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The objective of the paper is to develop a model of optimal endogenous technological
progress that will exhibit two properties sought in growth models: (1) The bias will
depend on the parameters of the model—particularly those affecting the cost of
inputs—instead of being constrained to be Harrod neutral; (2) factor shares will be
constant in steady state. Using previously derived sufficient conditions, we show the
conditions under which such a model can be constructed.
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1. INTRODUCTION

Economists have always accorded technological change a crucial role in the inter-
pretation of long-term trends. Theoretical considerations have shown that a clear
distinction has to be made between movements along the production function due
to changing relative scarcity of inputs and movements of the function itself due
to technological change. Further research has been aimed at explaining the rate of
shift of the function, the continued growth of wages in the absence of any persis-
tent trend for interest rate, and the constancy of the factor shares.1 The resulting
discussion, instead of leading to a commonly accepted paradigm, has generated
three distinct trends in the literature.

The first of these can be traced to Hicks’ (1963)Theory of Wagesin which he
applied the analysis of neoclasical theory to the examination of the factor incomes
without assuming, as in some of the earlier works, homogenous output and inputs.
In the process of developing the analysis, he argued that technological change will
be biased toward saving the input whose relative price was increasing; this bias and
changes in the elasticity of substitution were used to explain the relative constancy
of factor shares in the long run.
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If firms were price takers, Fellner (1961) noted that some type of learning
process had to be postulated to justify such firms investing in biased technological
innovations. Salter (1960) argued that firms should minimize total cost and not
the cost of any input. Such cost minimization does not imply the Hicksian process
of biased technological progress but Kennedy (1964) responded by postulating a
static innovation-possibility frontier to reinstate the Hicksian hypothesis. Kennedy,
however, took his theory to imply a rejection of the marginal productivity theory,
but Samuelson (1965) showed that it is consistent with the neoclassical theory of
production.

Nordhaus (1967) and Kamien and Schwartz (1969) generalized the model and
made the position of the frontier dependent on the level of research expendi-
ture. Although these papers provided a microeconomic foundation for investment
in endogenous technological progress, they did not consider biased technological
progress. An attempt to simultaneously determine the levels of and the bias of tech-
nological progress was made by Sato and Ramachandran (1987). They assumed
that a monopolistic firm facing differential growth in input prices responds to the
cost increases by increasing factor efficiency; using an optimal control model, they
showed that both the rate and the bias of technological progress were such as to
counterbalance the increases in input prices.

The second tradition can be traced back to the development of neoclassical theory
of growth by Solow and Swan. Solow (1957), using the observable factor shares,
estimated the rate of growth of total factor productivity and showed that more than
half of the growth rate in per capita output should be attributed to technological
change. In his empirical analysis, Solow had assumed Hicks neutral technological
progress while his theoretical model has steady state if and only if technological
progress is Harrod-neutral. Other forms of bias recieved less prominence in the
voluminous literature on neoclassical growth models.

One of the reasons for this neglect is that there are some well-known problems
in estimating biased technological progress. If the production function is Cobb-
Douglas, then all factor-augmenting technological progress reduces to the Hicks-
neutral form. If the production function has constant but nonunitary elasticity, then
the Diamond-McFadden impossibility theorem states that the elasticity of substi-
tution and bias cannot be estimated simultaneously. The theoretical explanation
for the constancy of the factor shares seems to be beyond empirical verification.

To break this impasse, Sato (1970) derived the constant elasticity of derived
demand (CEDD) production functions which had the convenient property that the
elasticity of substitution was proportional to the factor share. It then was shown
that the elasticities of derived demand for the factors are constant so that a sim-
ple regression analysis can be applied to estimate these elasticities. This property
made it particularly useful for the estimation of the biased technological progress.
The data from the U.S. nonfarm sector for 1909 to 1960 was used to test how well
this function fitted relative to Cobb-Douglas and other forms. Rejection of the
Cobb-Douglas form, which precluded any meaningful discussion of bias, set the
stage for the estimation of biased technological progress using CEDD functions
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and comparing it with estimates using CES function. It is shown that a function
with variable elasticity of substitution [Ex(α) = 1.558α, wherex is the capi-
tal/labor ratio andα is the share of capital] had more explanatory power than the
CES functions with reasonable values for the elasticity of substitution. Further,
technological progress is shown to be biased to labor savings.

But the analysis by Sato (1970) was not embedded in a model of economic
growth. We construct a model with endogenous technological progress that has
two properties sought in growth models:

1. It shows the possibility of a steady state with biased technological progress, where
the bias will depend on the parameters of the model. This constrasts with the earlier
neoclassical growth models which have steady state only if technological progess is
Harrod-neutral.

