagram

F (A)
��

��

Nat(R, F )

��

η 
→ηA(h)
��

F (AX∨X) F (DX∨X)�� Nat(RD
X , F )��

where the left vertical arrow is a monomorphism by exactness in (7) for the pair (A, X). A natural
transformation η : R⇒ F which is sent to zero in Nat(RD

X , F ) therefore satisfies ηA(h) = 0 for
all A ∈ D and h ∈ R(A), or in other words η = 0. This proves the required monomorphism and
thus concludes the proof of the claim ShD = Sh(D, T ).

Analogy 3.2.3. Consider a category B with finite products, with terminal object ∗. By [SGA3,
IV.1.3], the morphism U → ∗ is a ‘universal effective epimorphism’ if the induced

V × U × U ⇒ V × U → V (8)

is a coequaliser for every V ∈ B. By [SGA3, IV.1.8], if U → ∗ and U ′ → ∗ are universal effective
epimorphisms, the same is true for U × U ′ → ∗. Take C ⊂ ObB, containing ∗ and closed under
products, such that U → ∗ is a universal effective epimorphism for every U ∈ C. The correspond-
ing collection of coverings V × U → V forms a classical Grothendieck pretopology. The sheaves
are the presheaves F : Bop → Set which send the diagrams (8) to equalisers.

Remark 3.2.4. Denote by Σ ⊂ Ξ(D) the class of all exact sequences

D ⊗ γX and D ⊗ (X∨ ⊗X
evX−−→ 1→ 0→ 0),

for arbitrary D ∈ D and strongly faithful X ∈ D. It follows easily, and from similar argu-
ments to those used in § 3.2.2, that Σ constitutes an ‘ind-class’, as in Definition A.2.1 in the
appendix. We can therefore also prove Theorem 3.1.4(i) by applying Propositions A.2.2 and
A.2.3.
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3.3 Connection with abelian envelopes
Theorem 3.3.1. If ShD is LSM equivalent to the ind-completion of a tensor category T over

k, then T is the abelian envelope of D.

Proof. If ShD is equivalent to the ind-completion of a tensor category, we can define a tensor
category T as the full subcategory of ShD of all rigid objects, by Lemma 1.3.7. Since D is rigid,
this means that Y0 takes values in the subcategory T. This allows us to construct a fully faithful
LSM functor F : D→ T, which admits the following commutative diagram.

T � � �� IndT

D
��

F

��

� � Y0 �� ShD

∼
��

(9)

We introduce the category LSMrex of right exact LSM functors, the category LSMγ(D,−) of
LSM functors which send every exact sequence (4), for X strongly faithful, to an exact sequence,
and the category LSMcc of all cocontinuous LSM functors. For each tensor category T1, diagram
(9) (and Theorem 3.1.4(v)) induces a commutative diagram

LSMrex(T,T1) ��

��

LSMrex(T, IndT1)

��

LSMcc(IndT, IndT1)��

��
LSMγ(D,T1) �� LSMγ(D, IndT1) LSMcc(ShD, IndT1)��

(10)

where each functor is given by composition with an LSM functor. The right vertical arrow is
an equivalence, since it is induced from a LSM equivalence. Inverses of the two right horizontal
arrows are given by taking left Kan extensions; see [Sch20, Theorem 3.2.4]. Consequently, the
middle vertical arrow is also an equivalence. The two left horizontal arrows are equivalences since
any LSM functor from a pseudo-tensor category to the ind-completion of a tensor category takes
values in rigid objects. We can thus use the equivalence between T1 and the category of rigid
objects in IndT1 from Lemma 1.3.7 to construct inverses. Consequently, the left vertical arrow
is also an equivalence.

We will now argue that the latter equivalence can be rewritten as the equivalence required
by Definition 1.3.4. Firstly, by Remark 1.3.5, we have

LSMrex(T,T1) = Tens(T,T1) ⊂ LSMfaith(T,T1). (11)

We claim that we always have an inclusion

LSMfaith(D,T1) ⊂ LSMγ(D,T1).

Indeed, a faithful LSM functor H : D→ T1 maps every non-zero object in D to a non-zero object
in T1. By Proposition 2.2.6(iii) every non-zero object in T1 is strongly faithful, from which it
follows that H sends every sequence (4) to an exact sequence.

