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The bioavailability of dietary ionised calcium is affected by intestinal basic environment. Calcium-
binding peptides can form complexes with calcium to improve its absorption and bioavailability.
The aim of this study was focused on isolation and characterisation of a calcium-binding peptide
from whey protein hydrolysates. Whey protein was hydrolysed using Flavourzyme and Protamex
with substrate to enzyme ratio of 25 : 1 (w/w) at 49 °C for 7 h. The calcium-binding peptide was iso-
lated by DEAE anion-exchange chromatography, Sephadex G-25 gel filtration and reversed phase
high-performance liquid chromatography (RP-HPLC). A purified peptide of molecular mass 204
Da with strong calcium binding ability was identified on chromatography/electrospray ionisation
(LC/ESI) tandem mass spectrum to be Glu-Gly (EG) after analysis and alignment in database. The
calcium binding capacity of EG reached 67·81 μg/mg, and the amount increased by 95% compared
with whey protein hydrolysate complex. The UV and infrared spectrometer analysis demonstrated
that the principal sites of calcium-binding corresponded to the carboxyl groups and carbonyl
groups of glutamic acid. In addition, the amino group and peptide amino are also the related
groups in the interaction between EG and calcium ion. Meanwhile, the sequestered calcium percen-
tage experiment has proved that EG-Ca is significantly more stable than CaCl2 in human gastrointes-
tinal tract in vitro. The findings suggest that the purified dipeptide has the potential to be used as ion-
binding ingredient in dietary supplements.
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It is well known that milk protein or milk protein hydrolysate
is beneficial to the absorption of calcium (Osborne et al.
1996). With the increased production of casein from milk,
more and more whey protein is discarded, the reasonable
exploitation of whey protein becomes particularly signifi-
cant. However, whey protein is sensitive to acid or heat
conditions, which cause decreases in solubility. The modifi-
cation of whey protein has become an immediate area of
research focus all over the world. Enzymatic modification
can produce biological active peptides.

Calcium deficiency results in hypertension, osteoporosis
and intestine cancer (Osborne et al. 1996). The intake of
calcium could increase the bone density of children and it

is essential among the middle-aged and the aged to
prevent osteoporosis (Guénguen & Pointillart, 2000; Cilla
et al. 2011). With the increase in population of the aged
throughout the world, there is a growing interest in develop-
ing calcium supplements as medicine to prevent and treat
bone disease (Kim & Lim, 2004). The ionised calcium has
served as main calcium supplements for human beings in
recent years (Lee & Song, 2009). However, the disadvantage
of ionised calcium is that it is prone to form calcium phos-
phate deposition in basic intestine environment (Bronner
& Pansu, 1998). As a result, the bioavailability of dietary
calcium is severely lowered. The organic calcium sup-
plement including calcium-binding peptides has been
becoming a popular research topics (Narin et al. 2013).

Studies showed that vitamin D-dependent calcium-
binding protein and calmodulin were the main source of
calcium supply in the body. As the main component of
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milk protein, whey protein (WP) has calcium-binding sites,
such as β-lactoglobulin, α-lactalbumin and lactoferrin.
Moreover, α-LA has especially strong calcium-binding
sites (Jeyarajah & Allen, 1994; Feng et al. 1995; Bennett
et al. 2000; Kim et al. 2004).

The objective of this study was to purify and characterise
a highly specific calcium-binding peptide from whey
protein hydrolysates. The research would be of significance
in utilising the hydrolysed peptides from whey protein as
calcium-binding peptide ingredients in functional food.

Materials and methods

Materials

Whey protein was purchased from Hilmar Corporation
(Batch No. 20111107) (USA). The commercial protease,
Flavourzyme (EC. 3.4.11.1, 2 × 106 U/g) and Protamex
(EC. 3.4.21.62 and EC. 3.4.24.28, 1·5 × 106 U/g) were pur-
chased from Novo (Novozymes, Denmark). TOYOPEARL
DEAE-650M and Sephadex G-25 were offered by Amer-
sham Pharmacia (Amersham Pharmacia Co., Uppsala,
Sweden). All the other chemicals and solvents were analyti-
cal grade reagents and high performance liquid chromato-
graphy (HPLC) grade.

