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Automatic Sequences and Generalised
Polynomials

Jakub Byszewski and Jakub Konieczny

Abstract. We conjecture that bounded generalised polynomial functions cannot be generated by ûnite
automata, except for the trivial case when they are ultimately periodic.

Using methods from ergodic theory, we are able to partially resolve this conjecture, proving that
any hypothetical counterexample is periodic away from a very sparse and structured set. In particular,
we show that for a polynomial p(n) with at least one irrational coeõcient (except for the constant
one) and integer m ⩾ 2, the sequence ⌊p(n)⌋ mod m is never automatic.

We also prove that the conjecture is equivalent to the claim that the set of powers of an integer
k ⩾ 2 is not given by a generalised polynomial.

Introduction

Automatic sequences are sequences whose n-th term is produced by a ûnite-state
machine from the base-k digits of n. (A precise deûnition is given below.) By def-
inition, automatic sequences can take only ûnitely many values. Allouche and Shallit
[AS92,AS03b] have generalised the notion of automatic sequences to a wider class of
regular sequences and demonstrated its ubiquity and links with multiple branches of
mathematics and computer science. In a broader context, automatic sequences are
closely tied to regular languages (a sequence is automatic precisely when its level sets
are regular), which are at the lowest level in Chomsky’s hierarchy of formal languages
[Cho59]. he problemof demonstrating that a certain sequence is or is not automatic
or regular has been widely studied, particularly for sequences of arithmetic origin
(see, e.g., [AS92,AS03b,Bel07,SY11,MR15,SP11,Mos08,Row10]).

he aim of this article is to continue the aforementioned study for sequences that
arise from generalised polynomials, i.e., expressions involving algebraic operations
and the �oor function. More generally, we are interested in determining the simplest
generalised polynomials in terms of Chomsky’s hierarchy, apart from the rather trivial
examples of ultimately periodic sequences; in practice, only the question concerning
regular sequences seems amenable to analysis. Our methods rely on a number of
dynamical and ergodic tools. A crucial ingredient in our work is one of the main
results from the companion paper [BK18b] concerning the combinatorial structure
of the set of times at which an orbit on a nilmanifold hits a semialgebraic subset.
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his is possible because, by the work of Bergelson and Leibman [BL07], generalised
polynomials are closely related to dynamics on nilmanifolds.
Another motivation for this line of research stems from additive combinatorics.

It is natural to study existence and prevalence of linear patterns in sets of integers
deûned by ûnite automata. In his seminal work on a Fourier analytic proof of
Szemerédi’s theorem,Gowers introduced uniformity norms, which control the count
of arithmetic progressions and other patterns [Gow01]. he second author showed
that the hue–Morse sequence is Gowers uniform of all orders [Kon16], which, in
particular, implies that the number of arithmetic progressions of a given length in-
side the integers up to N with even sum of binary digits is, up to a small error, the
same as for a random set of density 1/2. he same result holds for the Rudin–Shapiro
sequence as well as for all non-periodic k-multiplicative sequences [FK18]. In full
generality, one expects that any automatic sequence should have a decomposition as
the sum of a simple structured part and a Gowers uniform error term (this can be
construed as a variant of the arithmetic regularity lemma [GT10], albeit with amuch
stronger conclusion, and applicable to amuch smaller class of sequences). In absence
of such a result, we aim to answer a simpler question. It follows from the celebrated
inverse theorem for Gowers norms [GTZ12] that all obstructions to Gowers unifor-
mity come fromnilsequences, or, equivalently (cf. [BL07]), from bounded generalised
polynomials. Hence, one is led to investigate the relation between generalised poly-
nomials and automatic sequences.

In [AS03b, hm. 6.2], it was proved that the sequence ( f (n))n≥0 given by
f (n) = ⌊αn + β⌋ for real numbers α, β is regular if and only if α is rational. he
method used there does not immediately generalise to higher degree polynomials in
n, but the proof implicitly uses rotation on a circle by an angle of 2πα. Replacing the
rotation on a circle by a skew product transformation on a torus (as in Furstenberg’s
proof ofWeyl’s equidistribution theorem [Fur61]), we easily obtain the following re-
sult. (For more on regular sequences, see Section 1.) A generalisation of this result is
obtained in [BK18a].

heorem A Let p ∈ R[x] be a polynomial. hen the sequence f (n) = ⌊p(n)⌋, n ≥ 0,
is regular if and only if all the coeõcients of p except possibly for the constant term are

rational.

In fact, we show the stronger property that for any integer m ≥ 2 the sequence
⌊ f (n)⌋ mod m is not automatic unless all the coeõcients of p except for the con-
stant term are rational, in which case the sequence is periodic. It is natural to inquire
whether a similar result can be proven formore complicated expressions involving the
�oor function, such as f (n) = ⌊α⌊βn2 + γ⌋2 + δn + ε⌋. Such sequences are called gen-

eralised polynomial and have been intensely studied (see, e.g., [Hål93,Hål94,HK95,
BL07,Lei12,GTZ12,GT12]).
Another closely related motivating example comes from the classical Fibonacci

word1
wFib ∈ {0, 1}N0 , whose systematic study was initiated by Berstel [Ber81, Ber85]

(for historical notes, see [AS03a, Sec. 7.12]). here are several ways to deûne it, each
shedding light from a diòerent direction.

1We will freely identify words in ΩN0 with functions N0 → Ω.
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(i) Morphic word. Deûne the sequence of words w0 ∶= 0, w1 ∶= 01, and w i+2 ∶=
w i+1w i for i ≥ 0. hen wFib is the (coordinate-wise) limit of w i as i →∞.

(ii) Sturmian word. Explicitly, wFib(n) = ⌊(2 − φ)(n + 2)⌋ − ⌊(2 − φ)(n + 1)⌋.
(iii) Fib-automatic sequence. If apositive integer n iswritten in the form n =∑d

i=2 v iFi ,
where v i ∈ {0, 1} and there is no i with v i = v i+1 = 1, then wFib(n) = v2.

he equivalence of (i) and (ii) is well known; see, e.g., [Lot02, Chpt. 2]. he repre-
sentation vdvd−1 ⋅ ⋅ ⋅ v2 of n as a sum of Fibonacci numbers in (iii) is known as the
Zeckendorf representation; it exists for each n and is unique. he notion of auto-
maticity using Zeckendorf representation (or, for that matter, a representation from
a much wider class) in place of the usual base-k representation of the input n was
introduced and studied by Shallit in [Sha88] (see also [Rig00]), where among other
things the equivalence of (i) and (iii) is shown. We return to this subject in Section 6.

Hence, wFib gives a non-trivial example of a sequence that is given by a gener-
alised polynomial and satisûes a variant of automaticity related to the Zeckendorf
representation. It is natural to ask if similar examples exist for the usual notion of
k-automaticity. Motivated by heorem A, we believe the answer is essentially nega-
tive, except for trivial examples. We say that a sequence f is ultimately periodic if it
coincides with a periodic sequence except on a ûnite set. he following conjecture
was the initial motivation for the line of research pursued in this paper.

Conjecture B Suppose that a sequence f is simultaneously automatic and generalised

polynomial. hen f is ultimately periodic.

In this paper, we prove several slightly weaker variants of Conjecture B. First,
we prove that the conjecture holds except on a set of density zero. In fact, in or-
der to obtain such a result, we only need a speciûc property of automatic sequences.
For the purpose of stating the next theorem, let us say that a sequence f ∶N → X

is weakly periodic if for any restriction f ′ of f to an arithmetic sequence given by
f ′(n) = f (an + b), a ∈ N, b ∈ N0, there exist q ∈ N, r, r′ ∈ N0 with r ≠ r′, such that
f ′(qn + r) = f ′(qn + r′). Of course, any periodic sequence is weakly periodic, but
the converse does not hold. All automatic sequences areweakly periodic (this follows
from the fact that automatic sequences have ûnite kernels; see Lemma 2.1). Another
non-trivial example of aweakly periodic sequence is the characteristic function of the
square-free numbers.

heorem C Suppose that a sequence f ∶N0 → R is weakly periodic and generalised

polynomial. hen there exists a periodic function b∶N0 → R and a set Z ⊂ N0 of upper

Banach density zero such that f (n) = b(n) for n ∈ N0 ∖ Z.

(For the deûnition of Banach density, see Section 1.)
heorem C is already suõcient to rule out automaticity ofmany natural examples

of generalised polynomials. In particular, sequences such as

⌊
√

2n ⌊
√

3n⌋⌋ mod 10 or ⌊
√

2n ⌊
√

3n⌋
2
+
√
5n +

√
7⌋ mod 10

are not automatic. For details andmore examples, see Corollary 2.7.
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To obtain stronger bounds on the size of the “exceptional” set Z, we restrict our-
selves to automatic sequences and exploit some ûner properties of generalised poly-
nomials studied in the companion paper [BK18b]. We use results concerning growth
propertiesof automatic sequences toderive the followingdichotomy: If a∶N0 → {0, 1}
is an automatic sequence, then the set of integers where a takes the value 1 is either
combinatorially rich (it contains what we call an IPS set) or extremely sparse (in par-
ticular, the number of its elements up to N grows as logr(N) for some integer r);
seeheorem 3.13. his result is especially interesting for sparse automatic sequences,
i.e., automatic sequences that take non-zero values on a set of integers of density 0.
Conversely, in [BK18b] we show that sparse generalised polynomials must be free of
similar combinatorial structures. As a consequence, we prove the following result.

heorem D Suppose that a sequence f ∶N0 → R is automatic and generalised poly-

nomial. hen there exists a periodic function b∶N0 → R, a set Z ⊂ N0, and a constant

r such that f (n) = b(n) for n ∈ N0 ∖ Z and

sup
M

∣Z ∩ [M ,M + N)∣ = O (logr(N))

as N →∞ for a certain constant r (dependent on f ).

In fact,we obtain amuchmore precise structural description of the exceptional set
Z (seeheorem 3.7 for details). Similar techniques allow us to show non-automaticity
of some sparse generalised polynomials. For instance, the sequence given by

n ↦
⎧⎪⎪⎨⎪⎪⎩

1 if ∥
√

2n ⌊
√

3n⌋∥ < n−c ,
0 otherwise,

is not automatic provided that c is small enough. (Here, ∥x∥ denotes the distance of
x from Z.) For details, see Example 4.7.

WhileheoremDdoes not resolve Conjecture B, our proof thereof greatly restricts
the number of possible counterexamples. In fact, in order to prove Conjecture B, it
would suõce to prove that the characteristic sequence of powers of an integer k ≥ 2
given by

k(n) =
⎧⎪⎪⎨⎪⎪⎩

1 if n = k t for some t ≥ 0,
0 otherwise,

is not a generalised polynomial.

heorem E Let k ≥ 2 be an integer. hen exactly one of the following statements

holds.

(i) All sequences that are simultaneously k-automatic and generalised polynomial are

ultimately periodic.

(ii) he characteristic sequence gk of the powers of k is generalised polynomial.

Unfortunately, we are currently unable to decide which of the two possibilities in
heorem E holds. Although we expect that gk should not be a generalised polyno-
mial, in [BK18b] we obtain several examples of algebraic numbers λ > 1 such that
the characteristic function of the set Eλ ∶= {⟨⟨λ i⟩⟩ ∣ i ∈ N0} is generalised polynomial,
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where ⟨⟨x⟩⟩ denotes the closest integer to x. All our examples are Pisot units (a Pisot
number is an algebraic integer λ > 1 all ofwhose conjugates havemodulus < 1; a Pisot
unit is a Pisot numberwhoseminimal polynomial has constant term ±1). Conversely,
there is no λ > 1 for which we can prove that the characteristic function of Eλ is not
given by a generalised polynomial. his prompts us to propose the following question.

Question F Suppose that λ > 1 is such that the characteristic function of the set

Eλ ∶= {⟨⟨λ i⟩⟩ ∣ i ∈ N0} is given by a generalised polynomial. Is it then necessarily the

case that λ is a Pisot unit?