Moreover, by (11) and the left equivalence in (10), every functor H in LSMγ(D,T1) extends
to a faithful functor T→ T1, hence H must be faithful as well. In particular, LSMfaith(D,T1)
is equal to LSMγ(D,T1). Combining that equality with the equality in (11) and the equivalence
on the left in diagram (10) completes the proof. �
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Remark 3.3.2. (i) Theorem 3.3.1 is not specific to ShD. Indeed, the same statement is true, for
instance, for PShD itself.

(ii) If D is a semisimple tensor category, then ShD = PShD = IndD.

Motivated by Theorem 3.3.1, we provide an explicit criterion for when ShD is equivalent to
the ind-completion of a tensor category.

Proposition 3.3.3. The following conditions are equivalent.

(i) ShD is LSM equivalent to the ind-completion of a tensor category over k.

(ii) There exists M ∈ ShD, with M ⊗− : ShD→ ShD faithful and exact, which splits every

morphism in D.

(iii) For every morphism f in D, there exists M ∈ ShD, with M ⊗− faithful and exact, for

which M ⊗ f is split.

Proof. First we show that (i) implies (ii). Assume that ShD � IndT for a tensor category T.
The category IndT is a Grothendieck category and thus has enough injective objects. We take
a non-zero Y ∈ T and an injective object I ∈ IndT which contains Y as a subobject. As for any
object in IndT, the functor I ⊗− is exact. Furthermore, if I ⊗N = 0, for N ∈ IndT, then the
subobject Y ⊗N is also zero. However, N is a subobject of Y ∨ ⊗ Y ⊗N , which implies N = 0.
Hence I ⊗− is faithful. By applying adjunction, it follows that X ⊗ I is also injective for any
rigid object X. Consider a morphism f : X → Y in D ⊂ T. Since T is an abelian subcategory
of ShD � IndT, the image and kernel of f , which we denote by Z and K, are in T and hence
also rigid. Then clearly I splits K ↪→ X and Z ↪→ Y , so also f .

That (ii) implies (iii) is trivial.
To prove that (iii) implies (i), we will freely use Theorem 3.1.4, which implies in particular

that ShD is a finitely presented Grothendieck category.
First we take an arbitrary compact object X in ShD. It is the cokernel of a morphism Y0(f),

for f : B → A in D. Consider M ∈ ShD as in part (iii) which splits f . By exactness of M ⊗−,
it follows that M ⊗X is isomorphic to a direct summand of M ⊗A. Hence M ⊗X ⊗− is exact.
Since M ⊗− is faithful and exact, X ⊗− must also be exact. Since ⊗ is cocontinuous and every
object in ShD is a filtered colimit of compact objects, it actually follows that ⊗ is exact on ShD.

Now we prove that rigid and compact objects coincide and that they form an abelian sub-
category of ShD. That rigid objects are compact follows from as in the proof of Lemma 1.3.7.
The full claim then follows if we can show that the dual of the kernel of a morphism between
rigid objects is given by the cokernel of the dual morphism. The latter is a standard property in
abelian monoidal categories with exact tensor product.

Hence the category of compact objects in ShD is an abelian monoidal subcategory which is
a tensor category. It follows that ShD is the ind-completion of this tensor category. �

4. Main theorem and applications

4.1 Main results
Fix a pseudo-tensor category D over a field k

Theorem 4.1.1. Assume that one of the following conditions is satisfied.

(i) For every morphism f in D, there exists M ∈ ShD, with M ⊗− : ShD→ ShD faithful and

exact, such that M ⊗ f is split in ShD.
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(ii) Every morphism f in D is split by a strongly faithful object in D.

Then D admits an abelian envelope (F,T). Moreover, there is an LSM equivalence IndT � ShD,

which admits a commutative (up to isomorphism) diagram of LSM functors as follows.

ShD
∼ �� IndT

D
��

Y0

��

� � F �� T
��

��

Proof. We claim that condition (ii) implies condition (i). Indeed, for X ∈ D, the fact that X ⊗−
is exact follows from bi-adjunction with X∨ ⊗−. Moreover, by Theorem 3.1.4(v), if X is strongly
faithful then evX is an epimorphism in ShD. For every A ∈ ShD we thus have an epimorphism
X∨ ⊗X ⊗A � A. So X ⊗A = 0 implies A = 0, and X ⊗− is faithful.

