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SUMMARY
This paper addresses the motion planning and control problem of a system of 1-trailer robots navigat-
ing a dynamic environment cluttered with obstacles including a swarm of boids. A set of nonlinear
continuous control laws is proposed via the Lyapunov-based Control Scheme for collision, obsta-
cle, and swarm avoidances. Additionally, a leader–follower strategy is utilized to allow the flock
to split and rejoin when approaching obstacles. The effectiveness of the control laws is demon-
strated through numerical simulations, which show the split and rejoin maneuvers by the flock when
avoiding obstacles while the swarm exhibits emergent behaviors.

KEYWORDS: Tractor–trailer; Collision avoidance; Unmanned vehicles; Swarm; Motion control;
Lyapunov-based Control Scheme.

1. Introduction
The autonomous navigation and control of unmanned vehicles is currently an important research area
in robotics involving single or multiple coordinated and connected mobile robots. In essence, con-
nected and autonomous vehicles play a vital role in the transportation industry. Vehicle-to-vehicle
(V2V), vehicle-to-infrastructure (V2I), and vehicle-to-everything (V2E) communication ensures
connectedness, which is facilitated using wireless and cellular technologies.1 For instance, the road
framework is thought to be well outfitted with sensors and remote advancements to guarantee suf-
ficient correspondence for genuine utilization of the computerized vehicle framework to work. The
supposition that is relevant remembering that the current engineering designs for the issue of permit-
ting autonomous vehicles on open roads are pertinent to the advancement of unique paths for streets
only for self-driving vehicles instilled with sensors and remote innovations.2

The research area has seen a variety of approaches documented in the literature, such as road
maps,3, 4 cell decomposition path planning,5, 6 and artificial potential field (APF).7–12 The differences
between the approaches are linked to the type of information about the workspace that is available
to the robotic system.2, 13 These differences give rise to the two well-known methods in navigation;
sensor-based method and global path planning method. The sensor-based methods are used when
only the local information is available to the robotic system,14–16 while the global path planning meth-
ods are used when the full information on the entire workspace is available to find the optimal path.

The mobile robots are increasingly deployed in real-life applications, such as military-based appli-
cations, industrial, office, agriculture automation, search and rescue, surveillance and inspection, to
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name but a few.8, 9, 11, 12 In essence, mobile robots are tasked with work that could be defined as “dull,
dirty, or dangerous”.9, 12 Multi-agent robotic systems are more favored in accomplishing specific con-
trol objectives as a direct consequence of their effectiveness with the coupling of inherent constraints
and restrictions, robustness, flexibility, redundancy, their wide-ranging capabilities, and the abun-
dance of real-world applications compared to a single agent.9, 17–19 The fundamental problem in the
motion planning and control of such cooperative systems is finding a collision-free trajectory in envi-
ronment cluttered with static and dynamic obstacles. The environment is either known or unknown
to the cooperative system, hence the control mechanism for safe navigation among obstacles is a
problem that still represents a real challenge.9, 11, 20

The performance of multi-agent systems are optimized these days using the autonomous
unmanned robots, which can be grouped into four classes: land (ground mobile robots), aquatic
(underwater unmanned vehicles), surface vessels, and unmanned aerial vehicles.21 In this research,
our interest lies with the land-dwelling robots, which represent one the largest classes in the four
groups. Even though there are various kinds of land robots, wheeled and tracked robots are the most
popular because of their workability and simplicity.9 However, they are difficult to control because
the ground contact inflicts a kinematic constraint known as the nonholonomic constraint. This con-
straint prevents any motion of the wheels in the direction perpendicular to the wheels velocity.22 The
models for the ground mobile robots fall under two categories, namely dynamic and kinematic model.
Dynamic models are based on resolution of physical forces, whereas kinematic models are based on
abstracted control inputs. The kinematic model of ground vehicles can be generally categorized into
three types – holonomic, unicycle, and bicycle.21 The differences between the kinematic models are
characterized by the different kinematic constraints that are imposed on the models.

1.1. Related works
There are many approaches in literature in relation to the formation control of robots that are devel-
oped by either behavioral-based,17, 23 virtual structure,24 or leader–follower approach.1, 2, 8, 25, 26 The
leader–follower technique is most widely used and is well recognized due to its simplicity and reli-
ability. In the leader–follower formation strategy, one mobile robot is designated as the leader and
other robots are called followers.25 The leader will navigate toward its defined target, while the
ghost targets normally move relative to the leaders position and the follower robots move toward
their designated ghost targets. Formation control of multi-agent systems has been studied effectively
with region constraint in ref. [27], obstacle avoidance in refs. [28, 29], connectivity preservation and
event-triggered controllers in ref. [30], and Lyapunov-based method with obstacle avoidance in refs.
[1, 8–10, 12, 31, 32]. Tractor–trailer systems, which are formed by connecting the car-like mobile
robot to trailers are used to enhance the performance in autonomous transportation. The foremost
inspiration in the research on formation control for a flock of tractor–trailer robots is the increase of
transportation volume in a cost-effective way in load carriage, crop harvesting, material collecting,
delivery system, and logistical cooperation.18, 33–35

Many researchers have studied tractor-trailer systems with an on-axle hitching, but only a few
have focused on the off-axle hitched trailer system36 due to its kinematic structure, which is highly
complicated. As such, the coupling between the tractor and trailer increases the nonlinearity and
complexity of kinematic equations and compound the difficulty in the analysis and controller design.
There have been a significant amount of work done to address the motion control of tractor-trailer
systems. For example, Divelbiss and Wen in ref. [37] used a front wheel drive tractor to derive
the kinematic model for the general n-trailer to solve the nonholonomic motion planning problem.
In ref. [38], Bolzern et al. proposed control laws for the off-axle hitched trailer system based on
linearization of a virtual on-axle vehicle, which shared some properties with the actual one. In ref.
[39], Lee et al. presented experimental data for the design and control of passive multiple trailer
systems, both off and on-axle. Motion planning and collision avoidance schemes were considered
by minimizing the trajectory tracking error with the reference trajectory implying the trajectory of
the towing vehicle. In ref. [40], Kayacan and Saeys addressed the robust trajectory tracking error
model-based predictive control of tractor–trailer systems. In ref. [41], Ding et al. proposed control
algorithms for active trailer steering systems using Fuzzy Logic Control and Linear Quadratic
Regulator techniques, Astolfi et al. in ref. [42] solved the problem of asymptotic stabilization
for straight and circular forward/backward motions using the Lyapunov-based approach, while
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Raghuwaiya et al.1 discussed rigid formation control of the 1-trailer robots. Other very exciting
work on tractor–trailer vehicles can be found in refs. [43–45].

This research paper considers a communication system comprising of a flock of tractor–trailer
robots navigating amidst a swarm of boids with emergent behaviors, exemplifying V2V and V2I
communication system. The tractor–trailer system is a mobile robot composed of a car-like tractor
robot, which pulls a number of trailers connected by revolute joints which satisfy nonholonomic
constraints. The reader is referred to refs. [20, 22] for a detailed account of nonholonomy.

1.2. Contributions
The main contributions of this research paper are expressed as follows:

1. A new dynamic environment which includes a swarm of boids as moving obstacles, adding a new
dimension to the motion planning and control problem. Previous work by the authors involved the
motion control of cooperative systems of tractor–trailers while maintaining locally rigid formation
in the presence of disk-shaped obstacles;1

2. The formation control of a flock of 1-trailer systems with swarm, obstacle, and collision avoid-
ance through a leader–follower strategy with followers having ghost targets. The avoidance of the
tractor–trailer system by the swarm of boids, ensuring collision avoidance is a new addition to
the control problem. Fixed disk-shaped obstacles and moving robots, which themselves become a
moving obstacle to all the other mobile robots in the workspace has been studied,9, 46, 47 however,
swarm avoidance with tractor–trailer system will be the first of its kind;

3. A closed and bounded workspace as fixed obstacles so that the tractor–trailer robotic system uses
the V2I and V2E communication for safe navigation.

4. A simple and elegant method of converting complex dynamical and kinematical constraints into
APF functions of the 1-trailer systems. The Lyapunov-based Control Scheme (LbCS) provides
a very simple yet an effective way of constructing mathematical functions from limitations,
inequalities, restrictions, and mechanical constraints tagged to the mechanical systems into
APF functions, and subsequently incorporate these into the controllers derived from LbCS.
Other motion planning and control schemes available in the literature find much difficulty in
incorporating these limitations into their control laws when compared to the LbCS;9, 26, 48

5. A unified set of nonlinear, time-invariant acceleration-based control laws for a heterogeneous
robotic system that is efficiently designed at the kinematic level via LbCS.