2. The motivation for introducing biased technological progress in growth models was to
explain the constancy of factor share and, in this model, the factor shares are constant
in the steady state.

2. APPLYING HETEROGENEOUS CAPITAL GOODS MODEL
TO TECHNOLOGICAL PROGRESS

Samuelson and Solow (1956) extended the Ramsey model to the case of many
capital goods. They assumed that there aren goods that can be used for production
or consumption and that the stock of these goods determines the output through a
general transformation relation:

C1+ Ṡ1 = f (S1 . . . Sn;C2+ Ṡ2 . . .Cn + Ṡn),

whereSi , i = 1 . . .n, are stocks ofn goods andCi is the rate of consumption of
the goods in a period anḋSi is the additions to the stock of the goods.

The utility U (C1 . . .Cn) is a concave function in the consumption ofn goods
and the problem is to maximize, using calculus of variations,∫ ∞

0
U (C1 . . .Cn) dt subject to f (S1 . . . Sn;C2+ Ṡ2 . . .Cn + Ṡn)

−C1− Ṡ1 = 0 and Si (0) = initial stock, i = 1 . . .n.

They assumed the Legendre condition that((∂2 f )/(∂Ci ∂Cj )) is negative defi-
nite but did not explicitly discuss the Jacobi and Weierstrauss conditions [Gelfand
and Fomin (1967, pp. 97–149)].

In applying their analysis to the problem of technological progress, we specialize
it to the case of four variables. One represents the stock of a capital good,K . The
second is labor that grows at a constant rate,n. The third and fourth variables
are the effciency levels,A and B, of K and L, respectively. We now write the
transformation function, using their suggestion (1967, p. 285) as

C1 = f̃ (K , L; A, B; K̇ , L̇, Ȧ, Ḃ),
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and the problem is to maximize
∫∞

0 U (C) dt subject to the transformation function
and initial conditions.

As with the Samuelson-Solow model, various specializations are possible. We
can rewrite the transformation function asF̃ [(AK), (BL), (A·K ), (B·L)] and takeF̃
to be homogeneous of degree one inAK andBL or of two in A, K , B, andL. It can
be shown that the Legendre condition is satisfied for this problem whereAK (BL)
is treated as one variable but, because the increasing returns already noticed in the
case whereA, K , B, andL are considered as separate variables, it is not possible to
establish the sufficiency conditions in the general case. We reformulate the problem
in terms of optimal control with a specialized version of the transformation function
and establish the concavity of the maximized Hamiltonian (known to be a weaker
condition than those stated above) to establish the sufficiency condition.

3. FORMULATION OF THE PROBLEM USING OPTIMAL CONTROL

The transformation function is now written as

C1 = F(AK,BL)− AKφ1

(
Ȧ

A

)
− BLφ2

(
Ḃ

B

)
− AKφ3

(
K̇

K

)
. (1)

This brings the model in line with the production-function approach common
in microeconomic models and neoclassical growth theory.F(·) is the production
function of the numeraire commodity that can be either consumed or used for
increasing the stock of the inputs other than labor.

The functionsφi , i = 1 or 2, can be thought of as inverses of the tech-
nological progress functions common in endogenous growth models [Sato and
Ramachandran (1987)]; if we fix the total resources devoted to increasingA and
B, then they will jointly define the Kennedy-Weizacker-Samuelson technological
progress frontier.

If the expenditure on research intended to increase the efficiency of a factor is
φi , i = 1, 2, then the rate of technological progress,Ȧ/A or Ḃ/B, is taken as a
function ofφi . If current expenditures on research increase the efficiency of an
input, and if it retains this efficiency level into the future, then an expenditure today
leads to an incremental stream of income that extends to the planning horizon of
the firm. The net discounted return from the investment may be so high that there
is no interior solution to the allocation problem; the system moves to the corner
with all of the output devoted to research as has been noticed in earlier models
of endogenous technological progress. The economically uninteresting corner so-
lution is avoided by assuming that the generation of technological progress has
counterbalancing diminishing returns. This is partly achieved by assuming that the
technological progress functions are concave; increases in the rate of expenditure
bring about smaller increases in the rate of growth of efficiency, but, in models of
optimal technological progress with infinite horizon, an additional assumption that
strengthens the diminishing returns is necessary for the system to have an interior
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solution. Sato (1996) showed that the necessary condition for the existence of an
interior steady state is thatC1 is (at least asymptotically) homogeneous of degree 2
with respect to its variables,A, K , B, L, Ȧ, K̇ , Ḃ, andL̇.

