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Topological methods have yielded a variety of lower bounds and impossibility results for

distributed computing. In this paper, we introduce a new tool for proving impossibility

results, which is based on a core theorem of algebraic topology, the acyclic carrier theorem,

and unifies, generalizes and extends earlier results.

1. Introduction

Combinatorial and topological methods have yielded a variety of lower bounds results for

distributed computing, including general characterizations of the computational power

of certain models (see, for example, Biran et al. (1990), Herlihy and Rajsbaum (1994),

Herlihy and Shavit (1993), and Herlihy and Shavit (1994)), and the circumstances under

which specific problems can be solved (see, for example, Borowsky and Gafni (1993a),

Borowsky and Gafni (1993b), Chaudhuri et al. (1993), Herlihy and Rajsbaum (1994),

Herlihy and Shavit (1993) and Saks and Zaharoglou (1993)); a recent survey appears

in Herlihy and Rajsbaum (1999). In this paper, we introduce a new tool for proving

impossibility results, which is based on a core theorem of algebraic topology. Using the

acyclic carrier theorem (Munkres 1984, Theorem 13.3), we unify, generalize and extend

earlier results. These new proofs are more succinct. Although the mathematical notions

underlying this theorem are abstract, they are elementary, being fully covered in the first

chapter of Munkres’ standard textbook (Munkres 1984).

This paper makes the following contributions.

— Earlier proofs (Herlihy and Rajsbaum 1994; Herlihy and Shavit 1993) relied on a

mixture of combinatorial and continuous arguments. In this paper, we show how to
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make these proofs completely algebraic, requiring no continuous mathematics. Some

important constructs, such as the notion of a span (Herlihy and Shavit 1993), are

restated in a more elegant algebraic form.

— For each task, set agreement and renaming, we prove a single, short theorem specifying

an algebraic property that prevents a protocol from solving the task. These theorems

are quite general, yielding results in a variety of models. They imply the known

results, and also yield the first impossibility results for renaming using set agreement

primitives.

A more complete discussion of related work is postponed to Section 4. Here we expand

some of the results presented in the tutorial Herlihy and Rajsbaum (1995), where a few

more details about the topology techniques used here can be found.

Finally, we believe that these results further illustrate the benefits of formulating

concepts and models from distributed computing in the language of algebraic topology,

a mature branch of mainstream mathematics.

This paper is organized as follows. In Section 2 we present the distributed computing

model. In Section 3, we present the algebraic topology background. In Section 4 we

describe Algebraic Spans – the technique used to unify impossibility results. In Section

5 we present the applications to set agreement, while in Section 6, the applications to

renaming. In the Appendix we give several examples to help the reader unfamiliar with

algebraic topology, in order to make the paper more self-contained.

2. Distributed computing preliminaries

We consider a standard distributed system where processes cooperate to solve a shared

task (see, for example, Attiya and Welch (1998) and Lynch (1996)). They communicate

with one another either by message passing or by accessing a shared memory. Informally,

a task is a problem where each process starts with a private input value, communicates

with the others by applying operations to shared objects, and halts with a private output

value. A protocol is a program that solves a task in a concurrent system. A system

may be asynchronous, placing no constraints on processes’ relative speeds, or synchronous,

requiring processes to run in lock-step. Processes may communicate by applying operations

to shared objects, such as read/write memory, or objects with more powerful semantics.

They may also communicate by message-passing. A protocol is t-resilient if it tolerates

failures by t or fewer processes, and it is wait-free if it tolerates failures by n out of n+ 1

processes.

Each process begins a protocol in a distinguished initial state, and halts in one of a set of

distinguished final states. The state of the system encompasses the states of the processes

and the communication medium (shared memory or message passing). The system also

begins a protocol in a distinguished initial state, and halts in one of a set of distinguished

final states. A set of initial or final process states s0, . . . , sn is mutually compatible if there

is an initial or final system state in which the i-th process has state si.

We model tasks and distributed systems using notions from combinatorial and algebraic

topology (Herlihy and Shavit 1993). An initial or final state of a process is modelled as

a vertex, a pair consisting of a process id (a name by which we identify the process) and
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a value (either input or output). We speak of the vertex as coloured with the process id

(we sometimes work with vertexes coloured with other values). A set of d + 1 mutually

compatible initial or final states is modelled as a d-dimensional simplex (or d-simplex).

If the colours (not necessarily ids) of a simplex are distinct, we say that it is properly

coloured. For the simple three-process tasks used in examples and figures, we use P , Q

and R as process ids. In formal arguments we use P0, . . . , Pn.

Let S = (s0, . . . , sp) and T = (t0, . . . , tq) be simplexes whose vertex sets are disjoint. The

join of S and T , denoted S · T , is the simplex (s0, . . . , sp, t0, . . . , tq). If S has dimension p

and T has dimension q, then S · T has dimension p+ q + 1.

The complete set of possible initial (or final) states is represented by a set of simplexes,

closed under containment, called a simplicial complex (or complex). The dimension of C
is the dimension of a simplex of largest dimension in C. We sometimes use superscripts

to indicate dimensions of simplexes and complexes. The set of process ids associated with

simplex Sn is denoted by ids(Sn), and the set of values by vals(Sn).

Any simplicial complex has a geometric realization as a point set in Euclidean space. A

vertex corresponds to a point in Euclidean space. A simplex corresponds to the convex hull

of affinely-independent vertexes. A complex corresponds to the union of its (geometric)

simplexes, provided that any two (geometric) simplexes intersect either in a common

face, or not at all. Any complex has a geometric realization in some Euclidean space of

sufficiently high dimension. We refer to the point set occupied by a geometric realization

of a complex as the polyhedron of that complex. Note that two distinct complexes may

have the same polyhedron.

A task specification for n + 1 processes is given by an input complex I, an output

complex O, and a relation ∆ carrying each input n-simplex of I to a set of n-simplexes of

O. This map associates with each initial state of the system (an input n-simplex) the set of

legal final states (output n-simplexes). For some models of computation, it is convenient

to extend ∆ to simplexes of lower dimension:

∆(Sm) =
⋂

∆(Sn)

where Sn ranges over all n-simplexes containing Sm. This definition has the following

operational interpretation: ∆(Sm) is the set of legal final states in executions where only

m+ 1 out of n+ 1 processes participate (the rest fail without taking any steps). A protocol

solves a task if when the processes run their programs, they start with mutually compatible

input values, represented by a simplex Sn, communicate with one another, and eventually

halt with some set of mutually compatible output values, representing a simplex in ∆(Sn).

For example, in the consensus problem (Fischer et al. 1985), each process starts with a

private input value, and all processes halt with some process’s input value. Figure 1 shows

the input and output complexes for two-process binary consensus. The input complex for

consensus is constructed by assigning independent binary values to n + 1 processes (this

complex can be shown to be homeomorphic to an n-sphere), and the output complex

consists of two disjoint n-simplexes, corresponding to decision values 0 and 1.

Any protocol that solves a task has an associated protocol complex P, in which each

vertex is labelled with a process id and that process’s final state (called its view ). Each

simplex thus corresponds to an equivalence class of executions that ‘look the same’ to the
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Input Complex Output Complex

∆

P 0 Q 0

P 1

P 0 Q 0

P 1Q 1 Q 1

Fig. 1. Input and output complexes for 2-process consensus

P, 0??

R, 012 Q, 012

Q, 01?

P, 012 P, 01?P, 0?2

Q, ?12

Q, ?1?

R, 0?2

R, ?12

R, ??2

Fig. 2. Protocol complex for one-round synchronous protocol

processes at its vertexes. For 0 6 m 6 n, we understand P(Sm) for a given Sm in the input

complex to be the complex generated by all executions starting in Sm, in which only the

processes in ids(Sm) take part (the rest fail without taking any steps). The range of m for

which P(Sm) is defined depends on the number of failures allowed by the model. If a

simplex R is in P(Sm), we say that R is reachable from Sm.

