Proceedings of the Royal Society of Edinburgh, 131A, 1091-1111, 2001

Solutions and multiple solutions for quasilinear
hemivariational inequalities at resonance

Leszek Gasinski
Jagiellonian University, Institute of Computer Science,
ul. Nawojki 11, 30072 Cracow, Poland

Nikolaos S. Papageorgiou
National Technical University, Department of Mathematics,
Zografou Campus, Athens 15780, Greece

(MS received 7 February 2000; accepted 6 December 2000)

In this paper we consider quasilinear hemivariational inequalities at resonance. We
obtain existence theorems using Landesman-Lazer-type conditions and multiplicity
theorems for problems with strong resonance at infinity. Our method of proof is
based on the non-smooth critical point theory for locally Lipschitz functions and on a
generalized version of the Ekeland variational principle.

1. Introduction

Let Z C RY be a bounded domain with C'-boundary I" and let 2 < p < +o0. In this
paper we study the following quasilinear hemivariational inequality at resonance:

— div(|[Va(2) [ Va(2) = Mla(z) [P %a(2) € 0j(z,2(2))
almost everywhere on Z, ¢ (HVI)
JJ|[’ =0.
By A1 we denote the first eigenvalue of the negative p-Laplacian
—Apz = — div(||Vx||%;2Vx)

with the Dirichlet boundary condition (i.e. of (—=A,, Wy*(Z))). By j: Z xR — R
we mean a functional, which is measurable in the first variable and locally Lipschitz
in the second variable. By 95 (z, ¢) we denote the subdifferential of j(z, -) in the sense
of Clarke [7] (see §2). Our work here continues in the direction of the two recent
papers by the authors (see [8,9]). It is also related to the recent work of Goeleven
et al. [10], who examined semilinear (i.e. for p = 2) hemivariational inequalities at
resonance. Hemivariational inequalities are a new type of variational inequalities,
where the convex subdifferential is replaced by the subdifferential in the sense of
Clarke of a locally Lipschitz function. Such inequalities arise in the problems of
mechanics and engineering, when one wants to consider more realistic mechanical
laws of non-monotone and multivalued nature. This leads to non-smooth and non-
convex energy functionals. Concrete applications of hemivariational inequalities in
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mechanics and engineering problems can be found in the books of Naniewicz and
Panagiotopoulos [18] and Panagiotopoulos [19].

First we prove two existence results, by employing some Landesman—-Lazer-type
conditions. These results extend theorem 5.2 of Goeleven et al. [10, p. 178], who deal
with semilinear problems. In addition, they assume that the subdifferential of the
locally Lipschitz function admits a continuous selection. Recalling that the Clarke
subdifferential as a multifunction is only upper semicontinuous, we see that such a
hypothesis is rather restrictive. Also, both existence results extend theorem 4 of [8],
where the hypotheses on j(z, () are more restrictive, namely it is assumed that the
asymptotic values of the generalized potential j(z,() exist as ( — %oo. In §4, we
prove two multiplicity results for strongly resonant elliptic case, i.e. we assume that
for almost all z € Z, function j(z, () has finite limits as ( — £00. In this section our
work is similar to the semilinear (i.e. for p = 2), smooth (i.e. for j(z,-) being C*-
function) works of Bartolo et al. [3], Goncalves and Miyagaki [11,12], Landesman
et al. [15], Thews [22] and Ward [24]. Of the aforementioned works, only [11,12]
and [15] have multiplicity results. Moreover, in all these works, function j is of the
form j(z, () fo r)dr, with f being a continuous function.

Our approach is Variational and is based on the critical point theory for non-
smooth locally Lipschitz functionals of Chang [6]. For the convenience of the reader,
in the next section we recall some basic definitions and facts from that theory, which
we will need in the sequel.

2. Preliminaries

Let X be a Banach space and X* its topological dual. By || - || we will denote the
norm in X, by || - ||« the norm in X* and by (-, -) the duality brackets for the pair
(X, X*). A function ¢ : X — R is said to be locally Lipschitz if, for every z € X,
there exists a neighbourhood U of = and a constant k£ > 0 depending on U such
that |¢(2) — ¢(y)| < k||z—y|| for all 2,y € U. From convex analy51s we know that a
proper, convex and lower semicontinuous function g : X +— RERU {+0o0} is locally
Lipschitz in the interior of its effective domain domg & {z € X : g(z) < 4o0}. In
analogy with the directional derivative of a convex function, we define the general-
ized directional derivative of a locally Lipschitz function ¢ at € X in the direction
h € X by

¢(z' +th) — ¢(z')

#° (3 h) a lim sup ;