The remainder of this paper is structured as follows: in Section 2, the kinematic model of the 1-
trailer system and the swarm model are briefly presented; in Section 3, the objectives of the research is
outlined; in Section 4, the APF functions are defined under the influence of kinodynamic constraints;
in Section 5, the Lyapunov function is introduced including the controller design; in Section 6, the
stability analysis of the robotic system is carried out; in Section 7, we demonstrate the effectiveness
of the proposed controllers via numerical simulations; and finally, Section 8 concludes the paper and
outlines future work in the area.

2. System Architecture
In this section, we shall model a tractor–trailer system and a swarm of disk-shaped boids using planar
Cartesian coordinates. The steerable standard 1-trailer system and swarm of boids will be used to
design a kinodynamic system in a bounded yet dynamic environment.

2.1. The 1-trailer system model
There are two different trailer systems, namely the standard and general trailer systems. The different
hooking mechanism schemes classify the two different categories of the trailer systems.49 In this
research, the steerable standard 1-trailer system will be considered, which is a car-like mobile robot
attached to a two-wheeled active trailer. A schematic diagram is represented in Fig. 1. A revolute link
or a rigid bar of length Li1 and Li2 joins the two vehicles; from the midpoint of the rear axle of the
i th vehicle to the midpoint of the rear axle of the i th trailer. The connections between the two bodies
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Fig. 1. The kinematic model of Ai , a rear-wheel-driven steerable standard 1-trailer system with front-wheel
steering and steering angle, φi1 and one on-axle hitched two-wheeled active trailer in the Euclidean plane.

give rise to the following nonholonomic constraints on the system, which in general is the position
of the attached trailer, adopted from ref. [25]:

xi2 = xi1 − Li1

2
cos θi1 − Li2 + 2d

2
cos θi2, yi2 = yi1 − Li1

2
sin θi1 − Li2 + 2d

2
sin θi2, (1)

for i = i, . . . , n. These constraints will reduce the dimension of the configuration space. In addition,
we assume that there is no slippage of the rear and the front wheels of the tractor of the 1-trailer
system, that is, the lateral velocities of the wheels of the tractor are assumed to be zero. We begin
with the following definition:

Definition 1. The ith nonholonomic steerable standard 1-trailer system, i = 1, . . . , n, n ∈N,
comprises of two disks. The first disk, centered at (xi1, yi1) with radius ri1, represents the rear-wheel
driven and front-wheel steered car-like vehicle, defined precisely as

Ai1 := {(z1, z2) ∈R
2 : (z1 − xi1)

2 + (z2 − yi1)
2 ≤ r2

i1}.
The second disk, centered at (xi2, yi2) with radius ri2, represents the on-axle hitched two-wheeled
active trailer, defined precisely as

Ai2 := {(z1, z2) ∈R
2 : (z1 − xi2)

2 + (z2 − yi2)
2 ≤ r2

i2}.
Then the i th steerable standard 1-trailer system is the set

Ai :=Ai1 ∪Ai2.

With reference to Fig. 1, (xim, yim), i = 1, . . . , n, and m = 1, 2, is the reference point of each
solid body of the articulated robot, θim gives the orientation of the mth body of Ai with respect to the
z1-axis of the z1z2-plane. Moreover, φim gives the steering angle of the mth body of Ai with respect
to its longitudinal axis. For simplicity, we assume that the dimensions of the robots are kept the same.
Therefore, Li1 is the distance between the centers of the front and rear axles of Ai ’s tractor, Li2 is the
distance between the centers of the front and rear axles of the attached trailer, and li is the length of
each axle. If we let mi be the mass of the full robot, Fi is the force along the axis of the tractor–trailer
robot, �i1 and �i2 are the torque about a vertical axis at (x0, y0), and Ii1 and Ii2 are the moment
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of inertia of the tractor–trailer robot, then the dynamic model of Ai , adopted from ref. [49], is then
derived as

ẋi1 := vi cos θi1 − Li1
2 ωi1 sin θi1,

ẏi1 := vi sin θi1 + Li1
2 ωi1 cos θi1,

θ̇i1 := vi
Li1

tan φi1 =:ωi1,

θ̇i2 := vi
Li2

sin(θi1 − θi2)=:ωi2,

v̇i := Fi
mi

= σi1,

ω̇i1 := �i1
Ii1

= σi2, ω̇i2 := �i2
Ii2

= σi3,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

for i = 1, . . . , n. Note that vi and ωi1 are, respectively, the instantaneous translational and rota-
tional velocities, while σi1 and σi2 are, respectively, the instantaneous translational and rotational
accelerations of the tractor of Ai , whereas ωi2 and σi3 are, respectively, the instantaneous rota-
tional velocity and the instantaneous rotational acceleration of Ai ’s trailer. Moreover, without
any loss of generality, we assume that φim = θim . The state space of Ai is then illustrated by
xi := (xi1, yi1, θi1, θi2, vi , ωi1, ωi2) ∈R

7, for i = 1, 2, . . . , n. For the n members constituting the
flock of the steerable 1-trailer systems, we further define x := (x1, x2, . . . , xn) ∈R

7n .
Furthermore, to ensure that the entire vehicle safely steers pass an obstacle, the planar vehicle can

be represented as a simpler fixed-shaped object, such as a circle, a polygon, or a convex hull.2, 9, 33

This representation is facilitated with the view of minimizing the obstacle space (C-space) in the
workspace. We enclose each body of the articulated vehicle within two separate protective circular
regions (as seen in Fig. 1), which basically reduces the unnecessary growth of the C-space. Hence, to
ensure that each articulated body of Ai safely steers past an obstacle, given d := ε1 + c and clearance
parameters ε1 > 0 and ε2 > 0, we enclose the first body of Ai , that is the tractor, by a protective cir-
cular region centered at (xi1, yi1), with radius ri1 :=√(Li1 + 2ε1)2 + (li + 2ε2)2/2 = (Li1 + 2d)/2.
Similarly, for the second body of Ai , that is the trailer, enclosure is again with a circular protective
region centered at (xi2, yi2) with radius ri2 :=√(Li2 − 2c)2 + (li + 2ε2)2/2.

2.2. A swarm model
Biological systems such as the groups of fish, ants, birds, and bacteria reveal some amazing coop-
erative behaviors while in motion. These cooperative behaviors can be classified as separation,
alignment, and cohesion. They describe how each member or boid, maneuvers, based on the positions
and velocities of its nearby flockmates.50

We shall construct a model of a swarm with h individuals moving with the velocity of the swarm’s
centroid. Following the nomenclature of Reynolds,50 each member of the flock is denoted as a boid.
A general swarm model, formulated by Mogilner et al.51 will be utilized. We begin with the following
definition for the swarm model:

Definition 2. A swarm is a collection of a large number of individuals, called boids. At time t ≥ 0,
let (xbk(t), ybk(t)), k = 1, . . . , h, h ∈N, be the planar position of the kth individual, which we shall
define as a boid residing in a disk of radius rbk ≥ 0,

Bk := {(z1, z2) ∈R
2 : (z1 − xbk)

2 + (z2 − ybk)
2 ≤ rb2

k

}
. (3)

The disk is described in ref. [51] as a bin and in ref. [52] as a private or safety area, of each
individual. We shall use the former term, with bin size being the radius rbk of the disk.

Let us define the centroid of the swarm as

(xbC , ybC) :=
(

1

h

h∑
k=1

xbk,
1

h

h∑
k=1

ybk

)
. (4)
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At time t ≥ 0, let (υbk(t), ωbk(t) := ( ˙xbk(t), ˙ybk(t))) be the instantaneous velocity of the kth boid.
Using the above notations, a system of first order ODE’s for the kth boid is obtained, assuming the
initial conditions at t = t0 ≥ 0:

˙xbk = υbk(t),

˙ybk =ωbk(t),

xbk0 := xbk(t0) , ybk0 := ybk(t0), k = 1, . . . , h, h ∈N.

⎫⎪⎪⎬
⎪⎪⎭ (5)

Suppressing t , let xk = (xbk, ybk) ∈R
2 and x = (x1, . . . , xn) ∈R

2n be the state vectors. Also, let

x0 = x(t0)= (xb10, yb10, . . . , xbn0, ybn0).

