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We give an easy method for constructing containers for simple hypergraphs. The method

also has consequences for non-simple hypergraphs. Some applications are given; in

particular, a very transparent calculation is offered for the number of H-free hypergraphs,

where H is some fixed uniform hypergraph.
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1. Introduction

The notion of a collection of containers for a hypergraph was introduced by the authors

in [14]. A collection of containers for a hypergraph G is a collection C of subsets of V (G)

such that every independent set I is a subset of some member C ∈ C. (A subset of V (G)

is independent if it contains no edge.)

The notion was developed further in [15] and several applications given; related methods

and results were proved by Balogh, Morris and Samotij [1]. These results have since been

applied by other authors.

Our purpose here is to revisit the method of [14], and to combine it with a twist

that makes it much more widely applicable. It is true that the method of [15] is not

too complicated, and the consequences are often best possible, but it is subtle. The

method of [14], on the other hand, is not optimal; nevertheless it is very simple, and it is

particularly transparent. It is sufficient, for example, for counting the number of H-free

hypergraphs (see Corollary 3.1), and hence it offers a very elementary and straightforward

proof of this result.

† Supported by CNPq bolsa PDJ.
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The method of [14] applies to simple or linear hypergraphs, that is, hypergraphs in

which no two edges share more than one vertex. The container theorem there was as

follows. We use the term r-graph to mean an r-uniform hypergraph, where r � 2 always.

We often write |G| for the number of vertices of the hypergraph G and e(G) for the

number of edges.

Proposition 1.1 ([14]). Let G be a d-regular simple r-graph. If d is large, there is a collec-

tion of sets C of subsets of V (G) satisfying

• if I ⊂ V (G) is independent, there is some C ∈ C with I ⊂ C ,

• |C| � (1 − 1/4r2)|G| for every C ∈ C,

• |C| � 2α|G| where α = (1/d)1/(2r−1).

This proposition is not quite as stated in [14], but it is pretty much explicit in the proof

of Theorem 1.1 of [14], which is given after Theorem 3.1 in that paper.

Two drawbacks limit the applicability of Proposition 1.1. The first is that many popular

container applications require containers with e(G[C]) small, rather than |C| small. The

second is that it applies only to regular r-graphs. Container results are more useful when

they can be applied iteratively. That is, given an independent set I in a hypergraph G,

we can apply the proposition once to obtain a container C for I , but we would then like

to apply the proposition again, this time to the hypergraph G[C] (of which I is still an

independent set), thus finding a smaller container C ′ ⊂ C . If possible we would then repeat

this procedure until very small containers are obtained. The snag with this procedure as

it stands is that it is unlikely that G[C] is regular even if G is, and so iteration is not

possible. Of course, Proposition 1.1 still applies to graphs that are ‘somewhat’ regular

(indeed, this follows directly from Theorem 3.1 of [14]), but not in a way that is strong

enough to be helpful here.

Both these drawbacks can be overcome by adapting the proof of Theorem 3.1 in [14]

to use the notion of degree measure, this being central to the methods in [15]. In the

definition, d(v) is the degree of the vertex v.

Definition. Let G be an r-graph of average degree d. Let S ⊂ V (G). The degree measure

μ(S) of S is defined by

μ(S) =
1

|G|d
∑
v∈S

d(v).

The outcome of the adapted proof is the next theorem, a version of Proposition 1.1 in

which C is bounded in degree measure. The theorem lies at the heart of this paper.

Theorem 1.2. Let G be a simple r-graph of average degree d. If d is large, there is a

collection of sets C of subsets of V (G) satisfying

• if I ⊂ V (G) is independent, there is some C ∈ C with I ⊂ C ,

• μ(C) � 1 − 1/4r2 for every C ∈ C,

• |C| � 2α|G| where α = (1/d)1/(2r−1).

https://doi.org/10.1017/S096354831500022X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831500022X


450 D. Saxton and A. Thomason

Note that Theorem 1.2 is identical to Proposition 1.1 in the case that G is regular,

because then degree measure and uniform measure coincide, that is, μ(S) = |S |/|G| for

every S ⊂ V (G). However, the strength of Theorem 1.2 lies in that it applies to any r-graph.

