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SUMMARY
In this article, hybridization of IWD (intelligent water drop) and GA (genetic algorithm) technique
is developed and executed in order to obtain global optimal path by replacing local optimal points.
Sensors of mobile robots are used for mapping and detecting the environment and obstacles present.
The developed technique is tested in MATLAB simulation platform, and experimental analysis is per-
formed in real-time environments to observe the effectiveness of IWD-GA technique. Furthermore,
statistical analysis of obtained results is also performed for testing their linearity and normality. A
significant improvement of about 13.14% in terms of path length is reported when the proposed
technique is tested against other existing techniques.
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1. Introduction
Since the development of mobile robots, the navigational control and optimal path planning of these
mobile robots has remained a challenging task. However, robots have become an integral part of
human life. Mobile robots are quite relatable with household activities, industries, hospitals, etc.
To optimize the challenges involved in path planning, many researchers have worked using different
approaches. Still, it is necessary to find best path and smooth navigation with more robust techniques.
A robust navigational controller requires careful design considerations. The design should be accom-
plished with a variety of sensors in order to provide all the required information to the controller,
so that the function of the mobile robot may be collision-free and smooth. Intelligent water drops
(IWDs) and genetic algorithm (GA) are inspired by nature. The IWD technique is derived from the
phenomena happening in the riverbed.1 Here the natural phenomenon consists of the reactions and
actions of water drops in the rivers. This algorithm can be used as combinatorial optimization. In this
article, a newly developed approach is modified and introduced to control the navigation of the robot.
Pour et al.1 used a grid-based concept of IWD for path optimization of mobile robots. Using IWDs,
path optimization has been done in two layers. Duan et al.2 have used a refined IWD algorithm for the
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path optimization of an unmanned combat aerial vehicle (UCAV). Using IWD and K-method, UCAV
can find a smooth trajectory. Shah3 has proposed an IWD algorithm with continuous optimization
(IWD-CO). This analysis shows the successful simultaneous optimization of six different problems.
Alijla et al.4, 5 have used an hybrid MRMC (master river multiple creak)-IWD model. This is a type of
modified IWD algorithm. Kaur et al.6 have used an hybrid approach of cuckoo search and IWD algo-
rithm to identify the natural terrain feature in a specific area of land. Hosseini7, 8 has used the IWD
algorithm to extract a solution for an n-queen puzzle and TSP problem. Salmanpour et al.9, 10 used a
generalized IWD algorithm with fuzzy interface for path tracking problem of robots. Bansal et al.11

have used an IWD algorithm to decode the graph-based TSP problem. Rao et al.12 emphasized IWD
with differential evolution algorithm for multi-robot navigational control in a hazy environment. Xue
et al.13 used the basics of ACO technique on the TSP problem to find solutions. Chen et al.14 have
explained the ACO algorithm for multi-robot patrolling solutions. Ismkhan et al.15 have proposed
ACO with pheromone information feedback approach for finding the solution. Priyambado et al.16

used an ACO algorithm to plan the track of a robot in moving obstacles environment. Yang et al.17

have used a multilayer ACO algorithm for autonomous robot navigation. Parhi et al.18 have pre-
sented hybridized invasive weed optimization (IWO) technique and ANFIS (adaptive neuro-fuzzy
interface system) for the navigation of robots. Patle et al.19 have proposed a probability fuzzy logic
(PFL) path-planning algorithm to navigate the robot. Pandey et al.20 explained the design of a mobile
robot for path planning and control with the use of fuzzy logic controller. Parhi et al.21 have used
a DAYANI arc contour intelligent method for obstacle-free path planning and navigation of two-
wheel self-balanced robot in a cluttered scenario. Pandey et al.22 have used an ANFIS controller for
the navigation of a mobile robot and obstacle avoidance. Ultrasonic sensors, infrared sensors, etc. are
connected for the detection of obstacles. Tan et al.23 have used a design of mobile robot control archi-
tecture for the movement of robots in unknown environments. Li et al.24 used a self-adaptive learning
particle swarm optimization (SLPSO) technique for track planning of mobile robots in a messy envi-
ronment. Patle et al.25 have presented GA for the movement of mobile robots. Kumar et al.26 used
an hybridized approach for the navigational control of humanoid robots in a cluttered environment.
Nazarahari et al.27 have used artificial potential field (APF) and enhanced GA to get the optimal path
for a mobile robot. Bakdi et al.28 have used an hybrid GA and adaptive fuzzy logic control to plan the
collision-free path using Kinect camera. Lamini et al.29 have used GA for the movement of mobile
robots. Liang and Lee30 have used an efficient artificial bee colony (ABC) algorithm for navigational
control of multi-robots. Pandey and Parhi31 have used an hybridized fuzzy wind-driven optimiza-
tion approach for path planning of mobile robots in static and dynamic obstacles environment. Qu
et al.32 have used an improved GA for multi-robot track planning. Turcer and Yildirim33 have used
an improved GA for dynamic track planning for a mobile robot. Mandava et al.34 have presented an
hybrid algorithm of potential field method and PSO for the shortest path planning of mobile robots
in static and dynamic environments. Mohanta and Keshari et al.35 have proposed an hybrid fuzzy
model for the navigation of mobile robots in an unknown environment. Rath et al.36, 37 have pre-
sented path optimization techniques for an humanoid robot in an unknown environment. Pandey and
Parhi38 have made a behavior-based neural network for the navigation of mobile robots. Panahandeh
et al.39 have proposed an auto gain update neural network for the navigation of mobile robots. Li
et al.40 have proposed an hybrid algorithm of numerical integration and iterative method for the
navigation of mobile robots. Chen et al.41 have proposed an hybrid algorithm of artificial potential
field and ant colony optimization for path planning of mobile robots. Ajeil et al.42 have proposed an
hybrid optimization algorithm of PSO-MFB (particle swarm optimization–modified frequency bat
algorithm) for multiobjective path planning of mobile robots. Holland et al.43 have explained the
analysis and application of biological control with artificial intelligence technique. Goldberg et al.44