We assume that the efficiency factor increases through investment in applied
research and that it takes resources to transfer the new technology to the physi-
cal units such as labor and capital. As the quantity of an input in efficiency units
increases, more resources are needed for generating incremental increases in ef-
ficiency; in other words, the expenditures, on entering the technological progress
functions, are deflated by the quantity of inputs in efficiency units.

Let the numeraire good,Y = F(AK,BL), allocated to increasing the effciency
of K andL be

Mi = mi Y, 0<mi < 1, i = 1, 2. (2)

Rates of growth of the efficiency of inputs are given by technological progress
functions as linear homogeneous functions of the expenditure per unit of input and
the level of technological progress of that factor:

Ȧ = H1

[
m1Y

K
, A

]
= Ah1

[
m1Y

AK

]
and

Ḃ = H2

[
m2Y

L
, B

]
= Bh2

[
m1Y

BL

]
.

The economics assumption behind these equations is that rate of growth of
efficiency increases with expenditure per unit of input. Higher levels of efficiency
would lead to a higher rate of growth but the proportionate growth rate of efficiency
will decrease as the level of factor augmentation increases. These equations can
be rewritten as

Ȧ

A
= h1

(
m1Y

AK

)
(3a)

Ḃ

B
= h2

(
m2Y

BL

)
(3b)

where, because of the concavity assumption,h′′i < 0< h′i , i = 1, 2.
Capital in efficiency terms,AK, increases either because of the increase inA or

in K . Following Ramsey (1928), we assume that the saving rate is determined by
the economy as a solution to the optimization problem. Under the assumption of
one malleable output, most growth models of the Solow-Swan type assume that a
unit of savings and investment will lead to a unit increase in capital; this assumes
a linear transformation curve between consumption goods and capital goods.

Combining the traditional assumption with technological progress functions
implies that an allocation of a unit of resources would bring about a unit increase
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in K whereas additional increases in research expenditures will bring about only
smaller and smaller increases inA. These models have an inherent bias against
investment in capital augmenting technological progress. It is uneconomic to en-
hanceAK by increasingA, and the model leads to Harrod-neutral technological
progress in equilibrium. Following Liviatan and Samuelson (1969), we assume
that the transformation of consumption goods into capital goods is nonlinear, with
the function taking a form similar to that of technological progress functions:

K̇ = H3

[
M3

A
, K

]
= H3

[
m3Y

A
, K

]
= K h3

[
m3Y

AK

]
or

K̇

K
= h3

[
m3Y

AK

]
. (4)

In this model, the increase inK andAare both subject to diminishing returns and
the bias against capital-augmenting technological progress is eliminated. Notice
that the forms of the technological progress functions are such that it satisfies the
necessary condition stated by Sato (1996).

Labor grows at a constant proportionate rate,

L̇/L = n. (5)

Output can grow ifA, K , B, orL increases. Increase inL is taken to be exogenous
whereas increases in the other three require allocation of current output, and so,Y
is allocated between consumption, savings, and expenditures on research:

Y = C + (m1+m2+m3)Y. (6)

We assume a linear utility function with per-capita consumption as the argument:

c(t) = C(t)

L(t)
= Y(t)

L(t)
(1−m1−m2−m3), (7)

wheret is the time and the second equality follows from (6).
The society chooses the three control variables,m1,m2, andm3 so as to maximize

the discounted value of the sum of utility over an infinite time. After substituting
L(t) = L0ent = ent in (7) (with L0 equal to unity) and using (1), (3), and (4), the
maximization problem can be written as

Maximize
{m1,m2,m3}

∫ ∞
0

e−(ρ+n)t F(AK,BL)(1−m1−m2−m3) dt (8)

subject to

Ȧ

A
+ K̇

K
= h1

[
m1F(AK,BL)

AK

]
+ h3

[
m3F(AK,BL)

AK

]
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and

Ḃ

B
+ L̇

L
= h2

[
m2F(AK,BL)

BL

]
+ n.

The current-value Hamiltonian can be written as

H̃ = F(AK,BL)(1−m1−m2−m3)+ P1AK[h1( )+ h3( )] + P2BL[h2( )+ n].

(9)
Notice that we are takingAK andBL to be the two state variables andP1 and

P2 to be the two costate variables. In analyzing this model, we first establish that
a steady state with constantAK/BL is consistent with this model and then we use
the steady-state growth rate as an auxiliary variable to transform the model into
one that is more tractable for considering stability.