For a more detailed discussion of this question, see [BK18b, Section 6]. If λ is
a Pisot number, then ⟨⟨λ i⟩⟩ obeys a linear recurrence. We show that for such λ, the
characteristic function of Eλ cannot be a counterexample toConjecture B (see Propo-
sition 4.9) except possibly if λ is an integer.
Byheorem E, determining the validity of Conjecture B is equivalent to answering

Question F in the special case when λ is an integer.

Contents

In Section 1, we discuss some basic notions and results concerning automatic se-
quences and dynamical systems. We intend this section to be accessible to readers
familiar with only one (or neither) of these topics. In Section 2, we prove heo-
remsA and C using methods from topological dynamics. In Section 3, we use known
results on growth and structure of automatic sequences to prove that they are ei-
ther very sparse and structured (in which case we call them arid) or combinatorially
rich. Together with a result about dynamics on nilmanifolds, this allows us to obtain
heorem D. Section 4 contains four seperate topics concerning examples and non-
examples of automatic sets and uniform density of symbols in automatic sequences.
Section 5 is devoted to the proof ofheorem E. Finally, Section 6 discusses some open
problems and future research topics.

1 Background

Notation and Generalities

We denote the sets of positive integers and of nonnegative integers by N = {1, 2, . . .}
and N0 = {0, 1, . . .}. We denote by [N] the set [N] = {0, 1, . . . ,N − 1}. We use the
Iverson convention: whenever φ is any sentence, we denote by JφK its logical value
(1 if φ is true and 0 otherwise). We denote the number of elements in a ûnite set A
by ∣A∣.
For a real number r, we denote its integer part by ⌊r⌋, its fractional part by

{r} = r − ⌊r⌋, the nearest integer to r by ⟨⟨r⟩⟩ = ⌊r + 1/2⌋, and the distance from r

to the nearest integer by ∥r∥ = ∣r − ⟨⟨r⟩⟩∣.
We use some standard asymptotic notation. Let f and g be two functions deûned

for suõciently large integers. We say that f = O(g) or f ≪ g if there exists c > 0 such
that ∣ f (n)∣ ≤ c ∣g(n)∣ for suõciently large n. We say that f = o(g) if for every c > 0
we have ∣ f (n)∣ ≤ c∣g(n)∣ for suõciently large n.
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For a subset E ⊂ N0, we say that E has natural density d(A) if

lim
N→∞

∣E ∩ [N]∣
N

= d(A).

We say that E ⊂ N0 has upper Banach density d∗(A) if

lim sup
N→∞

max
M

∣E ∩ [M ,M + N)∣
N

= d∗(A).

We now formally deûne generalised polynomials.

Deûnition 1.1 (Generalisedpolynomial) he familyGPof generalised polynomials is
the smallest set of functionsZ→ R containing the polynomial maps and closed under
addition,multiplication, and the operation of taking the integer part. Whenever it is
more convenient, we regard generalised polynomials as functions on N0.
A set E ⊂ Z (or E ⊂ N0) is called generalised polynomial if its characteristic func-

tion given by f (n) = Jn ∈ EK is a generalised polynomial. (Note that this deûnition
depends on whether we are regarding the generalised polynomial as a function on Z
or on N0 and a generalised polynomial set E ⊂ N0 might a priori not be generalised
polynomial when considered as a subset of Z. It will always be clear from the context
which meaning we have in mind.)

An example of a generalised polynomial is therefore a function f given by the
formula f (n) =

√
3⌊
√

2n2 + 1/7⌋2 + n⌊n3 + π⌋.

Automatic Sequences

Whenever A is a (ûnite) set,we denote the freemonoidwith basis A by A∗. It consists
of ûnitewords in A, including the empty word є,with the operation of concatenation.
We denote the concatenation of two words v ,w ∈ A∗ by vw and denote the length of
a word w ∈ A∗ by ∣w∣. In particular, ∣є∣ = 0. We say that a word v ∈ A∗ is a factor of a
wordw ∈ A∗ if there existwords u, u′ ∈ A∗ such thatw = uvu′. We denote bywR ∈ A∗
the reversal of the word w ∈ A∗ (the word in which the elements of A are written in
the opposite order).

Let k ≥ 2 be an integer and denote by Σk = {0, 1, . . . , k − 1} the set of digits in base
k. For w ∈ Σ∗k , we denote by [w]k the integer whose expansion in base k is w; i.e., if
w = v lv l−1 ⋅ ⋅ ⋅ v1v0, v i ∈ Σk , then [w]k = ∑l

i=0v ik
i . Conversely, for an integer n ≥ 0,

we write (n)k ∈ Σ∗k for the base-k representation of n (without an initial zero). In
particular, (0)k = є.

he class of automatic sequences consists, informally speaking, of ûnite-valued
sequences (an)n≥0 whose values an are obtained via a ûnite procedure from the digits
of base-k expansion of an integer n.

he most famous example of an automatic sequence is arguably the hue–Morse
sequence, ûrst discovered by Prouhet in 1851. Let s2(n) denote the sum of digits of
the base 2 expansion of an integer n. hen thehue–Morse sequence (tn)n≥0 is given
by tn = 1 if s2(n) is odd and tn = 0 if s2(n) is even.

We will introduce the basic properties of automatic sequences. For more infor-
mation, we refer the reader to the canonical book of Allouche and Shallit [AS03a].
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To formally introduce the notion of automatic sequences, we begin by discussing û-
nite automata.

Deûnition 1.2 A deterministic ûnite k-automaton with output (which we will just
call a k-automaton) A = (S , Σk , δ, s0 ,Ω, τ) consists of the following data:
(i) a ûnite set of states S;
(ii) an initial state s0 ∈ S;
(iii) a transition map δ∶ S × Σk → S;
(iv) an output set Ω;
(v) an output map τ∶ S → Ω.
We extend the map δ to a map δ∶ S × Σ∗k → S (denoted by the same letter) by the
recurrence formula

δ(s, є) = s, δ(s,wv) = δ(δ(s,w), v), s ∈ S ,w ∈ Σ∗k , v ∈ Σk .

We call a sequence k-automatic if it can be produced by a k-automaton in the fol-
lowing manner: one starts at the initial state of the automaton, follows the digits of
the base-k expansion of an integer n, and then uses the output function to print the
n-th term of the sequence. his is statedmore precisely in the following deûnition.

Deûnition 1.3 A sequence (an)n≥0 with values in a ûnite set Ω is k-automatic if
there exists a k-automatonA = (S , Σk , δ, s0 ,Ω, τ) such that an = τ (δ(s0 , (n)k)). We
call a set E of nonnegative integers automatic if the characteristic sequence (an)n≥0
of E given by an = Jn ∈ EK is automatic.

For some applications, it will be useful to consider the following variant of the
deûnition. A function ã∶Σ∗k → Ω is automatic if there exists a k-automaton A =
(S , Σk , δ, s0 ,Ω, τ) such that ã(u) = τ(δ(s0 , u)) for u ∈ Σ∗k .

he values of thehue–Morse sequence are given by the 2-automaton

s0 s10

1

1

0

with nodes depicting the states of the automaton, edges describing the transitionmap,
τ(s0) = 0, and τ(s1) = 1. hus, thehue–Morse sequence is 2-automatic.

In the deûnition above, the automaton reads the digits starting with themost sig-
niûcant one. In fact,wemight equallywelldemand that the digits be read startingwith
the least signiûcant digit or that the automaton produce the correct answer even if the
input contains some leading zeros. Neither of thesemodiûcations changes the notion
of automatic sequence [AS03a,hm. 5.2.3] (though of course for most sequences we
would need to use a diòerent automaton to produce a given automatic sequence).

here are a number of equivalent deûnitions of the notion of automatic sequence
connecting them to diòerent branches of mathematics (stated for example in terms
of algebraic power series over ûnite ûelds or letter-to-letter projections of ûxed points
of uniform morphisms of freemonoids). We will need one such deûnition that has a
combinatorial �avour and is expressed in terms of the k-kernel.
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Deûnition 1.4 he k-kernelNk((an)) of a sequence (an)n≥0 is the set of its subse-
quences of the form

Nk((an)) = {(ak l n+r)n≥0 ∣ l ≥ 0, 0 ≤ r < k
l}.

Automaticity of a sequence is equivalent to ûniteness of its kernel, originally due
to Eilenberg [Eil74].

Proposition 1.5 ([AS03a,hm. 6.6.2]) Let (an)n≥0 be a sequence. hen the following

conditions are equivalent.

(i) he sequence (an) is k-automatic.

(ii) he k-kernel Nk((an)) is ûnite.

For the hue–Morse sequence, we have the relations t2n = tn , t2n+1 = 1 − tn ,
and hence one easily sees that the 2-kernel N2((tn)) consists of only two sequences
N2((tn)) = {tn , 1 − tn}. his gives another argument for the 2-automaticity of the
hue–Morse sequence.
An automatic sequence by deûnition takes only ûnitely many values. In 1992

Allouche and Shalit [AS92] generalised thenotion of automatic sequences to thewider
class of k-regular sequences that are allowed to take values in a possibly inûnite set.
he deûnition of regular sequences is stated in terms of the k-kernel. For simplicity,
we state the deûnition over the ring of integers, though it could also be introduced
over a general (noetherian) ring.

Deûnition 1.6 Let (an)n≥0 be a sequence of integers. We say that the sequence
(an) is k-regular if its k-kernelNk((an)) spans a ûnitely generated abelian subgroup
of ZN0 .

For example, the following sequences are easily seen to be 2-regular: (tn)n≥0,
(n3+5)n≥0, (s2(n))n≥0. (he corresponding subgroups spanned by the 2-kernel have
ranks 2, 4, and 2, respectively. In the case of t = (tn)n≥0, the subgroup spanned by the
2-kernel is free abelian with basis consisting of t and the constant sequence (1)n≥0.)
In fact, every k-automatic (integer-valued) sequence is obviously k-regular, and the
following converse result holds.

heorem 1.7 ([AS03a,hm. 16.1.5]) Let (an)n≥0 be a sequence of integers. hen the

following conditions are equivalent.

(i) he sequence (an) is k-automatic.

(ii) he sequence (an) is k-regular and takes only ûnitely many values.

Corollary 1.8 ([AS03a, Corollary 16.1.6]) Let (an)n≥0 be a sequence of integers that

is k-regular and let m ≥ 1 be an integer. hen the sequence (an mod m) is k-automatic.

A convenient tool for ruling out that a given sequence is automatic is provided by
the pumping lemma.
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Lemma 1.9 ([AS03a, Lemma 4.2.1]) Let (an)n≥0 be a k-automatic sequence. hen

there exists a constant N such that for any w ∈ Σ∗k with ∣w∣ ≥ N and any integer 0 ≤ L ≤
∣w∣−N there exist u0 , u1 , v ∈ Σ∗k such that v ≠ є, w = u0vu1, L ≤ ∣u0∣ ≤ L +N − ∣v∣, and
an takes the same value for all n ∈ {[u0v

tu1]k ∣ t ∈ N0}.

he ûnal issue that we need to discuss is the dependence of the notion of
k-automaticity on the base k. While the hue–Morse sequence is 2-regular, and is
also easily seen to be 4-regular, it is not 3-regular. his follows from the celebrated
result of Cobham [Cob69]. We say that two integers k, l ≥ 2 aremultiplicatively inde-

pendent if they are not both powers of the same integer (equivalently, log k/ log l ∉ Q).

heorem 1.10 ([AS03a,hm. 11.2.2]) Let (an)n≥0 be a sequencewith values in a ûnite

set Ω. Assume that the sequence (an) is simultaneously k-automatic and l -automatic

with respect to two multiplicatively independent integers k, l ≥ 2. hen (an) is eventu-

ally periodic.

We will have no use for Cobham’s theorem. We will, however, use the following
much easier related result.

heorem 1.11 ([AS03a,hm. 6.6.4]) Let (an)n≥0 be a sequenceswith values in a ûnite

set Ω. Let k, l ≥ 2 be two multiplicatively dependent integers. hen the sequence (an)
is k-automatic if and only if it is l -automatic.