For example, consider a model in which synchronous processes communicate by broad-

casting messages, but a process can fail in the middle of a broadcast. Figure 2 shows

the protocol complex for a three-process single-round protocol in which each process

broadcasts its index to the others, and then halts. Each vertex in this figure is a possible

final state of a non-faulty process (faulty processes are not shown), and simplexes indicate
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~s a vertex

K a simplicial complex

|K| polyhedron of K
Sm an m-dimensional simplex

Ci(K) i-th chain group of K
∂ boundary homomorphism

α a chain

Hi(K) i-th homology group of K
0 trivial single-element group

Fig. 3. Some notation used in this paper

mutually compatible final states. The labels indicate the messages received: for example,

‘01?’ indicates that messages were received from P and Q, but not R. The solid central

triangle corresponds to the execution in which no process fails: each vertex is labelled

with 012. Attached to the central triangle are 1-simplexes corresponding to executions

in which one process fails, and disconnected from that triangle are the three 0-simplexes

(vertexes) corresponding to executions in which two processes fail.

A vertex map carries vertexes of one complex to vertexes of another. A simplicial map is

a vertex map that preserves simplexes. A simplicial map on properly coloured complexes

is colour preserving if it associates vertexes of the same colour. Notice that a colour-

preserving map preserves dimension. Let P be the protocol complex for a protocol. If Sn

is an input simplex, let P(Sn) ⊂ P denote the complex of final states reachable from the

initial state Sn. A protocol solves a decision task 〈In,On,∆〉 if and only if there exists

a colour-preserving (that is, process id-preserving) simplicial map δ : P → On, called a

decision map, such that for every input simplex Sn, δ(P(Sn)) ⊂ ∆(Sn). We will prove our

impossibility results by exploiting the topological properties of the protocol complex and

the output complex to show that no such map exists.

3. Algebraic preliminaries

Our discussion closely follows that of Munkres (Munkres 1984, Chapter 1). Let K be an

n-dimensional simplicial complex, and S = (~s0, . . . ,~sq) be a q-simplex ofK. An orientation

for S is an equivalence class of orderings on~s0, . . . ,~sq , consisting of one particular ordering

and all even permutations of it. For example, an orientation of a 1-simplex (~s0,~s1) is just

a direction, either from~s0 to~s1, or vice-versa. An orientation of a 2-simplex (~s0,~s1,~s2) can

be either ‘clockwise’, as in (~s0,~s1,~s2) in Figure 4, or ‘counterclockwise’, as in (~s0,~s2,~s1). By

convention, simplexes are oriented in increasing subscript order unless explicitly stated

otherwise.

A q-chain of K is a formal sum of oriented q-simplexes:
∑`

i=0 λi · Sqi , where λi is an

integer. When writing chains, we typically omit q-simplexes with zero coefficients, unless

they are all zero, when we simply write 0. We write 1 · Sq as Sq and −1 · Sq as −Sq . For

q > 1, we identify −Sq with Sq having the opposite orientation.

The q-chains ofK form a free Abelian group Cq(K), called the q-th chain group ofK.

Two q-chains are added by adding coefficients corresponding to the same simplexes. The

https://doi.org/10.1017/S0960129500003170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500003170


M. Herlihy and S. Rajsbaum 554

s0 s1

s2

s0 s1

s2

Fig. 4. Oriented simplex and boundary

identity element of the group is the q-chain with all coefficients equal to zero. The group

Cq(K) is freely generated by the elementary q-chains (one for each oriented q-simplex).

For dimension −1, it is convenient to define C−1(K) to be Z , the infinite cyclic group

Z of integers under addition.

A boundary ∂q : Cq(K)→ Cq−1(K) is a homomorphism that satisfies

∂q−1∂qα = 0, (1)

and an augmentation ∂0 : C0(K) → C−1(K) is an epimorphism (that is, a surjective

homomorphism).

As usual, we use the following boundary homomorphism. Let Sq = (~s0, . . . ,~sq) be

an oriented q-simplex. Define facei(S
q), the ith face of Sq , to be the (q − 1)-simplex

(~s0, . . . , ŝi, . . . ,~sq), where circumflex (∧) denotes omission. The boundary homomorphism

∂q : Cq(K)→ Cq−1(K), q > 0, is defined on simplexes as follows:

∂qS
q =

q∑
i=0

(−1)i · facei(S
q),

and extends additively to chains: ∂q(α0 +α1) = ∂qα0 +∂qα1. For q = 0, ∂0(~s) = 1, and extend

linearly†. It is not hard to check (or see (Munkres 1984)) that ∂q satisfies Equation 1.

We will sometimes omit subscripts from boundary operators. The boundary operator is

illustrated in Figure 4.

A q-chain α is a boundary if α = ∂q+1β for some (q + 1)-chain β, and it is a cycle if

∂qα = 0. Equation 1 implies that every boundary is a cycle. A boundary is an element of

Im(∂q+1), and a cycle is an element of ker(∂q). Thus, Equation 1 implies that the group

im(∂q+1) is contained in the group ker(∂q). Their quotient group is called the qth homology

group‡:
Hq(K) = ker(∂q)/im(∂q+1).

Informally, any q-cycle that is not also a boundary corresponds to a ‘hole’ of dimension

q. Conversely, if every q-cycle of K is a boundary, then K has no ‘holes’ of dimension

q, and Hq(K) is the trivial group with just one element, denoted 0. We will later use one

direction of this statement:

† Munkres (Munkres 1984) uses ε for ∂0.
‡ Munkres calls these the reduced homology groups (Munkres 1984, page 71).
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Remark 3.1. If Hq(K) = 0, for every q-cycle α there exists a q + 1-chain β such that

∂q+1β = α.

More precisely, the elements of Hq(K) are the left cosets of im(∂q+1) in ker(∂q): an

element of Hq(K) has the form α + im(∂q+1) for a q-cycle α. Thus, two q-cycles α, α′ are

homologous if they are in the same equivalence class in Hq(K). Equivalently, α and α′ are

homologous if and only if α− α′ is a boundary.

If H0(K) is trivial (equal to the one-element group denoted by 0), thenK is connected

(there is a path of 1-simplexes connecting any two vertexes). Informally, if Hq(K) = 0,

thenK has no ‘holes’ of dimension q. If Hq(K) = 0 for q 6 k, we say thatK is k-acyclic.

If Hq(K) = 0 for every q, we say that K is acyclic.

The chain complex C(K) is the sequence of groups and homomorphisms {Cq(K), ∂q},
q > −1. If K is of dimension n, then Cq(K) = 0 for n < q.

Let C(K) = {Cq(K), ∂q} and C(L) =
{
Cq(L), ∂′q

}
be chain complexes for simplicial

complexesK and L. An augmentation-preserving chain map (or chain map) φ is a family

of homomorphisms:

φq : Cq(K)→ Cq(L),

such that ∂′q ◦ φq = φq−1 ◦ ∂q , q > 0, and ∂′0 ◦ φ0 = ∂0. Usually φ−1 is defined to be the

identity. In this case the commutator rule for σ0 is included in the general rule for σq .

The previous identities ensure that the chain map φ preserves cycles and boundaries:

if α is a cycle or boundary, so is φ(α). Notice that the identity chain map ι of C(K) is a

chain map, and the composition of two chain maps is a chain map.

Any simplicial map f from K to L induces a chain map f# from C(K) to C(L) as

follows:

( f#)q(α) =


f(α) if α is a simplex where dim(α) = dim( f(α)) = q∑

i λi( f#)q(Si) if α is a chain
∑

i λiSi.

0 otherwise.

This map is a homomorphism. For example, (f#)q(−Sq) = −(f#)q(S
q), since interchanging

two vertexes on the left interchanges two vertexes on the right. On the other hand, not

every chain map is induced by a simplicial map: see the Appendix for an example.

Since f# commutes with ∂, it induces a homomorphism (f∗)q from Hq(K) to Hq(L).

We often omit subscripts and sharp signs from induced chain maps when the meaning is

clear from the context.