The instantaneous values of the control variablesm1, m2, andm3 are those that
maximize the value ofH ; differentiatingH partially with respect to these variables
and the first-order conditions can be written as

P1h′1[m1F(1,BL/AK)] = 1, (10a)

P2h′2[m2F(AK/BL, 1)] = 1, (10b)

and

P1h′3[m3F(1,BL/AK)] = 1. (10c)

See Appendix A for details.
The values ofmi , i = 1, 2, and 3, that are obtained by solving (10) are written

asm̃i . Notice thatm̃1 andm̃3 are functions ofP1 andAK/BLonly andm2 of P2 and
AK/BL; this separability will be of use in drawing phase diagrams for the model.
The equations of motion of the two costate variables, obtained from the partial
differential of the Hamiltonian with respect to the corresponding state variables,
are given by

Ṗ1 = −F1+ P1(ρ + n− h1− h3)+ (m̃1+ m̃3)(F/AK), (11a)

Ṗ2 = −F2+ P2(ρ − h2)+ (m̃2F/BL). (11b)

If AK/BL is a constant at the steady state, then(
Ȧ

A

)∗
+
(

K̇

K

)∗
= h∗1 + h∗3 =

(
Ḃ

B

)∗
+
(

L̇

L

)∗
= h∗2 + n =

(
Ẏ

Y

)∗
, (12)

where * indicates the values at steady state. Substituting (12) into (11) and setting
Ṗi = 0, i = 1, 2, we get

P∗1
(
ρ − h∗2

) = F1−
(
m̃∗1 + m̃∗3

) F

AK
(13a)
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and

P∗2
(
ρ − h∗2

) = F2− m̃∗2
F

BL
. (13b)

Multiplying (13a) byAK and (13b) byBL, adding the two equations, and dividing
both sides of the equality byY and by (ρ − h∗2), we get

P∗1 · AK+ P∗2 · BL

Y
= 1− m̃∗1 − m̃∗2 − m̃∗3

ρ − h∗2
. (13c)

Because of (12),AK/Y andBL/Y are constants and so are the values of the control
variables. Therefore, the equation is consistent with the assumption thatAK/BL,
P∗1 , andP∗2 are constants.

For an economic interpretation of (13c), note that the numerator on the right-
hand side is the steady-state consumption out of a unit of output,c∗ for example.
Then, per-capita consumption isc∗Y/L. BecauseY increases at a rateh∗2+ n while
labor increases at a raten, the per-capita income increases at a rateh∗2 and can
be written asc∗ · eh∗2t . This consumption stream discounted from zero to infinity
at a social discount rate ofρ has a present valuec∗/(ρ − h∗2). The numerator on
the right-hand side is the stocks of physical and human capital in efficiency units
evaluated at their shadow prices. Hence (13c) states that the asset per unit of output
equals the discounted value of consumption per person.

4. ANALYSIS OF STABILITY

To study stability, we introduce an auxiliary variableE whose rate of growth is
equal to that of the steady-state growth rate ofY,

Ė/E = Ẏ∗/Y∗ = ε, (14)

and redefine the state variables as

g1 = AK/E, g2 = BL/E. (15)

The production function and per-capita consumption can be written as functions
of g1 andg2:

Y = EF

(
AK

E
,

BL

E

)
= EF(g1, g2)

and

c = C

L
= E

L
F(g1, g2)(1−m1−m2−m3).

Further, the technological progress functions can be expressed as

Ȧ

A
= h1

[
m1F(g1, g2)

g1

]
, (16a)
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Ḃ

B
= h2

[
m2F(g1, g2)

g2

]
, (16b)

and
K̇

K
= h3

[
m3F(g1, g2)

g1

]
. (16c)

The current-value Hamiltonian now can be written as

H = F(g1, g2)(1−m1−m2−m3)+ P1g1(h1+ h3− ε)+ P2g2(h2+ n− ε).
(17)

(See Appendix B.) The first-order conditions are given by equations similar in
form to (10) with the appropriate transformation of variables. The equations of
motion of the state and costate variables are given by

ġ1 = (h1+ h3− ε)g1, (18a)

ġ2 = (h2+ n− ε)g2, (18b)

Ṗ1 = P1(ρ + n− h1− h3)− Fg1 + (m̃1+ m̃3)
F

g1
, (18c)

Ṗ2 = P2(ρ − h2)− Fg2 + m̃2
F

g2
. (18d)

Except for a change of variables, the model is the same as the one in Section 2 and
so, the properties of the model including that of the steady state are the same. The
stability of the system can be examined by evaluating the Jacobian of the system
of differential equations (18) at the steady state and calculating the characteristic
roots. Direct calculation shows that one of the characteristic roots is zero, indicating
that the dimensions of the system can be reduced once more.