Let A denote a ûnite alphabet and let L and L′ be languages, i.e., subsets of A∗.
We denote by LL′ = {wv ∣ w ∈ L, v ∈ L′} the concatenation of L and L′. For an
integer i ≥ 0, we denote by L i = L ⋅ ⋅ ⋅ L the concatenation of i copies of L with the
understanding that L0 = {є}. he Kleene closure of L is L∗ = ⋃i≥0 L i . A language L is
regular if it can be obtained from the empty set and the letters of the alphabet using
the operations of union, concatenation, and the Kleene closure.

Regular languages are intimately connectedwith automatic sequences via Kleene’s
theorem [Kle56] (see also [AS03a,hm. 4.1.5]), which says that a language L over the
alphabet Σk is regular if and only if the sequence (an)n≥0 given by an = J(n)k ∈ LK is
k-automatic.

Dynamical Systems

An (invertible, topological) dynamical system is given by a compact metrisable space
X and a continuous homeomorphism T ∶X → X. We say that X is minimal if for
every point x ∈ X the orbit {Tnx ∣ n ∈ Z} is dense in X. (Equivalently, the only
closed subsets Y ⊂ X such that T(Y) = Y are Y = X or Y = ∅.) We say that X is
totally minimal if the system (X , Tn) is minimal for all n ≥ 1.

Let (X , T) be a dynamical system. We say that a Borel measure µ on X is invari-
ant if for every Borel subset A ⊂ X we have µ(T−1(A)) = µ(A). By the Krylov–
Bogoliubov theorem (see, e.g., [EW11,hm. 4.1]), each dynamical system has at least
one invariant measure. We say that a dynamical system in uniquely ergodic if it has
exactly one invariant measure.

J. Byszewski and J. Konieczny400

https://doi.org/10.4153/S0008414X19000038 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000038


If (X , T) is minimal, x ∈ X, and U ⊂ X is open, then the set {n ∈ Z ∣ Tnx ∈ U} is
syndetic, i.e., has bounded gaps [Fur81,hm. 1.15].

We will need the following standard consequence of the ergodic theorem [EW11,
hm 4.10], which we also note in [BK18b, Corollary 1.4]. (Below and elsewhere, ∂S
denotes the boundary of the set S.)

Corollary 1.12 Let (X , T) be a uniquely ergodic dynamical system with the

invariant measure µ. hen for any x ∈ X and any S ⊂ X with µ(∂S) = 0, the set

E = {n ∈ N0 ∣ Tnx ∈ S} has upper Banach density µ(S).

In fact, in this case the limit superior in the deûnition of upper Banach density can
be replaced by a limit.

he connection between generalised polynomials and dynamics of nilsystems has
been intensely studied by Bergelson and Leibman [BL07] (see also [Lei12]). Nilsys-
tems are awidely studied class of dynamical systems of algebraic origin. Here,we only
need a few properties that these systems enjoy; in particular, we will spare the reader
the deûnition of a nilsystem. A good introduction to nilsystems can be found in the
initial sections of [BL07].
A nilsystem (X , T) is minimal if and only if it is uniquely ergodic; the unique

invariant measure µX then has full support. If (X , T) is minimal but not totallymin-
imal, then X splits into ûnitely many connected components X1 , . . . , Xn , each X i is
preserved by Tn , and each (X i , Tn) is a totally minimal nilsystem.
As a special case of the aforementioned connection between nilsystems and gen-

eralised polynomials [BL07,hm.A], we have the following result. (For more details,
see also [BK18b].)

heorem 1.13 (Bergelson–Leibman) Let g∶Z→ R be a generalised polynomial taking

ûnitely many values {c1 , . . . , cr}. hen there exists a minimal nilsystem (X , T) as well
as a point z ∈ X and a partition X = S1 ∪ S2 ∪ ⋅ ⋅ ⋅ ∪ Sr such that µX(∂S j) = 0 and
g(n) = c j if and only if Tnz ∈ S j for each 1 ≤ j ≤ r.

Remark 1.14 Let g∶Z→ R be a generalised polynomial taking ûnitelymany values.
hen there exists a ∈ N such that for any b ∈ Z the generalised polynomial ga ,b(n) ∶=
g(an + b) has a representation as in heorem 1.13 with (X , T) totally minimal.

2 Density 1 Results

Polynomial Sequences

Our ûrst purpose in this section is to prove heorem A. Recall that we aim to show
that the sequence n ↦ ⌊p(n)⌋ is not regular if p(x) ∈ R[x] has at least one irrational
coeõcient other than the constant term. We will show more, namely, that the se-
quence n ↦ ⌊p(n)⌋ mod m is not automatic for any m ≥ 2. In fact, we will only need
to work with the weaker property of weak periodicity, deûned in the introduction.

Lemma 2.1 Every automatic sequence is weakly periodic.
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Proof Let f be a k-automatic sequence. Since the restriction of a k-automatic se-
quence to an arithmetic progression is again k-automatic [AS03a,hm. 6.8.1], it will
suõce to ûnd q ∈ N and r, r′ ∈ N0 with r ≠ r′ such that f (qn + r) = f (qn + r′).

he k-kernel Nk( f ) of f , consisting of the functions f (k tn + r) for 0 ≤ r < k t , is
ûnite. Pick t suõciently large that k t > ∣Nk( f )∣. By the pigeonhole principle, there
exist r ≠ r′ such that f (k tn + r) = f (k tn + r′). ∎

he proof of the following proposition is closely analogous to Furstenberg’s proof
[Fur61] ofWeyl’s equidistribution theorem [Wey16] (see also [EW11, Section 4.4.3]).

Proposition 2.2 Let p(x) ∈ R[x] be a polynomial, and let m ≥ 2 be an integer. hen

the sequence (⌊p(n)⌋ mod m)n≥0 is weakly periodic if and only if it is periodic. his

happens precisely when all non-constant coeõcients of p(x) are rational.

Proof If all coeõcients of p(x) are rational (except possibly for the constant term),
then the sequence (⌊p(n)⌋ mod m) is easily seen to be periodic, hence weakly
periodic.

Now suppose that at least one non-constant coeõcient of p(x) is irrational. Re-
placing p(x) with p(hx + r) for multiplicatively large h and r = 0, 1, . . . , h − 1, we
may assume that the leading coeõcient of p(x) is irrational. Wewill provemarginally
more than claimed, namely that for any 0 ≤ l < m the sequence f given by

f (n) = J⌊p(n)⌋ ≡ l (mod m)K
fails to be weakly periodic. For a proof by contradiction, suppose this claim is false
for some choice of l .

It will be convenient to expand p(x)/m = ∑d
i=0 a i(xi), where d = deg p, a i ∈ R,

and (xi) = x(x − 1)(x − 2) ⋅ ⋅ ⋅ (x − i + 1)/i!. Note that ad ∈ R ∖Q and

f (n) =
s

p(n)
m

mod 1 ∈ [ l

m
,
l + 1
m

)
{

.

We will represent the sequence p dynamically. Let X be the d-dimensional torus
Td and deûne the self-map T ∶X → X by

(x1 , x2 , x3 , . . . , xd)z→ (x1 + ad , x2 + x1 + ad−1 , . . . , xd + xd−1 + a1).
Put a j = 0 for j > d. A direct computation shows that for z = (0, 0, . . . , 0, a0) and
j = 1, . . . , d, we have

(Tn
z) j = z j +∑

i≥1
ad− j+i(

n

i
),

and, in particular, (Tnz)d = p(n)/m. Putting A = Td−1 × [ l
m ,

l+1
m ) , we thus ûnd that

(2.1) f (n) = JTn
z ∈ AK .

Since f isweakly periodic,we can ûnd q and r ≠ r′ such that f (qn+r) = f (qn+r′).
he dynamical system (X , T) can be obtained as a sequence of iterated group ex-

tension over an irrational rotation, and hence is totally minimal (this follows easily
from the results in, e.g., [EW11, Section 4.4.3]). In particular, for any point y ∈ clA,
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we can ûnd a sequence (n i)i≥0 such that Tqn i+rz → y and Tqn i+rz ∈ A. It follows
that the points Tqn i+r′z converge to T r′−r y and lie in A. hus, T r′−r(clA) ⊂ clA. In
light of total minimality of T , this is only possible if clA = X or clA = ∅, but this is
absurd. ∎

Corollary 2.3 With the notation of Proposition 2.2, the sequence n ↦ ⌊p(n)⌋ mod m

is automatic if and only if it is periodic, and if and only if all the non-constant coeõcients

of p(x) are rational.

Proof his is immediate from Proposition 2.2 and Lemma 2.1. ∎

Proof of Theorem A Suppose ûrst that all non-constant coeõcients of p(n) are ra-
tional, and ûx an integer k ≥ 2. Let h ∈ N be such that hp(n) has integer coeõcients,
except possibly for the constant term. hen f1(n) = ⌊hp(n)⌋ is an integer-valued
polynomial, hence is k-regular (Nk( f1) is contained in the (deg p + 1)-dimensional
Z-module consisting of integer-valued polynomials of degree ≤ deg p). Also, f2(n) =
⌊hp(n)⌋ − h f (n) = ⌊h {p(n)}⌋ is periodic, hence k-automatic, hence k-regular. It
follows that f (n) = 1

h ( f1(n) − f2(n)) is regular.
Conversely, suppose that f (n) is regular. hen by heorem 1.7 for any choice of

m ≥ 2, the sequence f (n) mod m is automatic. Now, it follows from Corollary 2.3
that all non-constant coeõcients of p(x) are rational. ∎

Generalised Polynomials

Having dealtwith the case of polynomial maps,wemove on to amore general context.
Our next goal is to proveheorem C. We begin by abstracting and generalising some
of the key steps from the proof ofheorem A.

Recall that a set of integers is thick if it contains arbitrarily long segments of con-
secutive integers, and syndetic if it has bounded gaps; every thick set intersects every
syndetic set.

Lemma 2.4 Let (X , T) be a totally minimal dynamical system. Let A ⊂ X be a set

that is neither empty nor dense and such that clA = cl intA. Let z ∈ X. Suppose that

f ∶N0 → {0, 1} is a sequence such that the set of n with f (n) = JTnz ∈ AK is thick. hen

f is not weakly periodic.

Proof Suppose for the sake of contradiction that f is weakly periodic. In particular,
there exist q ∈ N, r, r′ ∈ N0 with r ≠ r′ such that f (qn+ r) = f (qn+ r′). Put d = r′− r.

We will show that Td(clA) ⊂ clA. Since T is continuous and cl intA = clA, it will
suõce to prove that Td(intA) ⊂ clA. Once this is accomplished, the contradiction
follows immediately, because (X , Td) is minimal, while clA ≠ ∅, X.

Pick any y ∈ intA and an open neighbourhood V of Td y; we aim to show that
V ∩ A ≠ ∅. Put U = T−dV ∩ intA, and consider the set S of those n for which
Tqn+rz ∈ U . Since (X , Tq) is minimal and U ≠ ∅, the set S is syndetic. Let R0 be the
set of those n for which f (n) = JTnz ∈ AK and put R = {n ∈ N0 ∣ qn + r ∈ R0} and
R′ = {n ∈ N0 ∣ qn + r′ ∈ R0}.
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Since R0 is thick, so is R∩R′. Since S is syndetic, S∩R∩R′ is non-empty. Pick any
n ∈ S ∩ R ∩ R′ and put x = Tqn+rz. Since n ∈ S, we have x ∈ U ⊂ A, and so Tdx ∈ V .
Since n ∈ R, we have f (qn + r) = Jx ∈ AK = 1, and hence also f (qn + r′) = 1. Finally,
since n ∈ R′, we have 1 = f (qn + r′) =

q
Tdx ∈ A

y
, meaning that Tdx ∈ V ∩ A. In

particular, V ∩ A ≠ ∅, which was our goal. ∎

Remark 2.5 Some mild topological restrictions on the target set A are, of course,
necessary in the above lemma. Note that any open, non-dense, and non-empty subset
of X will satisfy the stated assumptions.

he assumption that the map T is totally minimal is essential. Indeed, take X to
be thehue–Morse shi�, i.e., the closed orbit under the shi� map of thehue–Morse
sequence. Let

A = {(an)n∈N0 ∈ X ∣ a2k = a2k+1 for some k ∈ N0},
B = {(an)n∈N0 ∈ X ∣ a2k+1 = a2k+2 for some k ∈ N0}.