If φ, ψ : C(K)→ C(L) are chain maps, then a chain homotopy from φ to ψ is a family

of homomorphisms

Dq : Cq(K)→ Cq+1(L),

such that

∂′q+1Dq + Dq−1∂q = φq − ψq.
Very roughly, if two chain maps are homotopic, then one can be deformed into the other:

see Munkres (Munkres 1984) for an intuitive justification for this definition. In particular,

the two chain maps induce the same homomorphism in homology.
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Lemma 3.2. Let φ, ψ : C(K) → C(L) be chain maps and D be a chain homotopy from

φ to ψ. Then the chain (φq − ψq − Dq−1∂q)(S
q) of Cq(L) is a cycle.

Proof.

∂′q(φq − ψq − Dq−1∂q)(S
q) = ∂′q(φq − ψq)(Sq)− ∂′qDq−1∂q(Sq)

= ∂′q(φq − ψq)(Sq)− ∂′q(φq − ψq − ∂′q+1Dq)(S
q)

= ∂′q∂′q+1S
q = 0

For problems such as the renaming task defined below, we are interested in solutions

that satisfy certain symmetry properties. We say that a simplicial map ρ from K to

itself that permutes the vertexes of K is a symmetry simplicial map. The map ρ preserves

dimension: it sends each q-simplex to a q-simplex. Moreover, ρ permutes the q-simplexes

of K: if ρ(Sq0 ) = ρ(Sq1 ), then S
q
0 = S

q
1 . The i-fold composition of ρ is denoted ρi (also

a symmetry simplicial map). The orbit of a simplex Sq consists of all q-simplexes S for

which ρi(Sq) = S , for some i. The q-orbits partition the q-simplexes into equivalence

classes. For example, if ρ is the identity symmetry, every orbit consists of a single simplex.

A symmetry chain map on C(K), ρ#, is the chain map ρ# : C(K) → C(K) induced

by a symmetry simplicial map ρ. The i-fold composition of ρ#, ρi#, is also a chain map.

Since ρ preserves dimension, for every oriented q-simplex Sq , ρ#(Sq) is an oriented q-

simplex, and since ρ is a permutation on the vertexes, ρ# is a permutation on the oriented

q-simplexes. Thus the oriented q-simplexes are also partitioned into orbits by ρ#: two

oriented simplexes Sq0 , S
q
1 are in the same orbit if and only if ρi#(Sq0 ) = S

q
1 , for some i.

To avoid cumbersome notation, we usually use ρ to denote both the symmetry simplicial

map and the induced simplicial chain map, relying on context to avoid ambiguity.

Let ρ, ρ̃ be symmetry chain maps on C(K) and C(L), respectively. A chain map

φ : C(K) → C(L) is symmetric with respect to ρ, ρ̃, or simply symmetric, when ρ and ρ̃

are understood, if ρ̃◦φ = φ◦ρ. Similarly, a chain homotopy D is symmetric if ρ̃◦D = D◦ρ.

Notice that any chain map is symmetric with respect to the identity symmetry chain maps.

Definition 3.1. Let ρ, ρ̃ be symmetry chain maps on C(K) and C(L), respectively. A

symmetric acyclic carrier fromK to L is a function Σ that assigns to each simplex Sq of

K a non-empty subcomplex of L such that:

1 Σ(Sq) is (q − 1)-acyclic.

2 If Sp is a face of Sq , then Σ(Sp) ⊂ Σ(Sq).

3 Σ(ρ(S)) = ρ̃(Σ(S)).

A homomorphism φ : Cq(K)→ Cq′(L) is carried by Σ if each simplex appearing with

a non-zero coefficient in φ(Sq) is in the subcomplex Σ(Sq).

The next theorem reduces to Munkres (1984, Theorem 13.3) when ρ, ρ̃ are the identity;

the proofs are similar.

Theorem 3.3 (Acyclic Carrier Theorem). Let Σ be a symmetric acyclic carrier from K to

L.

(1) There exists a symmetric chain map from C(K) to C(L) that is carried by Σ.
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(2) If every Σ(Sq) is q-acyclic, and φ and ψ are two symmetric chain maps from C(K) to

C(L) that are carried by Σ, then there exists a symmetric chain homotopy of φ to ψ

that is also carried by Σ.

Proof. Let ∂ be the boundary of C(K) and ∂′ the boundary of C(L), and ρ, ρ̃ the

symmetry chain maps corresponding to φ, ψ.

(1) We construct the required chain map σd by induction on d. As usual, we define it on

oriented d-simplexes and extend linearly.

Basis: To define σ0, first pick a vertex ~s0 for each 0-orbit of K. Let σ0(~s0) be a vertex

in Σ(~s0). Now, for each~si ∈ orbit(~s0),~si = ρi(~s0), let σ0(~si) = ρ̃i(σ0(~s0)). Notice that σ0(~si)

is in Σ(~si), because Σ(~si) = Σ(ρi(~s0)), and by property (3) of Definition 3.1, Σ(ρi(~s0)) =

ρ̃i(Σ(~s0)). This defines σ0 on the 0-simplexes, and, by extending linearly, we get the desired

homomorphism in dimension d = 0, which commutes with the boundary operators.

Assume inductively that σ has been correctly defined for dimensions smaller than d.

Pick a representative Sd0 for each d-orbit. Now, by the induction hypothesis, σd−1(∂Sd0 ) is

a well-defined (d − 1)-chain, and it is in Σ(Sd0 ). This is because for each face Sd−1 of Sd0 ,

σd−1(Sd−1) is in Σ(Sd−1), and hence it is in Σ(Sd0 ), by (2) of Definition 3.1. Also, σd−1(∂Sd0 )

is is a cycle, because ∂′σd−1(∂Sd0 ) = σd−2∂(∂Sd0 ) = 0, by the induction hypothesis. Because

Σ(Sd0 ) is (q− 1)-acyclic, Remark 3.1 implies that we can choose a d-chain of Σ(Sd0 ), σd(S
d
0 ),

such that

∂σd(S
d
0 ) = σd−1(∂Sd0 ). (2)

This ensures that σ commutes with the boundary operators. For each Sdi = ρi(Sd0 ), choose

σd(S
d
i ) = ρ̃i(σd(S

d
0 )).

Hence, σd commutes with the boundary operators:

∂σd(S
d
i ) = ∂′ρ̃i(σd(Sd0 ))

= ρ̃i(∂′σd(Sd0 ))

= ρ̃i(σd−1(∂Sd0 ))

= σd−1(ρi(∂Sd0 ))

= σd−1(∂Sdi ).

The penultimate step follows from the induction hypothesis. The step before that one

follows from (2) above. Finally, σd(S
d
i ) is in Σ(Sdi ) because σ(Sd0 ) is in Σ(Sd0 ) and Σ(ρ(Sd0 )) =

ρ̃i(Σ(Sd0 )).

(2) We construct the required chain homotopy Dq by induction on q, by defining it on the

oriented q-simplexes, and then extend linearly.

Basis: Let D−1 = 0. If chain maps are required to be the identity on C−1, this definition

of D−1 would be the basis. In any case, to illustrate the ideas, we work through the case

of D0. We define D0 as follows. For each 0-orbit pick a vertex~s0 of K. Because

∂′(φ− ψ)(~s0) = ∂′φ(~s0)− ∂′ψ(~s0)

= φ(∂~s0)− ψ(∂~s0)

= 0,
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(φ−ψ)(~s0) is a cycle. Since φ, ψ are carried by Σ, both φ(~s0), ψ(~s0) are in Σ(~s0), and hence,

(φ − ψ)(~s0) is in Σ(~s0). Since Σ(~s0) is 0-acyclic, by Remark 3.1, we can choose a 1-chain

D0(~s0) in Σ(~s0), such that ∂′D0(~s0) = (φ − ψ)(~s0) = (φ − ψ)(~s0) − D−1∂(~s0), and the chain

homotopy definition is satisfied.