That condition (i) implies the conclusion is an immediate consequence of Theorem 3.3.1 and
Proposition 3.3.3. �

Remark 4.1.2. Theorem 4.1.1(ii) shows that a self-splitting pseudo-tensor category in which every
non-zero object is strongly faithful admits an abelian envelope. We cannot relax the second
assumption. Indeed, over any field k of characteristic 0, Lemma 2.3.4 provides self-splitting
pseudo-tensor categories D where non-zero objects are faithful, but which do not admit an
abelian envelope (by Corollary 2.2.7). If we do not demand that k be algebraically closed, these
examples D can be taken to have finite-dimensional morphism spaces.

Now we show how our existence result implies the recognition result from [EHS20].

Corollary 4.1.3 [EHS20, Theorem 9.2.2]. Consider a fully faithful LSM functor I : D→ V
to a tensor category V, such that:

(i) any X ∈ V is a quotient of an object I(A), with A ∈ D;

(ii) for any epimorphism X → Y in V there exists a non-zero T ∈ D such that X ⊗ I(T ) �
Y ⊗ I(T ) is split.

Then V is the abelian envelope of D.

Proof. By Corollary 2.2.7, every non-zero object in D is strongly faithful. Now consider a mor-
phism a : A→ B in D. Denote its image in V by Z and its cokernel by W . By assumption, there
exists 0 �= T ∈ D such that T splits the epimorphisms A � Z and B � W . It follows that T ⊗ f

is split. Hence the condition in Theorem 4.1.1(ii) is satisfied.
Thus there exists an abelian envelope F : D→ T. By definition, there exists a tensor functor

E : T→ V, which extends I. By Remark 1.3.5, E is faithful. Since every object in V can be
written as the cokernel of a morphism between objects in D ⊂ T, E is also essentially surjective.
By applying the tensor duality, we find also that every object in V can be written as the kernel
of a morphism between objects in D ⊂ T. Taking presentations and copresentations of objects
in V by objects in D allows us to show that E inherits full faithfulness from I.

In conclusion, E : T→ V is an equivalence, so V is the abelian envelope of D. �

Example 4.1.4. Let T be a tensor category which has enough projective objects (or equiva-
lently one non-zero projective object). Then T is the abelian envelope of every pseudo-tensor
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subcategory which contains the projective objects. Indeed, this follows immediately from
Corollary 4.1.3 and Lemma 2.1.3.

Example 4.1.5. Let T be a tensor category which has enough projective objects and an object
X such that every object in T is a subquotient of a direct sum of objects ⊗iX ⊗⊗jX∨. Then
T is the abelian envelope of every pseudo-tensor subcategory D ⊂ T which contains X. Indeed,
since every projective object is injective (Lemma 2.1.3), it must appear as a direct summand
of a direct sum of objects ⊗iX ⊗⊗jX∨ and hence be contained in D. We can thus reduce to
Example 4.1.4.

The following example is well known.

Example 4.1.6. Let k be an algebraically closed field of characteristic 0 and m, n ∈ N. Denote
by K the kernel of the LSM functor Hm|n : [GLt, k]→ RepGL(m|n) from § 1.4.3, for t = m− n.
By Lemma 1.4.4(i), the functor Hm|n is full. The induced functor [GLt, k]/K → RepGL(m|n)
is thus fully faithful. Every faithful representation of an algebraic supergroup generates the
representation category in the sense of Example 4.1.5; see [CH17, § 7.1]. Hence RepkGL(m|n) is
the abelian envelope of [GLt, k]/K.

4.2 Deligne’s categories
Fix a field k with char(k) = 0 and t ∈ Z ⊂ k. Our results now allow us to recover the following
theorem of [EHS20].

Theorem 4.2.1.

(i) The category [GLt, k] has an abelian envelope Vt.

(ii) Assume k̄ = k. Let T be a tensor category and take X ∈ T with dimX = t. Either there

exists a tensor functor

Vt → T, with Vt �→ X,

or there are unique m, n ∈ N with m− n = t for which there exists a tensor functor

RepkGL(m|n)→ T, with km|n �→ X.

Proof. Part (i) is an immediate application of Theorem 4.1.1(ii), by Theorem 2.3.1.
Set D := [GLt, k]. For part (ii) we start from an LSM functor F : D→ T which maps Vt

to X, which is guaranteed to exist by Lemma 1.4.2. Denote by J the kernel of F . Since F is
monoidal, this is a tensor ideal. By the classification of tensor ideals in [Cou18, Theorem 7.2.1],
either ‘J = 0’ or J is equal to the kernel Jm|n of Hm|n from § 1.4.3 for some m, n.