It can therefore be applied iteratively, as described above. The effect of this iteration is

to produce containers with fewer and fewer edges. To see why this is so, observe that, for

any S ⊂ V (G),

e(G[S]) � 1

r

∑
v∈S

d(v) =
d|G|
r

μ(S) = μ(S)e(G). (1.1)

Thus e(G[S]) is smaller than e(G) by a factor of μ(S). The outcome of repeated applications

of Theorem 1.2 is expressed in the next theorem, which is the one we shall use in

applications.

Theorem 1.3. Let G be a simple r-graph of average degree d. Let 0 < δ < 1. If d is large

enough, then there is a collection of sets C of subsets of V (G) satisfying

• if I ⊂ V (G) is independent, there is some C ∈ C with I ⊂ C ,

• e(G[C]) < δe(G) for every C ∈ C,

• |C| � 2α|G| where α = (1/d)1/(2r−1).

Observe that Theorem 1.3 differs from Proposition 1.1 only in that the condition of

d-regularity is replaced by that of average degree d, and the conclusion giving a bound

on |C| is replaced by a bound on e(G[C]). This bound on e(G[C]) implies, for regular G,

that |C| � (1 − 1/r + δ/r)|G| (see inequality (2.1) later), which is essentially best possible

as a bound on |C|, but which is nonetheless a weaker condition than the bound on the

number of edges. Thus Theorem 1.3 is a generalization of Proposition 1.1.

The proof of Theorem 1.2 and the derivation of Theorem 1.3 is given in Section 2.

Some applications are described in Section 3. To give a foretaste of these, we state our

principal example here. Let H be some fixed �-graph. We call another �-graph H-free if it

has no subgraph isomorphic to H . The maximum size of an H-free �-graph on N vertices

is denoted by ex(N,H), and

π(H) = lim
N→∞

ex(N,H)

(
N

�

)−1

is the limiting maximum density of H-free �-graphs.

Theorem 1.4. Let H be an �-graph and let ε > 0. Then, if N is large enough, there exists

a collection C of �-graphs on vertex set [N] such that

• every H-free �-graph on vertex set [N] is a subgraph of some C ∈ C,

• every C ∈ C has at most εN |H | copies of H , and e(C) � (π(H) + ε)
(
N
�

)
,

• log |C| � N�−σ where σ = 1/2e(H).

The meaning of this theorem is that every H-free �-graph is a subgraph of one of

just a few �-graphs that are nearly H-free. It is thus a special kind of container theorem

– indeed it is effectively a restatement of what happens when Theorem 1.3 is applied
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to a specific hypergraph G(N,H), described in Section 3. The strength of Theorem 1.4

can be measured by the bound on log |C|. The bound N� is, of course, trivial, but any

bound where σ is some positive constant is worthwhile. A corresponding theorem was

proved in [15], namely Theorem 2.3 there. The only significant difference between [15,

Theorem 2.3] and Theorem 1.4 here is that the value of σ in [15, Theorem 2.3] is essentially

the best possible value

m(H) = max
H ′⊂H, e(H ′)>1

(e(H ′) − 1)/(|H ′| − �).

It should be mentioned that Theorem 1.4 cannot be obtained from a direct application

of Theorem 1.3 to G(N,H), because this hypergraph is not simple. However, by considering

instead a sparse, simple, but representative subgraph of G(N,H), we achieve our goal.

Details are in Section 3.

All of the results about H-free graphs described in [15], such as sparse Turán theorems

and the K�LR conjectures, are direct consequences of [15, Theorem 2.3]. Therefore,

somewhat weaker versions of these results follow directly from Theorem 1.4. However,

the proof of Theorem 1.4 is simpler than that of [15, Theorem 2.3]. In particular, we

obtain in this way a very straightforward proof of Corollary 3.1, which counts the number

of H-free graphs, because this requires only that σ > 0.

2. Proof of Theorems 1.2 and 1.3

Inequality (1.1) gives an upper bound for e(G[S]) in terms of μ(S). A related lower bound

can be obtained by considering e(S, S), the number of edges meeting both the sets S and

S = V (G) − S . Writing n for |G|, as we often do, and observing

(r − 1)ndμ(S ) = (r − 1)
∑
v /∈S

d(v) � (r − 1)e(S, S) �
{∑

v∈S
d(v) − re(G[S])

}
,

we have (r − 1)μ(S) � μ(S) − re(G[S])/nd. Since μ(S ) = 1 − μ(S) this means

e(G[S]) �
(
μ(S) − 1 +

1

r

)
nd. (2.1)

In particular, the measure of an independent set cannot exceed 1 − 1/r. Furthermore, if

G is regular, and so |S | = nμ(S), then the inequality e(G[S]) � δe(G) together with (2.1)

implies |S | � (1 − 1/r + δ/r)n, as mentioned in the Introduction.

