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Abstract. For a sequence (cn) of complex numbers, the quadratic polynomials fcn :=
z2 + cn and the sequence (Fn) of iterates Fn := fcn ◦ · · · ◦ fc1 are considered. The Fatou
set F(cn) is defined as the set of all z ∈ Ĉ := C ∪ {∞} such that (Fn) is normal in some
neighbourhood of z, while the complement J (cn) of F(cn) (in Ĉ) is called the Julia set.
In this paper we discuss the conditions for J (cn) to be totally disconnected. A problem
posed by Brück is solved.

1. Introduction and known results
We keep some notations used by Brück, but for the reader’s convenience, we recall some
basic and important notations in [4] and [6]. For a sequence (cn) of complex numbers
we consider the quadratic polynomials fcn := z2 + cn and the sequence (Fn) of iterates
Fn := fcn ◦ · · · ◦ fc1 . The Fatou set F(cn) is defined as the set of all z ∈ Ĉ := C ∪ {∞}
such that (Fn) is normal in some neighbourhood of z, while the complement of the Fatou
set F(cn) (in Ĉ) is called the Julia set for (cn), denoted by J (cn). A component of F(cn)

is called a stable domain, or a Fatou component.
Throughout this paper, we always assume that cn ∈ Kδ := {z ∈ C : |z| ≤ δ} (n ∈ N)

for some δ > 0, that is, (cn) ∈ KNδ . The filled Julia K(cn) is by definition the set of all
z ∈ C such that (Fn(z))

∞
n=1 is bounded. From the results in [8], we know that both J (cn)

and K(cn) are compact in C and ∂K(cn) = J (cn). A simple and important fact is that the
filled Julia set for (cn) is contained in KRδ , where

Rδ = 1
2 (1 + √

1 + 4δ).

In particular, if cn = c for all n ∈ N, we write f n
c instead of Fn. In this case, the Fatou

set and Julia set are denoted by F(fc) and J (fc) respectively. The Fatou set and Julia set
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are basic objects studied in the iteration theory of a single function. For more information
and details on the iteration theory of a single function, see [1–3, 9, 10, 12, 13]. We also
refer the reader to [4–8, 11] for further results on the random dynamical system.

The Mandelbrot set M is defined as the set of all c ∈ C such that (f n
c (0))∞n=0

is bounded. It is well known that J (fc) is either connected or totally disconnected†,
depending on whether c ∈ M or not. We also know that K1/4 is contained in M, and it is
the largest disc centred at 0 which is contained in M.

A natural question is the following.

Question 1. What is the condition for J (cn) to be totally disconnected?

Brück et al obtained a very interesting result in [6] on this problem, which is stated as
follows.

THEOREM A. Let (cn) ∈ KNδ for some δ > 1
4 , and assume that there exists a simply

connected bounded domain D such that
⋃∞

k=0 Fk(J (cn)) ⊂ D and (fck ◦ · · · ◦fcj+1 )(0) /∈
D for all j = 0, 1, . . . , k − 1 and all k ∈ N. Then J (cn) is totally disconnected.

In addition, they gave a number of interesting examples. Using their idea, we can get
a more general form of Theorem A, and give a sufficient condition in §2 for J (cn) to be
totally disconnected.

Brück studied the following sets:

D := {(cn) ∈ KNδ : J (cn) is disconnected}, (1.1)

DN := {(cn) ∈ KNδ : J (cn) has more than N components}, (1.2)

D∞ := {(cn) ∈ KNδ : J (cn) has infinitely many components}, (1.3)

T := {(cn) ∈ KNδ : J (cn) is totally disconnected}. (1.4)

It is obvious that T ⊂ D∞ ⊂ DN ⊂ D, and D = ∅ for δ ≤ 1
4 follows from Theorem 1.1

in [6].
We equip KNδ with the product topology, where Kδ carries the usual topology induced

from C. In other words, it has a subbase

{U1 × U2 × · · · : Ui = Kδ for i 
= k, and Uk is open in Kδ, k = 1, 2, . . . }.
Brück discussed the topological properties of D,DN ,D∞ and T , and he obtained many

interesting results. For example, in [4] he proved the following two theorems.