If J = 0 the functor F is faithful, so by Definition 1.3.4, F extends to a tensor functor
Vt → T. If J = Jm|n, F yields a faithful functor D/J → T and the tensor functor follows from
the fact that RepGL(m|n) is an abelian envelope as in Example 4.1.6. �

Remark 4.2.2. It follows easily from the description of the tensor ideals in [GLt, k] in [Cou18,
§ 7.2] that one can determine from which tensor category in Theorem 4.2.1(ii) the tensor functor
comes by which Schur functors annihilate X ∈ T. This is explained in detail in [EHS20], where
it is also demonstrated that Theorem 4.2.1, together with the Tannakian formalism of [Del90],
yields an affirmative answer to [Del07, Question 10.18].

The proof of Theorem 4.2.1, using the input from Lemmata 1.4.6 and 1.4.8 and [Cou18,
§ 7.1], also yields the following analogue.
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Theorem 4.2.3.

(i) The category [Ot, k] has an abelian envelope Ut.

(ii) Assume k̄ = k. Let T be a tensor category and X a symmetrically self-dual object of

dimension t. Either there exists a tensor functor

Ut → T, with Ut �→ X,

or there are unique m, n ∈ N with m− 2n = t for which there exists a tensor functor

RepkOSp(m|2n)→ T, with km|2n �→ X.

4.2.4 In [Del07, § 2], a pseudo-tensor category [St, k] is defined for every t ∈ k, which is a
semisimple tensor category when t �∈ N by [Del07, Théorème 2.18]. In [Del07, Proposition 8.18]
it is shown that, for n ∈ N, the pseudo-tensor category [Sn, k] admits a fully faithful tensor F

functor into a tensor category Tn. By Corollary 2.2.7, every non-zero object in [Sn, k] is strongly
faithful. Furthermore, it is proved in [CO14, Lemma 3.11] that there exists a non-zero object
which splits every morphism in [Sn, k]. Theorem 4.1.1 therefore demonstrates that [Sn, k] admits
an abelian envelope. This recovers one of the main results in [CO14].

It seems worthwhile to point out the following observations (although the equivalent proper-
ties are of course known to be true by [CO14]), which do not rely on [CO14, Lemma 3.11]. The
latter lemma is one of the cornerstones in both the original and above proof that [Sn, k] admits
an abelian envelope, but has a rather intricate proof.

Proposition 4.2.5. For F : [Sn, k]→ Tn in § 4.2.4, the following properties are equivalent.

(i) Every object in Tn is a quotient of an object F (D) with D ∈ [Sn, k].
(ii) For every indecomposable D ∈ [Sn, k] with dimD = 0, F (D) is projective in Tn.

Each statement implies that Tn is the abelian envelope of [Sn, k].

Proof. We set D = [Sn, k]. First we prove that (i) implies (ii). By construction of Tn in [Del07,
§ 2], all objects have finite length and morphism spaces are finite-dimensional. It follows that every
object in IndTn is the union of its subobjects in Tn and that 1 admits an injective hull I in
IndTn. So I is the union of objects Iα ∈ Tn with socle 1. Moreover, by (i), each Iα is a subobject
of an object in D. By [Cou18, § 3.4], there is a unique indecomposable object X0 in D, different
from 1, for which there exist non-zero morphisms 1→ X0 and moreover D(1, X0) = k. This
shows that X0 = I, so, in particular, X0 is projective in Tn. Also by [Cou18, § 3.4], dimX0 = 0
and every other indecomposable object in D of dimension 0 is a direct summand of a tensor
product of X0 with some Z ∈ D. Thus (i) implies (ii).

We now prove that (ii) implies (i). By [Del07, Proposition B1], every object in Tn is a
subquotient of an object in D. Now consider an arbitrary X ∈ Tn. It is a subquotient of M ∈ D.
By assumption, and existence of D ∈ D with dimD = 0 as in the above paragraph, there exists
a projective (and hence injective) object P in Tn contained in D. It then follows that P ⊗X is
a direct summand of P ⊗M . On the other hand, X is a quotient of P∨ ⊗ P ⊗X, which is itself
a direct summand of P∨ ⊗ P ⊗M ∈ D. So (i) follows.