The proof of Theorem 1.2 follows quite closely the proof of Theorem 3.1 in [14],

but modifications are needed to accommodate the presence of both uniform and degree

measures. However, nothing stronger than Markov’s inequality is needed.

The spirit of the proof is readily explained. We need to identify a set of vertices that

are not in I; then C will be the remaining vertices. We shall show that there are three

small subsets R, S and T of V = V (G), such that R, S and T determine such a set V \ C

disjoint from I . This means that the number of different container sets C that are so

specified is at most the number of triples of small subsets (R, S, T ); this number is not

large, and this is where the bound on |C| comes from.
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How, then, can we specify R, S and T in such a way as to enable us to identify a

set V \ C of vertices not in I? There are no edges with all r vertices inside I , but there

are many edges altogether. So there must be a number j, 0 � j < r, such that there are

significantly fewer edges with j + 1 vertices in I than there are edges with j vertices in I .

We might then expect to find a substantial set D ⊂ V \ I of vertices each lying in many

of the latter kind of edges. So we pick small subsets R ⊂ I and S ⊂ V \ I at random, and

look at the set

Γj(R, S) = {v ∈ V : there is an edge {v} ∪ f ∪ g with f ∈ R(j) and g ∈ S (r−j−1)},

where R(j) = {Y ⊂ R : |Y | = j}, etc. Notice that, for each j, Γj(R, S) is determined by R

and S . If we write T = Γj(R, S) ∩ I then clearly C = (V \ Γj(R, S)) ∪ T is a container for

I that is specified by (R, S, T ). Now R and S are small by definition, and we expect T

also to be small, because there are few edges with j + 1 vertices in I . On the other hand,

vertices of D have a good chance of lying inside Γj(R, S), so we expect Γj(R, S) to contain

much of D and so have substantial measure, meaning that μ(C) is bounded away from

one. This is the heart of the proof.

Proof of Theorem 1.2. Let V = V (G) be the vertex set of G of size n = |V | and let

E = E(G) the edge set. For sets R, S ⊂ V and 0 � j � r − 1, let Γj(R, S) be as defined

above. Given subsets R, S, T ⊂ V , let

Cj(R, S, T ) =

{
V \ (Γj(R, S) \ T ) if μ(Γj(R, S) \ T ) � 1/4r2,

∅ otherwise.

Note that μ(Cj(R, S, T )) � 1 − 1/4r2 by definition. We will show that for every independent

set I , there are small subsets R, S, T ⊂ V such that I ⊂ Cj(R, S, T ). Specifically, let

u =
1√
3r

(
6r

d

)1/2(r−1)

and q = 15ru.

Note that q is small if d is large (depending on r). We now define the collection C by

C = {Cj(R, S, T ) : 0 � j � r − 1, |R|, |S |, |T | � qn}.

Then

|C| � r(qn)3

(
n

qn

)3

� r(qn)3

(
ne

qn

)3qn

� 2αn

for d sufficiently large, where α = (1/d)1/(2r−1). This collection C will satisfy the conditions

of the lemma.

Fix an independent set I . For a subset A ⊂ V with I ⊂ A, and for 0 � j � r, we define

the set of edges

Ej(A) = {e ∈ E : e ⊂ A, |e ∩ I | � j}.

Let P (j) be the statement

for all A ⊂ V with I ⊂ A and μ(A) � 1 − 1/2r + j/2r2, |Ej(A)| � nduj/2r holds.
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Statement P (0) is true by (2.1), since |E0(A)| = e(G[A]). Statement P (r) is false, because

I is independent and so Er(A) = ∅. There must therefore exist j ∈ {0, 1, . . . , r − 1} such

that P (j) is true and P (j + 1) is false. Fix a set A witnessing the falsity of P (j + 1); thus

I ⊂ A, μ(A) � 1 − 1/2r + (j + 1)/2r2 and |Ej+1(A)| < nduj+1/2r. For v ∈ A, let

Fj(v) = {e ∈ E : v ∈ e, e ∈ Ej(A), e /∈ Ej+1(A)} = {e : v ∈ e ⊂ A, |e ∩ I | = j}.