We define a new variableθ = (g1/g2)= (AK /BL). The equations (18a–d) are
replaced by

θ̇

θ
= h1

[
m̃1 f (θ)

θ

]
+ h3

[
m̃3 f (θ)

θ

]
− h2[m̃2 f (θ)] − n (19a)

where
F(g1, g2)

g2
= F(g1/g2, 1) = F(θ, 1) = f (θ), and

Ṗ1 = − f ′(θ)+ P1{ρ + n− h1− h3} + (m̃1+ m̃3)
f (θ)

θ
(19b)

Ṗ2 = −{ f (θ)− θ f ′(θ)} + P2{ρ − h2} + m̃2 f (θ) (19c)

The Jacobian of the system evaluated at the steady state is 0 v1 −v2

− f ′′ ρ − h∗2 0

θ∗ f ′ 0 ρ − h∗2


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where

v1 = − θ
∗

P∗1

[
(h′1)

2

h′′1
+ (h

′
3)

2

h′′3

]∗
> 0

and

v2 = − θ
∗

P∗2

[
(h′3)

2

h′′2

]∗
> 0.

(See Appendix C for details of calculation.)
The characteristic equation can be written as(

ρ − h∗2 − λ
){−λ(ρ − h∗2 − λ

)+ v1 f ′′ + v2 f ′′θ
} = 0. (20)

The three characteristic roots are

λ1 = ρ − h∗2,

λ2 =
ρ − h∗2 +

√(
ρ − h∗2

)2− 4 f ′′(v1+ v2θ)

2
,

λ3 =
ρ − h∗2 −

√(
ρ − h∗2

)2− 4 f ′′(v1+ v2θ)

2
.

We assume thatρ > h∗2; henceλ1 andλ2 are positive andλ3 is negative. We
have a saddle point of type 2.

The stability analysis can be illustrated using the phase diagram (Figure 1). Even
though the diagram in its full generality is three-dimensional—corresponding to
the variablesθ , P1, andP2—it can be reduced to a series of two-dimensional cross
sections.

First, as noted in the discussion of (10),m̃1 andm̃3 are functions ofθ and P1

only; henceṖ1 is a function ofθ andP1 only. Next,m̃2 is a function ofP2 andθ ;
for given value ofP2, it is a function ofθ . Hence, from equations (19), we see that
for a given value ofP2, θ̇ are functions ofP1 andθ . Hence, we can fix the value of
P2 and study the motion of the system in the cross section of the phase diagram.2

The Jacobian of the reduced system is[
0 v1

− f ′′ ρ − β
]
,

and the roots of the characteristic equation is given by

λ = (ρ − β)±
√
(ρ − β)2− 4 f ′′v1

2
.

One of the roots is positive and the other is negative, showing saddle-point stability
in the cross section. As stated in note 2, the value ofθ corresponding to the singular
points of these equations will vary from cross section to cross section. The value of
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FIGURE 1. Phase diagram inP1 − θ plane.

P2 corresponding to the steady state of the model is already derived. For that value
of P2, the system will show the convergence to the steady state in the cross-sectional
diagram.

5. CONCLUSION

One of the paradoxes of the neoclassical model of growth is that it has a steady
state only if technological progress is Harrod-neutral; a positive rate of labor
augmentation has the same net consequence as a higher rate of growth of labor
except that the per-capita output in steady state increases at the rate of increase in
labor efficiency.

In contrast, this model has an interior solution and a steady state in which there is
positive accumulation of capital and increases in the efficiency of both capital and
labor. A comparison of the two models seems to indicate that the crucial difference
is in the assumption about the effect of expenditure on investment and in increasing
the efficiency of capital. Models of optimal endogenous technological progress
assume that the expenditure on research has diminishing returns; without this
assumption the models will explode. However, investment is assumed to increase
capital in a linear manner. Under these assumptions, it is uneconomic for the
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system to increaseAK by increasingA instead ofK . The bias of the model toward
Harrod-neutral technological progress is obvious.

We followed Liviatan and Samuelson (1969) in assuming a nonlinear transfor-
mation of the output to capital good. The output is taken as malleable, capable
of being used both as a consumption good and a capital good but there is an im-
plicit transformation process in converting the output into capital good and this
transformation function is concave and nonlinear (as in the traditional neoclassical
models). Further, we assumed, as in other models of endogeneous technological
progress, that the technical progress functions are concave.