If gk(x) := (υbk, ωbk) ∈R
2 and G(x) := (g1(x), . . . , gn(x)) ∈R

2n , then the swarm system of h
boids is

ẋ = G(x), x0 = x(t0), t0 ≥ 0. (6)

2.3. Heterogeneous system: 1-trailer and swarm
The combined dynamic model of the steerable 1-trailer system and the swarm of boids is given by

˙xi1 = vi cos θi1 − Li1

2
ωi1 sin θi1 ,

ẏi1 = vi sin θi1 + Li1

2
ωi1 cos θi1 ,

˙θi1 = vi

Li1
tan φi1 =:ωi1 ,

˙θi2 = vi

Li2
sin (θi1 − θi2)=ωi2 ,

v̇i = Fi

mi
= σi1,

ω̇i1 = �i1

Ii1
= σi2, ω̇i2 = �i2

Ii2
= σi3,

˙xbk = υbk, ˙ybk =ωbk ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

for i = 1, . . . , n and k = 1, . . . , h. This forms the model of the dynamic team and to the authors
knowledge, it is the first time that such a dynamic team consisting of the tractor–trailer pair and the
swarm of boids is being modeled together for a formation control problem.

3. Research Objective
Given a priori-known environment in the z1z2-plane cluttered with obstacles, our objective is to
design nonlinear time-invariant controllers σi1, σi2, and σi3 to facilitate the movement of a team of
1-trailer system from an initial configuration to its final target while ensuring swarm, obstacle, and
collision avoidances. The different types of avoidance in this heterogeneous system will arise from
the following:

1. disk-shaped fixed obstacles;
2. inter-1-trailer system;
3. intra-swarm;
4. artificial obstacles constructed from dynamic constraints; and
5. swarm of boids.

4. Artificial Potential Field Functions
This section formulates collision-free trajectories of the robotic system under kinodynamic con-
straints in a fixed and bounded workspace using APF method. The principle idea that governs the
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Fig. 2. Positioning of the mobile ghost targets of Ai for i = 2, . . . , n, relative to the leader A1.

APF method is finding a function that represents the energy of the system, such as the Lyapunov
function and generating a force so that the energy of the system is minimized and reach the mini-
mum value, preferably only at the goal configuration. The energy of the system is mathematically
treated as the total potential. It is assumed that each Ai and Bk has a a priori knowledge of the entire
workspace. We design the acceleration-based controllers, σi1, σi2, and σi3, such that the flock of 1-
trailer system will navigate safely in the workspace and reach a neighborhood of its target. To obtain
a feasible solution, we utilize APF functions via the LbCS to design new controllers. We begin by
describing precisely the target, the workspace, and all obstacles.

4.1. Attractive potential field functions for the 1-trailer systems
4.1.1. Attraction to the target of the tractor–trailer pair. The leader–follower scheme is utilized for
the establishment and advancement of the flock of n robot 1-trailer systems. A target is assigned to
the leader of the articulated leader robot A1 to reach after some time t , which initiates the movement
of the vehicular system. An attractive force needs to be established between the leader robot A1 and
the follower robots Ai , i = 2, . . . , n via the leader–follower scheme to enable the follower robots to
follow A1 via the concept of mobile ghost targets,1 as illustrated in Fig. 2. Essentially, we require A1

to start from an initial position, move toward its designated target and finally converge at the center
of its designated target, while the follower robots follow A1 in accordance to the leader–follower
scheme.

Definition 3. The stationary target Ti for Ai is a circular disk with center (pi1, pi2) and radius
r pi for i = 1, . . . , n, defined by the set

Ti := {(z1, z2) ∈R
2 : (z1 − pi1)

2 + (z2 − pi2)
2 ≤ r p2

i

}
.

In the leader–follower scheme, the leader robot A1 will move toward its designated target with
center (p11, p12), while the ghost targets move relative to the leader’s position and the follower
robots Ai , i = 2, . . . , n move toward their designated ghost targets.1 The mobile ghost target for the
i th follower robot is positioned relative to the position of A1, with center given as (pi1, pi2)= (x11 −
ai , y11 − bi ), for ai , bi ∈R and i = 2, . . . , n. Hence, for the attraction of Ai to its designated/ghost
target, we consider an attractive potential function of the form

Vi (x) := 1

2

[
(xi1 − pi1)

2 + (yi1 − pi2)
2 + v2

i +
2∑

m=1

ω2
im

]
, (8)

for i = 1, . . . , n. The above function is not only a measure of the Euclidean distance between the
center of Ai and its target but also a measure of its convergence to the target with the inclusion of
the translational and rotational velocities. At the target center (pi1, pi2), we desire the velocities,
vi and ωim to be zero to ensure that the tractor–trailer pairs stop. The 1-trailer robots will move
toward the target which is a local minima. We define x∗ := (p01, p02, 0, 0) ∈R

4, then we see that
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Fig. 3. The attractive potential fields and the corresponding contour plot generated using the target attractive
function, Eq. (8). The dimensions of the 1-trailer system are given in Table I, while v0 = 5 and ω01, ω02 = π/4.
The disk-shaped target for the tractor robot is fixed at (p01, p02)= (50, 50) with a radius of r p0 = 1. For this
case, we are considering a single 1-trailer system. (a) 3D visualization. (b) Contour plot.

Vi (x∗)= 0. This is an implication that the role of Vi (x) in the Lyapunov function is to ensure that
system trajectories start and remain close to x∗, forcing x∗, via the controllers, to be an equilibrium
point of system (7). In other words, if the 1-trailer system ever converges to its target, then it remains
there at all times.

An illustration of the total potentials for the target attraction function is shown in Fig. 3(a), while
Fig. 3(b) shows the corresponding contour plot generated over a workspace 0< z1 < 100 and 0<
z2 < 100 for the articulated robot.

4.1.2. Auxiliary function. To guarantee the convergence of Ai to its designated target and ensure
that the nonlinear controllers vanish at the target configuration, we consider the auxiliary function of
the form

Gi (x) := 1

2

[
(xi1 − pi1)

2 + (yi1 − pi2)
2
]
, (9)

for i = 1, . . . , n. This auxiliary function is then multiplied to the inverse of each of the repulsive
potential field functions to be designed in the following subsections.

4.2. Repulsive potential field functions for the 1-trailer system
We want the members of the flock of 1-trailer system to avoid all obstacles intersecting their paths.
The fixed obstacles are the f our boundaries of the rectangular workspace of the tractor–trailer pair,
and the stationary solid objects fixed within the workspace. On the other hand, the moving obstacles
consist of the flock of 1-trailer systems and the swarm of boids. The artificial obstacles are created
to satisfy the dynamic constraints of the system. Hence, we construct obstacle avoidance functions
that measure the Euclidean distances between each articulated body of Ai and the obstacles in the
workspace.

4.2.1. Fixed obstacles. V2I communication is used for the flock of tractor–trailer pairs to avoid all
the fixed obstacles. For the avoidance of this obstacles, we design an obstacle avoidance function.
Let us fix l ∈N solid obstacles within the boundaries of the workspace.

Definition 4. A stationary solid object is a disk with center (ol1, ol2) and radius rol . Precisely,
the solid object is the set

Ol := {(z1, z2) ∈R
2 : (z1 − ol1)

2 + (z2 − ol2)
2 � rol

2
}
.
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For its avoidance by Ai , we consider the obstacle avoidance function

F Oiml(x) := 1

2

[
(xim − ol1)

2 + (yim − ol2)
2 − (rol + rim)

2
]
, (10)

where i = 1, . . . , n, m = 1, 2, and l = 1, . . . , q.
These dynamic constraints can be factored within the motion planners and control schemes of the

1-trailer system by constructing artificial obstacles and then avoiding them to achieve the desired
outcome which when coupled together with tuning parameters, will appear in the denominator of
the Lyapunov function as per the requirements of the LbCS. For each the repulsive potential field
functions that will be created, the same approach will be considered.

4.2.2. Dynamic constraints and modulus bound on velocities. The translational velocity is limited
for safety reasons, while the rotational velocity is limited as a result of inherent constraints on Ai .
Hence, we include the following additional constraints:

1. |vi |< vmax, where vmax is the maximum achievable speed of Ai ;

2. |ωi1|< vmax

|ρmin| , where ρmin := Li1

tan (φmax)
. This is derived from the fact that |φi1| ≤ φmax, where

φmax is the maximum steering angle. This condition is attributed to the boundedness of the
steering angle φi1;

3. |ωi2|< vmax

Li2
=:ω2 max, where ω2 max is the maximum rotational velocity of the trailer;

4. |θi1 − θi2| ≤ θmax <
π

2
, where θmax is the maximum bending angle of the trailer with respect

to the orientation of the tractor. In essence, the trailer is free to rotate within
(−π

2 ,
π
2

)
, hence

circumventing a jack knife situation.