Let

D = {v ∈ A \ I : |Fj(v)| � duj(1 − u)/2r}.

Note that I ⊂ A \ D.

Consider an edge e ∈ Ej(A \ D) with e /∈ Ej+1(A). Then e ⊂ A \ D and |e ∩ I | = j. Since

j < r we can pick v ∈ e with v /∈ I . Now Ej(A \ D) ⊂ Ej(A) so, by definition of Fj(v),

we have e ∈ Fj(v). Moreover, since v /∈ I , the definition of D and the fact that v /∈ D

imply |Fj(v)| < duj(1 − u)/2r. Therefore, the total number of edges in Ej(A \ D) but not in

Ej+1(A) is less than |A \ D|duj(1 − u)/2r � nduj(1 − u)/2r. By the choice of A as witness

set, we know that |Ej+1(A)| < nduj+1/2r and so

Ej(A \ D) < nduj(1 − u)/2r + nduj+1/2r = nduj/2r.

Since P (j) is true, this means μ(A \ D) < 1 − 1/2r + j/2r2. But μ(A) � 1 − 1/2r + (j +

1)/2r2 and therefore μ(D) > 1/2r2.

Let p = (6r/duj)1/(r−1), so pr−1duj = 6r. Since j � r − 1, we observe that

p �
(

6r

d

)1/(r−1)
1

u
=

√
3r

(
6r

d

)1/2(r−1)

= 3ru =
q

5
.

Let R ⊂ I and S ⊂ A \ I be random sets where each vertex (of I and A \ I respectively) is

included independently with probability p. By Markov’s inequality, the inequalities |R| �
5pn � qn and |S | � 5pn � qn each hold with probability at least 4/5. Let T = Γj(R, S) ∩ I .

Then clearly, I ⊂ Cj(R, S, T ) provided μ(Γj(R, S) \ T ) � 1/4r2. So to complete the proof,

it is enough to show that the inequalities |T | � qn and μ(Γj(R, S) \ T ) � 1/4r2 each hold

with probability at least 4/5, because then, with positive probability, all four inequalities

|R|, |S |, |T | � qn and μ(Γj(R, S) \ T ) � 1/4r2 will hold.

A vertex v ∈ I will be included in Γj(R, S) (i.e., in T ) if it lies in an edge e with

e = {v} ∪ f ∪ g, f ∈ R(j), g ∈ S (r−j−1). Therefore e ⊂ A and |e ∩ I | = j + 1, which means

e ∈ Ej+1(A). We know |Ej+1(A)| < nduj+1/2r. For an edge e ∈ Ej+1(A) with |e ∩ I | = j + 1,

there are j + 1 partitions of e of the form e = {v} ∪ f ∪ g with v ∈ I , f ∈ I (j) and g ∈
(A \ I)(r−j−1). For each such partition, the probability that both f ∈ R(j) and g ∈ S (r−j−1)

is pr−1. So the expected size of T is at most

rpr−1nduj+1/2r = 3run = qn/5.

Applying Markov’s inequality again implies that |T | � qn with probability at least 4/5.

Recall that D ∩ I = ∅ by definition of D, and so in particular D ∩ T = ∅. Let D∗ =

D \ Γj(R, S). Then D \ D∗ ⊂ Γj(R, S) \ T , and so

μ(Γj(R, S) \ T ) � μ(D \ D∗) = μ(D) − μ(D∗).
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Let v ∈ D. Then

|Fj(v)| � duj(1 − u)/2r > 2duj/5r

(since u is small). Each e ∈ Fj(v) has a partition e = f ∪ g with f ∈ I (j) and g ∈ (A \ I)(r−j),

where v ∈ g because v /∈ I . The probability that f ⊂ R and g − {v} ⊂ S is pr−1 and, because

G is simple, these events over all e ∈ Fj(v) are independent. Hence the probability that

v ∈ D∗, that is, v ∈ Γj(R, S), is at most

(1 − pr−1)|Fj (v)| � exp{−2pr−1duj/5r} = exp{−12/5} < 1/10.

Now

μ(D∗) = (1/nd)
∑
v∈D∗

d(v) = (1/nd)
∑
v∈D

d(v)Iv,

where Iv is the indicator of the event v ∈ D∗. Taking expectations,

Eμ(D∗) = (1/nd)
∑
v∈D

d(v)E(Iv) < μ(D)/10,

since

E(Iv) = Pr(v ∈ D∗) < 1/10.