Preparation of whey protein hydrolysates

In order to prepare whey protein hydrolysates, 5% (w/v)
whey protein solution was denatured at 80 °C for 20 min,
and the pH was adjusted to 7·0. The sample was hydrolysed
using Flavourzyme and Protamex in a 2 : 1 (w/w) mixture,
with substrate to enzyme ratio of 25 : 1 (w/w) at 49 °C for
7 h. Hydrolysate was heated in boiling water for 10 min to
inactive the enzymes and cooled to room temperature.
The mixture was subsequently centrifuged at 16 000 g for
20 min, then the supernatant named whey protein hydroly-
sates (WPH) was lyophilised and stored at −20 °C for sub-
sequent purification.

Isolation and purification of calcium binding peptide

DEAE anion exchange chromatography. The slurry of
TOYOPEARL DEAE-650M was packed in a column (20 ×
2·5 cm), then equilibrated at 5 column volume (CV) 20
mM Tris-HCl buffer (pH 9·0) as equilibrating buffer.
Afterwards, 100 mg lyophilised hydrolysates that had
been through 0·45 μm filter film were dissolved in 10 ml
of the same buffer (pH 9·0) and loaded on the column.
Then washed with the equilibrating buffer, the collected
peak was labelled as non-absorbed fraction. The bond pep-
tides were eluted by a gradient elution with the same buffer
containing 0–0·5 M NaCl. The flow rate was 0·5 ml/min,
fraction volume was 5 ml/tube, and elution was monitored
at 214 nm, all peaks were collected and calcium-binding
capacities of the fractions were determined.

Sephadex G-25 gel-filtration chromatography. The highest
calcium-binding capacity fraction was pooled and lyophi-
lised, 200 mg of the sample were dissolved in 5 ml deio-
nised water and loaded onto a Sephadex G-25 column
(100 × 2·0 cm) which had previously been equilibrated
with deionised water, then eluted with deionised water at
flow rate of 0·3 ml/min. The eluate was monitored by
measuring the absorbance at 214 nm. After calcium-
binding capacity was determined, the fraction with highest
activity was pooled and lyophilised.

Reversed phase HPLC. The lyophilised sample collected
from G-25 was dissolved in distilled water approximately
equivalent to 30 mg/ml and purified by semi-preparation
reversed phase high-performance liquid chromatography
(RP-HPLC) on a C-18 reversed-silica gel chromatography
(Gemini 5 μ C18, 250 × 10 mm, Phenomenex Inc., Tor-
rance, CA, USA). Elution was performed with solution A
(0·05% trifluoroacetic acid (TFA) in water) and solution B
(0·05% TFA in acetonitrile) with a gradient of 0–30% B at
1·0 ml/min for 50 min. The elution was monitored at 214
nm, the absorption peaks were fractionated for measuring
the calcium-binding activity. The injection volume was gen-
erally 200 μl.

The active fraction from preparative RP-HPLC was further
applied on analytical HPLC for purity analysis. The elution
condition was the same as semi-preparation RP-HPLC.

Amino acid sequence of calcium binding peptide. Amino
acid sequence of purified calcium-binding peptide was
determined using a liquid chromatography/electrospray ion-
isation (LC/ESI) tandem mass spectrometer (Lee & Song,
2009) (Delta Prep 4000, Waters Co., USA) over the m/z
range 300–3000.

Calcium binding activity analysis. Lyophilised whey protein
hydrolysate was dissolved in deionised water at 1·0 mg/ml,
and mixed with 5 mM CaCl2 in 0·2 M sodium phosphate
buffer (pH 8·0). The solution was stirred at 37 °C for 2 h
and pH was maintained at 8·0 with a pH meter. The
reaction mixture was centrifuged at 10 000 g at room temp-
erature for 10 min in order to remove insoluble calcium
phosphate salts. The calcium contents in the supernatant
were determined using a colorimetric method with ortho-
cresolphthalein complexone reagent (Gitelman, 1967).
The absorbance at 570 nm was determined after adding
the working solution to the sample. The experiments were
performed in triplicate, and values were expressed as
mean ± standard deviation (SD).