Since thehue–Morse sequence (tn) has the property t2n ≠ t2n+1 for all n and since
the hue–Morse word contains no cubes (i.e., no occurences of factors of the form
www with w ∈ Σ∗k , w ≠ є), we see that A∩ B ≠ ∅, X = A∪ B, and A and B are clopen.
Let z = (tn) ∈ X be thehue–Morse sequence. hen the function f (n) = JTnz ∈ AK
is periodic with period 2, and while X is minimal, it is not totally minimal.

he analogue of the representation of a polynomial sequence using a skew rotation
on the torus in (2.1) is provided by the Bergelson–Leibman heorem 1.13. We are now
ready to state and prove themain result of this section, from which heorem C easily
follows.

heorem 2.6 Let g∶Z → R be a generalised polynomial taking ûnitely many values,

and let f ∶N0 → R be aweakly periodic sequence that agreeswith g on a thick set R ⊂ N0.

hen there exists a set Z ⊂ R with d∗(Z) = 0 such that the common restriction of f and

g to R ∖ Z is periodic.

Proof Let theminimal nilsystem (X , T), z ∈ X, and a partition X = ⋃r
j=1 S j be as in

heorem 1.13, so that in particular

(2.2) g(n) =
r

∑
j=1

q
T

n
z ∈ S j

y
c j .

If X is not totallyminimal, then (as in Remark 1.14)we can ûnd a ∈ N such that for
any b ∈ Z, g′a ,b(n) = g(an + b) has a representation as in (2.2) on a totally minimal
nilsystem. Clearly, f ′a ,b(n) = f (an+b) isweakly periodic and agreeswith g′a ,b(n) on
the thick set R′a ,b = {n ∣ an + b ∈ R}. hus, it will suõce to prove the theorem under
the additional assumption that (X , T) is totally minimal.

We can write

g(n) =
r

∑
j=1

q
T

n
z ∈ int S j

y
c j + h(n),
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where h(n) = 0unlessTnz ∈ ⋃r
j=1 ∂S j . In particular (byCorollary 1.12), the set Z ⊂ N0

of n with h(n) ≠ 0 has upper Banach density 0. Note that R ∖ Z is then thick.
For j ∈ {1, . . . , r}, put g′j(n) =

q
Tnz ∈ int S j

y
and f ′j (n) =

q
f (n) = c j

y
. hen

g′j(n) = f ′j (n) for n ∈ R ∖ Z. By Lemma 2.4, this is only possible if for each j, the
set int S j is either empty or dense. Since µX(X ∖⋃r

j=1 int S j) = 0, there is i such that
int S i is dense, and int S j = ∅ for j ≠ i. Denoting by Z′ ⊃ Z the set of n ∈ R with
Tnz ∈ X ∖ int S i , we have d∗(Z′) = 0 and f (n) = g(n) = c i for n ∈ R ∖ Z′, as
needed. ∎

Proof of Theorem C his is a direct application of heorem 2.6 with f = g and
R = N0. ∎

It is not a trivial matter to determine whether a given generalised polynomial is
periodic away from a set of density 0, although it can be accomplished by the tech-
niques in [BL07, Lei12]. In order to give explicit examples, we restrict ourselves to
generalised polynomials of a speciûc form, which is somewhat more general than the
one considered in Proposition 2.2.

Corollary 2.7 Suppose that q∶Z → R is a generalised polynomial with the property

that λq(an) mod 1 is equidistributed in [0, 1) for any λ ∈ Q ∖ {0} and a ∈ N, and let

m ≥ 2. hen the sequence f (n) = ⌊q(n)⌋ mod m is not automatic.

Proof Suppose f (n) is automatic. By heorem C, there exist a ∈ N and Z ⊂ N0
with d∗(Z) = 0 such that f (an) is constant for n ∈ N0 ∖ Z. Hence, there is some
0 ≤ l < m such that 1

m q(an) ∈ [ l
m ,

l+1
m ) for n ∈ N0 ∖ Z, contradicting the equidistri-

bution assumption. ∎

he uniform distribution of generalised polynomials has been extensively studied
by Håland–Knutson and Knuth [Hål93,Hål94,HK95], and later a very general the-
ory was developed by Bergelson and Leibman [BL07,Lei12]. In view of the results in
[Hål93], it is fair to say that a “generic” generalised polynomial q(n) is equidistributed
modulo 1. Hence, the assumptions on q(n) in Corollary 2.7 are not overly restrictive.

To make the last remark precise, let us deûne the (multi)set of coeõcients of a
generalised polynomial q as follows. If q(n) = ∑ j α jn

j is a polynomial, then the
coeõcients of q(n) are the non-zero terms among the α j . If q(n) = r1(n) + r2(n) or
q(n) = r1(n) ⋅ r2(n), then the coeõcients of q(n) are the union of the coeõcients of
r1(n) and r2(n). Finally, if q(n) = p(n) ⌊r(n)⌋d , then the coeõcients of q(n) are the
union of the coeõcients of r(n) and the coeõcients of p(n). he set of coeõcients
will depend on the choice of a representation of the generalised polynomial at hand;
we ûx one such choice. We cite a slightly simpliûed version of the main theorem of
[Hål93].

heorem 2.8 Suppose that q(n) is a generalised polynomials, and all of the products

of subsets of the coeõcients of q(n) are Q-linearly independent. hen q(n) is equidis-

tributedmodulo 1.
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As an example of an application, we conclude that ⌊
√

2n ⌊
√

3n⌋⌋ mod 10 is not an
automatic sequence.

3 Combinatorial Structure of Automatic Sets

In this section, we begin the investigation of sparse sequences. Here, we call a se-
quence f ∶N0 → {0, 1} ⊂ R sparse if it is the characteristic function of a set of density
0 (if such a sequence comes from a generalised polynomial or is automatic, it also
has upper Banach density 0; cf. [BK18b] and Lemma 4.8). Note that for such sparse
sequences, heorem C conveys no useful information. Conversely, to prove Conjec-
ture B, it would suõce (in light of heorem C) to verify it for sparse sequences; this
observation will bemade precise in the proof ofheorem D below.

Arid Sets

To formulate our main result, it is convenient to introduce the following piece of ter-
minology, inspired by Kedlaya [Ked06]. Such sets appear in the papers of Szilard–
Yu–Zhang–Shallit [SYZS92],Gawrychowski–Krieger–Rampersad–Shallit [GKRS10],
Derksen [Der07], and Adamczewski–Bell [AB08] (amongmany others) under diòer-
entnames (regular languages of polynomial growth/sparse/poly-slender/bounded) or
without any name. A closely related class of sets known as p-normal sets plays a sig-
niûcant role in the study of zero sets of linear recurrences in positive characteristic;
see also [DM15,AB12]. Other related classes of sets include Saguaro sets of [AB08] and
F-sets of [MS02]. Sincewewill use the notation simultaneously for languages and for
the associated sets of integers, and since some of the existing terminology might be
confusing in our context, we have decided to use a diòerent term.

Deûnition 3.1 (Arid sets) Let k ≥ 2, r ≥ 0 be integers. A basic k-arid set (of rank ≤ r)
is a set of the form

(3.1) A = {v0w l1
1 v1w

l2
2 ⋅ ⋅ ⋅w lr

r vr ∣ l1 , . . . , lr ∈ N0},

where v0 , . . . , vr ∈ Σ∗k and w1 , . . . ,wr ∈ Σ∗k . A set A ⊂ Σ∗k is k-arid (of rank ≤ r) if it is
a ûnite union of basic arid sets (of rank ≤ r). If k is clear from the context, we speak
simply of (basic) arid sets.

We similarly deûne these notions for set of integers: A set E ⊂ N0 is k-arid (of
rank ≤ r) if it has the form {[u]k ∣ u ∈ A} where A ⊂ Σ∗k is arid (of rank ≤ r). A
sequence f ∶N0 → {0, 1} is arid if the set {n ∈ N0 ∣ f (n) = 1} is arid.

Using theKleene star notation, the k-arid set A in (3.1) can be alternatively written
as

A = v0w
∗
1 v1w

∗
2 ⋅ ⋅ ⋅w∗

r vr .

In the following, we will not use this notation, and rather use the former notation
that seems more appropriate for our context. It is possible to ûnd a somewhat natural
decomposition of an arid set into a union of basic arid sets; in particular, one can de-
mand that the basic arid sets in the decomposition are pairwise disjoint. We elaborate
on this in the next subsection.
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Lemma 3.2 Any k-arid sequence is k-automatic.

Proof It is clear that any k-arid set is given by a regular expression, and hence it is
k-automatic by Kleene’s theorem. Alternatively, in this simple case one can construct
the required automata by hand. ∎

Cobham [Cob72] proved that there is a gap in the growth rate of automatic sets.

Proposition 3.3 Let E ⊂ N0 be a non-empty automatic set. hen exactly one of the

following two conditions holds:

(i) here exists an integer r ≥ 0 and a real number c > 0 such that

lim
N→∞

∣E ∩ [N]∣
logr(N) = c.

(ii) here exists α > 0 such that

lim inf
N→∞

∣E ∩ [N]∣
Nα =∞.

Proof his follows from [Cob72,hm. 11 & 12]. ∎

According to the theorem above, automatic sets have either poly-logarithmic or
polynomial rate of growth. Szilard, Yu, Zhang, and Shallit [SYZS92] showed that the
class of automatic sets of poly-logarithmic growth coincideswith the class of arid sets.
To state amore precise version of this result, we recall that a state s in a k-automaton
A = (S , Σk , δ, s0 , {0, 1}, τ) with output {0, 1} is called accessible if there exists v ∈ Σ∗k
such that δ(s0 , v) = s and is called coaccessible is there exists v ∈ Σ∗k such that
τ(δ(s, v)) = 1.

Proposition 3.4 Let E ⊂ N0 be a k-automatic set and let A = (S , Σk , δ, s0 , {0, 1}, τ)
be a k-automaton with output {0, 1} that produces E, in the sense that an integer n is

in E if and only τ(δ(s0 , n)) = 1. hen the following conditions are equivalent.

(i) he set E is arid.

(ii) here exists an integer r such that ∣E ∩ [N]∣ = O(logr(N)).
(iii) here does not exist an accessible and coaccessible state s ∈ S and v1 , v2 ∈ Σ∗k such

that v1v2 ≠ v2v1 and δ(s, v1) = δ(s, v2) = s.

Moreover, if E is arid of rank r, then the limit limN→∞ ∣E ∩ [N]∣/ logr(N) exists and is

ûnite.

Proof his is essentially proved in [SYZS92]; our formulation is in�uenced by
[BHS18, Lemmas 2.1–2.3] (formore details and related results, see references therein).

∎

Remark Some similar results are also implicit in [AB08, Lemma 6.7] and [Der07,
Proposition 7.9]; see also [Ked06].

Remark 3.5 Let a ≥ 1 be an integer. hen the notions of k-arid sets and ka-arid
sets coincide. his follows either from a direct argument or from Proposition 3.4. We
will use this observation several times.
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Wewill in fact need a slight improvement on the information on the rate of growth
of arid sets from Proposition 3.4.

Lemma 3.6 Let E ⊂ N0 be arid of rank (exactly) r. hen

max
M∈N0

∣E ∩ [M ,M + N)∣ = O(logr(N)).

Proof It suõces to deal with basic arid sets given by

E = {[v0w l1
1 v1w

l2
2 ⋅ ⋅ ⋅w lr

r vr]k ∣ l1 , . . . , lr ∈ N0}.

We beginwith some standard reductions. Replacingw i with suitably chosen pow-
ers, altering v i accordingly, and passing to basic arid subsets, we can assume that all
w i have the same length a. Replacing k with ka and using Remark 3.5 enables us to
assume that ∣w i ∣ = 1 for each i. If r is minimal, we further know that if w i = w i+1 for
some i, then v i is not a power of w i . Finally, we can assume that N = kL is a large
power of k, and that M = kLM′ is divisible by N .