At steady state, the ratio of inputs measured in efficiency terms will remain
constant and with it the factor shares. If one assumes a CEDD production function,
then the elasticity of substitution is also a constant at steady state. However, as
the system converges to the steady state, both factor share and the elasticity of
substitution will vary. Thus, it provides a growth theoretical model that is consistent
with the empirical work of Sato (1970).

NOTES

1. Ironically, the most recent concern is to explain the observed fall in the wages of relatively
unskilled workers in the industrial nations. As a survey of the literature shows, some attribute it to
the working of the factor price equalization theorem whereas others attribute it to shifts in technology
[Burtless (1995)].

2. Note thatθ is a function ofm̃(θ, P2) so that the singular point of the reduced system is dependent
on P2. As we move over the cross sections, theṖ1 = 0 curve does not shift but thėθ = 0 curve will.
Similarly, we can take cross sections of the phase diagram, keepingP1 constant, and draw thėθ = 0
and Ṗ2 = 0 curves.
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APPENDIX A: DERIVATION OF BASIC MODEL

From equation (8), the Hamiltonian of the system can be written as

H̃ = e−(ρ+n)t F(AK,BL)(1−m1 −m2 −m3)+ q2BL

{
h2

[
m2F(AK,BL)

BL

]
+ n

}
+q1AK

{
h1

[
m1F(AK,BL)

AK

]
+ h3

[
m3F(AK,BL)

AK

]}
. (A.1)

The first-order conditions are as follows:

H̃m1 = 0⇒ q1e
(ρ+n)t h′1 = 1, (A.2a)

H̃m2 = 0⇒ q2e
(ρ+n)t h′2 = 1, (A.2b)

H̃m3 = 0⇒ q1e
(ρ+n)t h′3 = 1, (A.2c)

q̇1 = −
∂ H̃

∂(AK)
= −e−(ρ+n)t F1(1−m1 −m2 −m3)− q1(h

′
1m1 + h′3m3)

F1AK− F

AK

−q1(h1 + h3)− q2h′2m2F1, (A.2d)

q̇2 = − ∂ H̃

∂(BL)
= −e−(ρ+n)t F2(1−m1 −m2 −m3)

−q1(h
′
1m1 + h′3m3)F2 − q2(h2 + n)− q2h′2m2

F2BL− F

BL
. (A.2e)

Let

P1 = q1e
(ρ+n)t , (A.3a)

P2 = q2e
(ρ+n)t ; (A.3b)

then,

Ṗ1 = q̇1e
(ρ+n)t + (ρ + n)P1, (A.4a)

Ṗ2 = q̇2e
(ρ+n)t + (ρ + n)P2. (A.4b)
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Using (A.3), from (A.2a), (A.2b), and (A.2c), we get

P1h′1

[
m1F(AK,BL)

AK

]
= 1, (A.5a)

P2h′2

[
m2F(AK,BL)

BL

]
= 1, (A.5b)

P1h′3

[
m3F(AK,BL)

BL

]
= 1. (A.5c)

Multiplying (A.2d) and (A.2e) bye(ρ+n)t and substituting the two equations into (A.4a)
and (A.4b), respectively, we get

Ṗ1 = −F1 + P1

{
ρ + n+ h1

[
m̃1F(AK,BL)

AK

]
− h3

[
m̃3F(AK,BL)

AK

]}
+ (m̃1 + m̃3)

F(AK,BL)

AK
(A.5d)

Ṗ2 = −F2 + P2

{
ρ − h2

[
m̃2F(AK,BL)

BL

]}
+ m̃2

F(AK,BL)

BL
. (A.5e)

APPENDIX B: MODEL WITH AUXILIARY VARIABLE

After the transformations [see equations (14)–(16)], the original problem [equation (8)] can
be written as

Maximize
{m1,m2,m3}

∫ ∞
0

e−(ρ+n−ε)t F(g1, g2)(1−m1 −m2 −m3) dt

subject to

ġ1

g1
= h1

[
m1F(g1, g2)

g1

]
+ h3

[
m3F(g1, g2)

g1

]
− ε, (B.1a)

ġ2

g2
= h2

[
m2F(g1, g2)

g2

]
+ n− ε. (B.1b)

The current-value Hamiltonian is

H = F(g1, g2)(1−m1 −m2 −m3)+ P2g2

{
h2

[
m2F(g1, g2)

g2

]
+ n− ε

}
+ P1g1

{
h1

[
m1F(g1, g2)

g1

]
+ h3

[
m3F(g1, g2)

g1

]
− ε
}
. (B.2)
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The first-order conditions are

P1h′1

[
m1F(g1, g2)

g1

]
= 1, (B.3a)