have proposed genetic and evolutionary algorithm for the navigation of mobile robots. Mohnata and
Keshri45 have proposed an hybrid fuzzy-probabilistic model for path planning of mobile robots. Low
et al.46 have proposed optimal path planning of mobile robots using improved Q-learning. Ni et al.47

have proposed an improved shuffled frog leaping algorithm for motion control of mobile robots.
Kumar et al.48 have proposed an hybrid SCA-ACO algorithm for path optimization of mobile robots.
Rosas et al.49 have used an hybrid algorithm for path planning of mobile robots. Montiel et al.50, 51

have proposed a bacterial potential field and ant colony approach in two different scenarios of path
planning of mobile robots. Gracia et al.52 have presented an hybrid approach for autonomous nav-
igation of mobile robots. Castillo et al.53 have presented path optimization for mobile robots using
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Fig. 1. Path and their turning points.

GA. Pandey et al.54, 55 have proposed a V-REP-based analysis of navigational control for mobile
robots using PSO-tuned FNN and ANFIS controller in two different scenarios. Kumar et al.56 have
poposed a hybridized technique for navigational control over multiple mobile robots. Muni et al.57

have explained prim’s algorithm for path optimization of humanoid robots.
A deep survey of existing research indicates that navigational analysis and path planning are

tedious work in case of a mobile robot. In the IWD technique, few research articles are available.
However, in a limited way the research on GA is available, but the hybridized IWD-GA technique
for mobile robot movement and its control is not done till date. Apart from these, GA is always con-
sidered to be smart due to its selection process of chromosomes and their problem-solving ability,
whereas IWD is one of the best optimization techniques in the field of artificial intelligence due to
its path searching capability and decision-making process. While adding IWD and GA, its efficiency
will increase as the tabulated results might reflect. These facts are the motivation for implementing
the proposed approach in mobile robots. The other sections are structured as follows:

• Section 2: Locomotion of the mobile robot
• Section 3: Proposed IWD-GA technique
• Section 4: Navigational analysis using IWD-GA technique
• Section 5: Comparative analysis
• Section 6: Conclusions

2. Locomotion of Mobile Robot
The stand of a mobile robot in the experimental platform is defined as X position, Y position and
orientation angle (θ); in short, the stand is denoted by (Xc, Yc, θ). ′c′ is the symbol of the current
point. During locomotion, a path is generated that may have many turning points as depicted in Fig. 1.

To calculate the length of the path travelled by the robot, Equation 1 is used, where ′c′ indicates
the current position and c+1 indicates the next stand of the robot.

L(path) =
n∑

i=0

√
(Xc+1 − Xc)2 + (Yc+1 − Yc)2 (1)

Equation 2 is used for the calculation of the orientation of the robot, where G y and Gx are the
coordinates of the target point, and Yc+1 and Xc+1 are the next stand of the robot and can be measured
using equations 3 and 4. The orientation of robot for the movement and their axis position is shown
in Figure 2.

θ = tan−1

[
G y − Yc+1

Gx − Xc+1

]
(2)

Xc+1 = Xc + cosθ (3)

Yc+1 = Yc + sinθ (4)
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Fig. 2. Axis position and movement of the robot.

Fig. 3. Path and technique activation points.

The turning point is also known as the decision point. At the decision point, the technique acti-
vates and optimizes the path for the next movement of the robot. The activation scenario is depicted
in Fig. 3.

After the decision point, it is important to describe the obstacle avoidance strategy. According to
the position, the robot calculates the heading angle and moves forward to the target with avoidance
of the obstacle. This strategy encourages the robot to move, but the imposed technique optimizes
the path to move and the robot follows the instructions. A pictorial representation of the obstacle
avoidance strategy is shown in Fig. 4. G1, G2 and G3 are the goal points where the robot reaches
from the initial point. The robot is shown in green circle and obstacle in yellow box. Whenever
a robot finds the obstacle within the sensor range, it is encouraged to move with an angle, which
instruction is given by the optimization technique. After optimization, it is required to move forward
with an optimized path.

3. Proposed Hybrid IWD-GA Technique

3.1. Architecture of IWD Technique
The IWD algorithm is explained as a population-based intelligence technique. It is encouraged by
the dynamics of water drops in the river.1 Each drop of water in the river selects a forward path; paths
that have less soil and obstacles are often chosen as the forward path to achieve the goal. However,

https://doi.org/10.1017/S0263574721000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000114


Hybrid IWD-GA: A path optimization approach 2037

Fig. 4. Obstacle avoidance strategy.

the water drop changes its speed and direction as per the environmental conditions. The speed and
direction changing behavior is similar to that of an intelligent robot. IWDs almost follow the behavior
of ant colony technique; whereas the ant colony searches the path by pheromone update, the IWD
finds the path by soil update in the river bed.