For every ~si ∈ orbit(~s0), ~si = ρi(~s0), choose D0(~si) = ρ̃i(D0(~s0)). Notice that ∂′D0(~si) =

(φ− ψ)(~si)− D−1∂(~si), since D−1 = 0 and

∂′D0(~si) = ∂′ρ̃i(D0(~s0))

= ρ̃i∂′(D0(~s0))

= ρ̃i(φ− ψ)(~s0)

= (φ− ψ)ρ̃i(~s0).

Also, D0(~si) is in Σ(~si), because Σ is symmetric. Hence D0 is carried by Σ. Finally, notice

that D0(ρ(~si)) = ρ̃(D0(~si)), and hence D0 is symmetric.

For the induction step, assume a symmetric Dj carried by Σ is defined in dimensions j

less than d. Pick a representative Sd0 for each d-orbit. By the same calculations that lead

to Lemma 3.2, (φ − ψ − Dd−1∂)(Sd0 ) is a cycle. Moreover, it is in Σ(Sd), because φ, ψ are

carried by Σ, and because Dd−1 is also (by the induction hypothesis), and by property

(2) of the definition of acyclic carrier. Because Σ(Sd0 ) is (q − 1)-acyclic, we can choose a

(d+ 1)-chain Dd(S
d
0 ) in Σ(Sd0 ) such that

∂′Dd(Sd0 ) = (φ− ψ − Dd−1∂)(Sd0 ).

For each Sdi = ρi(Sd0 ) in the same orbit, choose Dd(S
d
i ) = ρ̃i(Dd(S

d
0 )). Thus,

∂′Dd(Sdi ) = ∂′ρ̃i(Dd(Sd0 ))

= ρ̃i(∂′Dd(Sd0 ))

= ρ̃i(φ− ψ − Dd−1∂)(Sd0 )

= (φ− ψ − Dd−1∂)(Sdi ).

The last step follows from the induction hypothesis. Finally, it is easy to verify that

Dd ◦ ρ = ρ̃ ◦ Dd.
As a consequence, we have the following special case of the Acyclic Carrier Theorem,

which says that when Σ is dimension preserving a chain homotopy carried by Σ is trivial

and hence two chain maps carried by Σ are equal.

Remark 3.4. If φ, ψ : C(K) → C(L) are both carried by Σ, D is a chain homotopy and

Σ is dimension preserving, that is, for each Sq in K, q = dim(Sq) = dim(Σ(Sq)), then

Cq+1(Σ(Sq)) = 0, Di = 0 for all i, and φ and ψ are equal chain maps.

4. Algebraic spans

We can use the acyclic carrier theorem to establish a variety of impossibility results.

Our basic strategy is the following. We assume that we have a protocol with complex

P that solves a task 〈I,O,∆〉 in a particular model of computation. Let S` be an input
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complex subdivided
complex

Fig. 5. A subdivided complex

simplex, S` be the complex of its faces, and P be a protocol. For a variety of models

of computation, prior research has shown that P(S`) is f(`)-acyclic, where f is a model-

dependent function. We exploit such results to establish the existence of an acyclic carrier

Σ from S` to P. Then the acyclic carrier theorem guarantees the existence of a chain

map σ : C(S`)→ C(P) carried by Σ, which we call an algebraic span. The decision map

δ : P → O is a simplicial map, and therefore induces a chain map δ : C(P)→ C(O). The

composition of δ and σ is also a chain map:

δ ◦ σ : C(S`)→ C(O).

We then use properties about ∆ to show that S` and O are topologically ‘incompatible’,

implying that this chain map cannot exist, and thus derive a contradiction.

We now discuss how a variety of prior lower bound results can all be given a common

reformulation in the language of chain complexes and acyclic carriers.

Informally, a subdivision of a complex is a way of ‘chopping up’ each of its simplexes into

smaller simplexes, as illustrated in Figure 5. Any subdivision of a complex has the ‘same

topology’ as the original complex: in particular, the homology groups are unchanged.

Much of the earlier work in this area has focused on some notion of subdivision.

Herlihy and Shavit (Herlihy and Shavit 1993) considered wait-free protocols in which

n+ 1 processes communicate by reading and writing a shared memory. They showed that

it is possible to subdivide the input complex so that there exists a simplicial map, called a

span, from the subdivision to the protocol complex. We will refer to this notion of span as

a geometric span. They then used the existence of geometric spans to derive a number of

impossibility results. These results can be extended to show that a geometric span exists

on the input subcomplex It containing the vertexes coloured with process ids P0, . . . , Pt.

Herlihy and Rajsbaum (Herlihy and Rajsbaum 1994) considered wait-free protocols

using stronger primitives characterized by their ability to solve the (m, j)-agreement task

(Chaudhuri 1993), a generalization of consensus (Fischer et al. 1985). They showed that

in this model, a geometric span exists only for a subcomplex of the input complex.

Herlihy, Rajsbaum and Tuttle (Herlihy et al. 1998) introduced the notion of a pseudo-
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sphere (discussed further below), a simple combinatorial structure that can be used to

analyze message-passing models, both synchronous and asynchronous. Earlier work on

synchronous message passing includes the ‘Bermuda Triangle’ construction of Chaudhuri,

Herlihy, Lynch and Tuttle (Chaudhuri et al. 1993).

In this paper, we show how these results can be unified by replacing the geometric

language of subdivisions and simplicial maps with the more abstract algebraic language

of chain complexes and acyclic carriers. To illustrate this remark, we focus first on the

wait-free geometric span of Herlihy and Shavit (Herlihy and Shavit 1993). Let P(Sm)

denote the subcomplex of P corresponding to executions where only the processes in

ids(Sm) participate, and they start with inputs Sm. Establishing the existence of geometric

spans required a combination of combinatorial and continuous arguments:

1 P(Sm) is acyclic.

2 P(Sm) is simply connected†.
3 Use these two facts to construct inductively a family of continuous maps of the input

complex.

4 Apply simplicial approximation to transform these continuous maps into the desired

simplicial maps on subdivisions of the input complex.

Reformulating this result in algebraic terms yields a simpler derivation: the function ΣWF

that assigns to each input simplex Sm, 0 6 m 6 n, the protocol subcomplex P(Sm) is an

an acyclic carrier from I to P. First, as stated above, it is known that every P(Sm) is

acyclic, and second, if Sp is a face of Sq , then ΣWF (Sp) ⊂ ΣWF (Sq). The Acyclic Carrier

Theorem guarantees the existence of an algebraic span σ : C(I) → C(P), which we use

for the impossibility results.

The geometric and algebraic notions of span are related as follows. Any geometric

span, reinterpreted as a chain map, is an algebraic span. Although algebraic spans are

more abstract, they are simpler in several ways. It is easier to establish the existence of

an algebraic span: the second, third and fourth steps of the derivation are unnecessary.

The geometric span is not unique – it is easily seen that there are an infinite number of

permissible subdivisions and simplicial maps. By contrast, the Acyclic Carrier Theorem

implies that algebraic spans are unique up to chain homotopy. On the other hand,

algebraic spans are a weaker notion than geometric spans, since they do not depend on

the protocol complex being simply connected. Nevertheless, as we show in this paper, the

weaker notion is sufficient to prove the set agreement and renaming impossibility results.

Attiya and Rajsbaum (Attiya and Rajsbaum 1996) take an alternative approach to

proving lower bounds for wait-free read/write memory using a combinatorial notion

called a ‘divided image’.

† A space is simply connected if its fundamental group is trivial (implying that every loop on the space can be

continuously deformed to a point).
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5. Set agreement

In the (n + 1, k)-agreement task (Chaudhuri 1993)†, each of n + 1 processes starts with

a private input value from some set vals , |vals | > n + 1, communicates with the others

by applying operations to shared objects, and then halts after choosing a private output

value. Each process is required to choose some process’s input value, and the set of values

chosen should have size at most k. This problem was shown independently to have no

t-resilient solution in read/write memory by Borowsky and Gafni (Borowsky and Gafni

1993a) and by Herlihy and Shavit (Herlihy and Shavit 1993), and no wait-free solution,

by Saks and Zaharoglou (Saks and Zaharoglou 1993). A variety of impossibility results

for implementing (n + 1, k)-agreement from (m, j)-agreement were given by Borowsky

and Gafni (Borowsky and Gafni 1993b), and by Herlihy and Rajsbaum (Herlihy and

Rajsbaum 1994).