’
xr —T

N0

The function X 3 h — ¢°(z;h) € R is sublinear, continuous and, by the Hahn-
Banach theorem, it is the support function of a non-empty, convex and w*-compact
set

d¢(x) T fa* e X (a*,h) < #°(x; h) for all h € X}

The set 0¢(z) is called the ‘generalized’ or ‘Clarke’ subdifferential of ¢ at z. If
o, : X — R are locally Lipschitz functions, then 9(¢ + ¢)(x) C 9d¢p(z) + Ov(x)
and 9(tp)(z) = td¢(x) for all t € R and all x € X. Moreover, if ¢ : X — R is also
convex, then the subdifferential of ¢ in the sense of convex analysis coincides with
the generalized subdifferential introduced above. If ¢ is strictly differentiable at z (in
particular, if ¢ is continuously Gateaux differentiable at x), then d¢(x) = {¢'(z)}.
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Let ¢ : X — R be a locally Lipschitz function on a Banach space X. A point
x € X is said to be a ‘critical point’ of ¢ if 0 € d¢(x). If x € X is a critical point
of ¢, then the value ¢ a ¢(x) is called a ‘critical value’ of ¢. It is easy to see that
if z € X is a local extremum of ¢, then 0 € d¢(x). Moreover, the multifunction
X 2z 0¢(x) € 2X" is upper semicontinuous, where the space X* is equipped
with the w*-topology, i.e. for any w*-open set U C X*, theset {zr € X : d¢(z) C U}
is open in X (see [13]). For more details on the generalized subdifferential, we refer
to [7, ch. 2].

The critical point theory for smooth functions uses a compactness condition
known as ‘the Palais—Smale condition’ (PS condition). In our present non-smooth
setting, the condition takes the following form.

A locally Lipschitz function ¢ : X +— R satisfies the ‘non-smooth PS con-
dition if any sequence {z,},>1 C X such that {¢(x,)}n>1 is bounded
and m(z,,) d min{||z*||. : 2* € dp(x,)} — 0 as n — +00 has a strongly
convergent subsequence.

If ¢ € C1(X), then, since d¢(x,) = {#'(x,)}, we see that the above definition of
the PS condition coincides with the classical one (see [20]).

A weaker form of the PS condition was introduced in the context of the smooth
theory by Cerami [5]. In our non-smooth setting, this condition takes the following
form.

A locally Lipschitz function ¢ : X — R satisfies the ‘non-smooth
Cerami condition’ (non-smooth C condition) if, for any sequence
{Zn}n>1 C X such that the sequence of values {¢(x,)}n>1 is bounded
and (1 + ||z,|)m(z,) — 0 as n — 400, there exists a strongly conver-
gent subsequence.

It was proved in the smooth case by Bartolo et al. [3, theorem 1.3, p. 985] that
this weaker condition suffices to obtain a deformation lemma and from that derive
minimax principles that generate the existence of critical points. The same can
be done in the context of the non-smooth theory by modifying the arguments
of [3], with the help of lemmata 3.1-3.4 of [6] or by using a recent generalization of
the Ekeland variational principle due to Zhong [25] (for details, we refer to [14]).
Evidently, the non-smooth PS condition implies the non-smooth C condition. We
can have a ‘local’ version of these concepts.

A locally Lipschitz function ¢ : X — R satisfies the ‘non-smooth
C condition at level ¢’ (respectively, the ‘non-smooth PS condition at
level ¢) if, for any sequence {z,},>1 C X such that ¢(z,) — c and
(1+ ||znl)m(zy,) — 0 (respectively, m(z,) — 0), there exists a strongly
convergent subsequence.

If the above property is true for every level ¢ € R, then we recover the previ-
ously introduced ‘global’ version of the non-smooth C condition or the non-smooth
PS condition.

The first theorem gives the basic usage of the non-smooth PS condition (see, for
example, [6, theorem 3.5, p. 118]).

https://doi.org/10.1017/50308210500001281 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001281

1094 L. Gasinski and N. S. Papageorgiou

THEOREM 2.1. If X is a reflexive Banach space and ¢ : X — R is a bounded below
ag%i locally Lipschitz functional that satisfies the mon-smooth PS condition, then
c=inf{¢(z) : x € X} is a critical value of ¢.

The next theorem is the non-smooth extension of the well-known mountain-pass
theorem, due to Ambrosetti and Rabinowitz [2] (see, for example, [6,14]).

THEOREM 2.2. If

(i) X is a reflexive Banach space and ¢ : X — R is a locally Lipschitz functional
that satisfies the non-smooth C condition at level c,

(ii) there exist real number v > 0 and point x1 € X such that |z1]] > r and

max{¢(0), ¢(z1)} < inf{e(z) : [|lz| = r},
(iii) Cc = inf,yepl maXog ¢< 1{¢(’y(t))}, where
I 4 {7 € C([Ov 1]5X) : 7(0) =0, 7(1) = xl}a

then ¢ = inf{¢(z) : ||z|| = v} and there exists © € X such that 0 € dp(x) and
p(x) =c.