The combination of (i) and (ii) implies that Tn is the abelian envelope of D, for instance by
Corollary 4.1.3. �
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4.3 Tilting modules
Now let k be an algebraically closed field of characteristic p > 0.

4.3.1 We work in the tensor category Rep SL2 of finite-dimensional algebraic representations
of the algebraic group SL2/k. We have the pseudo-tensor subcategory D := TiltSL2 of tilting
modules; see [Jan03, §II.E]. We denote the simple module and the indecomposable tilting module
with highest weight iω (with ω the fundamental weight) by Li and Ti, for i ∈ N. The Steinberg
modules (see [Jan03, II.3.18]) are

Stj = Lpj−1 = Tpj−1, for j ∈ N.

For r ∈ Z>0, we consider the tensor ideal Jr in TiltSL2 of morphisms which factor through a
direct sum of objects Ti, with i ≥ (pr − 1). This gives a complete and irredundant list of the
non-trivial tensor ideals in TiltSL2; see [Cou18, § 5.3]. Consequently, Jr is generated by idStr .

Theorem 4.3.2. If p > 2, then (TiltSL2)/Jr admits an abelian envelope, for each r > 0.

The condition p > 2 is not required and only reflects the limitations of the proof of
Lemma 4.3.5 below. Indeed, the equivalent of Theorem 4.3.2 for p = 2 is already known by
[BE19]. We start the proof with the following lemma.

Lemma 4.3.3. If La is in the same block of Rep SL2 as Stj = Lpj−1, for a, j ∈ N, then either

a = pj − 1 or a ≥ 2pj+1 − pj − 1.

Proof. This is an immediate consequence of [Jan03, II.7.2(3)]. �

Lemma 4.3.4. If i ≤ pr − 1, then Li ⊗ Str−1 is a tilting module.

Proof. By the Steinberg tensor product theorem [Jan03, II.3.17], for i < pr we have

Li �
r−1⊗
a=0

Lpaia , with i =
r−1∑
a=0

paia and 0 ≤ ia < p.

By Lemma 1.3.8, it therefore suffices to prove that Lpab ⊗ Str−1 is a tilting module for a < r and
b < p. We prove the more general claim that Lm ⊗ Str−1 is a tilting module for m ≤ pr − pr−1.

By [Jan03, Proposition E.1], it then suffices to prove that

Ext1(Δn, Lm ⊗ Str−1) = 0, for n ∈ N and m ≤ pr − pr−1, (12)

where Δn is the Weyl module with top Ln.
We divide (12) into two cases. First assume that n ≥ pr − 1. Then n ≥ m + pr−1 − 1, so

Lm ⊗ Str−1 belongs to the Serre subcategory Rep SL2
≤n generated by simples Lj with j ≤ n in

which Δn is projective. Hence (12) is satisfied. Now assume that n < pr − 1. The left-hand side
of (12) can be rewritten as Ext1(Δn ⊗ Lm, Str−1), and by our assumption

n + m < 2pr − pr−1 − 1.

By Lemma 4.3.3, this means that the direct summand of Δn ⊗ Lm in the block of Str−1 is a
direct sum of copies of Str−1, so the extension vanishes and (12) is again satisfied. �

We set D = TiltSL2 and C = D/Jr.
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Lemma 4.3.5. If p > 2, the object Str−1 is strongly faithful in C.

Proof. By definition, we need to prove that the sequence

C(γStr−1 , Ti) : 0→ C(1, Ti)→ C(⊗2Str−1, Ti)→ C(⊗4Str−1, Ti) (13)

is exact, for each 0 ≤ i < pr − 1.
The structure of tensor ideals recalled in § 4.3.1 implies that, for i ≥ pr−1 − 1, the module

Ti is a direct summand of an object T ⊗ Str−1. That (13) is exact for i ≥ pr−1 − 1 is thus an
example of Lemma 2.2.9.

Next, we consider Ti with i < pr−1 − 1. We claim that

Jr(1, Ti) = 0 = Jr(⊗2Str−1, Ti) = Jr(⊗4Str−1, Ti).

That the leftmost space is zero follows immediately from the description of the ideals Jl in
[Cou18, § 3.2]. We now prove the claim for the rightmost space; the proof for the middle space
is similar but easier. By adjunction, we can equivalently prove

Jr(Str−1,⊗3Str−1 ⊗ Ti) = 0.