We assume in this section that we have a protocol with complex P that solves (n+1, k)-

agreement in a particular model of computation.

Theorem 5.1. Suppose we have a protocol for (n+ 1, k)-agreement, with protocol complex

P, a properly coloured simplex S`, ` 6 n, with colours vals(S`), and an acyclic carrier Σ

from S` to P such that

vals(δ(Σ(S))) ⊆ vals(S) (3)

for all simplexes S in S`. We claim that k > `+ 1.

Proof. Assume by way of contradiction that there exists a protocol with complex P
solving (n+ 1, k)-agreement, and an acyclic carrier Σ from S` to P, k 6 ` 6 n, satisfying

Property (3).

Let Ovals (S`)
denote the subcomplex of O consisting of simplexes whose decision values

are all in vals(S`). Let π : C(Ovals (S`)
) → C(S`) be the chain map induced by the

simplicial map sending 〈Pi, vj〉 to the vertex of S` with value vj . This map is well-defined

because each simplex in O is labelled with at most k different values, and S` contains

simplexes with k or fewer distinct values, since k 6 `.
The Acyclic Carrier Theorem (with ρ just the identity symmetry) guarantees that there

exists a chain map σ : C(S`)→ C(P) carried by Σ. Let δ be the chain map corresponding

to the decision map of P.

C(S`)
σ−−−−→ C(P)

δ−−−−→ C(O)
π−−−−→ C(S`).

By (3), the image of the composition δ ◦ σ : C(S`) → C(O) is contained in C(Ovals (S`)
).

Hence, one may form φ : C(S`) → C(S`), the composition of σ, δ, and π. Let Φ be

the acyclic carrier from S` to itself that sends each simplex Si to Si and all its faces,

Φ(Si) = Si. Let ι be the identity chain map on S`. Thus ι is carried by Φ. Property 3

implies that Φ also carries φ. Because dim(Si) = i = dim(Φ(Si)), Remark 3.4 implies that

the two maps are equal. Therefore ι(S`) = φ(S`) = S`.

In each execution, however, no more than ` values are chosen, since k 6 `, implying

† This was originally called k-set agreement.
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that every simplex S in the image of δ has at most ` different values. Because ` 6 n, P
contains simplexes of dimension `. Every such simplex S` in P is sent by the composition

of the simplicial maps corresponding to δ and π to a simplex inS` of dimension less than

`. The chain map π◦δ thus sends every `-chain of C(P) to the 0 chain, so π◦δ◦σ(S`) = 0,

and φ(S`) = 0, which is a contradiction.

Now we show how to apply Theorem 5.1 to various models of computation. We rely

on a number of facts about the acyclicity of various protocol complexes. These facts are

proved elsewhere – they rely on techniques beyond the scope of this paper.

Fact 5.2. (Herlihy and Shavit 1993; Herlihy and Shavit 1999) Let P be an (n+ 1)-process

protocol using wait-free asynchronous read/write memory. For any input simplex Sm,

where 0 6 m 6 n, we have P(Sm) is acyclic.

Let Sn be an input simplex in which each process’s input value is distinct, and let Sn be

the complex consisting of Sn and its faces. For every Sm in Sn, define ΣWF (Sm) = P(Sm).

It is easy to check that ΣWF (Sm) satisfies the conditions for an acyclic carrier. By Theorem

5.1, if P solves (n+ 1, k)-agreement in a wait-free system, then k > n+ 1.

Corollary 5.3. (Borowsky and Gafni 1993a; Herlihy and Shavit 1993; Saks and Zaharoglou

1993) There is no wait-free (n+ 1, n)-agreement protocol in read/write memory.

Protocol complexes for t-resilient computations are similar.

Fact 5.4. Let P be an (n + 1)-process protocol using t-resilient asynchronous read/write

memory for t 6 n. For any input simplex Sm, where n − t 6 m 6 n, we have P(Sm) is

(t− n+ m− 1)-acyclic.

Let Sn be an input simplex in which P0, . . . , Pt have distinct input values. We can express

Sn as the join of two simplexes: St, coloured with P0, . . . , Pt, and Sn−t, coloured with

the remaining processes. Let St be the complex consisting of St and its faces. For every

simplex S` in St, define Σt(S
`) to be P(S` ·Sn−t), where the (n− t+`+1)-simplex S` ·Sn−t

is the join of S` and Sn−t. As noted, Σt(S
`) is `-acyclic and satisfies the conditions for an

acyclic carrier (with the trivial symmetry operator).

To satisfy Property 3, the following ‘pre-processing’ stage can be added to any (n+ 1, t)-

agreement protocol to ensure that every decision value is the input to a participating low-

order process. Processes P0, . . . , Pt are called the low-order processes, and the remaining

Pt+1, . . . , Pn are called the high-order processes. Before executing the protocol, each low-

order process writes its input to a shared array, and each high-order process repeatedly

reads that array until a low-order value appears. Because there are t + 1 low-order

processes, and only t failures, every high-order process will eventually observe a low-order

value. It then replaces its own input value with that low-order value, and then proceeds

to execute the protocol. To show that no t-resilient (n + 1, t)-agreement protocol exists,

it suffices to show that no such protocol exists in which each value is the input to some

participating low-order process.

Σt is an acyclic carrier from St to P(Sn), satisfying Property 3, and we conclude from

Theorem 5.1 that if P solves (n + 1, k)-agreement in a t-resilient system, then k > t + 1
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(which can be proved by reduction from the wait-free case, Corollary 5.3, using the

BG-Simulation (Borowsky and Gafni 1993a; Lynch and Rajsbaum 1996)).

Corollary 5.5. There is no t-resilient (n + 1, t)-agreement protocol in which processes

communicate by a shared read/write memory.

For fixed m and j, m > j > 0, an (m, j)-consensus object provides two operations:

propose(i) adds the value i to the set of input values, and choose() returns a previously-

proposed input value. No more than m input values can be proposed, and no more than

j distinct values can be returned.

Consider the function

J(u) = j ·
⌊ u
m

⌋
+ min(j, u mod m)− 1.

There is a simple t-resilient (n + 1, J(t + 1) + 1)-agreement protocol if processes share

a read/write memory and (m, j)-agreement objects. Processes P0, . . . , Pt propose their

values to
⌊
t+1
m

⌋
+ (t+ 1) mod m (m, j)-consensus objects (as few objects as possible), and

collectively choose at most J(t + 1) + 1 values. Each such process writes its choice to a

register. The remaining n− t processes simply wait for one of P0, . . . , Pt to write its value.

Since only t processes can fail, this wait is bounded. This upper bound can be shown to be

tight using the following fact (a refinement of the result of Herlihy and Rajsbaum (1994)).

Fact 5.6. Let P be an (n + 1)-process protocol using t-resilient asynchronous read/write

memory, for t 6 n, extended with objects that solve (m, j)-agreement. For any input

simplex Sm, where n− t 6 m 6 n, we have P(Sm) is (J(t− n+ m− 1)− 1)-acyclic.

For 0 6 i 6 J(t+ 1), we partition the processes into sets Gi, and choose a representative

Qi from each Gi:

Gi = {Pi·(m−j+1), . . . , Pmin(n,(i+1)·(m−j+1)−1)}
Qi = Pi·(m−j+1).

All but the last Gi has m − j + 1 elements. The Qi are called principal processes. As in

the t-resilient read-write case, processes P0, . . . , Pt are called the low-order processes, and

the remaining Pt+1, . . . , Pn are called the high-order processes. (In wait-free models, there

are no high-order processes.) Without loss of generality, we can precede any (n + 1, k)-

consensus protocol with the same ‘pre-processing step’ used in the t-resilient read-write

case, ensuring that every value chosen by the protocol is an input to a participating

low-order process.