P2h′2

[
m2F(g1, g2)

g2

]
= 1, (B.3b)

P1h′3

[
m3F(g1, g2)

g1

]
= 1. (B.3c)

The equation of motion of the costate variables can be written as

Ṗ1 = P1(ρ + n− ε)− ∂H

∂g1

= P1

{
ρ + n− h1

[
m̃1F(g1, g2)

g1

]
− h3

[
m̃3F(g1, g2)

g1

]}

− Fg1 + (m̃1 + m̃3)
F(g1, g2)

g1
, (B.3d)

Ṗ2 = P2(ρ + n− ε)− ∂H

∂g2

= P2

{
ρ − h2

[
m̃2F(g1, g2)

g2

]}
− Fg2 + m̃2

F(g1, g2)

g2
. (B.3e)

APPENDIX C: STABILITY

Defineθ = (g1/g2) = (AK/BL) and remember that

F(AK, BL)

AK
= F(g1, g2)

g1
= F(θ, 1)

θ
= f (θ)

θ
,

F(AK, BL)

BL
= F(g1, g2)

g2
= F(θ, 1) = f (θ),

F1 = Fg1 = f ′(θ),

and

F2 = Fg2 = f (θ)− θ f ′(θ).
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Then, from either (A.5) or (B.3), we can get

P1h′1

[
m1 f (θ)

θ

]
= 1, (C.1a)

P2h′2[m2 f (θ)] = 1, (C.1b)

P1h′3

[
m3 f (θ)

θ

]
= 1. (C.1c)

Solving (C.1a), (C.1b), and (C.1c), we getm̃i (i = 1, 2, 3) and substitute into the equations
of motion for costate variables:

Ṗ1 = − f ′(θ)+ P1

{
ρ + n− h1

[
m̃1 f (θ)

θ

]
− h3

[
m̃3 f (θ)

θ

]}
+ (m̃1 + m̃3)

f (θ)

θ
,

(C.1d)

Ṗ2 = −[ f (θ)− θ f ′(θ)] + P2{ρ − h2[m̃2 f (θ)]} + m̃2 f (θ). (C.1e)

From the definition ofθ = (AK/BL), we can get

θ̇

θ
= h1

[
m̃1 f (θ)

θ

]
+ h3

[
m̃3 f (θ)

θ

]
− h2[m̃2 f (θ)] − n. (C.1f)

The stability conditions of the system in the neighborhood of the steady state can be
determined by the characteristic roots of the Jacobian matrix,

J = D(θ̇ , Ṗ1, Ṗ2)

D(θ, P1, P2)
=



∂θ̇

∂θ

∂θ̇

∂P1

∂θ̇

∂P2

∂ Ṗ1

∂θ

∂ Ṗ1

∂P1

∂ Ṗ1

∂P2

∂ Ṗ2

∂θ

∂ Ṗ2

∂P1

∂ Ṗ2

∂P2

 . (C.2)

Using equations (C.1a), (C.1b), and (C.1c), we get

∂m̃1

∂θ
= − P1h′′1m̃1(θ f ′ − f )/θ2

P1h′′1 f/θ
= − m̃1

θ f
(θ f ′ − f ), (C.3a)

∂m̃1

∂P1
= −h′/(P1h′′1 f/θ) = −θh′1/(P1h′′1 f ), (C.3b)

∂m̃1

∂P2
= 0, (C.3c)

∂m̃2

∂θ
= − P2h′′2m̃2 f

P2h′′2 f
= − m̃2 f ′

f
, (C.3d)

∂m̃2

∂P1
= 0, (C.3e)
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∂m̃2

∂P2
= −h′2/P2h′′2 f, (C.3f)

∂m̃3

∂θ
= − P1h′′3m̃3(θ f ′ − f )/θ2

P1h′′3 f/θ
= − m̃3

θ f
(θ f ′ − f ), (C.3g)

∂m̃3

∂P1
= −h′3/(P1h′′3 f/θ) = −θh′3/(P1h′′3 f ), (C.3h)

∂m̃3

∂P2
= 0. (C.3i)

Then,
∂(m̃1 f/θ)

∂θ
= ∂m̃1

∂θ

f

θ
+ m̃1(θ f ′ − f )/θ2 = 0, (C.4a)

∂(m̃1 f/θ)

∂P1
= ∂m̃1

∂P1

f

θ
= −h′1/P1h′′1, (C.4b)

∂(m̃1 f/θ)

∂P2
= 0, (C.4c)

∂(m̃2 f )