Since an element of E ∩ [M ,M + N) is uniquely determined by its ûnal L digits,
the bound ∣E ∩ [N]∣ ≪ Lr follows immediately from counting the r-tuples (l1 , . . . , lr)
with∑r

i=1 l i +∑r
i=0 ∣v i ∣ ≤ L. ∎

We are now ready to state the main theorem of this section in a more convenient
language.

heorem 3.7 Suppose that a sparse set E ⊂ N0 is simultaneously k-automatic and

generalised polynomial. hen E is k-arid.

For the proof of this result, we need to use the notion of IPS sets introduced in
[BK18b].

Standard k-arid Sets

he aim of this subsection is to show that any arid set can be written as a union of
basic k-arid sets that are “well-behaved”. One of the pleasant properties of such a de-
composition is that basic arid sets in question are then pairwise disjoint. he existence
of such a decomposition has been suggested to us by the anonymous referee, and we
hope that it might be of some use. Nevertheless, we will not use the results of this
subsection, and hence the reader might omit it without any loss of understanding of
the forthcoming results.

Let r ≥ 0 and s ≥ 1 be integers. A standard k-aridword of rank r and step s is aword
of the form

a(v,w, l) = v0w
l1
1 v1 ⋅ ⋅ ⋅w lr

r vr ,

where v = (v i)r
i=0, w = (w i)r

i=1, l = (l i)r
i=1, and

(i) ∣w i ∣ = s for each 1 ≤ i ≤ r;
(ii) ∣l i ∣ ≥ 3 for each 1 ≤ i ≤ r;
(iii) v i−1 does not have a non-empty common suõx with w i for each 1 ≤ i ≤ r;
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(iv) w i is not a preûx of v iw i+1 (where wr+1 ∶= є) for each 1 ≤ i ≤ r;
(v) ∣v i ∣ < 2s for each 0 ≤ i ≤ r.
Let m = (m i)r

i=1 be a sequence of integers satisfying the condition
(ii′) ∣m i ∣ ≥ 3 for each 1 ≤ i ≤ r.
We denote by A(v,w,m) the set of all standard k-arid words a(v,w, l) of rank r and
step s such that l i ≥ m i for each 1 ≤ i ≤ r. We call A(v,w,m) the standard k-arid set

of rank r, step s, and exponent m.

Lemma 3.8 For a standard k-aridword of step s, the rank and the deûning parameters

are uniquely determined. More precisely, if a word

u = a(v,w, l) = a(v′ ,w′ , l′)

has two representations as a standard k-arid word of rank r and r′ (resp.) and step s,

then r = r′ and (v,w, l) = (v′ ,w′ , l′).

Proof We proceed by induction on rank r. If r = 0, then by (v) ∣u∣ < 2s,whence by (i)
and (ii) r′ = 0, and the claim follows. Suppose now that r ≥ 1 and (by symmetry) r′ ≥ 1,
and assume without loss of generality that ∣v′0∣ ≥ ∣v0∣. hen v′0 = v0x

′ for some x′ with
∣x′∣ < 2s (by (v)), and hence by (ii), we have

w1w1w1 ⋅ ⋅ ⋅ = x
′
w
′
1w

′
1w

′
1 ⋅ ⋅ ⋅ .

Since by (i) ∣w1∣ = ∣w′
1∣ = s, we see from this that either x′ has a common suõx with

w′
1 or x

′ = є, the former being impossible by (iii). Hence, x′ = є, v′0 = v0, and w′
1 = w1.

We can assume without loss of generality that l ′1 ≥ l1. If l ′1 was strictly larger than l1,
then we would have

v1w
l2
2 ⋅ ⋅ ⋅w lr

r vr = (w′
1)l ′1−l1v′1(w′

2)l ′2 ⋅ ⋅ ⋅ (w′
r)l ′rv′r ,

fromwhichwe see thatw1 = w′
1 is a preûx of v1w2,which is impossible by (iii). Hence,

l ′1 = l1. It remains to remove thepreûx v0w l1
1 = v′0(w′

1)l ′1 fromu and apply the inductive
assumption. ∎

Lemma 3.9 Suppose that B ⊂ Σ∗k is k-arid of rank r. hen B is a union of standard

k-arid sets of rank ≤ r and equal step s. Moreover, there exists s0 = s0(B) such that s

can be chosen to be any multiple of s0.

Proof We proceed by induction on r. he claim is obvious for r = 0. Assume that
r ≥ 1 and that the claim holds for arid sets of rank ≤ r − 1. Writing B as a ûnite union,
we can assume without loss of generality that B is a basic k-arid set

B = {v0w l1
1 v1 ⋅ ⋅ ⋅w lr

r vr ∣ l i ≥ 0}.

Applying the induction hypothesis to the set

B
′ = {v0w l1

1 v1 ⋅ ⋅ ⋅w lr−1
r−1 vr−1 ∣ l i ≥ 0},

we canwrite B′ as a ûnite union of standard k-arid sets of rank ≤ r− 1 and equal step s

(which can be chosen to be an arbitrarymultiple of some integer). We choose s large
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enough (to be determined later) and divisible by ∣wr ∣. Writing B as a ûnite union of
sets corresponding to the terms in the decomposition of B′, we can assume that B is
of the form

B = {uw lr
r vr ∣ u ∈ A(v,w,m), lr ≥ 0}

for some standard k-arid set A(v,w,m) of rank r − 1 and step s.
he elements v = (v i)r−1

i=0, w = (w i)r−1
i=1 , andm = (m i)r−1

i=1 satisfy the conditions in
the deûnition of a standard k-arid set, but this is not necessarily the case for wr and
vr . We will now modify them to obtain this. Properties (i) and (ii′) will be easy: we
just replacewr by an appropriate power, and split oò the terms corresponding to small
exponents. We will not do it yet, however, and proceed instead with the remaining
properties.

We begin with (iii). Considering the common suõx of vr−1 and a large power of
wr , we can write

vr−1 = v
′
r−1 yw

p
r , wr = xy

for some p ≥ 0, x ≠ є, and so that v′r−1 and x have no common suõx. Replacing vr−1
with v′r−1, wr with w′

r = yx, and vr with v′r = yvr , we write

(3.2) B = {u(w′
r)lrv′r ∣ u ∈ A(v′ ,w,m), lr ≥ p},

where v′ = (v0 , v1 , . . . , vr−2 , v′r−1) (note that A(v′ ,w,m) is still a standard k-arid set,
and that moreover ∣v′r ∣ < ∣vr ∣ + ∣wr ∣).

Our next aim is property (iv). (his is vacuous if r = 1.) We know by the induction
assumption that wr−1 is not a preûx of vr−1, and hence a fortiori of v′r−1. If wr−1 is not
a preûx of v′r−1(w′

r)q′ for any q′ ≥ 1, we put v′′ = v′, w′′ = w, andm′′ =m. Otherwise,
write

wr−1 = v
′
r−1(w′

r)q
x
′ , w

′
r = x

′
y
′

for some q ≥ 0 and y′ ≠ є. We ûrst split oò the elements in (3.2) corresponding to
the values of lr which are smaller than q + 1. his is an arid set of rank ≤ r − 1, and
hence satisûes the claim by induction. Putting m′′

r−1 = mr−1 + 1, v′′r−1 = є, w′′
r = y′x′,

v′′r = y′v′r , we can thus write the set B (up to the previously considered set of rank
≤ r − 1) as

B = {u(w′′
r )lrv′′r ∣ u ∈ A(v′′ ,w′′ ,m′′), lr ≥ max(p − q − 1, 0)},

where w′′, v′′, and m′′ have the obvious meaning, the set A(v′′ ,w′′ ,m′′) is a stan-
dard k-arid set, and ∣v′′r ∣ < ∣vr ∣ + 2∣wr ∣. By construction, either w′′

r−1 is not a preûx
of v′′r−1(w′′

r )q′ for any q′ ≥ 0 or w′′
r−1 coincides with a power of w′′

r . In the latter case
v′′r−1 = є, and we can rewrite the set as an arid set of rank ≤ r − 1 for which the claim
holds by induction. Hence assume the former condition holds.

To obtain the remaining properties, we write B as a union of s/∣wr ∣ sets depending
on lr mod s/∣wr ∣. Recall that ∣w′′

r ∣ = ∣wr ∣ and replace B with a union of sets B j by
replacing w′′

r with w′′′
r = (w′′

r )s/∣wr ∣ and v′′r with v′′′r = (w′′
r ) jv′′r for 0 ≤ j < s/∣wr ∣. he

sets B j take the form

B j = {u(w′′′
r )lrv′′′r ∣ u ∈ A(v′′ ,w′′ ,m′′), lr ≥ m

′′′
r },
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with m′′′
r = ⌊max(p − q − 1, 0)∣wr ∣/s⌋. Let v′′′ ,w′′′ ,m′′′ denote the vectors v′′,

w′′, m′′ with v′′′r , w
′′′
r , and m′′′

r appended at the end. he parameters v′′′, w′′′, m′′′

clearly satisfy conditions (i) and (iii). Condition (iv) holds due to our assumption
that w′′

r−1 is not a preûx of v′′r−1(w′′
r )q′ for any q′ ≥ 0. For condition (v), note that

∣v′′′r ∣ < ∣vr ∣ + 2∣wr ∣ + (s − s/∣wr ∣) < 2s for s large enough. Finally, we can assume that
m′′

r ≥ 3 by splitting oò if necessary arid sets of rank ≤ r−1 corresponding to the values
of lr ≤ 2. his ends the proof of the inductive claim, and shows that s can be chosen
to be an arbitrary multiple of some integer. ∎

Corollary 3.10 Any k-arid set can be written as a ûnite union of pairwise disjoint

basic k-arid sets.

Proof his follows immediately from Lemmas 3.8 and 3.9. ∎

IPS Sets and Automatic Sequences

he following notion generalises the classical notion of an IP set, which is of impor-
tance in combinatorial number theory and ergodic theory (for the origin of the term
IP, which stands either for inûnite-dimensional parallelepiped or idempotent, see,
e.g., [BL16]). his notion is discussed in more detail in [BK18b] (in particular, an
equivalent deûnition of IPS sets in terms of ultraûlters is given there).

Deûnition 3.11 (IP and IPS sets) For a sequence (n i)i∈N ⊂ N, the corresponding
set of ûnite sums is

FS(n i) = {nα ∣ α ⊂ N, 0 < ∣α∣ <∞},

where nα = ∑i∈α n i . Any set containing a set of the form FS(n i ;Nt) for some (n i),
(Nt) is called an IPS set.
For a sequence (n i)i∈N ⊂ N and shi�s (Nt)t≥1 ⊂ N0, the corresponding set of

shi�ed ûnite sums is

FS(n i ;Nt) = {nα + Nt ∣ t ∈ N, α ⊂ {1, 2, . . . , t}, α ≠ ∅},

where again nα = ∑i∈α n i . Any set containing a set of the form FS(n i ;Nt) for some
(n i), (Nt) is called an IPS set.

Example 3.12 Fix k ≥ 2. Let v1 , v2 ∈ Σ∗k be two distinct words with ∣v1∣ = ∣v2∣ = l ,
and let u0 , u1 ∈ Σ∗k be arbitrary. Consider the set

E = {[u0v j1v j2 ⋅ ⋅ ⋅ v j tu1] ∣ j i ∈ {1, 2} for 1 ≤ i ≤ t and t ≥ 0} .

hen E is an IPS set. Indeed, E = FS(n i ;Nt), where Nt = [u0v
t
1u1]k and n i =

([v2]k − [v1]k)k(i−1)l+∣u1 ∣ (assuming, aswe can, that [v2]k > [v1]k). If [u0]k = [u1]k =
[v1]k = 0, then E is an IP set.

IPS sets occur in our work due to the following result.
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heorem 3.13 Let E ⊂ N0 be an automatic set. hen E is either arid or IPS.