To travel from one point to another, each water drop takes finite steps. The velocity of water drops
either increases or decreases along the path, and it depends upon the soil on the path. If the path
has much amount of soil, then the velocity decreases, and if the path has less soil, then the velocity
increases. However, the drops either remove or gain some amount of soil during the journey. The
removal of soil from the path also depends upon the velocity of IWDs. Soil removal from the path is
more when the velocity is low and vice versa. The time taken by the IWDs to travel from one point
to another also depends upon the amount of soil on the path. Thus, it is clear that soil and velocity
are inversely proportional to each other. The law of motion is used to calculate the time taken by
the IWDs. Every node in this algorithm is directly or indirectly connected. The IWD chooses the
next stop point (edge) which is connected to the next stop point. The journey of an IWD starts from
the first node and finishes on the last node. In this paper, node representation is taken as ′i′ and i+1.
Further, the change in velocity and amount of soil are updated for the betterment of next node or stop
point search. The details of velocity and soil update are stated in the next section.

3.2. Soil and Velocity Update
In this section, the velocity and soil update method is shown in mathematical form with their static
and dynamic parameters. While the water moves on a river bed, the velocity of water drops changes
with change in the amount of soil. The velocity of a water drop is inversely proportional to the amount
of soil.

Xa, Ya, Za are the static parameters for the velocity of IWD. It is used to establish the non-linear
relationship between the velocity of drops and the soil update on the river bed. The relationship
between soil (i, j) and velocity of IWD is defined as

�Velocity(I W D) ∝ (soil(i, j))−1 (5)

At time ′t ′, the change in velocity shows the accumulation of soil in the water drop:

�VelocityW D(t) = (Xa) × (soil(i, j))−1 (6)

During the movement of drops, the sub-paths are generated and the soil of the sub-path is
concentrated on the water drops.

�VelocityWD(t + 1) = Za

(Xa + Ya × Soil(i + 1, j + 1))
(7)
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Fig. 5. Flowchart of IWD-GA algorithm.

Each drop of water moves from one node to another, which connects the soil update of each drop.
The updates are expressed as:

Soil(i, j) = (1 − sn) · soil(i, j) − sn · �soil(i, j) (8)

Soil(i) = soilI(i, j) + �soil(i, j) (9)

where ′s ′
n is a constant which is selected from the soil deposited on the IWD. The range of constant

is (0, 1). Soil I () denotes the accumulated soil in the drops, and �Soil() denotes the change in soil
amount during motion. The soil update is the sum of the initial and the change in the initial amount
of soil. Further, the velocity of water drops on the sub-path and path is updated, and the update is
expressed as:

�Velocityn
WD(i, j) = soil(i, j)n + �Soil(dynamicPn − staticPn) (10)
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Processor Motorola 68331, 25MHz
RAM 512 kb
Motion 2 DC Brushed servo motors with 

encoders
Sensors 8 Infrared proximity 
Sensors 30 mm (height from ground)

Communication Standard serial port, upto 115 kb/s
Weight 80g
Height 30mm
Diameter 70 mm
Payload Max 250g
Speed Maximum 500 mm/s

Minimum 20 mm/s

Fig. 6. Description of Khepera-II mobile robot.

Fig. 7. Simulation analysis of the navigation of the mobile robot in scene 1.

where Za=1, Xa= 0.02 and Ya = 1. These parameters are used to update the velocity and to avoid the
division by zero. Equation 10 represents the final change in velocity of IWDs with the consideration
of static and dynamic parameters. Here, the obstacles in the path and sub-path are considered as static
parameters, while the velocity and other movable particles are considered as dynamic parameters.
However, the changes due to dynamic and static parameters are minor, but it gives a better update in
soil and velocity.

3.3. Node representation (next stop point)
The primary objective of the IWD is to choose the next stop point. The stop point is chosen on the
basis of the concentration of soil. Less soiled paths are often preferred. Let an intelligent drop at node
‘i ′ selects another stop point ei.i+1 (k) to call on the next node i+1. The probability of the selection
of node is expressed as:

PNS(ei,i+1(k)) = Node soil update in local search

Soil update in global search
(11)

where node soil update in local search is defined as f (soil(ei,i+1(k))) .
Soil update in global search is formulated as

∑n
l=0 f (soil(ei, j (l))), j = i + 1
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Table I. Comparison of path lengths in simulation and corresponding experiments in scene 1

Path length (cm)

No. of runs Simulation Experiment % Deviation

1 281.91 299.78 5.96
2 279.96 292.51 4.29
3 289.52 301.22 3.88
4 278.26 290.23 4.12
5 282.63 302.87 6.68
6 280.55 295.12 4.94
7 283.74 297.71 4.69
8 280.87 295.73 5.02
9 286.97 297.09 3.41
10 284.12 294.17 3.42
11 283.23 297.36 4.75
12 284.41 300.21 5.26
13 281.26 294.76 4.58
14 278.72 290.84 4.17
15 278.93 288.61 3.35
16 280.23 291.23 3.78
17 282.56 296.74 4.78
18 278.64 291.23 4.32
19 286.92 301.87 4.95
20 286.51 299.56 4.36
21 284.42 297.63 4.44
22 279.57 290.89 3.89
23 283.48 298.01 4.88
24 281.57 296.36 4.99
25 279.49 290.72 3.86
26 278.93 291.63 4.35
27 278.76 291.79 4.47
28 279.61 293.67 4.79
29 280.32 290.91 3.64
30 279.09 291.74 4.34

Average 281.84 295.07 4.48

(a) (b) (c)

(d) (e) (f)

Path

Target

Obstacle

Start

Fig. 8. Experimental analysis of the navigation of the mobile robot in scene 1.
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Table II. Comparison of execution time in simulation and corresponding experiments in scene 1

Execution time (s)