Markov’s inequality implies that, with probability at least 4/5, μ(D∗) � μ(D)/2 holds, and

hence

μ(Γj(R, S) \ T ) � μ(D) − μ(D∗) � μ(D)/2 > 1/4r2.

This completes the proof.

Remarks. (a) The simplicity of the hypergraph G is used at only one point in the proof,

namely in the very last paragraph, where it implies that certain events are independent,

and hence that the probability that v ∈ D∗ is very small. Without this independence we

would not be able to obtain a small enough bound on the probability.

(b) The proof shows the theorem to be true for a smaller value of α, namely c(r)(log d)/

d1/2(r−1) for some function c(r) of r, but the results of [15] are better still, with

α = c(r)(log d)/d1/(r−1), so we keep the present value for simplicity. One might wonder

why the bound here on |C| is worse than the bound in [15]. It is not because of

the random choice of R and S , because in the context of the present algorithm

random choice is quite efficient, and a deterministic choice is unlikely to be much

better. The reason that the present method is relatively inefficient is that it uses edges

with exactly j vertices in I for one value of j only, and ignores all other edges. The

methods of [15] and [1], which are unrelated to the present method, are not lengthy to

describe but are nonetheless crafted carefully to use all edges and to be as efficient as

possible.

Proof of Theorem 1.3. As remarked earlier, we apply Theorem 1.2 to G itself, and then

again to each container so obtained, then to each of the new containers, and so on for
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each container with at least δe(G) edges, until we obtain a collection C of containers

C with e(G[C]) < δe(G). Since, by (1.1), each application of Theorem 1.2 decreases the

fraction of edges by 1 − 1/4r2, C is obtained after at most

k = �(log δ)/ log(1 − 1/4r2)� + 1

levels of iteration, and so |C| � 2kα|G|, where α is the maximum over all applications of

Theorem 1.2. If e(G[C]) � δe(G) then the average degree of G[C] is at least δd, and the

result follows, provided that, for the sake of a clean statement, the reader will indulge

us by taking the value α(d) = c(r)(log d)/d1/2(r−1) in Theorem 1.2, rather than the weaker

bound explicit there.

3. Applications

The main result of [14] was that the list colouring number χ�(G) of a simple d-

regular r-uniform hypergraph is bounded below by χ�(G) � (1/cr + o(1)) log d, where

cr = 2r log(2r2) (and the o(1) term is as d → ∞). As remarked in the Introduction, for

regular hypergraphs, Theorem 1.3 implies a strengthening of Proposition 1.1 in which

|C| � (1 − 1/r + δ/r)n, and using this instead of Proposition 1.1 in the arguments of [14]

immediately gives an improved bound with cr = (2r − 1) log r. All the same, this is still

not quite as good as the bound in Theorem 2.1 of [15], which allows cr = (r − 1) log r, so

we do not pursue further details.

Our remaining applications are corollaries of Theorem 1.4, as outlined in the Introduc-

tion. First, note that each graph C in the statement of the theorem has at most 2(π(H)+ε)(N�)

subgraphs, from which the next corollary follows at once.

Corollary 3.1. Let H be an �-graph. The number of H-free �-graphs on vertex set [N] is

2(π(H)+o(1))(N�).

This corollary is the same as [15, Corollary 2.4]. In the case � = 2, this corollary was

proved for complete H by Erdős, Kleitman and Rothschild [6] and for general H by

Erdős, Frankl and Rödl [5]. Nagle, Rödl and Schacht [12] proved it for general � using

hypergraph regularity methods. The present paper offers the simplest known proof.

Theorem 1.3 can, in a similar way, be used to give a simple way to count the number of

�-graphs which have no induced copy of H , and more generally to evaluate the probability

that a random �-uniform hypergraph G(�)(n, p) contains no induced copy of H . For � = 2,

the value when p = 1/2 was determined by Prömel and Steger [13] and for general p by

Bollobás and Thomason [2] (see also Marchant and Thomason [10]). For general � the

value for p = 1/2 was given by Dotson and Nagle [4], again using hypergraph regularity

techniques. We do not give details of the result, which is identical to [15, Theorem 2.7]. We

merely point out that it can be derived from a container theorem, as demonstrated in [15],

and that the container theorem presented here can be used instead, via an argument very

similar to the one used to prove Theorem 1.4.