Structural characterisation of whey protein
hydrolysate-calcium complex

Preparation of the peptide-calcium complex. The calcium-
binding complex was prepared by adding 5 ml 1% (w/v)
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CaCl2 into 20 ml of 2·5% (w/v) calcium-binding peptide sol-
ution. The reaction was placed in a controlled water bath
with constant agitation (100 rpm) at 37 °C for 2 h after the
pH of the solution was adjusted to 7·0 by the addition of
0·1 M NaOH. Then the mixture was mixed with absolute
ethanol (9 times of solution volume) to remove free
calcium and centrifuged at 10 000 g for 10 min, the precipi-
tates were lyophilised for analysis.

Ultraviolet absorption spectroscopy. The ultraviolet spectra
of calcium-binding peptide and its calcium complex
were recorded over the wavelength range from 190 to
400 nm by a UV-Vis spectrophotometer (UV-2600,
UNICO Instrument Co. Ltd., Shanghai, China) as described
by Chen et al. (2013). The calcium-binding peptide of 0·2
mg/ml was prepared. The peptide-calcium complex was
prepared by adding 0, 20, 40, 60, 80 and 100 μM CaCl2 to
0·2 mg/ml calcium-binding peptide solution, respectively.
The mixed solution reacted at room temperature for 30 min.

FTIR measurement. One milligram of dry powder sample of
calcium-binding peptide/peptide-calcium complex was
mixed with 100 mg KBr and Fourier Transform Infrared
(FTIR) spectrograph was performed. The FTIR spectra were
recorded using an infrared spectrophotometer from 4000
to 400 cm−1 (360 Intelligent, Thermo Nicolet Co., USA)
(Wang et al. 2011). The peak signals in the spectra were
analysed using OMNIC 8·2 software (Thermo Nicolet Co.,
Madison, WI, USA).

Sequestered calcium percentage determination

The sequestered calcium percentage determination of EG-
Ca and CaCl2 was examined according to the method
described by Wang et al. (2011) and Zhou et al. (2012).
EG-Ca and CaCl2 were separately dissolved in deionised
water equivalent to 10 μg/ml. The pH of these solutions
was adjusted to 2·0, 3·0, 4·0, 5·0, 6·0, 7·0, 8,0. After incu-
bation in a shaking water bath for 2 h at 37 °C, the solutions
were centrifuged in a refrigerated centrifuge at 10 000 g for
10 min. The calcium amount in supernatant and the total
calcium in the whole solution were determined by colori-
metric method with ortho-cresolphthalein complexone
reagent. The sequestered calcium percentage was calcu-
lated as follows:

Sequestered calcium %¼ Ca amount

in supernatant ðgÞ=total Ca in solution ðgÞ × 100

Statistical analysis

All experiments were conducted in triplicate. Data were
presented as means ± SDs. Analysis of variance and
Duncan’s multiple range tests were performed to analyse
the results using the SPSS software program (SPSS Inc.,
Chicago, IL, USA). The linear relationship between the

peptide concentration and the binding ratio was performed
using Origin 8·0 (Origin Lab Co., USA).

Results and discussion

Purification of WPH

Fraction 2 from DEAE was taken forward for further purifi-
cation by Sephadex-G25 gel-filtration chromatography
(Table 1). Fraction 23 showing the highest calcium
binding activity was further purified using semi-preparative
reversed-phase HPLC and was separated into thirteen frac-
tions (Fig. 1a). Fractions 7 and 13 possessed the highest
calcium binding abilities (Fig. 1b) and there was no signifi-
cant difference between their activities (data not shown).
The purified fraction 13 named WPH-1 was loaded onto
analytical RP-HPLC column to identify the purification
(Fig. 2). The calcium-binding capacity of WPH-1 reached
67·81 μg/mg, and the calcium-binding amount increased
by 95% compared with unpurified whey protein hydroly-
sate complex (33·92 μg/mg). The result was similar to that
of peptide derived from porcine blood plasma protein
hydrolysate (Lee & Song, 2009).

F2 exhibited negative charges in the same buffer con-
dition. The result that calcium-binding capacity of F2 was
higher than that of F1 was consistent with the former
reports about the strong ion-binding activity of negative
charged peptide (Chaud et al. 2002). The difference of
ion-binding activity between F2 and F3 are possibly associ-
ated with their other properties including molecular weight,
hydrophilicity/ hydrophobicity. The ion-binding capacity of
peptide is related to its net charge (Chaud et al. 2002). The
phosphopeptides from α-casein and β-casein hydrolysates
have negative charges which are efficiently bound to diva-
lent cations (Vegarud et al. 2000). The coordination abilities
of the peptides due to the donor groups, the polar groups
would be deprotonated in high pH value (Kállay et al.
2005; Wu et al. 2012).