Remark 1. For simplicity, the values of vmax, φmax, and θmax will be kept the same for each mobile
robot, Ai .

For each of the dynamic constraints, we construct a corresponding artificial obstacle:

AOi1 := {vi ∈R : vi ≤ vmax} , AOi2 := {ωi1 ∈R :ωi1 ≤ −vmax/ρmin} ,
AOi3 := {ωi2 ∈R :ωi2 ≤ −vmax/Li2} , AOi4 := {(θi1, θi2) ∈R : (θi1 − θi2)≤ −θmax} .

Figure 4 outlines the representation of the artificial obstacle got from the constraint on the transla-
tional speed of a robot. For the avoidance of these artificial obstacles, we construct the following
obstacle avoidance functions:

DCi1(x) := 1

2
(vmax − vi ) (vmax + vi ) ,

DCi2(x) := 1

2

(
vmax

|ρmin| −ωi1

)(
vmax

|ρmin| +ωi1

)
,

DCi3(x) := 1

2
(ω2 max −ωi2) (ω2 max +ωi2) ,

DCi4(x) := 1

2
(θmax − (θi2 − θi1)) (θmax + (θi2 − θi1)) ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

for i = 1, . . . , n. These positive functions would guarantee the adherence to the limitations imposed
upon the steering angle and the velocities of Ai .

4.2.3. Workspace limitations. We want to setup a simple framework for the workspace of our robotic
system so that the flock of 1-trailer systems is confined to a rectangular region at all time t ≥ 0.
Essentially, the robots motion will be confined to these boundary limitations.
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2
Z

1
Z

max
v

free
z

max
v

obsz

obsz

Fig. 4. The obstacle space (zobs) and free space (z f ree) from the artificial obstacle created for the restriction on
the speed of a robot.

Definition 5. The workspace is a fixed, closed, and bounded rectangular region, defined, for some

ηb > 2r for b = 1, 2 with r =
2∑

m=1

rim, i = 1, . . . , n as

W S := {(z1, z2) ∈R
2 : 0 ≤ z1 ≤ η1, 0 ≤ z2 ≤ η2}.

We require the robotic system to stay within the rectangular region and be avoided at all time
t ≥ 0. Therefore, we impose the following conditions for the f our boundaries:

Left Boundary : (z1, z2) : z1 = 0, Upper Boundary : (z1, z2) : z2 = η2 > 0,

Right Boundary : (z1, z2) : z1 = η1 > 0, Lower Boundary : (z1, z2) : z2 = 0.

In the control scheme, these boundaries are considered as fixed obstacles, which have to be avoided
at all time t ≥ 0. For the i th body of each robot to avoid these, we define the following potential
functions for the left, upper, right, and lower boundaries, respectively:

W Tim1(x) := xim − rim, W Tim2(x) := η2 − (yim + rim) ,

W Tim3(x) := η1 − (xim + rim) , W Tim4(x) := yim − rim,

}
(12)

for i = 1, . . . , n and m = 1, 2. Now, since ηb > 2(
2∑

m=1
rim), each of the functions is positive in

workspace.
As an illustration of the total potential, consider the presence of l = 3 obstacles within the

workspace bounded by 0< z1 < 100 and 0< z2 < 100. The total potential field function that governs
the motion of the leader A1is

L∗ (x) := V1 (x)+ G1 (x)

(
2∑

m=1

4∑
s=1

τ1ms

W T1ms (x)
+

2∑
m=1

3∑
l=1

α1ml

F O1ml (x)

)
, (13)

where τ1ms and α1ml are the control parameters for the workspace and fixed obstacles, respectively.
The three-dimensional view of the total potentials and the corresponding contour plot generated by
L∗ (x) is presented in Fig. 5, essentially the artificial force of L∗ (x) . The figure shows the attractive

potential created by V1 (x) and repulsive potentials created by
2∑

m=1

4∑
s=1

τ1ms
W T1ms(x)

and
2∑

m=1

3∑
l=1

α1ml
F O1ml (x)

.

4.2.4. Moving robots. There are two classes of moving obstacles that we will consider in this
section: flock of 1-trailer robots and the swarm of boids. We will design an avoidance scheme to
avoid the moving obstacles which the system has a priori knowledge.

Avoidance of other 1-trailer robots
A moving 1-trailer robot itself becomes a moving obstacle to all the other 1-trailer robots in the
workspace. Additionally, each articulated body of the 1-trailer robot has to be treated as a moving

https://doi.org/10.1017/S0263574721000060 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000060


1936 Motion control of a flock of 1-Trailer robots with swarm avoidance

Fig. 5. The total potentials generated for target attraction, workspace limitations, and avoidance of three
fixed obstacles governed by L∗ (x) (Eq. (13)) and the corresponding contour plot. The target is a disk
fixed at (p11, p12)= (50, 50); the obstacles are disk-shaped, fixed at (o11, o12 = 20, 20), (o21, o22 = 20, 70),
and (o31, o32 = 80, 50) with radii of ro1 = 5, ro2 = 8, and ro3 = 7, respectively while α1ml = 500; and with
boundary control parameter as τ1ms = 10, 000. In addition, the translational and the angular velocities of
the tractor–trailer pair are treated as constants with v1 = 1 and ω11 =ω12 = π/360, respectively. (a) A
three-dimensional visualization of the total potentials. (b) A contour plot of the total potentials.

obstacle for all the other members, via V2V communication. Therefore, for each mth component of
Ai to avoid the uth moving solid body of A j , we design repulsive potential field function with the
associated obstacle avoidance function:

MTmui j (x) := 1

2

[
(xim − x ju)

2 + (yim − y ju)
2 − (rim + r ju)

2
]
, (14)

for i, j = 1, . . . , n, with j �= i and m, u = 1, 2.

Avoidance of swarm of boids
Each member of the flock of 1-trailer robot needs to avoid the swarm of boids again via V2V
communication. The avoidance of the swarm of boids is a new addition to the motion planning and
control problem. Quintessentially, each boid of the swarm of boids becomes a moving obstacle for
the flock of 1-trailer systems in the workspace. Practically, the existence of collision avoidance is
pertinent to both the flock of 1-trailer systems and the swarm of boids. However, in this case, we
only consider a one-way collision avoidance scheme whereby only the flock of 1-trailer systems
avoid the swarm of boids, which is achievable via suitable tuning parameters.9 As such, we design a
repulsive potential field function for a one-way obstacle avoidance function:

STimk(x) := 1

2

[
(xim − xbk)

2 + (yim − ybk)
2 − (rim + rbk)

2
]
, (15)

for i = 1, . . . , n, m = 1, 2, and k = 1, . . . , h. The collision avoidance considered here is for the
individual boids and not the whole swarm for the emergent split and rejoin maneuvers.

4.3. Potential field functions for the swarm of boids
In this section, we will formulate potential field functions for the swarm of boids that would ensure
the attraction of the swarm to the centroid, inter-boid collision and fixed obstacle avoidances.

4.3.1. Attraction to the centroid. Reynolds flocking rules of separation, alignment, and cohesion can
be applied to generate or capture cooperative behaviors, which describe how an individual maneuvers
based on the positions and velocities of its nearby flock mates.50, 53 Through cohesion, a boid moves
toward the center of mass of its neighboring boids; via separation, the boid is moving away from
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the nearest boids in order to avoid possible collision; and by alignment, the boid adjusts its heading
according to the average heading of those boids in the neighborhood. The superposition of these
rules results in the generation of cooperative behavior by the boids moving in a particular formation
with a synchronized motion, while ensuring all possible collision and obstacle avoidances. The goal
is to ensure that individuals of the swarm are attracted toward each other and form a cohesive group
by having a measurement of the distance from the kth individual to the swarm centroid.54 The rule
stipulates that the individuals stay close to the nearest flock mates. Thus, for attraction toward the
center of the swarm, we define the following attraction function:

Rk(x) := 1

2

⎡
⎣(xbk − 1

h

h∑
a=1

xba

)2

+
(

ybk − 1

h

h∑
a=1

yba

)2
⎤
⎦ . (16)

where k = 1, . . . , h, k ∈N. This will be part of the total potentials for the heterogeneous system (7),
and its role is to ensure that kth boid is attracted to the swarm centroid.

4.3.2. Avoidance of the workspace boundaries. As discussed in Section 4.2.3, we need to enclose
the swarm within the confinement of the workspace since the environment is priori-known using V2I
communication. We define the avoidance of the four boundaries, namely, left, upper, right and lower
boundaries, by the following obstacle avoidance functions:

W Bk1(x) := xbk − rbk, W Bk2(x) := η2 − (ybk + rbk),

W Bk3(x) := η1 − (xbk + rbk), W Bk4(x) := ybk − rbk .