Proof Assume that E ⊂ N0 is automatic but not arid; we need to show that E is IPS.
LetA = (S , Σk , δ, s0 , {0, 1}, τ) be a k-automaton with output {0, 1} that produces the
characteristic sequence of E when reading digits starting from the most signiûcant
one and ignoring the initial zeros.

Since E is not arid, neither is the set A = {w ∈ Σ∗k ∣ τ(δ(s0 ,w)) = 1}. Hence, by
Proposition 3.4, there exists an accessible and coaccessible state s ∈ S and v1 , v2 ∈ Σ∗k
such that v1v2 ≠ v2v1 and δ(s, v1) = δ(s, v2) = s. Replacing v1 and v2 by their pow-
ers and interchanging them if necessary, we can assume that v1 and v2 are of equal
length l = ∣v1∣ = ∣v2∣ and [v1]k < [v2]k . Pick u0 , u1 ∈ Σ∗k so that s = δ(s0 , u0), and
τ(δ(s, u1)) = 1.

he set A contains all words of the form w = u0v j1v j2 ⋅ ⋅ ⋅ v j tu1, where j i ∈ {1, 2}
and t ∈ N0. It follows that A is IPS (cf. Example 3.12). ∎

In order to proveheorem 3.7,we need to recall one of themain results of [BK18b,
hm. A], whose proof uses ergodic theory and themachinery of ultraûlters.

heorem 3.14 Let E ⊂ Z be a sparse generalised polynomial set. hen E is not IPS.

heorems 3.7 and D now follow quite easily.

Proof of Theorem 3.7 Let E be the set in heorem 3.7. By heorem 3.14, E is not
IPS. Hence, by heorem 3.13, it is arid. ∎

Proof of Theorem D Suppose that f ∶N0 → R is automatic and generalised polyno-
mial. Let b(n) be the periodic function such that the set Z = {n ∈ N0 ∣ f (n) ≠ b(n)}
has d∗(Z) = 0. (he existence of b(n) is guaranteed by heorem C.)

Note that Z is generalised polynomial and automatic (automaticity is clear; to see
that Z is generalisedpolynomial, compose f−bwith apolynomial p such that p(0) = 1
and p(x − y) = 0 for x ∈ f (N0), y ∈ b(N0), x ≠ y).
By heorem 3.7, Z is arid. Hence, by Lemma 3.6, we have

∣Z ∩ [M ,M + N)∣ = O (logr(N))

for some r ∈ N0 as N →∞. ∎

If Conjecture B is true, then there are no nontrivial examples of arid generalised
polynomial sets (indeed, byheorem E, non-existence of such sets is precisely equiv-
alent to Conjecture B; see also Proposition 5.3). However, there are examples of gen-
eralised polynomial sets that exhibit some properties reminiscent of arid sets. We
have already mentioned in this context that the set of Fibonacci numbers is a gen-
eralised polynomial set, and in [BK18b, heorems B & C], we have extended this to
certain linear recurrences of order 2 and 3 as well as arbitrary sets whose sizes grow
at a sublogarithmic rate.
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It is important to note that in the statement of heorem 3.13 it is not possible to
replace IPS setswith IP sets or their translates (cf. Example 4.3). We discuss this ques-
tion further in the next section.

4 Examples and Properties of Automatic Sets

B-free Sets

In this subsection, we will discuss a simple class of examples of automatic sets, the
B-free sets, which will allow us to show that in the statement ofheorem 3.13, it is in
general not possible to replace IPS sets with translates of IP sets (Example 4.3).

Example 4.1 Let k ≥ 2, and letB ⊂ Σ∗k be a ûnite set of ‘prohibited’ words of length
≤ t. A word u ∈ Σ∗k is B-free if u contains no b ∈ B as a factor. Accordingly, n ∈ N0 is
B-free if its base-k expansion (n)k is B-free.

Claim Denote the set ofB-free integers by FB.
(i) he set FB is k-automatic.
(ii) IfB ≠ ∅, then FB is sparse.
(iii) If∑b∈B k−∣b∣ ≤ 1

16t , then FB is not arid.
(iv) If each b ∈ B contains at least two non-zero digits, then FB is IP.
(v) If some b ∈ B consists only of 0’s, then FB −m is not IP for any m ∈ Z.

Proof (i) It is not diõcult to explicitly describe a k-automaton that computes
the characteristic function of FB; alternatively, the claim follows immediately from
Kleene’s theorem.

(ii) We can assume that B consists of a single string of length t. hen the
probability that a randomly chosen word of length m does not contain b is at most
(1 − k−t)⌊m/t⌋. he claim easily follows from this.

(iii) We can assume B ≠ ∅. Construct an undirected graph G = (V , E) (we al-
low G to have loops), where V = Σt

k , and {u, v} ∈ E if uv and vu are both B-free.
If u1 , u2 , . . . , ur is a walk in G, then u1u2 ⋅ ⋅ ⋅ur is B-free. Assume that G contains
a walk u1 ,w , u2 of length 2 with u1 ≠ u2. With loss of generality, we can assume
that u1 ≠ 0t (otherwise, switch u1 and u2). hen for any i1 , . . . , ir ∈ {1, 2} the word
v = u1wu i1wu i2w ⋅ ⋅ ⋅u irw is B-free. Hence, [v]k ∈ FB, and we can see either directly
or from Proposition 3.4 that FB is not arid. hus, it remains to check that G contains
a length 2 walk with distinct endpoints; for the sake of contradiction, suppose that
this is not the case.

Since each vertex has at most one neighbour (including itself if {u, u} is an edge),
the graph is a disjoint union of paths of length 1, loops, and vertices, and hence
∣E∣ ≤ ∣V ∣ = k t . On the other hand, given b ∈ B, the number of pairs (u, v) ∈ V 2

such that b appears in uv or vu is < 4tk2t−∣b∣, so

∣E∣ ≥ k t(k t + 1)
2

− 4tk2t ∑
b∈B

k
−∣b∣ > k2t

4
≥ k

t ,

(note that the assumption implies that k t ≥ 16), which gives a contradiction.
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(iv) Let n i = k i t . hen FS(n i) ⊂ FB.
(v) Suppose that FB contains E + m for some IP set E and integer m. Replacing

E with a smaller IP set if necessary, we can assume that m > 0. Since E is IP, for
any l ≥ 0 there exists n ∈ E that is divisible by k l . If l is large enough (it suõces
that l > t + ⌊logN/ log k⌋), then n + m is an element of FB whose base-k expansion
contains t consecutive zeros, contradicting the assumption on B. ∎

Remark 4.2 A similar example was considered by Miller [Mil12], who gave suõ-
cient conditions for FB to be inûnite.

Example 4.3 he set

F00 = {n ∈ N0 ∣ the binary expansion of n does not contain 00}

is 2-automatic, sparse, not arid, and does not contain a translate of an IP set.

Proof We see that F00 is not arid by Proposition 3.4 or by a simplemodiûcation of
the proof of Example 4.1iii. he remaining claims follow directly from Example 4.1. ∎

he following two examples can be veriûed similarly.

Example 4.4 he set

F11 = {n ∈ N0 ∣ the binary expansion of n does not contain 11}

is 2-automatic, sparse, not arid, and IP.

Example 4.5 he Baum–Sweet sequence [BS76] given by

fBS(n) = [[the binary expansion of n does not contain

10l 1 for an odd integer l]].

It takes the value 1 on a set which is 2-automatic, sparse, not arid, and IP.

Translates of IP Sets

Even though, in general, non-arid automatic sets need not contain translates of IP
sets, this is nevertheless the case under certain stronger assumptions on the set.

Proposition 4.6 Let E ⊂ N0 be a k-automatic set. Assume that for every w ∈ Σ∗k there

is an integer n ∈ E such thatw is a factor of (n)k . hen the set E −m = {n −m ∣ n ∈ E}
is IP for some m ∈ N0.

Proof of Proposition 4.6 LetA = (S , Σk , δ, s0 , {0, 1}, τ) be a k-automaton that pro-
duces the characteristic sequence of E by reading the digits of n starting with the least

signiûcant one, allowing for leading zeros. We will denote the word 0 ⋅ ⋅ ⋅ 0 ∈ Σ∗k with
n zeros by 0n . We begin by proving the following claim.
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Claim here exist states s, s′ ∈ S with τ(s) = 1, an integer l ∈ N, and a word
v ∈ Σ l

k that is not a power of 0 such that for z = 0l , we have δ(s, z) = s′, δ(s, v) = s,
δ(s′ , z) = s′, δ(s′ , v) = s. his is portrayed below:

s s′v

z

v

z.

Proof of the claim Let n = ∣S∣ be the number of states in A. We ûrst show a weaker
statement, namely that there is a state s with τ(s) = 1 such that if s̃ = δ(s, 0n) denotes
the state reached from s a�er reading n zeros, then we can return from s̃ to s along
a path not consisting only of zeros; that is, δ(̃s, ṽ ) = s for some ṽ ∈ Σ∗k that is not a
power of 0.

To prove this, we construct a word w = w1w2 ⋅ ⋅ ⋅wn2 as follows. Enumerate all
pairs in S × S as (s i , s′i) for 1 ≤ i ≤ n2. In the ûrst step, if s̃1 is reachable from s1, let w1
describe any path between the two, so that δ(s1 ,w1) = s′1; otherwise, letw1 = є. In gen-
eral, if w1 , . . . ,w i−1 have been deûned, choose w i so that δ(s i ,w1w2 ⋅ ⋅ ⋅w i−1w i) = s′i
if possible (i.e., if s′i is reachable from δ(s i ,w1w2 ⋅ ⋅ ⋅w i−1)), and w i = є otherwise.
By the assumption on the set E, there exists some x, y ∈ Σ∗k such that for

s = δ(s0 , xwy) we have τ(s) = 1. Applying the same assumption with w1 in place of
w,we can ensure that y is not a power of 0. It remains to show thatwe can return from
s̃ = δ(s, 0n) to s. For 0 ≤ i ≤ n2, let r i = δ(s0 , xw1w2 ⋅ ⋅ ⋅w i) denote the intermediate
states on the path from s0 to s labelled xwy, in particular r0 = δ(s0 , x). he con-
struction of w is arranged so that for any i with s i = r0, we have r i = δ(r i−1 ,w i) = s̃ i ,
provided that s′i is reachable from r i−1.
Choose 1 ≤ j ≤ n2 such that s j = r0 and s′j = s̃. Since s is reachable from r j−1 and s̃

is reachable from s, s̃ is reachable from r j−1. Hence, the construction of w guarantees
that r j = δ(r j−1 ,w j) = s̃. In particular, δ(̃s, ṽ ) = s, where ṽ = w j+1 . . .wn2 y. Note that
ṽ is not a power of 0, since neither is y. his proves the weaker version of the claim.

To prove the stronger statement, note ûrst that since S has only n states, there exist
0 ≤ i < j ≤ n such that δ(s, 0i) = δ(s, 0 j). Let m > i be any integer divisible by
( j − i) and put s′ = δ(s, 0m). Since m is divisible by ( j − i), we have s′ = δ(s′ , 0m).
Because s̃ is reachable from s′ (actually, δ(s′ , 0n) = s̃ ), there is aword u (equal to 0nv,
hence not a power of 0) such that δ(s′ , u) = s. Take v = (0mu)m and l = m(∣u∣ +m).
he states s, s′ and the word v (of length l) satisfy all the required conditions, namely
δ(s, 0l) = s′, δ(s, v) = s, δ(s′ , 0l) = s′, δ(s′ , v) = s, and τ(s) = 1. ∎

To ûnish the proof of Proposition 4.6, we can assume that all states inA are acces-
sible. Choose states s and s′ and words v and z = 0l as in the statement of the claim.
Let u ∈ Σ∗k be such that δ(s0 , u) = s. For any word w = uv1v2 ⋅ ⋅ ⋅ vr , where v i ∈ {v , z}
for 1 ≤ i < r and vr = v, we have δ(s0 ,w) = s, whence [wR]k ∈ E. It follows that E
contains FS(n i ;N), where N = [uR]k and n i = k(i−1)l+∣u∣[vR]k , i ∈ N. ∎

Proposition 4.6 has the following amusing application, which, however, does not
require the full strength of heorem 3.14. (Similar results can be shown in greater
generality.)
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Example 4.7 here exists a constant c > 0 such that for any sequence ε(n) that is a
rational power of a generalised polynomial such that ε(n) ≪ n−c as n →∞, the set

E = {n ∈ N0 ∣ ∥
√

2n⌊
√

3n⌋∥ < ε(n)}

is not automatic.