Another application of Theorem 1.4 is the following ‘sparse Turán theorem’. Here the

value of σ does affect the strength of the application.

https://doi.org/10.1017/S096354831500022X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831500022X


456 D. Saxton and A. Thomason

Corollary 3.2. Let H be an �-graph and let 0 < γ < 1. For some c > 0, for N sufficiently

large and for p � cN−σ , where σ = 1/2e(H), the following event holds with probability

greater than 1 − exp{−γ3p
(
N
�

)
/512}:

every H-free subgraph of G(�)(N, p) has at most (π(H) + γ)p

(
N

�

)
edges.

A stronger version of this corollary, with σ = 1/m(H), was conjectured by Kohayakawa,

�Luczak and Rödl [8]; it was proved in the case of strictly balanced H by Conlon and

Gowers [3] and in full generality by Schacht [16]. The strong version follows easily

from [15, Theorem 2.3], as shown in [15], and the same argument gives Corollary 3.2

from Theorem 1.4, so we do not give details here. We remark that the point of the

corollary is how small the value of p can be made: Szemerédi’s regularity lemma

allows p = o(1). We note that Kohayakawa, Rödl and Schacht [9] and Szabó and

Vu [17] both proved the corollary for complete 2-graphs with σ = 1/(|H | − 1) (slightly

better in the case of [17]), but again we believe the present proof is the shortest for

some σ > 0. It yields in a similar fashion weak versions of the other so-called K�LR

conjectures.

The proof of Theorem 1.4 consists of finding a set of containers for the independent

sets in the hypergraph G = G(N,H), which is defined as follows. The n =
(
N
�

)
vertices of

G are the �-sets in [N], that is, V (G) = [N](�). The edges of G are the subsets of size e(H)

of V (G) that form an �-graph isomorphic to H .

Given a subset S ⊂ V (G), we can regard S as the edges of an �-graph with vertex

set [N]. The subset S is independent in G if and only if S , regarded as an �-graph, is

H-free. A set of containers C for the independent sets in G is thus a set of �-graphs on

vertex set N such that every H-free graph is a subset of one of these container graphs.

Thus Theorem 1.4 is a statement about the existence of a collection C of containers for

G(N,H) having certain properties.

The stronger version [15, Theorem 2.3] was obtained by applying a container result

directly to G(N,H). Here, we use the simpler Theorem 1.3 to give a set of containers

with slightly weaker properties. We cannot apply Theorem 1.3 directly to G(N,H)

because this hypergraph is not simple. We therefore apply it instead to a subgraph

Gsimple(N,H) of G(N,H). Each independent set of G(N,H) is independent in Gsimple(N,H),

so containers for Gsimple(N,H) will also be containers for G(N,H). To show that

these containers have the properties claimed in Theorem 1.4, we need the following

lemma.

Lemma 3.3. Let η > 0 and 0 < ρ < 1. Then, if N is large enough, there exists a simple

sub-hypergraph

Gsimple = Gsimple(N,H)

of G = G(N,H), such that V (Gsimple) = V (G) and Gsimple has average degree at least Nρ.

Moreover, for all S ⊂ V (G), if e(G[S]) � ηe(G), then

e(Gsimple[S]) � ηe(Gsimple)/2.
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Given this lemma, the proof of Theorem 1.4 follows at once, using the supersaturation

theorem of Erdős and Simonovits [7], which itself has a very straightforward proof.

Proposition 3.4 (Erdős and Simonovits [7]). Let H be an �-graph and let ε > 0. There

exists N0 and η > 0 such that if C is an �-graph on N � N0 vertices containing at most

ηN |H | copies of H , then e(C) � (π(H) + ε)
(
N
�

)
.

Proof of Theorem 1.4. Let ε > 0 be as given in the conditions of the theorem. Then

let η > 0 be given by Proposition 3.4. We may of course assume that η � ε. Choose

ρ < 1 so that ρ/(2e(H) − 1) > 1/2e(H). Then apply Lemma 3.3 to obtain Gsimple. Apply

Theorem 1.3 to Gsimple with δ = η/2, with n =
(
N
�

)
and d � Nρ, so d is large if N is

large, to obtain a collection C for the independent sets in Gsimple. As remarked earlier,

every H-free �-graph I on vertex set [N] is an independent set in Gsimple and is therefore

contained in some subset C ∈ C, which itself can be regarded as an �-graph on vertex

set [N]. We have |C| � 2αn, where α = (1/d)1/(2e(H)−1). Since ρ/(2e(H) − 1) > 1/2e(H), we

have log |C| � N�−1/2e(H), as claimed.