}
(17)

4.3.3. Intra-swarm collision avoidance. The moving boids themselves become obstacles to the other
boids of the swarm. Consequently using the V2V communication, the short range repulsion between
individuals necessitates first a measurement of the distance between the kth and the ath individuals,
a �= k, a, k ∈N. For the boids to avoid each other, we design an obstacle avoidance function:

SBka(x) := 1

2

[
(xbk − xba)

2 + (ybk − yba)
2 − (rbk + rba)

2
]
. (18)

The function is an Euclidean measure of the distance between the individual boids, and will appear
in the denominator of an appropriate term in the Lyapunov function designed later in the paper.

4.3.4. Avoidance of fixed obstacles by the swarm of boids. The individual boid also need to avoid
all the fixed obstacles along its path. Accordingly using the V2I communication, for the avoidance
of the fixed obstacles defined in Section 4.2.1 by the kth boid, we consider the following obstacle
avoidance function:

F Bkl(x) := 1

2

[
(xbk − ol1)

2 + (ybk − ol2)
2 − (rbk + rol)

2
]
, (19)

where k = 1, . . . , h and l = 1, . . . , q.

4.3.5. Termination of the swarm motion. We want to ensure that the swarm comes to a stop at some
point in time. Hence, an auxiliary function governed by Section 4.1.2 is added appropriately to the
swarm part of the Lyapunov function to ensure that the swarm stops. This coincides with the situation
when robot reach their target.

5. Design of the Nonlinear Controllers
In this section, the nonlinear control laws for system (7) will be designed using the LbCS
methodology.

5.1. Lyapunov function
In accordance with the LbCS, we construct the total potentials, that is, the Lyapunov function for
system (7) by combining all the attractive and repulsive potential functions. First, for i = 1, . . . , n
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and k = 1, . . . , h, we introduce the following control/tuning parameters to be utilized in the total
potentials:

1. αiml > 0, l = 1, . . . , q, m = 1, 2 for the collision avoidance of q disk-shaped obstacles (see
Section 4.2.1);

2. γis > 0, s = 1, . . . , 4, for the avoidance of the sth artificial obstacles from dynamic constraints
(see Section 4.2.2);

3. τims > 0, s = 1, . . . , 4, m = 1, 2 for the avoidance of the sth boundary of the workspace by the
flock of 1-trailer systems (see Section 4.2.3);

4. σimk > 0, m = 1, 2 for the collision avoidance of the 1-trailer systems with the boids (see Section
4.2.4);

5. βmui j > 0, j = 1, . . . , n, j �= i , m = u = 1, 2 for the collision between any two 1-trailer systems
(see Section 4.2.4);

6. ψk > 0, for a cohesive swarm of boids, that is, for the strength of attraction between the kth boid
and the swarm centroid (see Section 4.3.1);

7. ηks > 0, s = 1, . . . , 4, for the collision avoidance of the sth boundary of the workspace by the
swarm of boids (see Section 4.3.2);

8. ρka > 0, for the collision avoidance between any two boids in the swarm (see Section 4.3.3).
9. ζkl > 0, l = 1, . . . , q, for the collision avoidance of qth disk-shaped obstacles by the swarm of

boids (see Section 4.3.4);

Using these tuning parameters, we now propose the following Lyapunov function for system (7) with
two components, namely the attractive and repulsive potential field functions:

L(x) :=
n∑

i=1

[
Vi (x)+ Gi (x)

(
2∑

m=1

q∑
l=1

αiml

F Oiml(x)
+

4∑
s=1

γis

DCis(x)
+

2∑
m=1

4∑
s=1

τims

W Tims(x)

+
h∑

k=1

2∑
m=1

σimk

STimk(x)
+

n∑
j=1
j �=i

2∑
m=1

2∑
u=1

βmui j

MTmui j (x)

⎞
⎟⎠
⎤
⎥⎦

+
n∑

i=1

h∑
k=1

Gi (x)

⎡
⎢⎣ψk Rk(x)+ Rk(x)

⎛
⎜⎝ 4∑

s=1

ηks

W Bks(x)
+

h∑
a=1
a �=k

ρka

SBka(x)

+
q∑

l=1

ζkl

F Bkl(x)

)]
.

(20)

5.2. Nonlinear acceleration-based controllers
The feedback control laws for the kinodynamic system are extracted by finding the time derivative
of the various components of L (x) along a solution of the dynamic system Eq. (7) and force L (x) to
be at least semi-negative definite. The principal goal is to establish a prescribed formation, facilitate
split/rejoin maneuvers of the 1-trailer systems within a constrained and dynamic environment, and
reach the target configuration with the original formation. The subtasks include restrictions placed on
the workspace, convergence to predefined target, collision avoidance with fixed and moving obsta-
cles, collision avoidance with the swarm of boids and consideration of kinodynamic constraints.
Utilizing the attractive and repulsive potential field functions and upon suppressing x, the following
continuous time-invariant acceleration and velocity control laws can be generated for Ai and Bk ,
respectively:

σi1 := − [δi1vi + ( fi1 + fi3) cos θi1 + ( fi2 + fi4) sin θi1
]
/gi3,

σi2 := − [δi2ωi1 + Li1
2 ( fi2 cos θi1 − fi1 sin θi1)+ gi1

]
/gi4,

σi3 := − [δi3ωi2 + Li2+2d
2 ( fi3 sin θi2 − fi4 cos θi2)+ gi2

]
/gi5,

vbk := −ψk1Lxk, ωbk := −ψk2L yk,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(21)
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for i = 1, . . . , n and k = 1, . . . , h, where δi1, δi2, δi3, ψk1, ψk2 > 0 are constants known as conver-
gence parameters and the components of the controllers are of the form:

f11 :=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 +
q∑

l=1

α11l

F O11l
+

4∑
s=1

γ1s

DC1s
+

4∑
s=1

τ11s

W T11s
+

h∑
k=1

σ11k

ST11k
+

n∑
j=2

2∑
u=1

β1u1 j

MT1u1 j

+
h∑

k=1

⎡
⎢⎣ψk Rk + Rk

⎛
⎜⎝ 4∑

s=1

ηks

W Bks
+

h∑
a=1
a �=k

ρka

SBka
+

q∑
l=1

ζkl

F Bkl

⎞
⎟⎠
⎤
⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠
(x11 − p11)

−
n∑

i=2

⎛
⎜⎝1 +

q∑
l=1

αi1l

F Oi1l
+

4∑
s=1

γis

DCis
+

4∑
s=1

τi1s

W Ti1s
+

h∑
k=1

σi1k

STi1k
+

n∑
j=1
i �= j

2∑
u=1

β1u1 j

MT1u1 j

⎞
⎟⎠ (xi1 − pi1)

−G1

⎛
⎜⎜⎜⎜⎝

q∑
l=1

α11l

F O2
11l

(x11 − ol1)+
(
τ113

W T 2
113

− τ111

W T 2
111

)
+

h∑
k=1

σ11k

ST 2
11k

(x11 − xbk)

+
n∑

j=2

2∑
u=1

β1u1 j

MT 2
1u1 j

(
x11 − x ju

)

⎞
⎟⎟⎟⎟⎠ ,

f12 :=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 +
q∑

l=1

α11l

F O11l
+

4∑
s=1

γ1s

DC1s
+

4∑
s=1

τ11s

W T11s
+

h∑
k=1

σ11k

ST11k
+

n∑
j=2

2∑
u=1

β1u1 j

MT1u1 j

+
h∑

k=1

⎡
⎢⎣ψk Rk + Rk

⎛
⎜⎝ 4∑

s=1

ηks

W Bks
+

h∑
a=1
a �=k

ρka

SBka
+

q∑
l=1

ζkl

F Bkl

⎞
⎟⎠
⎤
⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠
(y11 − p12)

−
n∑

i=2

⎛
⎜⎝1 +

q∑
l=1

αi1l

F Oi1l
+

4∑
s=1

γis

DCis
+

4∑
s=1

τi1s

W Ti1s)
+

h∑
k=1

σi1k

STi1k
+

n∑
j=1
i �= j

2∑
u=1

β1u1 j

MT1u1 j

⎞
⎟⎠ (yi1 − pi2)

−G1

⎛
⎜⎜⎜⎜⎝

q∑
l=1

α11l

F O2
11l

(y11 − ol2)+ τ112

W T 2
112

− τ114

W T 2
114

+
h∑

k=1

σ11k

ST 2
11k

(y11 − xbk)