∂θ
= ∂m̃2

∂θ
f + m̃2 f ′ = −m̃2 f ′ + m̃2 f ′ = 0, (C.4d)

∂(m̃2 f )

∂P1
= 0, (C.4e)

∂(m̃2 f )

∂P2
= ∂m̃2

∂P2
f = −h′2/P2h′′2, (C.4f)

∂(m̃3 f/θ)

∂θ
= ∂m̃3

∂θ

f

θ
+ m̃3(θ f ′ − f )/θ2 = 0, (C.4g)

∂(m̃3 f/θ)

∂P1
= ∂m̃3

∂P1

f

θ
= −h′3/P1h′′3, (C.4h)

∂(m̃3 f/θ)

∂P2
= 0, (C.4i)

The elements of the Jacobian matrix, which are evaluated at the steady state, are as
follows:(

∂θ̇

∂θ

)∗
= θ∗

[
h′1
∂(m̃1 f/θ)

∂θ
+ h′3

∂(m̃3 f/θ)

∂θ
− h′2

∂(m̃2 f )

∂θ

]∗
= 0, (C.5a)

(
∂θ̇

∂P1

)∗
= θ∗

[
h′1
∂(m̃1 f/θ)

∂P1
+ h′3

∂(m̃3 f/θ)

∂P1
− h′2

∂(m̃2 f )

∂P1

]∗
= − θ

∗

P∗1

[
(h′1)

2

h′′1
+ (h

′
3)

2

h′′3

]∗
= v1, (C.5b)

(
∂θ̇

∂P2

)∗
= θ∗

[
h′1
∂(m̃1 f/θ)

∂P2
+ h′3

∂(m̃3 f/θ)

∂P2
− h′2

∂(m̃2 f )

∂P2

]∗
= − θ

∗

P∗2

[
(h′2)

2

h′′2

]∗
= −v2, (C.5c)
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∂ Ṗ1

∂θ

)∗
= − f ′′ + P∗1

[
−h′1

∂(m̃1 f/θ)

∂θ
− h′3

∂(m̃3 f/θ)

∂θ

]∗
+ ∂(m̃1 f/θ)

∂θ
+ ∂(m̃3 f/θ)

∂θ
= − f ′′ (C.5d)

(sinceP1h′i − 1= 0, i = 1 & 3),(
∂ Ṗ1

∂P1

)∗
= (ρ + n− h∗1 − h∗3

)− P∗1

[
h′1
∂(m̃1 f/θ)

∂P1
+ h′3

∂(m̃3 f/θ)

∂P1

]∗
+ ∂(m̃1 f/θ)

∂P1
+ ∂(m̃3 f/θ)

∂P1
= ρ − h∗2 (C.5e)

(at the steady state,h∗1 + h∗3 = h∗2 + n),(
∂ Ṗ1

∂P2

)∗
= −P∗1

[
h′1
∂(m̃1 f/θ)

∂P2
+ h′3

∂(m̃3 f/θ)

∂P2

]∗
+ ∂(m̃1 f/θ)

∂P2
+ ∂(m̃3 f/θ)

∂P2
= 0, (C.5f)(

∂ Ṗ2

∂θ

)∗
= θ∗ f ′′ − [(P2h′2)

∗ − 1
] ∂(m̃2 f )

∂θ
= θ∗ f ′′, (C.5g)(

∂ Ṗ2

∂P1

)∗
= −[(P2h′2)

∗ − 1
] ∂(m̃2 f )

∂P1
= 0, (C.5h)(

∂ Ṗ2

∂P2

)∗
= ρ − h∗2 −

[
(P2h′2)

∗ − 1
]∂(m̃2 f )

∂P2
= ρ − h∗2. (C.5i)

So, substituting (C.5) into (C.2), we get

J∗ = D(θ̇ , Ṗ1, Ṗ2)
∗

D(θ, P1, P2)∗
=



∂θ̇

∂θ

∂θ̇

∂P1

∂θ̇

∂P2

∂ Ṗ1

∂θ

∂ Ṗ1

∂P1

∂ Ṗ1

∂P2

∂ Ṗ2

∂θ

∂ Ṗ2

∂P1

∂ Ṗ2

∂P2



∗

=

 0 v1 −v2

− f ′′ ρ − h∗2 0

θ∗ f ′′ 0 ρ − h∗2



(C.2′)

where

v1 = − θ
∗

P∗1

[
(h′1)

2

h′′1
+ (h

′
3)

2

h′′3

]∗
> 0,

and

v2 = − θ
∗

P∗2

[
(h′2)

2

h′′2

]∗
> 0.
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