No. of runs Simulation Experiment % Deviation

1 19.44 20.76 6.36
2 20.11 21.36 5.85
3 19.62 20.99 6.53
4 19.32 20.52 5.85
5 19.58 21.14 7.38
6 19.77 20.57 3.89
7 19.68 20.54 4.19
8 19.87 20.63 3.68
9 19.73 20.71 4.73
10 19.68 21.08 6.64
11 19.62 20.62 4.85
12 19.56 20.59 5.00
13 19.71 20.56 4.13
14 19.42 20.80 6.63
15 19.39 20.61 5.92
16 19.46 20.51 5.12
17 19.63 20.53 4.38
18 19.40 20.53 5.50
19 19.70 20.57 4.23
20 19.61 20.60 4.81
21 19.52 20.67 5.56
22 19.49 20.58 5.30
23 19.41 20.53 5.46
24 19.56 20.57 4.91
25 19.41 20.56 5.59
26 19.38 20.54 5.65
27 19.46 20.56 5.35
28 19.39 20.58 5.78
29 19.52 20.61 5.29
30 19.41 20.57 5.64

Average 19.56 20.67 5.34

where

f (soil{ei,i+1(k)}) = (ε + g(soil{ei, j (k)}))−1 (12)

g
(
soil

(
ei, j (k)

)) =
{

soil(ei, j (k))i f min( soil(ei, j (l)) = 0

soil(ei, j (k)) − min( soil(ei, j (l)), else
(13)

where P N S is the probability function for the next stop point search, ′ε′ is the small constant quantity
which is used to avert division with zero. g (soil) is the function of soil accumulation on IWD. f (soil)
is the function of stop point search coordinate.

3.4. Repairing of infeasible solution
To optimize the path, many considerations have been taken into account, in which obstacle avoid-
ance is taken as one of the prime considerations. In such cases, the feasible solution is reduced with
increase in the iteration. The repairing of solution mechanism is used to find the best solution in con-
text with the global update. If [R (PIcurrentiteration) �= R (PItwopreviousiterations)], then the local constraints
will update. Moreover, from global search, the new solution will be selected and considered as a
repaired solution.
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Fig. 9. Histogram of results obtained in scene 1.

Fig. 10. Normality test of results obtained in scene 1.
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Table III. Comparison of path length in simulation and corresponding experiments in scene 2

Path length (cm)

No. of runs Simulation Experiment % Deviation

1 296.79 312.17 4.93
2 299.35 319.23 6.23
3 301.51 318.54 5.35
4 297.78 315.47 5.61
5 296.98 316.96 6.30
6 298.45 315.41 5.38
7 298.44 313.73 4.87
8 295.65 310.11 4.66
9 295.97 311.56 5.00
10 296.12 312.42 5.22
11 296.96 313.75 5.35
12 297.37 312.85 4.95
13 300.45 314.23 4.39
14 301.72 315.72 4.43
15 301.45 314.16 4.05
16 302.42 316.12 4.33
17 298.42 317.96 6.15
18 296.49 312.63 5.16
19 297.73 310.78 4.20
20 296.83 310.63 4.44
21 295.97 311.01 4.84
22 300.12 316.23 5.09
23 297.73 312.19 4.63
24 299.42 310.87 3.68
25 298.36 314.83 5.23
26 299.52 311.73 3.92
27 298.67 311.81 4.21
28 298.92 313.41 4.62
29 299.46 312.53 4.18
30 296.77 311.56 4.75

Average 298.39 313.69 4.87

Fig. 11. Simulation analysis of the navigation of the mobile robot in scene 2.
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Table IV. Comparison of execution time in simulation and corresponding experiments in scene 2

Execution time (s)

No. of runs Simulation Experiment % Deviation

1 20.74 21.56 3.80
2 21.08 22.17 4.92
3 21.41 22.52 4.93
4 20.98 22.13 5.20
5 20.77 21.91 5.20
6 20.61 21.62 4.67
7 20.78 21.71 4.28
8 20.53 21.54 4.69
9 20.91 21.67 3.51
10 20.73 21.7 4.47
11 20.57 21.57 4.64
12 20.61 21.59 4.54
13 21.02 22.01 4.50
14 21.12 22.11 4.48
15 21.1 22.16 4.78
16 21.32 22.27 4.27
17 20.92 21.97 4.78
18 20.72 21.59 4.03
19 20.62 21.73 5.11
20 20.7 21.76 4.87
21 20.59 21.59 4.63
22 21.09 22.24 5.17
23 20.68 21.72 4.79
24 20.87 21.96 4.96
25 20.83 22.16 6.00
26 20.9 22.18 5.77
27 20.63 21.79 5.32
28 20.74 21.63 4.11
29 20.68 21.7 4.70
30 20.57 21.57 4.64

Average 20.83 21.86 4.73

Target

Start

Obstacle

Path

(a) (b) (c)

(d) (e) (f)

Fig. 12. Experimental analysis of the navigation of the mobile robot in scene 2.
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Fig. 13. Simulation analysis of the navigation of multiple mobile robots in scene 3.

(a) (b)

(d) (e)

(c)

Start-1 Start-2

Target-2Target-1

Path-2

Path-1

Obstacles

(f)

Fig. 14. Experimental analysis of the navigation of multiple mobile robots in scene 3.