THEOREM B. The set T defined by (1.4) is dense in KNδ provided δ > 1
4 .

THEOREM C. The set D∞ defined by (1.3) is a countable intersection of dense open
subsets of KNδ provided δ > 1

4 . In particular, D∞ is of the second Baire category in KNδ ,
while the complement KNδ \ D∞ is of the first Baire category in KNδ .

Brück put forward the following question (see Question 1.1 in [4]).

Question 2. Is it true that the set T defined by (1.4) is of the second Baire category in KNδ
provided that δ > 1

4 ?

† A set S is said to be totally disconnected if each component of S contains only one point.
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We will give a positive answer to this problem in §3. In fact, it is shown that Theorem C
holds true if D∞ is replaced by T .

2. Conditions for the Julia set to be totally disconnected
Let (cn) ∈ KNδ for some δ > 0, and Fn = fcn ◦ · · · ◦ fc1 . Let Z = {0} ∪ N. Set

O+(cn) = {fcn+k ◦ · · · ◦ fck (0) : k ∈ N, n ∈ Z},

K+(cn) =
∞⋃

k=0

Fk(K(cn)),

where K(cn) is the filled Julia set and F0 = identity. It is clear that z ∈ Fk(K(cn)) if and
only if (fcm+k+1 ◦ · · · ◦ fck+1(z))

∞
m=1 is bounded.

Using the idea of the proof of Theorem 4.2 in [6], we can prove the following.

THEOREM 2.1. Let (cn) ∈ KNδ for some δ > 0. If K+(cn) ∩ O+(cn) = ∅, then J (cn) is
totally disconnected.

Notes.
(1) It is easy to prove that K+(cn) is bounded. In fact, K+(cn) ⊂ KRδ .

(2) Under the condition of Theorem A, we have
⋃∞

k=0 Fk(K(cn)) ⊂ D, which implies
K+(cn) ∩ O+(cn) = ∅.

(3) The condition K+(cn) ∩ O+(cn) = ∅ cannot be replaced by
⋃∞

k=0 Fk(J (cn)) ∩
O+(cn) = ∅. This can be shown by taking cn = 0, n ∈ N, since in this case
J (cn) = {z : |z| = 1}, and O+(cn) = {0}.

Furthermore, from Theorem 2.1 we can get the following Theorem†.

THEOREM 2.2. For every c /∈ M, there exists a neighbourhood U(c) of c such that J (cn)

is totally disconnected if cn ∈ U(c) for all n ∈ N.

Proof of Theorem 2.1. First, from the assumption of the theorem, there exist a finite number
of finitely connected domains �i (i = 1, 2, . . . , k) such that

K+(cn) ⊂ � =
k⋃

i=1

�i and O+(cn) ⊂ C \ �.

Then for every z0 ∈ J (cn) we have z0 ∈ F−1
m (�) for all m ∈ N.

Let z0 ∈ J (cn) be fixed. Since � = ⋃k
i=1 �i , for each m ∈ N, there is one and only

one j (m) ∈ {1, 2, . . . , k} such that z0 ∈ F−1
m (�j(m)). In the sequence {j (m)}∞m=1, at least

one number of {1, 2, . . . , k}, say, 1, appears infinitely many times. The corresponding m’s
are denoted by {in}∞n=1. That is to say, z0 ∈ F−1

in
(�1) for all n ∈ N.

Since �1 ∩O+(cn) = ∅, it is easy to see that F−1
in

(�1) = f −1
c1

◦ · · · ◦ f −1
cin

(�1) consists

of exactly 2in finitely connected components, and among these components, one and only
one contains z0. Hence, Fin : F−1

in
(�1) → �1 has 2in inverse functions, and only one of

them, denoted by gin = hn, satisfies the condition z0 ∈ hn(�1).