+
n∑

j=2

2∑
u=1

β1u1 j

MT 2
1u1 j

(
y11 − y ju

)

⎞
⎟⎟⎟⎟⎠ ,

and for i = 2, . . . , n,

fi1 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 +
q∑

l=1

αi1l

F Oi1l
+

4∑
s=1

γis

DCis
+

4∑
s=1

τi1s

W Ti1s
+

h∑
k=1

σi1k

STi1k
+

n∑
j=1
j �=i

2∑
u=1

β1ui j

MT1ui j

+
h∑

k=1

⎡
⎢⎣ψk Rk + Rk

⎛
⎜⎝ 4∑

s=1

ηks

W Bks
+

h∑
a=1
a �=k

ρka

SBka
+

q∑
l=1

ζkl

F Bkl

⎞
⎟⎠
⎤
⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(xi1 − pi1)

−Gi

(
q∑

l=1

αi1l

F O2
i1l

(xi1 − ol1)

)
− Gi

((
τi13

W T 2
i13

− τi11

W T 2
i11

)
+

h∑
k=1

σi1k

ST 2
i1k

(xi1 − xbk)

)

+
n∑

j=1
j �=i

2∑
u=1

(
G j

βu1 j i

MT 2
u1 j i

(
x ju − xi1

)− Gi
β1ui j

MT 2
1ui j

(
xi1 − x ju

))
,
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fi2 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 +
q∑

l=1

αi1l

F Oi1l
+

4∑
s=1

γis

DCis
+

4∑
s=1

τi1s

W Ti1s
+

h∑
k=1

σi1k

STi1k
+

n∑
j=1
j �=i

2∑
u=1

β1ui j

MT1ui j

+
h∑

k=1

⎡
⎢⎣ψk Rk + Rk

⎛
⎜⎝ 4∑

s=1

ηks

W Bks
+

h∑
a=1
a �=k

ρka

SBka
+

q∑
l=1

ζkl

F Bkl

⎞
⎟⎠
⎤
⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(yi1 − pi2)

−Gi

(
q∑

l=1

αi1l

F O2
i1l

(yi1 − ol2)

)
− Gi

((
τi12

W T 2
i12

− τi14

W T 2
i14

)
+

h∑
k=1

σi1k

ST 2
i1k

(yi1 − xbk)

)

+
n∑

j=1
j �=i

2∑
u=1

(
G j

βu1 j i

MT 2
u1 j i

(
y ju − yi1

)− Gi
β1ui j

MT 2
1ui j

(
yi1 − y ju

))
.

Moreover, for i = 1, . . . , n

fi3 := −Gi

(
q∑

l=1

αi2l

F O2
i2l

(xi2 − ol1)+
(
τi23

W T 2
i23

− τi21

W T 2
i21

)
+

h∑
k=1

σi2k

ST 2
i2k

(xi2 − xbk)

)

+
n∑

j=1
j �=i

2∑
u=1

(
G j

βu2 j i

MT 2
u2 j i

(
x ju − xi2

)− Gi
β2ui j

MT 2
2ui j

(
xi2 − x ju

))
,

fi4 := −Gi

(
q∑

l=1

αi2l

F O2
i2l

(yi2 − ol2)+
(
τi22

W T 2
i22

− τi24

W T 2
i24

)
+

h∑
k=1

σi2k

ST 2
i2k

(yi2 − xbk)

)

+
n∑

j=1
j �=i

2∑
u=1

(
G j

βu2 j i

MT 2
u2 j i

(
y ju − yi2

)− Gi
β2ui j

MT 2
2ui j

(
yi2 − y ju

))
,

gi1 := −Gi
γi4

DC2
i4

(θi2 − θi1) , gi2 := Gi
γi4

DC2
i4

(θi2 − θi1) , gi3 := 1 + Gi
γi1

DC2
i1

,

gi4 := 1 + Gi
γi2

DC2
i2

, gi5 := 1 + Gi
γi3

DC2
i3

,

Lxk := Gi

⎛
⎜⎝ψk +

4∑
s=1

ηks

W Bks
+

h∑
a=1
a �=k

ρka

SBka
+

q∑
l=1

ζkl

F Bkl

⎞
⎟⎠
(

xbk − 1

h

h∑
a=1

xba

)

+Rk Gi

(
ηk3

W B2
k3

− ηk1

W B2
k1

)
− 2Rk Gi

h∑
a=1
a �=k

ρka

SB2
ka

(xbk − xba)− Rk Gi

q∑
l=1

ζkl

F Bkl
(xbk − ol1),

L yk := Gi

⎛
⎜⎝ψk +

4∑
s=1

ηks

W Bks
+

h∑
a=1
a �=k

ρka

SBka
+

q∑
l=1

ζkl

F Bkl

⎞
⎟⎠
(

ybk − 1

h

h∑
a=1

yba

)

+Rk Gi

(
ηk2

W B2
k2

− ηk4

W B2
k4

)
− 2Rk Gi

h∑
a=1
a �=k

ρka

SB2
ka

(ybk − yba)− Rk Gi

q∑
l=1

ζkl

F Bkl
(ybk − ol2).
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Algorithm 1 Pseudocode for the numerical solution of the LbCS
Require: Time for executing the simulation, Tmax

for t = 1 : Tmax do
Require: Numerical values of initial state, constraints, and control and convergence parameters.

for i = 1 : n do
Evaluate all the attractive and repulsive potential field functions for the 1-trailer systems, and
its associated control laws.

end for
for k = 1 : h do

Evaluate all the attractive and repulsive potential field functions for the swarm of boids, and
its associated control laws.

end for
Require: The combined dynamic model of the steerable 1-trailer system and the swarm of boids,

Eq. (7) for the ODE Solver in Mathematica.
for i = 1 : n do

Evaluate the equations of motion for the 1-trailer system sing the Mathematica ODE Solver.
end for
for k = 1 : h do

Evaluate equations of motion for the swarm of boids sing the Mathematica ODE Solver.
end for

Require: Animate the output from the ODE Solver.
end for

6. Stability Analysis
In this section, we will analyze the stability of system (7).

Theorem 1. If a fixed point x∗
i = (pi1, pi2, pi3, pi4, 0, 0, 0) ∈R

7 is an equilibrium point of Ai ,
i = 1, . . . , n, then x∗ = (x∗

1, x∗
2, . . . , x∗

n) ∈ D(L(x)) is a stable equilibrium point of system (7).

Proof. One can easily verify the following, for i ∈ {1, . . . , n} and k ∈ {1, . . . , h}:
1. L(x) is defined, continuous, and positive over the domain D(L(x))= {x ∈R

7n : F Oiml(x) >
0, l = 1, . . . , q, m = 1, 2; DCis(x) > 0, s = 1, . . . , 4; W Tims(x) > 0, m = 1, 2, s =
1, . . . , 4; STimk(x) > 0, m = 1, 2; MTmui j (x) > 0, m = 1, 2, u = 1, 2, j = 1, . . . , n, j �=
i; W Bks(x) > 0, s = 1, . . . , 4; SBka(x) > 0, a = 1, . . . , h, a �= k; F Bkl(x) > 0, l =
1, . . . , q};

2. L(x∗)= 0;
3. L(x) > 0 ∀x ∈ D(L(x))/x∗.

Next, consider the time derivative of the Lyapunov function along a particular trajectory of
system (7).

L̇(7)(x) :=
n∑

i=1

[
fi1 ẋi1 + fi2 ẏi1 + fi3 ẋi2 + fi4 ẏi2 +

2∑
m=1

(
gim θ̇im + gi m+3ωimω̇im

)+ gi3vi v̇i

]

+
h∑

k=1

[
Lxk ẋbk + L yk ẏbk

]
.

Substituting the controllers given in Eq. (21) and the governing ODEs for system (7), we obtain the
following semi-negative definite function:

L̇(7)(x) := −
[

n∑
i=1

(
δi1v

2
i + δi2ω

2
i1 + δi3ω

2
i2

)+ h∑
k=1

(
ψk1Lx2

k +ψk2Ly2
k

)]≤ 0.
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(a) (b)

(c) (d)

Fig. 6. Scenario 1 showing the evolution of trajectories of the 1-trailer robots and the emergent behavior of
the swarm, h = 15 boids (shown in red), randomly positioned at the initial time t = 0. The gray lines show the
trajectories of the individuals in the swarm. The 1-trailer robots are shown in blue with the orange line as its
trajectory. The path of the swarm centroid shown in green. The 1-trailer systems are shown in blue with its
trajectories in orange. (a) The initial positions of the 1-trailer robots and the swarm of boids at t = 0 units. (b)
The avoidance between the 1-trailer robots and the swarm of boids at t = 9500 units. (c) The avoidance between
the 1-trailer robots and the swarm of boids at t = 30, 100 units. (d) The final postures of the 1-trailer robots and
the position of the swarm at t = 50, 000 units.