3.5. Overview of hybrid IWD-GA
The GA concept was established by Holland43 and explained by Goldberg.44 The algorithm starts
with the selection of a random population, which consists of a set of chromosomes. In random popu-
lation size, the selected chromosomes may be fit or unfit. The fitness of the chromosomes is decided
by their potential to choose an optimized solution. Each chromosome may be in binary code, octal
code, hexadecimal code, etc. This code representation is used to improve fitness value, and it is the
objective of the GA. The selection operator is used to get the fittest chromosomes from their parent
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Table V. Comparison of path length in simulation and corresponding experiments in scene 3

Path length (cm)

Simulation Experiment % Deviation

No. of runs Rob-1 Rob-2 Rob-1 Rob-2 Rob-1 Rob-2

1 352.51 340.78 370.72 355.12 4.91 4.04
2 354.12 341.21 370.63 355.41 4.45 4.00
3 356.71 342.56 371.15 354.89 3.89 3.47
4 352.12 340.41 369.87 354.45 4.80 3.96
5 352.94 340.89 370.23 355.56 4.67 4.13
6 353.75 341.51 371.82 355.78 4.86 4.01
7 353.4 342.06 370.19 356.23 4.54 3.98
8 352.74 341.32 370.56 355.57 4.81 4.01
9 353.19 341.09 371.29 356.12 4.87 4.22
10 352.69 340.56 370.45 354.71 4.79 3.99
11 353.57 341.54 370.21 355.54 4.49 3.94
12 353.63 342.63 370.67 356.17 4.60 3.80
13 354.71 342.83 371.21 356.76 4.44 3.90
14 352.68 343.12 370.83 356.19 4.89 3.67
15 354.01 342.76 372.41 357.67 4.94 4.17
16 353.21 342.68 371.53 357.43 4.93 4.13
17 352.53 341.57 370.67 355.73 4.89 3.98
18 353.53 341.53 371.64 357.64 4.87 4.50
19 355.17 340.96 372.34 356.42 4.61 4.34
20 354.24 342.61 372.86 356.72 4.99 3.96
21 352.19 341.52 371.21 355.67 5.12 3.98
22 353.52 341.83 370.67 355.91 4.63 3.96
23 353.73 341.74 370.58 356.48 4.55 4.13
24 354.09 340.83 369.87 355.41 4.27 4.10
25 352.94 341.57 370.19 356.73 4.66 4.25
26 353.76 342.46 370.83 354.74 4.60 3.46
27 352.97 341.57 369.91 355.67 4.58 3.96
28 353.16 340.67 370.53 355.38 4.69 4.14
29 354.91 340.93 370.81 355.29 4.29 4.04
30 352.51 341.06 371.17 354.69 4.39 3.84

Average 353.59 341.63 370.90 355.87 4.67 4.00

chromosomes. The most appropriate chromosome selection is based on iteration or selection method
(Roulette wheel selection) of GA, and the crossover and mutation operators are used to produce
offspring and to set up new genes in the offspring. However, the bias towards optimal solution chro-
mosomes is mostly selected. The GA is designed to choose the optimal solution by their iteration
process, and it stops when meeting the stopping criteria given by the users. That’s why GA is termed
a versatile, robust optimization technique. Now, in the context of this approach, the GA is designed
to find the best path in a complex environment. In view of path planning, GA is used to search the
best feasible next stop for the mobile robot. In the working platform, the current position of the robot
is used as the initial point, and it is considered for the calculation of heading angle and coordinates
of the next stop. The inputs for GA are obstacle distance and target distance, which are fed with the
assistance of sensors reading and mathematical calculations. The target distance is expressed as:

Tar(dis) =
√

(Ci x − Gx)2 + (Ciy − G y)2 (14)

Ci x and Ciy is the current stand of the robot and Gx , G y are the target coordinates in x and y planes.
The idea of hybridization of IWD-GA is to merge the best attributes of these two algorithms to extract
the most appropriate solution. The reason behind the use of GA is to make random deviation of soil
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Table VI. Comparison of execution time in simulation and corresponding experiments in scene 3

Path length (cm)

Simulation Experiment % Deviation

No. of runs Rob-1 Rob-2 Rob-1 Rob-2 Rob-1 Rob-2

1 24.45 23.24 25.32 23.99 3.44 3.13
2 24.56 23.52 25.39 24.23 3.27 2.93
3 24.89 23.41 25.61 24.16 2.81 3.10
4 24.03 23.12 25.10 23.83 4.26 2.98
5 24.23 23.70 25.22 24.42 3.93 2.95
6 24.86 23.42 25.47 24.26 2.39 3.46
7 24.42 23.56 25.56 24.45 4.46 3.64
8 24.13 23.49 25.29 24.31 4.59 3.37
9 24.73 23.34 25.43 24.40 2.75 4.34
10 24.41 23.19 25.21 24.14 3.17 3.94
11 24.17 23.59 25.13 24.36 3.82 3.16
12 24.67 23.81 25.63 24.71 3.75 3.64
13 24.53 23.56 25.74 24.91 4.70 5.42
14 24.87 23.27 25.45 24.67 2.28 5.67
15 24.61 23.67 25.96 24.16 5.20 2.03
16 24.53 23.90 25.76 24.97 4.77 4.29
17 24.19 23.26 25.91 24.38 6.64 4.59
18 24.37 23.73 25.64 24.29 4.95 2.31
19 24.49 23.26 25.71 24.67 4.75 5.72
20 24.94 24.03 25.67 24.34 2.84 1.27
21 25.01 23.61 26.13 24.49 4.29 3.59
22 24.18 23.53 25.68 24.61 5.84 4.39
23 24.29 23.39 25.34 24.53 4.14 4.65
24 25.06 23.14 26.21 24.51 4.39 5.59
25 24.23 23.34 25.69 24.17 5.68 3.43
26 24.67 24.12 25.38 24.68 2.80 2.27
27 24.31 23.71 25.61 24.71 5.08 4.05
28 24.29 23.37 25.34 24.36 4.14 4.06
29 24.91 23.48 25.78 24.29 3.37 3.33
30 24.46 23.34 25.31 24.73 3.36 5.62

Average 24.52 23.50 25.56 24.42 4.06 3.76

in the paths. The variation of soils in the way guides to find the best route by IWD. In the IWD-GA
approach, the results obtained from Equations 7 and 9 are given as inputs to GA; then the probability
fitness function can be formalized as:

Mi =
∑i

j=1
Si (15)

where Si is the probability of choosing each chromosome, and its function can be expressed as:

Si = Sar(Vi )

F
(16)

where Vi represents each chromosome and i = 1, 2, 3 . . . N . N is the initial population size. F is
the fitness function of each chromosome that can be expressed as:

F =
∑N

i=1
Sar(Vi ) (17)
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Fig. 15. Histogram of results obtained in scene 3.