† The authors thank the referee for his valuable suggestion on the improvement of Theorem 2.2.
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Let DR = {z : |z| < R}. Since �1 is bounded, we can choose R large enough such that
� ⊂ DR , and |fcn(z)| > |z| for all n ∈ N provided |z| ≥ R. Therefore, hn(�1) ⊂ DR

for all n ∈ N, and consequently (hn) is normal on �1 by Montel’s principle. Let {hjn} be
a subsequence of hn such that {hjn} converges to I (z) locally uniformly on �1. We can
prove I (z) is a constant as follows.

Choose two domains U1, V1 such that V1 ⊂ U1, U1 ⊂ �1 and ∂V1 ∩ K+(cn) = ∅.
Since hjn converges to I (z) uniformly on U1, we have for n large enough

hjn(V1) ⊂ I (U1), (2.1)

I (U1) ⊂ hjn(�1) ⊂ F−1
jn

(�1). (2.2)

From (2.1) and (2.2) we get

V1 ⊂ Fjn(I (U1)) ⊂ �1 (2.3)

for n large enough. Thus

Fm(I (U1)) ⊂ DR (2.4)

for all m ∈ N.
On the other hand, from (2.3) one can choose a natural number n0 and a point

z1 ∈ I (U1) such that z2 = Fjn0
(z1) ∈ ∂V1. Since ∂V1 ∩ K+(cn) = ∅, fcq+p ◦ · · ·◦fcq+1(z)

converges to ∞ uniformly on ∂V1 as p → ∞ for any q ∈ N and hence fcq+p ◦ · · · ◦
fcq+1(z2) converges to ∞ (p → ∞). In particular, fcjn0 +p ◦ · · · ◦fc1(z1) = Fjn0 +p(z1) →
∞ as p → ∞, which contradicts (2.4). Therefore, I (z) must be a constant function.

In other words, gijn
converges to z0 locally uniformly on �1.

By the hypothesis of the theorem, one may choose finitely connected domains �′
i (i =

1, . . . , k) such that �′
i ⊂ �i for i = 1, 2, . . . , k, and

K+(cn) ⊂ �′ =
k⋃

i=1

�′
i and O+(cn) ⊂ C \ �′.

Then the above argument remains valid for �′
1 and hence z0 ∈ hn(�

′
1) for all n ∈ N, and

hjn converges to z0 uniformly on �′
1. Obviously, the component of J (cn) containing z0

must be contained in hjn(�
′)(n ∈ N), so such a component of J (cn) contains only one

point z0. It is evident now that J (cn) is totally disconnected. �

Proof of Theorem 2.2. Since c /∈ M, |c| > 1
4 . Take δ > |c| > 1

4 . Let s =
(1 + √

1 + 4δ)/2. For convenience, we suppose that (cn) ∈ KNδ . As a matter of fact,
this is satisfied if cn ∈ O(c) (O(c) := O(c, δ − |c|)) for all n ∈ N. Let Ds = {z : |z| < s}.
It is clear that |fcn(z)| ≥ |z| for all |z| ≥ s and n ∈ N. In fact, it is not hard to prove that
K(cn) ⊂ Ds , and furthermore K+(cn) ⊂ Ds . In addition, we point out the following fact:
if |z| ≥ s + 1, then |fcn(z)| ≥ (s + 1)2 − δ = 3s + 1.

It is well known that f n
c (0) → ∞ as n → ∞ if c /∈ M, where fc(z) = z2 + c.

There exists a natural number p such that f
p
c (0) > s + 2. Therefore, there exists a

neighbourhood D0(c) of c such that

|fcm+p ◦ · · · ◦ fcm+1(0)| ≥ s + 1
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provided that cn ∈ D0(c) for all n ∈ N. Hence

|fcm+q ◦ · · · ◦ fcm+1(0)| ≥ s + 1 (q ≥ p),

provided that cn ∈ O(c) ∩ D0(c) for all n ∈ N.
Let

Op(cn) = {fcm+q ◦ · · · ◦ fcm+1(0) : q ≥ p,m ∈ Z},
Op−1(cn) = {fcm+p−1 ◦ · · · ◦ fcm+1(0) : m ∈ Z},

...