Let Sn be an input simplex in which every process in Gi has the same value vi, but

vi 6= vj for i 6= j. We can express Sn as L ·H , where L is labelled with low-order processes,

and H with high-order processes. The low-order simplex L can itself be expressed as

S0 · · · · · SJ(t+1) , where ids(Si) = Gi. Finally, let SJ(t+1) be the face of Sn labelled with the

principal processes.

Let SJ(t+1) be the complex consisting of SJ(t+1) and its faces. For every simplex S` in

SJ(t+1), define σ(S`) to be the join of Si, for i ∈ ids(S`). For each simplex S` in SJ(t+1), let

Σ(m,j)(S
`) = P(σ(S`) ·H).
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Fig. 6. Construction of a three-process binary pseudosphere.

For each S`, Σ(m,j)(S
`) is `-acyclic, so Σ(m,j) is an acyclic carrier. Property 3 is satisfied

because each process in Gi has the same input as some principal process in S` (by

hypothesis), and so does each process in H (by preprocessing).

Corollary 5.7. There is no t-resilient (n+ 1, J(t+ 1))-agreement protocol if processes share

a read/write memory and (m, j)-agreement objects.

Herlihy, Rajsbaum and Tuttle (Herlihy et al. 1998) have investigated certain well-

structured ‘round-by-round’ executions of the standard asynchronous message-passing

models. To show that no protocol exists for the t-resilient asynchronous message-passing

model, it suffices to show that no protocol exists in the ‘round-by-round’ subset of that

model.

Fact 5.8. (Herlihy et al. 1997) Let P be an (n+1)-process protocol using t-resilient ‘round-

by-round’ asynchronous message-passing read/write memory. For any input simplex Sm,

where n− t 6 m 6 n, we have P(Sm) is (t− n+ m− 1)-acyclic.

Using a construction that is essentially identical to the one given above for shared memory,

we can get the following corollary.

Corollary 5.9. There is no t-resilient (n+ 1, t)-agreement protocol in the message-passing

model.

Now consider a model in which n + 1 processes execute synchronously in rounds. In

each round, each process broadcasts a message to the others, but up to k processes per

round can fail by halting. A process can fail when its broadcast is partially complete.

Without loss of generality, we can restrict our attention to full-information protocols in

which each process broadcasts its complete state to the others. We use Pr(S) to denote

the complex resulting from an r-round synchronous full-information protocol.

A pseudosphere ψ(Sn;U) is a complex defined in terms of a simplex Sn, where each

vertex is labelled with a process id, and a finite non-empty set U. The pseudosphere

is the complex constructed by taking multiple copies of Sn and independently labelling

each vertex with a value from U. For example, Figure 5 shows how to construct a
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pseudosphere by independently assigning binary values to a set of three processes. The

left-hand figure shows a triangle labelled with process ids P , Q and R. The central

figure shows an intermediate stage where two copies of the triangle are each labelled

with zeros and ones. The right-hand figure shows the complete construction, where

copies of the triangle are labelled with all combinations of zeros and ones. We call this

construct a pseudosphere because if Sn is an n-dimensional simplex, then ψ(Sn; {0, 1}) is

homeomorphic to an n-dimensional sphere. Pseudospheres were introduced in a recent

paper by Herlihy, Rajsbaum and Tuttle (Herlihy et al. 1998).

Pseudospheres are useful because the collection of initial global states for (n + 1, k)-

agreement forms a pseudosphere whose vertexes are labelled with input values. For

example, the right-hand figure in Figure 5 is the input complex for three-process binary

consensus.

Fact 5.10. (Herlihy et al. 1997) For all n > 0, and all non-empty U, the pseudosphere

ψ(Sn;U) is (n− 1)-connected.

Fact 5.11. (Herlihy et al. 1997) LetPr be the protocol complex for an r-round synchronous

full-information protocol in which k or fewer processes can fail in each round, and let

ψ(Sn;U) be an input complex. If n > rk + k, we have Pr(ψ(Sn;U)) is (k − 1)-acyclic.

Let Sk−1 be a simplex whose values are labelled from 0 to k − 1, and Sk−1 the

complex consisting of Sk−1 and its faces. For each simplex S` in Sk−1, the pseudosphere

ψ(Sn; ids(S`)) is the subcomplex of the input complex in which all input values are taken

from ids(S`). Define

Σr(S
`) = Pr(ψ(Sn; ids(S`))).

The map Σr is an acyclic carrier, and because each input value in Σr(S
`) is in vals(S`), it

satisfies Property 3.

Corollary 5.12. (Herlihy et al. 1997) If n > f + k, there is no synchronous f-resilient k-

agreement protocol taking bf/kc or fewer rounds.

Each of these lower bounds is known to be tight.

6. Renaming

In the renaming task (Attiya et al. 1990), n+ 1 processes with unique names taken from

a large name space must choose unique names taken from a small name space. More

precisely, in the (n + 1, K)-renaming task, the processes are given unique input names in

the range 0, . . . , N, and are required to choose unique output names in the range 0, . . . , K ,

where n 6 K < N.

To rule out the trivial solution where Pi chooses output name i, we are interested

in protocols for which a process’s choice is independent of its process id. Let π be

a permutation of the process ids. The permutation π acts on any labelled simplex by

replacing each occurrence of a process id P in the label with the process id π(P ):

π(〈Pi, ei〉) = 〈π(Pi), π(ei)〉.
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If the label is a view of an execution e, then π(e) is the execution in which each occurrence

of P is replaced by π(P ) (the same interleaving, but processes are renamed).

A complex C is symmetric if the vertex map induced by π is simplicial. (To avoid

cumbersome notation, we use π to denote both the permutation and the various maps it

induces, relying on context to avoid ambiguity.) If A and B are symmetric complexes, a

simplicial map φ : A → B is symmetric under permutation if π(φ(~v)) = φ(π(~v)) for any

permutation π. A task specification 〈I,O,∆〉 is symmetric if I and O are symmetric, and

for all Sn ∈ I, ∆(π(Sn)) = π(∆(Sn)). In short, the problem specification depends only on

input values, not process ids.

Definition 6.1. A protocol P is anonymous if the decision map δ is symmetric under

permutation: for every simplex T in P(Sn), and for any permutation π, π(δ(T )) = δ(π(T )).

This condition can be summarized by the following commutative diagram:

P δ−−−−→ Oyπ yπ
P δ−−−−→ O

The permutation π also acts on chain complexes, where the anonymity condition can be

summarized as follows:

C(P)
δ−−−−→ C(O)yπ yπ

C(P)
δ−−−−→ C(O)

We restrict our attention to anonymous protocols.

In this section we use symmetry arguments to give general lower bounds on renaming,

according to the following strategy. We show that if an (n+1, K)-renaming protocol has an

acyclic carrier Σ fromS` to P with the property that the protocol behaves ‘symmetrically’

on the boundary of Σ(S`), then K > 2`. We use the following particular symmetries.

Let S` = (~s0, . . . ,~s`) be a simplex where each~si is labelled with process id Pi, let S` be

the complex of all its faces, and Ṡ`−1 the complex of its proper faces (that is, S` minus

S`). In what follows we use the ‘rotation’ permutation ρ on the process ids P0, . . . , P`,

which sends Pi to Pi+1mod`+1, and leaves the other process ids fixed. This permutation acts

on simplexes and protocol complexes

ρ :S` →S` ρ : P → P
by ρ(~si) = α(~si) = ~si+1mod`+1, and ρ〈Pi, ei〉 = 〈ρ(Pi), ρ(ei)〉. Because P is assumed to be

anonymous, both of these maps are simplicial. The induced chain maps on the chain

complexes C(S`) and C(P) are symmetry maps.

The proof is based on the following, purely topological lemma.