All that remains, then, is to verify the second assertion of the theorem. In the assertion,

the number of copies of H in C is the same as e(G[C]). By Theorem 1.3, e(Gsimple[C]) <

δe(Gsimple). Since δ = η/2, Lemma 3.3 shows e(G[C]) < ηe(G) � εe(G). Now e(G) is the

number of copies of H with vertices in [N] and so e(G) < N |H |. So Proposition 3.4 implies

e(C) � (π(H) + ε)
(
N
�

)
, completing the proof.

Proof of Lemma 3.3. We form Gsimple by randomly choosing edges of G and then deleting

a few so that the result is a simple hypergraph. Let h = |H |; observe that
(
N
h

)
� e(G) � Nh,

so e(G) = Θ(Nh). We may assume that H has more than one edge, and so h � � + 1 � 3.

Call a pair e, e′ of edges of G with |e ∩ e′| � 2, an overlapping pair. Notice that the number

of overlapping pairs is the number of copies H,H ′ of H with vertices in [N] that have

at least two �-edges in common: H and H ′ must share at least � + 1 vertices, and so the

number of overlapping pairs is O(N2h−�−1).

Pick a number ρ′ with ρ < ρ′ < 1. Let G′ be a subgraph of G formed by picking edges

independently and at random with probability p = N−h+�+ρ′
. Let E be the number of

edges of G′. We make use of standard bounds on the tail of the binomial distribution,

to wit, if X ∼ Bi(m, p) then Pr{X � (3/4)EX} � e−EX/40, and the same bound holds for

Pr{X � (5/4)EX} (see for example [11, Corollary 2.3]). So if A is the event {3EE/4 �
E � 5EE/4} then A holds with high probability, certainly more than 2/3. Observe that if

A holds then G′ has Θ(N�+ρ′
) edges.

Let F be the number of overlapping pairs in G′. Then

EF = O(p2N2h−�−1) = O(N�+2ρ′−1) = o(N�+ρ′
).

Let B be the event {F � 3EF}. By Markov’s inequality, B holds with probability at least

2/3.

For each S ⊂ V (G), let CS be the event that both

e(G[S]) � ηe(G) and e(G′[S]) � 3pe(G[S])/4
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hold. Then the probability that CS occurs is at most

exp(−pe(G[S])/40) = exp(−pΘ(Nh)) = exp(−Θ(N�+ρ′
)).

Let C be the event that CS does not hold for any S ⊂ V (G). There are 2|V (G)| subsets S ,

so the probability that C fails to hold is at most exp(N� − Θ(N�+ρ′
)) = o(1).

There is therefore a positive probability that A, B and C all hold. Let G′ be a graph

for which they all do hold, remove an edge from each overlapping pair, and call the

result Gsimple. This graph has no overlapping pairs and so is simple. The number of edges

is E − F . Since A and B hold, we have E = Θ(N�+ρ′
) and F = o(N�+ρ′

), so F = o(E)

and E − F = Θ(N�+ρ′
) > N�+ρ. The graph has fewer than N� vertices and so its average

degree exceeds Nρ. Finally, let S ⊂ V (G) be such that e(G[S]) � ηe(G). The event C holds,

and so CS does not; thus

e(G′[S]) � 3pe(G[S])/4 � 3pηe(G)/4 � (3/4)η(4/5)E.

the last inequality holding because A holds. Therefore e(Gsimple[S]) � 3ηE/5 − F . But

F = o(E) so

e(Gsimple[S]) � 3ηE/5 − F � η(E − F)/2 = ηe(Gsimple)/2,

which completes the proof.
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[9] Kohayakawa, Y., Rödl, V. and Schacht, M. (2004) The Turán theorem for random graphs.

Combin. Probab. Comput. 13 61–91.

[10] Marchant, E. and Thomason, A. (2011) The structure of hereditary properties and 2-coloured

multigraphs. Combinatorica 31 85–93.

[11] Janson, S., �Luczak, T. and Ruciński, A. (2000) Random Graphs, Wiley.
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