O2(cn) = {fcm+2 ◦ fcm+1(0) : m ∈ Z},
O1(cn) = {fcm+1(0) : m ∈ Z}.

Then we have
Op(cn) ⊂ Ĉ \ Ds+1 ⊂ Ĉ \ Ds+1/2

provided cn ∈ O(c) ∩ D0(c), n ∈ N. In other words, we have

K+(cn) ∩ Op(cn) = ∅,

provided that cn ∈ O(c) ∩ D0(c), n ∈ N.
For each r = 1, 2, . . . , p − 1, since |f p−r

c (f r
c (0))| = |f p

c (0)| > s + 2, there exists a
neighbourhood Ur = O(f r

c (0), εr) of f r
c (0) and a neighbourhood Dr(c) of c such that

|fcm+p−r ◦ · · · ◦ fcm+1(z)| ≥ s + 1

for all z ∈ Ur and m ∈ Z provided that cn ∈ Dr(c), n ∈ N. This implies K+(cn) ∩ Ur = ∅
provided cn ∈ O(c) ∩ Dr(c), n ∈ N. Moreover, there exists a neighbourhood D′

r (c) of c

such that, when cn ∈ D′
r (c), n ∈ N, we have

fcm+r ◦ · · · ◦ fcm+1(0) ∈ U ′
r = O

(
f r

c (0),
εr

2

)
.

That is to say, Or (cn) ⊂ U ′
r provided that cn ∈ D′

r (c), n ∈ N. Therefore,

K+(cn) ∩ Or (cn) = ∅, r = 1, 2, . . . , p − 1

provided cn ∈ O(c) ∩ Dr(c) ∩ D′
r (c), n ∈ N.

Let U(c) = O(c) ∩ D0(c)
⋂p−1

r=1 Dr(c) ∩ D′
r (c). Using the fact that O+(cn) =⋃p

r=1 Or (cn), and then O+(cn) = ⋃p

r=1 Or (cn), we obtain K+(cn) ∩ O+(cn) = ∅
provided cn ∈ U(c), n ∈ N. By Theorem 2.1, J (cn) is totally disconnected as required. �

3. Topological properties of T
In this section, we study the properties of T defined by (1.4). Here, we always assume that
δ > 1

4 to avoid the trivial case T ⊂ D = ∅, where D is defined by (1.1). At the end of this
section, we will give a positive answer to Question 2 posed by Brück.

It is necessary to recall the notion of Baire category. Let X be a topological space. A set
A ⊂ X is called nowhere dense in X if the closure A has empty interior, and we say A is
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of the first Baire category in X if A is a countable union of nowhere dense sets. Otherwise,
A is of the second Baire category.

To prove our theorems we need the Hausdorff metric, defined as follows.
Let A,B be two non-empty compact subsets of C, then the Hausdorff distance between

A and B is defined as

H(A,B) = max

{
sup
a∈A

dist(a, B), sup
b∈B

dist(b,A)

}
,

where dist(a, B) = inf{|a − b| : b ∈ B}.
Let (cn) ∈ KNδ for some δ > 0. Let �R := {z : |z| > R} and Um = F−1

m (�R), then we
have from [8] the following result.

LEMMA 3.1. There exists a stable domain A(cn)(∞) which contains the point ∞ and
wherein Fn → ∞ (n → ∞) locally uniformly. If R > Rδ , then Um ⊂ Um+1, and
A(cn)(∞) = ⋃∞

m=1 Um and J (cn) = ∂A(cn)(∞).

Obviously, ∂Um = F−1
m (∂�R). From Lemma 3.1 we can prove the following†.

LEMMA 3.2. limm→∞ H(∂Um,J (cn)) = 0.