Lemma 6.1. If φ : C(S`) → C(S`) is a symmetric chain map with respect to ρ, then

φ(∂S`) = k · ∂S` for k ≡ 1 (mod `+ 1).
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Proof. Let ι : C(S`) → C(S`) be the identity chain map. Consider any symmetric

acyclic carrier Σ from S` to itself that carries both φ and ι, for example, one that assigns

all of S` to every simplex of S`. The Acyclic Carrier Theorem implies that there is a

symmetric chain homotopy D between φ and ι.

In particular, by Lemma 3.2, (φ− ι−D∂)(face0(S`)) ∈ C`−1(S`) is a cycle of S`. Since

the group of (` − 1)-cycles of S` is infinite cyclic generated by ∂S` (as discussed in the

Appendix),

(φ− ι− D∂)(face0(S`)) = k · ∂S`, (4)

for some integer k.

Note that, for even `,

ρi(face0(S`)) = (−1)ifacei(S
`), (5)

while if ` is odd,

ρi(face0(S`)) = facei(S
`). (6)

To check this remark, observe that

ρ(face0(S`)) = ρ(~s1, . . . ,~s`) = (~s2, . . . ,~s`,~s0).

We can write both cases 5 and 6 in one equation by taking p to be the reverse parity of

` (p = 0 if ` is odd, and 1 if ` is even):

ρi(face0(S`)) = (−1)i·pfacei(S
`). (7)

Hence, using Equation 7 and the definition of boundary,

ρ(∂S`) = (−1)p+1∂S`. (8)

Because ρ(∂S`) = ρ(Σ`
i=0(−1)i · facei(S

`)), and using Equation 7, this is equal to

Σ`
i=0(−1)i · ρ(facei(S

`)) = Σ`
i=0(−1)i · (−1)pfacei+1mod`+1(S`)

= (−1)p+1∂S`.

Thus, Equation 8 yields

ρi(∂S`) = (−1)i(p+1)∂S`. (9)

By definition, φ(∂S`) = φΣ`
i=0(−1)i · facei(S

`). Thus, by Equation 7,

φ(∂S`) = φΣ`
i=0(−1)i(p+1)ρi(face0(S`))

= Σ`
i=0φ(−1)i(p+1)ρi(face0(S`)),

= Σ`
i=0ρ

i(−1)i(p+1)φ(face0(S`))

by symmetry of φ. By Equation 4,

= Σ`
i=0ρ

i(−1)i(p+1)(k · ∂S` + (ι+ D∂)(face0(S`))).

By Equation 9,

= k(`+ 1) · ∂S` + Σ`
i=0ρ

i(−1)i(p+1)(ι+ D∂)(face0(S`)).
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By Equation 7, symmetry of ι and ∂,

= k(`+ 1) · ∂S` + Σ`
i=0(ι+ D∂)((−1)ifacei(S

`)).

Since ι is the identity,

= k(`+ 1) · ∂S` + ∂S` + D∂∂S`,

and the proof follows from ∂∂ = 0.

Informally, this lemma says that any map from S` to itself that is symmetric on the

boundary must ‘wrap’ the boundary around itself a non-zero number of times.

Theorem 6.2. Suppose we have a protocol for (n+ 1, K)-renaming and an acyclic carrier

Σ from S` to P that is symmetric with respect to ρ, such that

ids(Σ(S)) = ids(S), (10)

for all proper faces S of S`. Then K > 2`.

Proof. Assume by way of contradiction that K < 2`. Consider the output complex

O of the (n + 1, K)-renaming task, and its subcomplex O(S`) encompassing vertexes

with ids P0, . . . , P`. Thus, a vertex 〈Pi, v〉 of O is labelled with a process id Pi and an

output name v in 0, . . . , K . Let π : O → S` be the simplicial map π〈Pi, v〉 =~sj , where

j = (i+ (v mod 2)) mod `+ 1. Let π also denote the induced chain map.

The simplicial map π does not send any `-simplex of O(S`) to S`. This is because π

sends an `-simplex of O(S`) to S` only if the processes P0, . . . , P` have chosen all even or

all odd output names, which is impossible because the range 0, . . . , 2`−1 does not contain

` + 1 distinct even or distinct odd names. It follows that, on O(S`), the homomorphism

(of the chain map π) π` = 0.

We have the following sequence of chain maps.

C(S`)
σ−−−−→ C(P)

δ−−−−→ C(O)
π−−−−→ C(S`),

where σ is the chain map whose existence is guaranteed by the Acyclic Carrier Theorem.

Let φ : C(S`)→ C(S`) be the composition of σ, δ and π. Notice that all vertexes in the

image of σ are labelled with ids from ids(S`), by Equation 10. Thus, the same holds for

the image of δ · σ, since δ is colour preserving: that is, this image is contained in O(S`).

It follows from π` = 0 on O(S`) that φ`(S
`) = 0, and hence

φ`−1(∂S`) = 0, (11)

since φ commutes with ∂.

We claim that the chain map φ is symmetric. Recall that the rotation permutation ρ

sends each process Pi in ids(S`) to Pi+1mod`+1, and leaves the rest unchanged. It operates

on output complexes in the usual way:

ρ(〈Pi, vi〉) =

{
〈Pi+1mod`+1, vi〉 if Pi ∈ ids(S`)

〈Pi, vi〉) otherwise.
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We have the following commutative diagram of symmetric chain maps:

C(S`)
σ−−−−→ C(P)

δ−−−−→ C(O)
π−−−−→ C(S`)yρ yρ yρ yρ

C(S`)
σ−−−−→ C(P)

δ−−−−→ C(O)
π−−−−→ C(S`)

We check that each rectangle commutes: σ is symmetric by the Acyclic Carrier Theorem,

δ is symmetric because the protocol is anonymous, and π is symmetric by construction.

It follows that φ is symmetric:

ρφ = ρπδσ

= πρδσ

= πδρσ

= πδσρ = φρ.

Lemma 6.1 implies that φ(∂S`) = k · ∂S`, for k 6= 0, which contradicts Equation 11.

Now we consider some of the acyclic carriers described in Section 5. For asynchronous

read/write memory, consider a protocol for (n + 1, K)-renaming, with protocol complex

P, and let I be the corresponding input complex. Recall from Fact 5.2 that for any

input simplex Sn ∈ I there is an acyclic carrier ΣWF from Sn to P. This carrier, for a

single input simplex, does not satisfy the symmetry requirements of Theorem 6.2. Pick, for

example, Sn labelled with process ids P0, . . . , Pn and the vertex of Pi labelled with input

name i. It does satisfy the requirement

ids(ΣWF (S)) = ids(S) (12)

for all proper faces S of Sn, by definition. But ΣWF is not symmetric with respect to

ρ, ρ̃, because ρ̃ sends an execution e to an execution α(e) with the same input values, for

example, if Sn−1
0 is labelled with P1, . . . Pn, ρ̃ would send an n− 1 simplex S ∈ ΣWF (Sn−1

0 )

to an n − 1 simplex S ′ in ΣWF (Sn−1
1 ), where Sn−1

1 is labelled with P0, P2, . . . Pn, and such

that S, S ′ have the same input values. But such a simplex is not in ΣWF (Sn−1
1 ), since all

simplexes in this carrier have input values taken from 0, 2, . . . n, while S has input values

1, . . . , n.

We can, however, construct a symmetric carrier by ‘gluing together’ the carriers from a

number of input simplexes as shown in Figure 7. Notice that this complex is a subdivided

simplex (and hence acyclic), and that input names are assigned symmetrically around the

boundary.

Definition 6.2. Let Sn = (~s0, . . . ,~sn), where id (~si) = Pi. The standard chromatic subdivision

of Sn, denoted χ(Sn), contains all vertexes of the form 〈Pi, S〉 for S ⊆ Sn and Pi ∈ ids(S).