By definition of Jr and Lemma 4.3.3, the contrary would necessarily imply that

[⊗3Str−1 ⊗ Ti : La] �= 0, for some a ≥ 2pr − pr−1 − 1.

However, since we have

i + 3(pr−1 − 1) < 4pr−1 − 4 < 2pr − pr−1 − 1,

under the assumption p > 2, this non-vanishing multiplicity is impossible. It follows that for
i < pr−1 − 1 we have the following commutative diagram, with the second row given by (13).

0 �� D(1, Ti) ��

∼
��

D(⊗2Str−1, Ti) ��

∼
��

D(⊗4Str−1, Ti)

∼
��

0 �� C(1, Ti) �� C(⊗2Str−1, Ti) �� C(⊗4Str−1, Ti)

The first row is exact by Corollary 2.2.7 and the inclusion D ⊂ Rep SL2. Hence the second row
is exact. This concludes the proof. �

Proof of Theorem 4.3.2. Consider a morphism f : T → T ′ in D = TiltSL2, where T and T ′ are
direct sums of indecomposable tilting modules Ti with i < pr − 1. By Lemma 4.3.4 the image,
kernel and cokernel of f are objects X ∈ Rep SL2 such that Str−1 ⊗X is a tilting module. Indeed,
this follows from the fact that there are no first extensions between tilting modules; see [Jan03,
§II.E]. The same fact then also shows that Str−1 ⊗ f is split in D; see also [CEH19]. It then
follows trivially that Str−1 ⊗ f is also split in C = D/Jr. Any morphism in C can be written as
above. Hence Str−1 splits every morphism in C.

Since Str−1 is strongly faithful in C, by Lemma 4.3.5, we can apply Theorem 4.1.1(ii). �

Remark 4.3.6. Let G be a simple simply-connected algebraic group. The category RepG is
self-splitting via the Steinberg modules; see [CEH19, § 3.3]. This thus gives an example of a
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self-splitting tensor category which is not a finite tensor category, and RepG is its own abelian
envelope by Corollary 4.1.3.

Remark 4.3.7. As proved in [CEH19, Theorem 3.3.1], in the generality of Remark 4.3.6, RepG

is the abelian envelope of TiltG. Let Rep∞G denote the category of all algebraic representations
(which is equivalent to IndRepG). Our results can be used to prove that Rep∞G is equivalent
to the category of k-linear functors (TiltG)op → Vec which send all sequences in Ξ(TiltG) (or
alternatively all sequences T ⊗ γStn for tilting modules T and n ∈ N) to exact sequences.

4.4 Tensor ideals
Fix a pseudo-tensor category D over a field k and assume that the morphism spaces in D are
finite-dimensional.

4.4.1 A thick tensor ideal in D is a full Karoubi subcategory J of D such that X ∈ J

implies that Y ⊗X ∈ J for all Y ∈ D. The decategorification map (see [Cou18, § 4.1]) sends a
tensor ideal J in D to the thick tensor ideal of objects X with idX ∈ J . By [Cou18, Theorem
4.1.2], this map is always surjective.

Proposition 4.4.2. Assume that the decategorification map is a bijection for D and that there

exists a fully faithful LSM functor I : D→ V to a tensor category V, such that any X ∈ V is a

quotient of an object I(A), with A ∈ D. Then V is the abelian envelope of D.

Proof. By Corollary 4.1.3, it suffices to prove that any epimorphism in V is split by a non-zero
object in D. We do this in three steps.

(1) Consider a non-zero morphism f : D → 1 in D. This is automatically an epimorphism
in V. By [Cou18, Proposition 4.2.2], f is unique up to composition with endomorphisms of D.
Furthermore, [Cou18, Lemma 4.2.4] then implies that there exists X ∈ D such that evX is given
by a composition

evX : X∨ ⊗X → D
f−→ 1.

By Lemma 2.1.2(i) the morphism X ⊗ evX , and hence also X ⊗ f , is split.
(2) Consider an epimorphism g : M � 1 in V. By assumption, there exists D ∈ D such that

we have an epimorphism π : D � M . By step 1, X ⊗ (g ◦ π) is split for some non-zero X ∈ D
from which it follows that also X ⊗ g is split.

(3) Finally, we consider an arbitrary epimorphism h : M � N in V. Tensoring with N∨ and
taking a pullback yields the following commutative diagram.