Thus, L̇(7)(x) ∀x ∈ D(L(x)) and L̇(7)(x
∗)= 0. Finally, it can be easily verified that L(x) ∈

C1 (D(L(x))), which makes up the fifth and final criterion of a Lyapunov function. Hence, x∗ is
a stable equilibrium point in the sense of Lyapunov. �

7. Simulation Results
This section demonstrates the effectiveness of the proposed continuous time-invariant nonlinear con-
trol laws within the framework of the LbCS via computer simulations of virtual scenarios where a
flock of 1-trailer robots navigates to a final configuration while avoiding fixed and moving obstacles
en route target. The fixed obstacles are the disk-shaped obstacles while the moving obstacles for the
1-trailer robots are the other 1-trailer robots and the swarm of boids. Upon encountering an obstacle,
the articulated 1-trailer system in formation splits and circumnavigates the obstacle. The robots then
rejoin into their coherent group and the formation is re-established before reaching the final target
configuration. The stability results are verified numerically.
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Table I. Scenario 1. Numerical values of initial state, constraints, and control and convergence parameters.

Initial states of the 1-trailer robots

Rectangular position (x11, y11)= (10, 75), (x21, y21)= (10, 80),
and (x31, y31)= (10, 70)

Angular positions θi1 = θi2 = 0, for i = 1, . . . , 3
Translational velocities v1 = 0.5, v2 = v3 = 3
Rotational velocities ωi1 =ωi2 = π/360 for i = 1, . . . , 3

Constraints

Dimension of robot Li1 = 2, Li2 = 1.2 and li = 0.5, for i = 1, . . . , 3
Leader rarget (p11, p12)= (140, 75)
Position of ghost targets (a2, b2)= (0,−5) and (a3, b3)= (0, 5)
Max. translational velocity vmax = 10
Max. steering angle φmax = π/2
Max. rot. velocity of trailer ω2 max = 1
Min. turning radius ρmin = 0.75
Clearance parameters ε1 = 0.1 and ε2 = 0.2
Workspace boundaries η1 = η2 = 150

Parameters for the 1-trailer robots

Dynamic constraints γis = 0.1, for i = 1, . . . , 3 and s = 1, . . . , 4
Boundary limitations τims = 0.0001, for i = 1, . . . , 3, m = 1, 2 and s = 1, . . . , 4
Avoidance of boids κimk = 1, for i = 1, . . . , 3, m = 1, 2 and k = 1, . . . , 15
Inter-robot collision avoidance βmui j = 0.01, for m = u = 1, 2 and i, j = 1, . . . , 3, i �= j
Convergence δi1 = δi2 = δi3 = 5000, for i = 1, . . . , 3

Parameters for the boids

Bin size 1
Cohesion parameter ψk = 25, for k = 1, . . . , 15
Boundary limitations ηks = 0.0001, for k = 1, . . . , 15 and s = 1, . . . , 4
Inter-boid avoidance ρka = rand[100, 500], for a, k = 1, . . . , 15, a �= k
Convergence αk1 = αk2 = 0.01, for k = 1, . . . , 15

The pseudocode for the implementation of the LbCS for dynamic model, Eq. (7) is in
Algorithm 1.

7.1. Scenario 1
There are 3 1-trailer robots and their initial positions are chosen while we utilize the randomiza-
tion technique to place the 15 boids of the swarm within the workspace, as shown in Fig. 6. The
flock of 1-trailer system navigate to a final configuration while avoiding each other, the fixed and
moving obstacles en route their target using V2V and V2I communications. For the swarm of boids,
first, the boids converge to the swarm centroid, move randomly and then form an emergent circu-
lar behavior. A general split–rejoin and avoidance behavior is observed of the 1-trailer system. This
could be mimicking a herd of cows crossing an intersection. In this scenario, we take αiml = ζkl = 0,
assuming that there are no fixed obstacles in the workspace. Table I provides all the values of the
initial conditions, constraints,s and different parameters utilized in the simulation. Figure 6(a) shows
the initial positions of the 1-trailer systems and the boids. Figure 6(b) illustrates the avoidance and
motion of the flock of 1-trailer systems and swarm of boids. Figure 6(c) is a zoomed-in illustration of
the proximity of the 1-trailer systems to the swarm of boids. The control parameters are chosen such
that a safe-zoning in avoidance is achieved. Figure 6(d) shows the final configuration of the 1-trailer
systems and the swarm of boids.
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Table II. Scenario 2. Numerical values of initial state, constraints, and control and convergence parameters.

Initial states of the 1-trailer robots

Rectangular position (x11, y11)= (10, 54) and (x21, y21)= (10, 77)
Angular positions θi1 = θi2 = 0, for i = 1, 2
Translational velocities v1 = 1 and v2 = 3
Rotational velocities ωi1 =ωi2 = π/360, for i = 1, 2

Constraints

Dimension of robot Li1 = 2, Li2 = 1.2 and li = 0.5, for i = 1, 2
Leader target (p11, p12)= (80, 55)
Position of ghost targets (a2, b2)= (0,−5)
Workspace boundaries η1 = η2 = 100

Parameters for the 1-trailer robots

Dynamic constraints γis = 0.1, for i = 1, 2 and s = 1, . . . , 4
Boundary limitations τims = 0.0001, for i = 1, 2, m = 1, 2 and s = 1, . . . , 4
Avoidance of fixed obstacles αiml = 1, for i = 1, 2, m = 1, 2 and l = 1, . . . , 4
Avoidance of boids κimk = 0.01, for i = 1, 2, m = 1, 2 and k = 1, . . . , 10
Inter-robot collision avoidance βmui j = 0.1, for m = u = 1, 2 and i, j = 1, 2, i �= j
Convergence δi1 = δi2 = δi3 = 1000, for i = 1, 2

Parameters for the boids

Cohesion parameter ψk = 25, for k = 1, . . . , 10
Boundary limitations ηks = 0.001, for k = 1, . . . , 10 and s = 1, . . . , 4
Avoidance of fixed obstacles ζkl =rand[1, 5], for k = 1, . . . , 10 and l = 1, . . . , 4
Inter-boid avoidance ρka =rand[100, 300], for a, k = 1, . . . , 10, a �= k
Convergence αk1 = αk2 = 0.05, for k = 1, . . . , 10

It is interesting to see that our artificial swarm mimics nature. The biological swarm behavior
is a natural phenomenon which can be used to develop a nature-inspired algorithm. As humans,
we observe the natural phenomenon and then create and test a model that mimics the natural phe-
nomenon. After various testing of the model via simulations and further refinement, the refined model
can be used to extract a metaheuristic as a basis to finally design and tune a nature-inspired algorithm.

7.2. Scenario 2
The scenario in Fig. 7 considers 2 1-trailer robots and 10 boids in the swarm. The 1-trailer robots
move to their final destination while avoiding each other, the swarm of boids and the disk-shaped
fixed obstacles using V2V and V2I communications. This scenario could be mimicking a traffic-like
situation whereby the autonomous vehicles have to avoid heavy traffic such as of those containing
multiple heterogeneous system. The emergent leader–follower behavior of the swarm of boids
depicts a virtual scenario whereby a flock of birds move about in a workspace cluttered with
obstacles. For the swarm of boids with an emergent leader–follower-like behavior, we expect an
individual with a low cohesion parameter to be further away from a more compactly arranged group
of individuals with more or less the same, but higher, cohesion parameters. Because of the effects
of the attraction and the inter-individual collision avoidance functions in the Lyapunov function,
the individual with the lower cohesion parameter can either be following or leading the group.
The corresponding initial and final states, and other essential data are provided in Table II, if the
values therein are different from those in the previous scenario shown in Table I. Figure 7(a) shows
the initial positions of the 2 1-trailer systems and the 10 boids. Figure 7(b) and (c) are zoomed-in
snapshots showing the proximity of the tractor–trailer pair of robots to the swarm. Figure 7(d) shows
the final configuration of the 1-trailer systems and the swarm of boids.
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(a)

(c) (d)

(b)

Fig. 7. Scenario 2 showing the trajectories of the 1-trailer robots and the swarm of boids at different times
of the journey, including the obstacle and collision avoidance. The h = 10 boids (shown in red) are randomly
positioned at the initial time t = 0. The gray lines show the trajectories of the individuals of the swarm with the
swarm centroid in green. The 1-trailer robots are shown in blue with its trajectories in orange. The disk-shaped
fixed obstacles are shown in purple. (a) The initial positions of the 1-trailer robots and the swarm of boids at
t = 0 units. (b) The avoidance between the 1-trailer robots and the swarm of boids at t = 10, 000 units. (c) The
avoidance between the 1-trailer robots and the swarm of boids at t = 30, 400 units. (d) The final postures of the
1-trailer robots and the position of the swarm at t = 50, 000 units.