A set of vertexes form a simplex if and only if (1) the process ids are distinct, and (2) if

Si, Sj correspond to two vertexes of the set, then Sj ⊆ Si or Si ⊆ Sj .
It is trivial to check that χ(Sn) is indeed a complex. (In fact, it can be shown that it is

a subdivision of Sn.)
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Q 0 R 1 Q 2 R 0

Q 1

P 0

P 2 P 1
Q 4R 5

P 3

R 2

Fig. 7. Symmetric input subcomplex for renaming

We now construct a complex χ′(S`) ⊆ I, which is isomorphic to χ(S`), by assigning input

names to vertexes of χ(S`). The input names are defined inductively. The unique vertex of

χ′(S0) has input name 0. Assume inductively that we have assigned f(m−1) = m(m+ 1)/2

input names to the vertexes in χ′(Sm−1) = χ′(facem(Sm)). The rotation map that sends Pi
to Pi+1modm+1 induces a bijective simplicial map

ρ : facei(S
m)→ facei+1(Sm)

by ρ(~si) =~si+1modm+1, and also

ρ : χ(facei(S
m))→ χ(facei+1(Sm)),

by ρ〈Pi, Si〉 = 〈ρ(Pi), ρ(Si)〉. Every vertex ~v ∈ χ(Ṡm−1) (the boundary of Sm) is equal to

ρi(~u), for some~u ∈ χ(facem(Sm)). Assign to each vertex~v ∈ χ′(Ṡm−1) the same input value

as ~u. Finally, for each Pi, the vertex 〈Pi, Sm〉 is the only interior vertex labelled with Pi.

Assign to this vertex the input value f(m− 1) + i.

This construction uses n(n + 1)/2 input names by solving the recursion f(0) = 1,

f(m) = f(m−1)+m+1. Any renaming protocol for 2n+1 input names can be transformed

into a protocol for a larger number of input names simply by using the shared-memory

renaming protocol of Bar-Noy and Dolev (Bar-Noy and Dolev 1989) to reduce the number

of names to 2n+ 1, and therefore the impossibility of (n+ 1, K)-renaming for O(n2) input

names implies impossibility for 2n+ 1 input names.

Corollary 6.3. There is no wait-free (n+1, 2n−1)-renaming protocol in read/write memory

(Herlihy and Shavit 1993).

A similar argument yields the following corollary.

Corollary 6.4. There is no t-resilient (n+1, 2t−1)-renaming protocol in read/write memory.

If processes share read/write memory and (m, j)-consensus objects, then it is not known

whether a symmetric carrier Σm,j can be chosen so that ids(Σm,j(S
`)) = ids(S`). This

condition is clearly satisfied, however, when m = n+ 1 and j > (n+ 1)/2.
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Corollary 6.5. There is no wait-free (n+ 1, 2j − 1)-renaming protocol if processes share a

read/write memory and (n+ 1, j)-consensus objects.

This result is new.

We do not analyze renaming lower bounds for synchronous message-passing systems,

since it is known that log n rounds are necessary and sufficient for wait-free (n+ 1, n+ 1)-

renaming (Herlihy and Tuttle 1990) using comparison-based protocols.

Appendix. Examples

This appendix gives some simple examples of chain groups, chain maps and chain

homotopies, for readers unfamiliar with algebraic topology.

Let S2 = (~s0,~s1,~s2) be a 2-simplex (a ‘solid’ triangle). Let Ṡ1 be the oriented complex

of its proper faces (a ‘hollow’ triangle); Ṡ1 includes three 0-simplexes (vertexes): ~s0, ~s1,

and~s2, and three 1-simplexes: S1
i = facei(S

2), 0 6 i 6 2:

S1
0 = (~s1,~s2), S1

1 = (~s0,~s2), S1
2 = (~s0,~s1),

where the vertexes are ordered as indicated in each S1
i . Thus,

∂S1
0 =~s2 −~s1, ∂S1

1 =~s2 −~s0, ∂S1
2 =~s1 −~s0.

The 0-th chain group of Ṡ1, C0(Ṡ1), is generated by the ~si, meaning that all 0-chains

have the form

λ0 ·~s0 + λ1 ·~s1 + λ2 ·~s2,
where the λi’s are integers. The first chain group, C1(Ṡ1), is generated by the S1

i , and all

1-chains have the form

λ0 · S1
0 + λ1 · S1

1 + λ2 · S1
2 .

Since Ṡ1 contains no simplexes of higher dimension, the higher chain groups are trivial.

Let us calculate the groups of 1-cycles of Ṡ1. For a 1-chain λ0 · S1
0 + λ1 · S1

1 + λ2 · S1
2 , we

have that ∂(λ0 ·S1
0 +λ1 ·S1

1 +λ2 ·S1
2 ) is equal to λ0 ·∂(S1

0 )+λ1 ·∂(S1
1 )+λ2 ·∂(S1

2 ), because ∂ is a

homomorphism. Thus, the last equation is equal to λ0 · (~s2−~s1)+λ1 · (~s2−~s0)+λ2 · (~s1−~s0).

And this is equal to 0 if and only if λ0 = λ2 = −λ1. Therefore, the group of 1-cycles

is generated by the cycle S1
0 − S1

1 + S1
2 and is isomorphic to the infinite cyclic group of

integers under addition.

It is easy to generalize this argument to prove that the group of n-cycles of Ṡn is also

an infinite cyclic. In fact, since the group of n + 1-chains is trivial, Hn(Ṡn) is also an

infinite cyclic (Ṡn has a hole, and one can go around it k times for any integer k).

The rotation map ρ : Ṡ1 → Ṡ1 defined by ρ(~si) =~si+1mod3 is a simplicial map. Therefore,

it induces a chain map (abusing notation, we call it the same) ρ : C(Ṡ1) → C(Ṡ1). The

chain map ρ is defined on simplexes as follows. For 0 6 i 6 2, ρ0(~si) = ~si+1mod3. In

dimension 1, we have

ρ1(S1
0 ) = (~s2,~s0)= −S1

1

ρ1(S1
1 ) = (~s1,~s0)= −S1

2

ρ1(S1
2 ) = (~s1,~s2) = S1

0 .
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To verify that ρ is a chain map, it suffices to check that ρ0(∂S1
0 ) = ρ0(~s2−~s1) =~s0−~s2 =

∂ρ1(S1
0 ), and similarly for the S1

1 and S1
2 .

The identity simplicial map ι : Ṡ1 → Ṡ1 also induces a chain map ι : C(Ṡ1)→ C(Ṡ1).

We now show that ι and ρ are chain homotopic by displaying both an acyclic carrier and

the chain homotopy D. An acyclic carrier Σ for ι and ρ is the following: we want Σ(~si) to

include both ι(~si) =~si and ρ(~si) =~si+1, so Σ(~si) is the complex consisting of S1
i+2 and its

vertexes. And Σ(S1
i ) is the subcomplex of Ṡ1 containing ι(S1

i ) = S1
i , ρ(S1

i ) = S1
i+1) (that is,

two edges) and their vertexes. Both ι and ρ are carried by Σ, and both Σ(~si) and Σ(S1
i ) are

acyclic (being contractible). The chain homotopy D is given by D0(~si) = (−1)i+1S1
i+2mod3,

and D1(S1
i ) = 0. It is easily verified that

(D∂ + ∂D)(S) = (ι− ρ)(S).

Although every simplicial map induces a chain map, some chain maps are not induced

by any simplicial map. Consider the chain map defined by φ(~si) = ~si and φ(S1
i ) =

S1
i + (−1)i

∑2
j=0(−1)jS1

j (notice that
∑2

j=0(−1)jS1
j = ∂S2). Thus, φ(∂S2) = 4 · ∂S2, so this

map ‘wraps’ the boundary around itself four times, something no simplicial map could

do. This map is not chain homotopic to ι, although (φ− ι)(S) is a cycle for every simplex

S .

One of the referees pointed out to us that Lemma 6.1 can be viewed as a special case

of the Equivariant Hopf theorem (tom Dieck and Petrie 1982; tom Dieck 1987).
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