Sar() is the function of the chromosome population. The best IWD-GA edges are updated according
to the travelled nodes of IWD. This can be expressed as:

Soil(i, j) = (1 + sn) · soil(i, j) − ρn · 1

NLT − 1
· soilnLT (18)

∀(i, j) ∈ PW D

Soil(i, j) =
{

f (soil{ei,i+1(k)})N = Si

g
(
soil

(
ei, j (k)

))
Otherwise

(19)

where soiln
LT is the accumulated soil by the best IWD, and NLT is the length travelled by the best

IWD. sn and Piwd are constant parameters. Figure 5 describes the flowchart of IWD-GA.

4. Navigational Analysis Using IWD-GA Technique
The effectiveness of the developed technique is presented here. A simulation environment with
obstacles is developed through MATLAB software. The target point, start point, generated path and
obstacles are clearly indicated by the arrows in respective simulation figures. The technique is further
investigated in the real environment under laboratory conditions by the deployment of KHEPERA-II
robot; the description is given in Fig. 6. Eight infrared sensors and ambient sensors detect obstacles
in the environment.

4.1. Navigation using a single robot in a complex environment
A complex environment of size 240 × 160 cm2 is established for simulation and real-time experi-
ment. The simulation analysis is shown in Fig. 7. In Figs. 8(f) and 12(f), the complete environment
is clearly indicated. Tables I and II show the results generated by the robot in scene 1.
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Fig. 16. Normality test of results obtained in scene 3.

4.1.1. Statistical analysis of results. A statistical analysis of results obtained during the navigation
of robot in simulation and experimental platforms is performed. The normality test of results and
histograms are created. For testing normality, the Kolmogorov–Smirnov test is performed, and their
graphs are cited Figs. 9 and 10.
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Fig. 17. Simulation analysis of the navigation of three mobile robots in scene 4.

(a) (b)

(c) (d)

(e)

Start-1

Start-2
Start-3

Path-3

Target

Path-1

Path-2

Obstacles

Fig. 18. Experimental analysis of the navigation of three mobile robots in scene 4.

Another simulation and real-time environment is developed with different obstacles orientation
using the same arena size. In this scene, eight obstacles were deployed to create a complex envi-
ronment. Figures 11 and 12(f) show the simulation and real-time experimental results. The robot
successfully reached the target after avoiding the obstacles, and the results are recorded in Tables III
and IV. The averages of all the runs in terms of path length, time taken and deviation by robots are
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Table VII. Comparison of path length in simulation and corresponding experiments in scene 4

Path length (cm)

Simulation Experiment % Deviation

No. of runs Rob-1 Rob-2 Rob-3 Rob-1 Rob-2 Rob-3 Rob-1 Rob-2 Rob-3

1 266.45 256.78 302.41 275.52 267.4 314.72 3.29 3.97 3.91
2 266.11 256.06 302.21 275.23 266.89 314.13 3.31 4.06 3.79
3 267.01 256.12 302.56 275.46 267.12 314.23 3.07 4.12 3.71
4 266.72 256.21 302.81 276.23 267.56 314.42 3.44 4.24 3.69
5 266.32 256.41 303.02 275.71 267.23 314.56 3.41 4.05 3.67
6 266.56 257.45 302.84 275.85 267.63 314.49 3.37 3.80 3.70
7 267.11 256.56 302.36 275.63 267.41 314.56 3.09 4.06 3.88
8 267.23 256.71 302.45 276.11 267.42 314.72 3.22 4.00 3.90
9 266.72 256.62 302.73 276.23 267.66 314.9 3.44 4.12 3.86
10 266.36 256.19 302.92 275.43 267.08 314.36 3.29 4.08 3.64
11 267.37 257.16 302.65 276.42 269.64 315.63 3.27 4.63 4.11
12 267.64 257.31 303.41 277.16 268.51 315.42 3.43 4.17 3.81
13 267.19 257.14 303.49 277.61 267.91 316.24 3.75 4.02 4.03
14 268.39 256.18 303.42 278.61 268.74 316.74 3.67 4.67 4.21
15 267.69 257.81 304.52 276.61 269.17 315.63 3.22 4.22 3.52
16 267.81 257.53 303.46 279.46 267.17 316.85 4.17 3.61 4.23
17 268.24 258.13 304.19 278.94 268.17 316.47 3.84 3.74 3.88
18 267.91 257.29 303.42 279.53 269.42 315.42 4.16 4.50 3.80
19 267.28 257.49 304.91 276.16 268.61 316.19 3.22 4.14 3.57
20 268.16 257.64 303.67 277.64 267.84 314.92 3.41 3.81 3.57
21 266.64 258.91 303.93 279.83 267.83 315.46 4.71 3.33 3.65
22 266.57 258.37 304.15 280.19 266.97 316.42 4.86 3.22 3.88
23 267.15 256.93 303.64 278.67 267.94 317.86 4.13 4.11 4.47
24 267.83 257.37 304.17 276.42 268.97 316.48 3.11 4.31 3.89
25 268.16 257.46 304.26 278.61 268.83 316.73 3.75 4.23 3.94
26 267.42 257.52 303.83 280.14 268.48 317.45 4.54 4.08 4.29
27 267.49 256.83 303.58 276.94 267.41 315.42 3.41 3.96 3.75
28 266.79 256.67 304.87 275.94 268.46 315.42 3.32 4.39 3.34
29 267.48 257.51 303.52 278.69 269.17 314.95 4.02 4.33 3.63
30 267.61 257.61 302.73 277.34 267.64 315.64 3.51 3.75 4.09