Proof It is shown in [BK18b, Propositions 4.6 & 4.8] that E is generalised polyno-
mial, E contains no translate of an IP set, and that E ∩ (aN + b) ≠ ∅ for any a ∈ N,
b ∈ N0.

Suppose that E were k-automatic. Since E intersects nontrivially any arithmetic
progression, itwould satisfy the assumptions of Proposition 4.6, and thuswould con-
tain a translate of an IP set, contradicting the previously mentioned results. ∎

Densities of Symbols

In this subsection, we prove a lemma on densities of occurrences of symbols in auto-
matic sequences. As a corollary, we obtain the claim that sparse automatic sequences
take non-zero value at a set of Banach density 0.

he density of symbols for an automatic sequence is o�en uniform. A set E ⊂ N0
has uniform density d = d(E) if ∣E ∩ [M ,M + N)∣ /N → d as N → ∞ uniformly in
M. For an automaton A = (S , Σk , δ, s0 ,Ω, τ), a strongly connected component is an
automaton A′ = (S′ , Σk , δ′ , s′0 ,Ω, τ

′), where S′ ⊂ S is non-empty, preserved under
δ( ⋅ , j) for all j ∈ Σk andminimal with respect to these properties, s′0 ∈ S′, and δ′ , τ′

are the restrictions of δ and τ to S′, respectively.

Lemma 4.8 Let a∶N0 → Ω be a k-automatic sequence generated by an automaton

A = (S , Σk , δ, s0 ,Ω, τ) reading input starting with the most signiûcant digit, ignoring

the initial zeros, and such that all the states are accessible. For y ∈ Ω, let ρy ≥ 0. hen

the following conditions are equivalent.

(i) For any y ∈ Ω, the set {n ∈ N0 ∣ a(n) = y} has density ρy .

(ii) For any y ∈ Ω, the set {n ∈ N0 ∣ a(n) = y} has uniform density ρy .

(iii) For any sequence ã ′∶Σ∗k → Ω produced by a strongly connected component A′ of
A and for any y ∈ Ω we have

∣{u ∈ ΣL
k ∣ ã ′(u) = y}∣ /kL → ρy as L →∞.

Proof It is clear that (ii) implies (i). Wewill show that (i) implies (iii) and (iii) implies
(ii). hroughout, it will be convenient to assume that Ω = {0, 1}, which we can do
without loss of generality. We then write ρ for ρ1.

Suppose that (i) holds, and take some ã ′ as in (iii). here is some v ∈ Σ∗k such that
ã ′(u) = a([vu]k), whence

1
kL ∑

u∈ΣL
k

ã
′(u) = 1

kL

([v]k+1)kL−1

∑
n=[v]k kL

a(n)→ ρ

as L →∞.
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Now suppose that (iii) holds. For any N ,M, and L, we have

1
N

M+N−1

∑
n=M

a(n) = 1
N

⌊(M+N)/kL⌋
∑

m=⌊M/kL⌋

kL−1

∑
n=0

a(mk
L + n) + O(kL/N)(4.1)

uniformly in M. For any m ∈ N0, consider the sequence ã ′m ∶Σ∗k → Ω given by
ã ′m(u) = a([(m)ku]k), so that if u ∈ ΣL

k , then a(mkL + [u]k) = ã ′m(u). Note that
ã ′m is produced by the automaton A′ that is obtained from A by changing the initial
state to s′0 = δ(s0 , (m)k).

If δ(s0 , (m)k) lies in a strongly connected component of A, then we can use (iii)
to estimate the inner sums in (4.1):

kL−1

∑
n=0

a(mk
L + n) = k

L
ρ + o(kL)

as L → ∞ (where the error term is uniform with respect to m, since there are only
ûnitely many possible sequences ã ′m). It is an easy exercise to check that the set of
m ∈ N0 such that δ(s0 , (m)k) does not lie in a strongly connected component of
A has upper Banach density 0. Estimating the inner sums in (4.1) corresponding to
such m trivially by O(kL), and letting L → ∞ slowly enough so that kL/N → 0, we
conclude that

1
N

M+N−1

∑
n=M

a(n) = ρ + o(1)

as N →∞ uniformly in M. Hence, (ii) holds. ∎

Linear Recurrence Sequences

We have already noted that the set of values of a linear recurrence sequence can be
a generalised polynomial set. his is the case for the Fibonacci sequence; for more
information, see [BK18b, hm. B]. In contrast, we show that the set of values of a
linear recurrence sequence is not automatic, except for trivial examples. In the proof,
we apply heorem 3.13.

Proposition 4.9 Let (am)m≥0 be anN-valued sequence satisfying a linear recurrence

of the form

am+n =
n

∑
i=1
c iam+n−i , m ≥ 0

with integer coeõcients c i . Suppose that for some k the set E = {am ∣ m ∈ N0} is

k-automatic. hen E is a ûnite union of the following standard sets: linear progres-

sions {am + b ∣ m ∈ N0} with a, b ∈ N0; exponential progressions {ak tm + b ∣ m ∈ N0}
with a, b ∈ Q and t ∈ N; and ûnite sets.

Proof We ûrst claim that there exists a representation of E as a ûnite union

(4.2) E =
Klin

⋃
i=1

L i ∪
Kpoly

⋃
i=1

Pi ∪
Kexp

⋃
i=1
E i ∪ F ,
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where F is ûnite, L i = {a im + b i ∣ m ∈ N0} are arithmetic progressions, Pi =
{p i(m) ∣ m ∈ N0} are value sets of polynomials p i(x) ∈ Z[x] with deg p i ≥ 2, and
E i have exponential growth in the sense that ∣E i ∩ [N]∣ ≪ logN .

In order to prove this claim, we begin by noting that any restriction of (am) to an
arithmetic progression a(h ,r)m = ahm+r obeys some (minimal length) linear recurrence

a
(h ,r)
m+n′ =

n′

∑
i=1
c
(h ,r)
i a

(h ,r)
m+n′−i , m ≥ 0

with n′ = n′(h, r) ≤ n. Moreover, there exists a choice of h such that each of that each
a
(h ,r)
m is either identically zero or non-degenerate, in the sense that the associated
characteristic polynomial q(h ,r)(x) = xn′ − ∑n′

i=1 c
(h ,r)
i xn′−i has no pair of roots λ,

µ ∈ C such that λ/µ is a root of unity (see, e.g., [EvdPSW03, hm. 1.2] for a much
stronger statement). Hence, for the purpose of showing the existence of a represen-
tation of the form (4.2), we can assume that (am) is non-degenerate. Suppose also
that n is minimal, and let λ1 , . . . , λr be the roots of q(x) = xn − ∑n

i=1 c ix
n−i with

∣λ1∣ ≥ ∣λ2∣ ≥ ⋅ ⋅ ⋅. Note that either E is ûnite or ∣λ1∣ ≥ 1.
If ∣λ1∣ > 1, thenby the resultof Evertse [Eve84] and vanderPoorten and Schlickewei

[vdPS91] (see [EvdPSW03,hm. 2.3]), we have am = ∣λ1∣m+o(m) as m →∞. Hence, E
has exponential growth, and we are done.

Otherwise, if ∣λ1∣ = 1, then for all j, we have ∣λ j ∣ = 1 or λ j = 0. Kronecker’s theorem
[Kro57] (or a standardGalois theory argument) shows that if λ is an algebraic integer
all of whose conjugates have absolute value 1, then λ is a root of unity. Using the
general formula for the solution of a linear recurrence, we can write, for suõciently
large m,

am =
r

∑
j=1

λ
m
j p j(m) =

r

∑
j=1
b j(m)p j(m),

where p j(x) are polynomials and b j(m) are periodic. Splitting N0 into arithmetic
progressions where b j(m) are constant, we conclude that E is a ûnite union of value
sets of polynomials. his again produces a representation of the form (4.2).

Such a representation is not unique. Splitting Pi into a ûnite number of subpro-
gressions and discarding those that are redundant,we can assume that Pi ∩L j = ∅ for
any i , j. Likewise, we can assume that E i ∩ L j = F ∩ L j = ∅ for any i , j. Fix one such
representation subject to these restrictions. he set

E
′ =

Kpoly

⋃
i=1

Pi ∪
Kexp

⋃
i=1
E i ∪ F = E ∖

Klin

⋃
i=1

L i

is again k-automatic; it will suõce to show that E′ is a union of the standard sets
mentioned above.

We claim that Kpoly = 0, i.e., the representation of E uses no polynomial progres-
sions of degree ≥ 2. Suppose for the sake of contradiction that P = {p(m) ∣ m ∈ N0}
appears in one of the sets Pi , and write p(m) = ∑d

i=0 c im
i , where c i ∈ Z. Replacing

p(m) with p(m + r) for a suitably chosen r ∈ N0, we can assume that c i > 0 for 0 ≤
i ≤ d. For suõciently large t, we have p(k t) = [ud0t−t0ud−10t−t0ud−2 ⋅ ⋅ ⋅u10t−t0u0]k ,
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where t0 is a constant and u i is the base-k expansion of c i , padded by 0’s so as to
have ∣u i ∣ = t0. Since p(k t) ∈ E′, from the pumping lemma (Lemma 1.9) it follows that
there is l ∈ N such that for any s1 , . . . , sd ∈ N, it holds that

n(s1 , . . . , sd) ∶= [ud0l sdud−10l sd−1 ⋅ ⋅ ⋅u10l s1u0]k ∈ E′ .

For suõciently large S and a small absolute constant δ to be determined later, consider
the set

Q(S) = {n(s1 , . . . , sd) ∣ s i ∈ N, s1 + ⋅ ⋅ ⋅ + sd = S , sd ≥ (1 − δ)S},

and put N(S) ∶= n(1, . . . , 1, S − d + 1) = minQ(S) (for large S). Note that N(S) =
k l S+O(1) and that maxQ(S) = N(S) + O(N(S)δ). For a ûxed T0 and T → ∞, we
will consider the cardinality of the set Q(T0 , T) = ⋃T0≤S≤T Q(S). By an elementary
counting argument, we ûnd

(4.3) ∣Q(T0 , T)∣ ≫ T
d ≫ T

2 .

To obtain an upper bound,we separately estimate ∣Q(S) ∩ Pi ∣ and ∣Q(T0 , T) ∩ E j ∣ for
each i , j.

Suppose that n, n′ ∈ Q(S) ∩ Pi with n′ > n, so in particular n = p i(m) and
n′ = p i(m′) for some m,m′ ≫ N(S)1/ deg p i . We then have the chain of inequalities

N(S)δ ≫ n
′ − n = p i(m′) − p i(m) ≥ min

x∈[m ,m′]
∣p′i(x)∣ ≫ N(S)

deg pi−1
deg pi ,

which is a contradiction for suõciently large S, provided that δ < deg p i−1
deg p i

(which will
hold if we put δ = 1

3 ). hus, ∣Q(S) ∩ Pi ∣ ≤ 1.
As for Q(T0 , T) ∩ E j , from the bounds on growth of E j we immediately have

(4.4) ∣ ⋃
T0≤S≤T

Q(T0 , T) ∩ E i ∣ ≪ ∣E i ∩ [2N(T)]∣ ≪ T .

In total, using (4.3) and (4.4), we ûnd that

∣Q(T0 , T)∣ ≤
T

∑
S=T0

Kpoly

∑
i=1

∣Q(S) ∩ Pi ∣ +
Kexp

∑
i=1

∣Q(T0 , T) ∩ E i ∣ + O(1) ≪ T ,

contradicting the previously obtained bound ∣Q(T0 , T)∣ ≫ T2. It follows that indeed
Kpoly = 0.