Proof. We need only to prove

lim
m→∞ sup

z∈J (cn)

dist(z, ∂Um) = 0, (3.1)

lim
m→∞ sup

z∈∂Um

dist(z,J (cn)) = 0. (3.2)

Given ε > 0. For every z ∈ J (cn), by Lemma 3.1, there exists a natural number mz such
that

Oz ∩ Umz 
= ∅ �⇒ Oz ∩ ∂Umz 
= ∅,

where Oz = O(z, ε) = {z′ : |z′ − z| < ε}. Since J (cn) is compact, one can choose a finite
number of points z1, z2, . . . , zk in J (cn) such that J (cn) ⊂ ⋃k

i=1 O(zi, ε).
Let m0 = max{mz1, . . . ,mzk }. We have dist(z1, ∂Um0) < 2ε and hence

dist(z1, ∂Um) < 2ε

for all z1 ∈ J (cn) and m ≥ m0. This shows supz∈J (cn)
dist(z, ∂Um) ≤ 2ε. Then (3.1) is

proved.
To prove (3.2), it is enough to show ρ := lim supm→∞ supz∈∂Um

dist(z,J (cn)) = 0.
If the contrary holds, we can choose a subsequence {n�} of {n} and a sequence {z�}
of points such that z� ∈ ∂Un� and dist(z�,J (cn)) ≥ ρ/2, � ∈ N. We may as well
suppose that z� → z0(� → ∞), then dist(z0,J (cn)) ≥ ρ/2, which implies z0 ∈ F(cn).
On the other hand, it is easy to see from Lemma 3.1 that z0 = lim�→∞ z� ∈ J (cn) =
∂A(cn)(∞). This is a contradiction and (3.2) is proved. From (3.1) and (3.2) we get
limm→∞ H(∂Um,J (cn)) = 0. �

† The authors thank the referee for his useful suggestion to simplify the proof of this Lemma.
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Let V (cn) be the set composed of all the components of J (cn). Denote by d(u) the
diameter of u for u ∈ V (cn), and let d∗(cn) = supu∈V (cn){d(u)}. Set

Lr := {(cn) ∈ KNδ : d∗(cn) < r}.
We first prove the following.

THEOREM 3.1. The set Lr is a dense open subset of KNδ provided δ > 1
4 .

Proof. Since Lr ⊃ T , from Theorem B, it is enough to show that Lr is open in KN
δ .

Let (c0
n) ∈ Lr , then d∗(c0

n) = r0 < r . Take R large enough such that |fcn(z)| > |z| for
all |z| ≥ R and all (cn) ∈ KNδ , and let Fm = fc0

m
◦ · · · ◦ fc0

1
, DR = {z : |z| < R} and

Bm = Fm
−1(DR). By Lemma 3.2, we have

lim
m→∞ H(∂Bm,J (c0

n)) = lim
m→∞ H(F−1

m (∂DR),J (c0
n)) = 0. (3.3)

Let ε = (r − r0)/2. Then we have the following.

ASSERTION. The diameters of all components of F−1
m (DR) are less than r0 + ε/2,

provided m is large enough.

If this is not true, then for every m ∈ N there exists a natural number j (m) > m and a
component uj(m) of F−1

j (m)(DR) such that

d(uj (m)) ≥ r0 + ε/2. (3.4)

Clearly, one can require that j (m + 1) > j (m).
It can be shown that

uj(m) ∩ J (c0
n) 
= ∅ (3.5)

for each m ∈ N. Otherwise, we have uj(m) ⊂ F(c0
n) since ∂uj (m) ⊂ F(c0

n). Note that
Fn(z) converges to ∞ uniformly on ∂uj (m); we have then

Fn(z) → ∞ (k → ∞) (3.6)

uniformly on uj(m). Take a point γ ∈ J (cn) ⊂ K(cn). Then we have α = Fj(m)(γ ) ∈ DR

and
Fj(m)+n(γ ) = fc0

j (m)+n
◦ · · · ◦ fc0

j (m)+1
(α) ∈ DR (3.7)

for n ∈ N. On the other hand, Fj(m)(uj (m)) = DR , and there exists β ∈ uj(m) such that
α = Fj(m)(β). It follows from (3.6) that Fj(m)+nk

(β) = fc0
j (m)+nk

◦ · · · ◦ fc0
j (m)+1

(α) → ∞
as k → ∞. This contradicts (3.7). So (3.5) is proved.