7.3. Scenario 3
The nonlinear controllers for system (7), σi1, σi2, σi3, vbk and ωbk , for i = 1, 2 and k = 1, . . . , 10
were simulated to generate feasible vehicle trajectories, as illustrated in Figure 8. Noting that the
number of boids is 10 and the number of 1-trailer robots is 2 and assuming the units have been
appropriately taken care of, initial conditions pertaining to the kinodynamic system (7) and other
essentials of the situation are provided in Table III, if the values therein are different from those
in the previous scenario shown in Table I or Table II. The 1-trailer robots are observed to move to
their final configuration while avoiding each other, the swarm of boids and the disk-shaped fixed
obstacles, again using V2V and V2I communications via wireless technology. The swarm of boids
shows a behavior that changes from a seemingly random one, to a swirling structure and then to
an oscillating one about a stationary point. In this emergent pattern, the swarm, as one cohesive
group, forms a ring about the point and circulate continuously along the ring, as in a rotating school
of fish.55 The resultant emergent behavior in this virtual scenario by the communication system is a
consequence of the interaction between the boids and the environment they are exposed to; therefore,
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(a)

(c) (d)

(b)

Fig. 8. Scenario 3 showing the trajectories of the 1-trailer robots and randomly positioned swarm of boids
(n = 10, shown in red), including the obstacle and collision avoidance. The gray lines show the trajectories of
the individuals of the swarm with the swarm centroid in green. The 1-trailer robots are shown in blue with its
trajectories in orange. Also, there are 6 randomly placed disk-shaped obstacles shown in different colors. (a)
The initial positions of the 1-trailer robots and the swarm of boids at t = 0 units. (b) The avoidance between
the 1-trailer robots and the swarm of boids at t = 10, 500 units. (c) The avoidance between the 1-trailer robots
and the swarm of boids at t = 25, 700 units. (d) The final postures of the 1-trailer robots and the position of the
swarm at t = 50, 000 units.

it becomes difficult to predict the types of emergent behavior in general.9 It is notable in this scenario
that the swarm formation can also change to adapt to the environment.56 Figure 7(a) shows the initial
positions of the 2 1-trailer systems and the 10 boids. Figure 7(b) and (c) are zoomed-in illustrations
showing the proximity of the tractor–trailer pair of robots to the swarm. Figure 7(d) shows the final
configuration of the 1-trailer systems and the swarm of boids.

7.4. Scenario 4
This virtual scenario shows a split–rejoin maneuver by the flock of 1-trailer robots in the communi-
cation system. The initial positions of the 1-trailer ronots are assigned, whereas for those of the boids
in the swarm are randomly generated in the workspace, as illustrated in Fig. 9. The 1-trailer robots
reach their designated target while avoiding each other and the obstacles in the workspace. They also
avoid the swarm of boids which is exhibiting a circular behavior. The corresponding initial and final
states, and other essential data are provided in Table IV, if the values therein are different from those
in Scenario 1 as shown in Table I.
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Table III. Scenario 3. Numerical values of initial state, constraints, and control and convergence parameters.
There are 2 1-trailer systems and 10 boids.

Initial states of the 1-trailer robots

Rectangular position (x11, y11)= (10, 70) and (x21, y21)= (10, 78)
Translational velocities v1 = 0.7 and v2 = 0.5

Constraints

Leader target (p11, p12)= (130, 70)
Workspace boundaries η1 = η2 = 150

Parameters for the 1-trailer robots

Avoidance of fixed obstacles αiml = 0.1, for i = 1, 2, m = 1, 2 and l = 1, . . . , 6
Avoidance of boids κimk = 0.05, for i = 1, 2, m = 1, 2 and k = 1, . . . , 10
Convergence δi1 = δi2 = δi3 = 5000, for i = 1, 2

Parameters for the boids

Cohesion parameter ψk =rand[10, 20], for k = 1, . . . , 10
Avoidance of fixed obstacles ζkl = 50, for k = 1, . . . , 10 and l = 1, . . . , 6
Inter-boid avoidance ρka =rand[5, 50], for a, k = 1, . . . , 10, a �= k

Table IV. Scenario 4. Numerical values of initial state, constraints, and control and convergence parameters.

Initial states of the 1-trailer robots

Translational velocities v1 = 0.7, v2 = v3 = 3.5

Constraints

Max. steering angle φmax = 7π/18

Parameters for the 1-trailer robots

Avoidance of fixed obstacles αiml = 10, for i = 1, . . . , 3, m = 1, 2 and l = 1, . . . , 5
Inter-robot collision avoidance βmui j = 0.01, for m = u = 1, 2 and i, j = 1, . . . , 3, i �= j

Parameters for the boids

Cohesion parameter ψk = 20, for k = 1, . . . , 10
Inter-boid avoidance ρka = rand[50, 500], for a, k = 1, . . . , 10, a �= k
Avoidance of fixed obstacles ζkl = 10, for k = 1, . . . , 10 and l = 1, . . . , 5
Convergence αk1 = αk2 = 0.001, for k = 1, . . . , 10

Figure 10 shows the evolution of the Lyapunov function and its time derivative along the system
trajectories for Scenario 4. It shows the periods when system (21) increases or decreases its rate of
energy dissipation. The continuous evolution of the Lyapunov function also shows that the trajecto-
ries are collision-free. We restrict to providing the evolution of the Lyapunov function and its time
derivative along the system trajectories for Scenario 4 only as the trend of evolution is similar for the
other scenarios.

8. Conclusion
The design of multitasking problem of multi-vehicular robotic systems is a complex, computa-
tionally expensive, yet an interesting problem. In this paper, we consider a heterogeneous robotic
system, which operates in unison in a dynamic workspace. This robust heterogeneous system exhibits
obstacle- and collision-free trajectories using virtual V2V, V2I,s and V2E communications and mim-
ics the dynamics of intelligent vehicle (or transport) system. The seminal aim is to design continuous
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(a)

(c) (d)

(b)

Fig. 9. Scenario 4 showing the trajectories of the 1-trailer robots and h = 10 (shown in red) randomly positioned
boids in the workspace. The gray lines show the trajectories of the individuals of the swarm. The path of the
swarm centroid is given by the green line. The 1-trailer robots are shown in blue with its trajectories in orange.
There are si x randomly placed disk-shaped obstacles shown in different colors. (a) The initial positions of the
1-trailer robots and the swarm of boids at t = 0 units. (b) The avoidance between the 1-trailer robots and the
swarm of boids at t = 12, 500 units. (c) The avoidance between the 1-trailer robots and the swarm of boids
at t = 32, 700 units. (d) The final postures of the 1-trailer robots and the position of the swarm at t = 50, 000
units.

(a) (b)

Fig. 10. Evolution of L(x) and its time derivative L̇(7)(x) for Scenario 4. (a) Behavior of the Lyapunov function,
L(x). (b) Behavior of the time derivative of the Lyapunov function, L̇(7)(x).
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velocity and acceleration-based time-invariant control laws using the LbCS that, inter alia, ensure
stability of the heterogeneous system. To the authors’ knowledge, this is the first time a set of stabi-
lizing control laws have been developed for the collision avoidance of a 1-trailer system and swarm
of boids within the framework of the motion planning and control problem. A big advantage of the
LbCS is the simplicity in the design of the controllers and inclusion of the dynamic constraints of the
heterogeneous system.

Also implementing the three flocking rules of cohesion, alignment, and separation in the differen-
tial equations governing the swarm, and varying the tuning parameters of the equations resulted in
the emergent swarming behaviors.

The effectiveness of the proposed controllers was demonstrated by computer-based simulations
that showed split and rejoin maneuvers of the flock of 1-trailer systems and emergent behaviors of
the swarm.

The work presented in this paper could be used in engineering applications involving pattern
formation and cooperation among the robotic systems. Future research work includes applying the
LbCS motion planner to address the motion planning and control problem of a flock of quadrotors
in unison with swarm of boids in three-dimensional space. In addition, the authors will investigate
optimization methods of finding the optimized parameters.
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