Average 267.25 257.13 303.40 277.28 268.01 315.55 3.61 4.06 3.85

inscribed in bold font. It is also observed that the navigation of a single robot with the proposed tech-
nique is very good as the deviation in both platforms is found within the acceptable limit of 5.5%.
This deviation authenticates the agreement in both platforms.

4.2. Navigation using multiple robots in a complex environment
It is also required to check the efficacy with multi-robots. Therefore, a highly complex environment
is created. A simulation environment and experimental workspace is developed and the movement of
robot is recorded. The simulation and experimental figures are depicted in Figs. 13 and 14, respec-
tively. The results are tabulated in Tables V and VI. The obtained results are compared, and it is
observed that the deviation in simulation and real-time experiments is within 5%.

4.2.1. Statistical analysis of results. For testing normality, the Kolmogorov–Smirnov test is per-
formed and their graphs are cited in Figs. 15 and 16.

Further, an investigation is performed with three robots in a complex environment as shown in
Figs. 17 and 18. In this investigation, the robots have different start positions but same target point,
and the robots successfully reached the target without any collision. The results are tabulated in
Tables VII and VIII. The deviations are within 5%, which is acceptable.
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Table VIII. Comparison of execution time in simulation and corresponding experiments in scene 4

Execution time (s)

Simulation Experiment % Deviation

No. of runs Rob-1 Rob-2 Rob-3 Rob-1 Rob-2 Rob-3 Rob-1 Rob-2 Rob-3

1 23.71 19.54 29.03 24.65 20.3 29.92 3.81 3.74 2.97
2 23.09 19.13 28.74 24.12 20.08 29.65 4.27 4.73 3.07
3 23.11 19.17 29.12 24.23 20.12 30.22 4.62 4.72 3.64
4 23.32 19.74 29.13 24.39 20.21 30.11 4.39 2.33 3.25
5 23.26 19.8 28.91 24.16 20.19 30.04 3.73 1.93 3.76
6 23.42 19.62 28.87 24.32 20.21 29.82 3.70 2.92 3.19
7 23.33 19.63 28.84 24.3 20.23 29.83 3.99 2.97 3.32
8 23.36 19.43 28.96 24.17 20.3 29.91 3.35 4.29 3.18
9 23.29 19.26 28.98 24.21 20.24 29.68 3.80 4.84 2.36
10 23.17 19.24 29.01 24.18 20.17 29.76 4.18 4.61 2.52
11 23.19 19.31 29.14 24.21 20.14 30.12 4.21 4.12 3.25
12 24.03 19.42 29.42 24.97 20.42 30.42 3.76 4.90 3.29
13 23.94 19.64 29.14 25.01 20.46 30.76 4.28 4.01 5.27
14 23.64 19.61 29.46 24.74 20.81 30.97 4.45 5.77 4.88
15 23.16 20.19 28.97 24.36 21.06 30.19 4.93 4.13 4.04
16 23.18 19.67 29.11 24.38 20.49 30.42 4.92 4.00 4.31
17 23.24 19.69 29.67 24.19 20.83 30.48 3.93 5.47 2.66
18 24.1 20.19 29.43 25.11 21.08 30.84 4.02 4.22 4.57
19 23.25 19.76 29.94 24.34 20.85 30.91 4.48 5.23 3.14
20 23.61 19.34 29.68 24.74 20.31 30.75 4.57 4.78 3.48
21 23.37 19.48 29.47 24.43 20.42 31.05 4.34 4.60 5.09
22 23.97 19.18 29.68 25.15 20.17 31.18 4.69 4.91 4.81
23 23.38 19.41 28.98 24.36 20.41 30.41 4.02 4.90 4.70
24 23.26 19.87 29.34 24.16 20.68 30.79 3.73 3.92 4.71
25 23.51 19.64 29.18 24.67 20.49 30.49 4.70 4.15 4.30
26 23.63 19.87 29.37 24.78 20.61 31.27 4.64 3.59 6.08
27 23.13 19.67 29.42 24.28 20.37 30.98 4.74 3.44 5.04
28 23.14 19.97 29.47 24.12 21.1 30.62 4.06 5.36 3.76
29 23.84 19.67 28.83 25.16 20.67 30.51 5.25 4.84 5.51
30 23.95 19.36 29.31 25.34 20.34 31.11 5.49 4.82 5.79

Average= 23.46 19.59 29.23 24.52 20.47 30.46 4.32 4.29 4.04

Table IX. Path length and execution time in scene 5

Simulation Simulation
path length (cm) execution time (s)

243.15 23.32

Table X. Comparison of path lengths with Fuzzy-.PRM45

Path length

Sl No. Environment Fuzzy-PRM (pixels) IWD-GA (pixels) % Improvement

1 Comparison in environment 1
Fig. 20 (a) and (b)

883 787 10.87

2 Comparison in environment 2
Fig. 20 (c) and (d)

910 832 8.57

3 Comparison in environment 3
Fig. 20 (e) and (f)

921 835 9.34

Average improvement = 9.59%
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Table XI. Comparison of path lengths with IQ-FPA46