Identification of WPH-1

WPH-1 was analysed by LC/ESI tandem mass spectrometer
for molecular weight and amino acid sequence determi-
nation. The purified calcium-binding peptide from whey
protein hydrolysate was identified to be Glu-Gly (EG),
which has a molecular weight of 204 Da (Fig. 3).

Table 1. Calcium-binding capacity of fractions from DEAE and
G-25
DEAE Sephdex G-25

Fraction
Ca-binding
ug/mg peptide Fraction

Ca-binding
ug/mg peptide

1 32·38 ± 0·47 21 58·15 ± 0·95
2 61·23 ± 0·63 22 59·48 ± 0·15
3 57·02 ± 0·47 23 63·49 ± 0·53

24 61·33 ± 0·70
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Flavourzyme is known as leucyl aminopeptidase, contains
both endo- and exopeptidase activity. The hydrolysis results
in release of an N-terminal amino acid and is preferably
Leu, but may be other amino acids such as Glu, Gly. And pro-
tamex is a Bacillus protease complex (EC 3.4.21.62 and
3.4.24.28), and the cleavage sites is aromatic amino acid,
hydrophobic amino acids including Tyr, Phe, Gly and Trp.
Therefore, the purified dipeptide EG is possibly obtained
through the cleavage sites of the commercial enzymes used
in the study. The amino acid sequence was confirmed
when compared with the data from the National Center for
Biotechnology Information database (NCBI).

The result that the calcium-binding peptide was identified
to contain Glu residue was similar to the report of Tamura
et al. (1982) which stated Glu was abundant in milk
protein. When cheese whey protein was hydrolysed, the
content of Glu increased to 30·08 from 17·8%, which
become the highest percentage of amino acid component

(Kim & Lim, 2004). The Glu and Ser residues of αs1- and
β-casein phosphopeptides were responsible for calcium
binding (Sato et al. 1991). Generally speaking, peptides
with side chains composed of carbonyl and carboxyl func-
tional groups usually have relatively strong activity to inter-
act with ions such as calcium and zinc (Nemirovskiy &
Gross, 2000; Lee & Song, 2009). The major amino acids
including Gly, Glu and Asp obtained from the hoki bone
peptides had proved to show high affinity to calcium ion
(Jung et al. 2005). Besides, Wang et al. (2009) characterised
the metal complexes of aluminium with reduced gluta-
thione. It is reported that the principal sites are the nega-
tively charged COO− of Glu and Gly. The carbonyl group
(CO), amino group (NH2) and peptide amino (NH) probably
participate in coordination in the bidentate and tridentate
complexes of Al(III).

Therefore, the negative charge of amino acid residue like
Glu and Asp play an important role in calcium-binding

Fig. 1. Semi-preparative RP-HPLC chromatography of fraction F23 derived from G-25. (a) The elution profile monitored at 214 nm. (b) The
calcium-binding capacity of fractions 1 to 13 of F23 separated from semi-preparative HPLC. All data were expressed as mean values
(mean ± SD, n = 3)
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peptide. It is apparent that Glu residue in Glu-Gly is the
important amino acid of the dipeptide for calcium binding
in the study, it is speculated that the carboxyl group of
Glu, carbonyl group (CO) and peptide amino (NH) in Glu-
Gly might participate in coordinating with calcium. The
extra carboxyl group makes the Glu negatively charged at
high pH. Furthermore, the low molecular weight of the pur-
ified dipeptide EG is conductive to the calcium-peptide
complex absorption in intestinal epithelial cells, since the
whole dipeptide chelation could pass through the intestinal
epithelial cells rather than the calcium ion being deposited
in the basic intestinal condition. The purified calcium-
binding dipeptide has the potential to be used as ion-
binding ingredient in dietary supplements.

UV spectra of EG

As the spectra shown in Fig. 4, strong absorption peak
observed near 200 nm could be explained the character-
istics of peptide bond, no absorption around 280 nm prob-
ably means that there is the absence of aromatic amino

acid residue in EG. Besides, the absorption intensity of
dipeptide-calcium complex in near ultraviolet region is
higher than that of the dipeptide alone. As the increased
addition of calcium chloride, the spectra had the tendency
of redshift.