For each m ∈ N, take a point zj (m) ∈ uj(m) ∩J (c0
n). There is no harm in assuming that

zj (m) → z0 ∈ J (c0
n) as m → ∞. It is clear that for each m ∈ N that there is one and only

one component vj (m) of F−1
j (m)(DR) containing z0, and vj (m+1) ⊂ vj (m).

Let u0 be the component of J (c0
n) which contains z0, then we have u0 ⊂ vj (m) and

d(u0) ≤ r0 since d∗(c0
n) = r0.

From (3.3), it is easy to see d(vj (m)) → d(u0) (m → ∞) and hence d(vj (m)) < r0+ε/4
for m large enough. Since each Bm consists of a finite number of Jordan domains with
sectionally analytic boundaries, and Bm+1 ⊂ Bm for all m ∈ N (see Lemma 3.1), from
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the fact that zj (n) → z0 (n → ∞), it is not difficult to show that for a fixed m, uj(n) will
be contained in vj (m) for n large enough. It follows that d(uj (m)) < r0 + ε/4 for m large
enough. This contradicts (3.4), so the assertion is proved.

Choose a natural number p such that the diameters of all components of F−1
p (DR) are

less than r0 + ε/2.
Let Gm = fcm ◦ · · · ◦ fc1 . By a simple continuity argument, there exists δ0 > 0

such that the diameter of all components of G−1
p (DR) are less than (r0 + ε) provided that

|cm − c0
m| < δ0 (m = 1, 2, . . . , p).

Since each component of G−1
q+1(DR) must be contained in some component of

G−1
q (DR), the diameters of all components of G−1

q (DR) are less than (r0 + ε), q ≥ p

provided |cm − c0
m| < δ0 (m = 1, 2, . . . , p).

If (cn) ∈ KNδ , then J (cn) is clearly contained in G−1
q (DR) for each q ∈ N. Therefore,

the diameters of all components of J (cn) are less than (r0 + ε) < r provided that
(cn) ∈ KNδ and |cm − c0

m| < δ0 (m = 1, 2, . . . , p). That is to say, if

(cn) ∈ KNδ , |cm − c0
m| < δ0 (m = 1, 2, . . . , p),

we have d∗(cn) ≤ r0 + ε < r , which implies (cn) ∈ Lr .
Let Nm = {z : |z − c0

m| < δ0}; then N1 × N2 × · · · × Np × KNδ ⊂ Lr . Hence Lr is
open. The proof is complete. �

Now we can obtain the following theorem, which gives a positive answer to Brück’s
question (see Question 2 in §1).

THEOREM 3.2. The set T defined by (1.4) is a countable intersection of dense open
subsets of KNδ provided δ > 1

4 . In particular, T is of the second Baire category in KNδ ,
while the complement KNδ \ T is of the first Baire category in KNδ .

Proof. Since T = ⋂∞
n=1 L1/n, the assertion follows from Theorem 3.1. �

Remark. Theorem 3.1 and hence Theorem 3.2 remain true if Kδ is replaced by any
bounded set K ⊂ C provided K ∩ (C \ M) 
= ∅.
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REFERENCES

[1] A. F. Beardon. Iteration of Rational Functions. Springer, New York, 1991.
[2] W. Bergweiler. Iteration of meromorphic functions. Bull. Amer. Math. Soc. 29 (1993), 151–188.
[3] P. Blanchard. Complex analytic dynamics on the Riemann sphere. Bull. Amer. Math. Soc. 11 (1984),

85–141.
[4] R. Brück. Connectedness and stability of Julia sets of the composition of polynomials of the form z2 +cn.

J. London Math. Soc. 61 (2000), 462–470.
[5] R. Brück. Geometric properties of Julia sets of the composition of polynomials of the form z2 + cn.

Pacific J. Math. 198 (2001), 347–372.

https://doi.org/10.1017/S0143385703000129 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385703000129


Connectedness of Julia sets 1815
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