Path length

Sl No. Environment IQ-FPA (fig.(a)) (unit) IWD-GA (fig.(b)) (unit) % Improvement

1 Comparison in environ-
ment 1 Fig. 21 (a) and (c)

29.33 24.41 16.77

2 Comparison in environ-
ment 2 Fig. 22 (a) and (c)

31.27 23.49 24.88

Average improvement = 20.83%

Table XII. Comparison of path lengths with IQD46

Path length

Sl No. Environment IQD (fig.(a)) (pixels) IWD-GA (fig.(b)) (pixels) % Improvement

1 Comparison in environ-
ment 1 Fig. 21 (b) and
(c)

26.27 24.41 7.08

2 Comparison in environ-
ment 2 Fig. 22 (b) and
(c)

26.37 23.49 10.92

Average improvement = 9%

Fig. 19. IWD-GA in a dynamic environment (scene 5).
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Table XIII. Comparison of path lengths with ISLF algorithm47

Path length

Sl No. Environment ISLFA (units) IWD-GA (units) % Improvement

1 Comparison in environ-
ment 1 Fig. 23 (a) and (b)

23.75 19.11 19.54

Fig. 20. (a), (c), (e) Path generated by Mohanta et al.45 (b), (d), (f) Path generated by the proposed technique.
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Fig. 21. (a), (b) Path generated by Low et al.46 (c) Path genrated by the proposed technique.

4.3. Navigation in a dynamic environment
Apart from those investigations, it is also required to check the performance in a dynamic environ-
ment. A dynamic environment is created as shown in Fig. 19. During a navigation, no collision is
observed, and the robot successfully reached the target. Ten runs have been applied to get an optimal
result, and optimal results are inscribed in Table IX.

Deviations in the results of the platforms somehow differed. A leading cause of deviation is the
condition taken during simulation and real-time experiments. In simulations, all conditions are con-
sidered ideal, but in real-time experiments, wheel slippage, friction on wheels, uneven path of robot
during navigation are the main factors causing some deviation in results. The results show an average
deviation of about 5%, which is acceptable.

5. Comparative Analysis between the Proposed IWD-GA and Other Existing AI Techniques
The effectiveness of the proposed technique is tested by simulation and experimental results. At the
same time, it is also essential to test the effectiveness of the technique with other available techniques.
For this, IWD-GA is compared with Fuzzy-PRM,45 improved Q-learning algorithm,46 IQ-FPA46 and
ISLF.47 The results are depicted in the Tables X, XI, XII, and XIII.

From the comparisons, it is clear that the proposed technique (IWD-GA) gives better results than
other AI techniques. Furthermore, the proposed technique is compared individually with IWD and
GA techniques, and the results of comparison confirm the efficacy of the proposed technique. The
comparative analysis is shown in Figs. 24 and 25. The result is recorded in Table XIV.

5.1. Significant contributions
The approach is tested on simulation and real-time experimental platforms, and the observed results
show a good agreement between both platforms. Further, this technique is compared with existing
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Fig. 22. (a), (b) Path generated by Low et al.46 (c) Path genrated by the proposed technique.

Fig. 23. (a) Path genrated by Ni et al.47 (b) Path generated by the proposed technique.

techniques such as fuzzy-PRM,45 improved Q-learning,46 IQ-FPA46 and ISLF47 and showed a signif-
icant improvement of 9.59%, 20.83%, 9% and 19.54%, respectively, in terms of path length. Again,
the approach is tested individually with the IWD and GA techniques, showing an average improve-
ment of 10.67% in path length and 11.19% in execution time. From these comparisons, it can be
concluded that the proposed approach performs well and optimizes path length during navigation
and shows better control over robots.
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Table XIV. Comparison of path lengths with IWD and GA

Sl No. Scene AI technique Path length (cm) % Improvement Execution time (s) % Improvement

1 1 IWD 307.42 9.49 21.08 8.35
2 GA 316.81 12.16 22.43 13.86
3 IWD-GA 278.26 19.32

R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2
4 3 IWD 393.42 369.92 11.73 7.98 27.12 25.23 11.39 8.36
5 GA 402.63 378.61 12.55 10.09 27.87 26.11 13.77 11.45
6 IWD-GA 352.12 340.41 24.03 23.12

Fig. 24. Path genrated by (a) IWD, (b) GA, (c) proposed technique in scene 1.

6. Conclusions
Given the popularity of mobile robots in various places, it is required to generate the best path and
control over navigation. Here, a hybrid IWD-GA is proposed for navigational control and path plan-
ning of mobile robots. Both simulation and real-time environments are considered to investigate
the effectiveness and efficiency of the proposed technique. The navigation of single and multiple
robots is tested in static and dynamic environments with the developed technique and the results are
compared. The average deviation in both platforms is within the acceptable limit of 6%. With the

https://doi.org/10.1017/S0263574721000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000114


2058 Hybrid IWD-GA: A path optimization approach

Fig. 25. Path genrated by (a) IWD, (b) GA, (c) proposed technique in scene 3.

proposed technique, the robots successfully achieved the target without any collision in both cases
(single and multiple robots). In addition, the proposed method and other existing methods are com-
pared with each other, and an average improvement of 13.14% is found. In future, this algorithm may
be used in all real-time problems where autonomous movements of robots will be required, such as
in industrial inspection, COVID-19 treatment at hospitals, military exercise, etc. Furthermore, this
proposed technique can be used for any type of robot where path optimization is required. This work
may be extended with mobile robot analysis in real dynamic environments.
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