The result is consistent with the related reports. Previous
studies have indicated the spatial structure with the chiral-
ity of the chromospheres (C = O, -COOH) and auxo-
chromes (-OH, -NH2) of peptides changed after binding
with calcium (Houser et al. 1999; Armas et al. 2006) indu-
cing hyperchromicity and redshift in the UV spectra. In
addition, a small absorption band appeared at around
192 nm along with the increased additive amount of
CaCl2, which perhaps reflected the difference of relevant
valence electron transition after more calcium reacted
with EG.

Infrared spectrometer analysis

FTIR absorption peak changes of organic ligand groups in
EG can reflect the interaction of calcium with EG. As

Fig. 2. The analytic RP-HPLC for purification of the peak namedWPH-1 (whey protein hydrolysate-1). The elution was monitored at 214 nm.

Fig. 3. Identification of amino acid sequence of calcium-binding peptide using LC/ESI tandem mass spectrometer.
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shown in Fig. 5, the absorption at high frequency of
3448·35 or 3432·01 cm−1 is the N-H and O-H bonds
referred to water of hydration (Huang et al. 2011). As
the calcium coordinated with EG, the Ca-N bond replaced
N-OH (hydrogen bonds) and was responsible for the
shift to low frequency of 3432·01 from 3448·35 cm−1.
The absorption band of EG at 1679 cm−1 as an amide I
band attributed to the C = O stretching vibrations and
bending vibrations of NH, it shifted to lower frequency
(1572·76 cm−1) after interacting with calcium. The
amide II band at about 1550 cm−1 in peptide assigned
to the C-N stretching vibration coupled with N-H
bending disappeared in the dipeptide-calcium complex
(Fabian et al. 1993). The band at 1221·34 cm−1 of the
-COO− carboxyl group in the EG could not be found in
the spectrum of dipeptide-calcium complex. Several

absorption bands at around 800 cm−1 caused by the
vibration of the N-H linked to C-N bonds were not
present in the dipeptide-calcium complex. The possible
reason why the absorption bands of -COO−, N-H and
C-N disappeared is that the calcium binding to EG
affects the stretching and bending vibration of these func-
tional groups. The FTIR results demonstrate carboxyl
oxygen and amino nitrogen atoms are the interaction
sites between calcium and EG.

Sequestered calcium percentage of EG-Ca complex
and CaCl2

To discuss the calcium sequestered effect in human gastro-
intestinal tract in vitro, the sequestered calcium percentage
of EG-Ca and CaCl2 at different pH values from 2·0 to 8·0
was investigated. The sequestered calcium amount in EG-
Ca complexes was relatively stable in the pH range from
2·0 to 8·0, whereas that of CaCl2 decreased significantly
from 85·98% at pH 2·0 to 74·06% at pH 8·0 (Fig. 6).
Meanwhile, the sequestered calcium percentages of EG-
Ca at various pH values were obviously higher than that
of CaCl2. The higher sequestered calcium percentage in
these pH ranges is important for ion bioavailability
improvement in the physiological environment of human
gastrointestinal tract. Especially, the high sequestered
calcium amount in pH 2·0 equivalent to the pH value of
gastric environment is in favour for the transportation of
calcium to intestinal environment. The high sequestered
calcium percentage in the basic intestinal tract can
prevent calcium from producing precipitation so that it
can be effectively absorbed by intestinal epithelial cells
(Wang et al. 2011). The finding suggests that EG can
improve calcium solubility under gastrointestinal tract pH
values.

Fig. 4. UV spectra of EG and EG-Ca complexes over the
wavelength range from 190 to 400 nm. Calcium concentration
0–100 μM

Fig. 5. Infrared spectra of EG and EG-Ca complexes.

Fig. 6. Calcium sequestered percentage of EG-Ca complexes and
CaCl2 at pH values of 2·0, 3·0, 4·0, 5·0, 6·0, 7·0 and 8·0.
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Conclusions

In summary, a dipeptide EG with strong calcium-binding
capacity was purified from whey protein hydrolysate, and
the Glu residue of EG played an important role in binding
to calcium ion. EG-Ca chelate demonstrated stability
under either acidic or basic conditions.
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