M ⊗N∨ h⊗N∨
�� �� N ⊗N∨

(M ⊗N∨)×(N⊗N∨) 1 �� ��
��

��

1
��

coN

��

By step 2, there exists a non-zero X ∈ D which splits the epimorphism on the lower line. After
applying X ⊗−, the diagram thus admits a diagonal morphism X → XMN∨ which makes the
upper triangle commute. It then follows that the associated morphism XN → XM ensures that
X ⊗ h is split. �
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Remark 4.4.3. Let k be algebraically closed. It is proved in [Cou18] that the decategorification
map is a bijection for [GLt, k], [Ot, k] and [St, k], when char(k) = 0, and that the same is true
for TiltSL2 when char(k) > 0.
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Appendix. Grothendieck topologies

Fix a commutative ring K and an essentially small K-linear category A. Denote by PShA the
category of presheaves Aop → K −Mod.

A.1 K-linear sheaves

A.1.1 For A ∈ A, a sieve on A is a K-linear subfunctor of A(−, A) ∈ PShA. For a sieve
R on A and a morphism f : B → A in A, the assignment

ObA→ K −Mod, C �→ {g ∈ A(C, B) | f ◦ g ∈ R(C)}

yields a sieve on B, which we denote by f−1R. In other words, f−1R is the pullback of R→
A(−, A)← A(−, B).

The following definition is taken from [BQ96, 1.2 and 1.6].

Definition A.1.2. A K-linear Grothendieck topology T on A is an assignment to each A ∈ A
of a collection T (A) of sieves on A such that for every A ∈ A:

(T1) we have A(−, A) ∈ T (A);
(T2) for R ∈ T (A) and a morphism f : B → A in A, we have f−1R ∈ T (B);
(T3) for a sieve S on A and R ∈ T (A) such that for every B ∈ A and f ∈ R(B) ⊂ A(B, A) we

have f−1S ∈ T (B), it follows that S ∈ T (A).

The following definition is taken from [BQ96, 1.3 and 1.6].

Definition A.1.3. For a K-linear Grothendieck topology T on A, a presheaf F ∈ PShA is a
T -sheaf if for every A ∈ A and R ∈ T (A), the canonical morphism

F (A) � Nat(A(−, A), F )→ Nat(R, F )

is an isomorphism. The full subcategory of PShA of T -sheaves is denoted by Sh(A, T ).

Our interest in Grothendieck topologies derives from [BQ96, Theorem 1.5]. Recall that a
localisation of an abelian category is a full replete subcategory for which the inclusion functor
has a left adjoint which is left exact (and hence exact).

Theorem A.1.4 (Borceux and Quinteiro). The localisations of PShA are precisely the subcat-

egories Sh(A, T ), for all Grothendieck topologies T on A.
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A.2 Schäppi’s formalism
We start by recalling a definition from [Sch20].

Definition A.2.1. For a class Σ ⊂ Ξ(A) of exact sequences (1), denote by Co(Σ) the set of
morphisms q which appear as the cokernels in sequences in Σ. Then Σ is an ind-class if the
following conditions hold.

(i) For every q ∈ Co(Σ), there is a sequence X1
q→ X0 → Z

∼→ 0 in Σ.
(ii) For each sequence (1) in Σ and each morphism f : A→ X1 in A with q ◦ f = 0, there exist

p′ : B → A in Co(Σ) and f ′ : B → X2 in A yielding the following commutative diagram.

X2

p
�� X1

q
�� X0

�� 0

B
p′

��

f ′
��

A

f

��

0

��������

The following proposition follows immediately from [Sch20, A.1.2 and A.2.3].

Proposition A.2.2 (Schäppi). Consider a subclass Σ ⊂ Ξ(A). For each A ∈ A, denote by T (A)
the set of all sieves R ⊂ A(−, A) which contain a composite r = r1 ◦ r2 ◦ · · · ◦ rm (with m ∈ N,

where the empty composite is interpreted as idA) of morphisms ri ∈ Co(Σ).
If Σ is an ind-class, then {A �→ T (A)} is a K-linear Grothendieck topology on A.

The following proposition follows from the combination of [Sch20, A.1.4 and A.2.5].

Proposition A.2.3 (Schäppi). For the topology T associated to an ind-class Σ ⊂ Ξ(A) as in

Lemma A.2.2 and F ∈ PShA, the following assertions are equivalent.

(i) F is a T -sheaf.

(ii) The sequence F (ξ) is exact in K −Mod for each ξ ∈ Σ.
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