Since E′ contains no polynomial or linear progressions, we have ∣E′ ∩ [N]∣ ≪
logN . It follows from Proposition 3.4 that E′ must be k-arid of rank 1. Since all basic
arid sets of rank 1 are of the form described in the statement of the theorem, we are
done. ∎

5 Proof of Theorem E

In this section, we deriveheorem E from heoremD. Our argument is purely com-
binatorial and can be entirely phrased in terms of ûnite automata with no further
recourse to dynamics.
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Proposition 5.1 Let A ⊂ Σ∗k be an inûnite arid set. hen there exists v ∈ Σ∗k such that

A∩ vΣ∗k takes the form

A∩ vΣ∗k =
p

⋃
i=1

{vw l
u i ∣ l ∈ N0},

where p ≥ 1, v ,w , u i ∈ Σ∗k and w ≠ є. In particular, A∩ vΣ∗k is arid of rank 1.
Likewise, there exists ṽ ∈ Σ∗k such that A∩ Σ∗k ũ takes the form

A∩ Σ∗k ũ =
p̃

⋃
i=1

{ṽ i(w̃)l
ũ ∣ l ∈ N0},

where p̃ ≥ 1, ṽ i , w̃ , ũ ∈ Σ∗k and w̃ ≠ є.

Proof Since the notion of an arid set is preserved under the reversal operation, it
is suõcient to prove the former statement. For B ⊂ Σ∗k and v ∈ Σ∗k , put v

−1B =
{u ∈ Σ∗k ∣ vu ∈ B}. If B is arid of rank ≤ r, then so is v−1B.

Claim Let B ⊂ Σ∗k be arid of rank r, and let x1 , x2 , y ∈ Σ∗k be such that a = ∣y∣ = ∣x2∣
and y ≠ x2. hen for suõciently large m (depending on B, x1 , x2 , y), (x1 y

mx2)−1B is
arid of rank ≤ (r − 1).

Proof Replacing B with x−1
1 B, we can assume that x1 = є.

Let a = ∣y∣ = ∣x2∣. In analogy with Remark 3.5, note that there is a natural way to
identify Σ∗ka with a subset of Σ∗k , and any arid set B ⊂ Σ∗k is a ûnite union of translates
B iv i with v i ∈ Σ∗k of arid sets B i ⊂ Σ∗ka . Hence, it will suõce to show that if B ⊂ Σ∗ka is
arid of rank r, then for suõciently large m, B ∩ ymx2Σ∗k is arid of rank ≤ (r − 1). We
can now replace k with ka and assume that ∣y∣ = ∣x2∣ = 1.

It will suõce to prove the claim for B of the form

B = {v0w l1
1 v1w

l2
2 ⋅ ⋅ ⋅w lr

r vr ∣ l1 , . . . , lr ∈ N},

wherew i ≠ є for all i (note that l i here are required to be strictly positive; any arid set
of rank r is a union of such sets and an arid set of rank ≤ (r − 1)). Now, if m > ∣v0w1∣,
then either B ∩ ymx2Σ∗k = ∅ (in which case we are trivially done) or B ∩ ymx2Σ∗k ≠ ∅
and both v0 and w1 is a power of y. In the latter case, we further conclude that x2
appears in v1w2 (else B would have rank ≤ (r − 1)), which is necessarily of the form
ybx2v

′
1 with b ∈ N0. Hence,

(ym
x2)−1

B = {v′1w l2−1
2 v2w

l3
3 ⋅ ⋅ ⋅w lr

r vr ∣ l2 , . . . , lr ∈ N}

is arid of rank ≤ (r − 1). ∎

he proof of the proposition is now a simple induction on the rank r of A. Since A
is inûnite, we have r ≥ 1.

If r = 1, then A takes the form⋃r
i=1 {v iw

l
iu i ∣ l ∈ N0}, where w i ≠ є for at least one

i, say i = 1. hen A∩ vΣ∗k takes the required form for v = v1w
m
1 for m large enough.

If r > 1, then we can ûnd a rank 2 basic arid set

B = {v0w l1
1 v1w

l2
2 v2 ∣ l1 , l2 ∈ N0}
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contained in A. Without loss of generality,we can assume that ∣w1∣ = ∣w2∣ > ∣v1∣. Apply
the above claim with x1 = v0, y = w

l1
1 and x2 equal to the ûrst ∣y∣ symbols of v1w

l2
2 ,

where l2 ≥ l1 ≥ 2. Note that y ≠ x2, because otherwise by an elementary computation
one could show that the rank of B is 1. hen for m large enough A′ = (x1 y

mx2)−1A is
arid of rank ≤ (r − 1) and inûnite. By the inductive assumption, there exists v′ ∈ Σ∗k
such that A′ ∩ v′Σ∗k takes the required form. It remains to take v = x1 y

mx2v
′. ∎

Corollary 5.2 Let E be an inûnite k-arid set. hen there exist integers n ≥ 1, r ≥ 0,
p ≥ 1, and words v1 , . . . , vp ,w , u ∈ Σ∗k , w ≠ є such that

E ∩ (nZ + r) =
p

⋃
i=1

{[v iw
l
u]k ∣ l ∈ N0}.

Proof his follows immediately from the second part of Proposition 5.1. ∎

Proposition 5.3 If the set {k l ∣ l ≥ 0} is not generalised polynomial, then neither is

any inûnite k-arid set.

Proof Assume we know that P = {k l ∣ l ≥ 0} is not generalised polynomial. hen
neither is any set of the form Pt = {k t l ∣ l ≥ 0} for t ≥ 1, since P = ⋃t−1

j=0 k jPt .
Suppose that there exists an inûnite k-arid set that is generalised polynomial. Since

the class of generalised polynomial sets contains all arithmetic progressions and is
closed under ûnite intersections, Corollary 5.2 allows us to assume that

E =
p

⋃
i=1

{[v iw
l
u]k ∣ l ≥ 0}

for some p ≥ 1, v1 , . . . , vp ,w , u ∈ Σ∗k , w ≠ є. Let s = ∣u∣, t = ∣w∣ and note that

[v iw
l
u]k = [u]k + k

s[w]k
k t l − 1
k t − 1

+ [v i]kk t l+s .

Let g be a generalised polynomial such that E = {n ∈ N0 ∣ g(n) = 0} and assume
further that g is a restriction of a generalised polynomial of a real variable that has no
further zeros in R>0 ∖N. (To this end, replace g(n) by g(n)2 + ∥n∥2.) hen an easy
computation shows that the polynomial

h(n) = g( k
s n − [w]k

k t − 1
+ [u]k)

has as its zero set

B = {n ∈ N ∣ h(n) = 0} =
p

⋃
i=1

{b ik
t l ∣ l ≥ 0},

where b i = [w]k + (k t − 1)[v i]k , i = 1, . . . , p.
he set C = {n ∈ N0 ∣ b1n ∈ B} is also generalised polynomial and has the form

C =
p

⋃
i=1

{c ik t l ∣ l ≥ 0}
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with c1 = 1 and c i = b ik
t l i /b1, where l i ≥ 0 is the smallest integer such that b1 divides

b ik
t l i . (If there is no such integer, the corresponding term is not present.)
Let m ≥ 1 be such that c i < k tm for i = 1, . . . , p. Replacing the set {c ik t l ∣ l ≥ 0} by

the union

{c ik t l ∣ l ≥ 0} =
m−1
⋃
j=0

{c ik t j
k
mt l ∣ l ≥ 0}

and replacing k by kmt , we can assume that

C =
p

⋃
i=1

{c ik l ∣ l ≥ 0}

with c1 = 1 and 1 ≤ c i < k2.
Consider the set D = {n ∈ C ∣ n ≡ 1 (mod k2 − 1)}. he set D is generalised

polynomial and an integer c ik l ∈ C can be an element of D only if c i ≡ 1 (mod k2−1)
or c i ≡ k (mod k2−1). Since 1 ≤ c i ≤ k2−1, this gives c i = 1 or c i = k, andwhether the
latter possibility is realised or not, we have D = {k2 l ∣ l ≥ 0}. his is a contradiction
with our remark that no set of the form Pt = {k t l ∣ l ≥ 0}, t ≥ 1, is generalised
polynomial (note that during the proof we have replaced k by its power). ∎

We are now ready to ûnish the proof ofheorem E.

Proof of Theorem E he two statements in heorem E are, of course,mutually ex-
clusive. Now assume that there exists a sequence (an) that is k-automatic, gener-
alised polynomial, and not ultimately periodic. By heorem D, it nevertheless coin-
cides with a periodic sequence (bn) except at a set of density zero. Consider the set
C = {n ∈ N0 ∣ an ≠ bn}. his set is k-automatic, generalised polynomial, sparse,
and inûnite. By heorem 3.7, C is then arid and hence by Proposition 5.3 the set
{k l ∣ l ≥ 0} is generalised polynomial as well. ∎

6 Concluding Remarks

In this section, we gather some remarks and questions that arise naturally. he ques-
tion with which we begin was already alluded to in the introduction and in [BK18b].
As previously discussed, its resolution would suõce to decide if Conjecture B is true.

Question 1 Let k ≥ 2 be an integer. Is the set {k i ∣ i ≥ 0} generalised polynomial?

We ûnd this question exceptionally pertinent because of its simple formulation.

Morphic Words

he class ofmorphic words is a natural extension of the class of automatic sequences.
Let Ω be a ûnite set. Any morphism φ of the monoid Ω∗ extends naturally to ΩN0 .
A word w ∈ ΩN0 (which we identify with a function N0 → Ω) is a pure morphic

word if it is a ûxed point of a non-trivial morphism of Ω∗. A morphic word is the
image π ○ w∶N0 → Ω′ of a pure morphic word w under a coding π∶Ω → Ω′ (i.e.,
any set-theoreticmap, not necessarily injective). Morphic words are connected with
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automatic sequences via the fact that k-automatic sequences are precisely the mor-
phic words coming from k-uniform morphisms. Here, a morphism φ∶Ω∗ → Ω∗ is
k-uniform if ∣φ(u)∣ = k for all u ∈ Ω.

We have already encountered possibly themost famous example of a non-uniform
morphic word, the Fibonacci word. Recall from the introduction that the Fibonacci
word wFib was deûned as the limit of the words w0 ∶= 0, w1 ∶= 01, and w i+2 ∶= w i+1w i .
Directly from this deûnition, it is easy to see that wFib is ûxed by the morphism
φ∶ΩN0 → ΩN0 given by φ(0) = 01 and φ(1) = 0.

Recall also that wFib is a Sturmian word. Here, a Sturmian word is one of the form
f (n) = ⌊α(n + 1) + ρ⌋ − ⌊αn + ρ⌋ − ⌊α⌋, where α, ρ ∈ R and α /∈ Q (for wFib wemay
take α = ρ = 2−φ). Some (but not all) of these sequences give rise to morphic words;
see [BS93] for details (cf. also [Yas99, Fag06, BEIR07]).

In analogy with Conjecture B, one could ask about a classiûcation of all morphic
words that are given by generalised polynomials. We believe that examples such as
the Fibonacci word are essentially the only possible ones.

Question 2 Assume that a sequence f ∶N0 → Ω ⊂ R is both a morphic word and
a generalised polynomial. Is it true that f is a linear combination of a number of
Sturmian morphic words and an eventually periodic sequence?

Regular Sequences

We ûnish by presenting a generalisation of Conjecture B to regular sequences. We call
a function f ∶N0 → Z a quasi-polynomial if there exists an integer m ≥ 1 such that the
sequences f j given by f j(n) = f (mn + j), 0 ≤ j ≤ m − 1, are polynomials in n. We
say that a function f ∶N0 → Z is ultimately a quasi-polynomial if it coincides with a
quasi-polynomial except on a ûnite set.

Question 3 Assume that a sequence f ∶N0 → Z is both regular and generalised
polynomial. Is it then true that f is ultimately a quasi-polynomial?

If f takes only ûnitely many values, then all the polynomials inducing f j are nec-
essarily constant, and so in this case the question coincides with Conjecture B.
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