The third theorem is due to Zhong (see [25, theorem 1.1, p. 239]) and extends the
Ekeland variational principle. Here we put the particular version of this theorem
with zg = 0, h(r) =7 and A = 1 (the notation is taken from [25]).

THEOREM 2.3. If X is a reflexive Banach space and ¢ : X — R is a lower semi-
continuous functional that is bounded below, then, for any € > 0 and any T € X
such that ¢(z) < infrex ¢(x) + €, there exists © € X such that

(i) ¢(z) < ¢(2),
(i) ¢(x) < (u) + (ellz —ullx) /(1 + [zl x) for all u € X.

In the formulation of (HVI), we encounter A;, which is the first eigenvalue of the
negative p-Laplacian with the Dirichlet boundary condition. More precisely, let us
consider the following nonlinear eigenvalue problem:

—div(]|Vz(2)|[Pa* Va(2)) = Mz(2)[P22(z)  almost everywhere on Z,
R

JJ|[’=0.

|

The least real number A for which (EP) has a non-trivial solution is called the
first eigenvalue Ay of (—A,, WyP(Z)). This first eigenvalue \; is positive, isolated
and simple (i.e. the associated eigenspace is one dimensional). Moreover, we have
a variational characterization of A\; via the Rayleigh quotient, i.e.

IValp

Alzmin{W cx € WyP(Z), x;«éO}. (2.1)
P

The above minimum is realized at the normalized eigenfunction u;. Note that if uq
minimizes the Rayleigh quotient, then so does |ui|, and so we infer that the first
eigenfunction u; does not change sign on Z. In fact, we can show that uq(z) # 0
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almost everywhere on Z and so we can assume that u; > 0 almost everywhere on Z.
Moreover, by the non-smooth elliptic regularity theory, we know that the solution
of (EP) is continuous and one can even have that u; € Cllo’f(Z) with 0 < 8 < 1
(see [23, theorem 1, p. 127]). For details on the first eigenvalue, we refer to [17].
Let V,, € Wol’p(Z) be a topological complement to the one-dimensional eigen-
space Ruy (i.e. Wé’p(Z) = Ru; ®Y,,,). Since A; > 0 is isolated, we have that

df ||Vy||p
)\Q’yu = inf{ d
! llylls

Let \p & sup{A2yy,, : Yu, C WyP(Z)}, where the supremum is taken over all Yy, ,
topological complements of Ru;. Recall that since Ru; is finite dimensional, a topo-
logical complement always exists (see [13, p. 502]). If p = 2, then Xy = \o is the
second eigenvalue of the negative Laplacian with the Dirichlet boundary condition
(i.e. of (—A, HL(2))).

cy € Yy, y;«éO} > A1 (2.2)

3. Landesman—Lazer-type condition

In this section we prove two existence theorems for (HVI) using Landesman-Lazer-
type conditions.

In the sequel, we will assume that p > 2 and that p’ is such that 1/p+ 1/p/ = 1.
By p* we will denote the Sobolev critical exponent, defined by

o Np/(N —p) ifp<N,
400 if p> N,
and by p*’ the number such that 1/p* 4+ 1/p* = 1. Note that
1<p" <p <2< p<p* < +oo.
Our hypotheses on the generalized potential function j(z, () are the following.
HYPOTHESES H(j)1. j: Z x R+ R is a function such that:

(i) for all ¢ € R, function Z 3 2z — j(z,{) € R is measurable and j(-,0) €
LY (2);

(i) for almost all z € Z, function R 3 ¢ — j(z,¢) € R is locally Lipschitz;

(iii) for almost all z € Z, all ¢ € R and all 5 € 9j(2,(), we have |n| < a(z) with
some a € LY (Z), where p* < ¢ < p';
(iv) there exist functions vy, v_ € L*(Z) such that, uniformly for almost all z € Z,

we have

v4(2z) = sup limsupwv,(z) and wv_(z)= inf liminfv,(z),
{vn} n—+oo {vn} n—too

where the supremum (respectively, the infimum) is taken over all sequences
{vn}n>1 € LP (Z) such that v,(2) € 8j(z, (,) with ¢, — +o0o (respectively,
(n — —00) and

/ZU+(2’)U1(2’)dZ <0 </ v_(2)u1(z)dz.

Z
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Hypothesis H(j); (iv) is of the so-called Landesman-Lazer type.
Let ¢ : Wol’p(Z) — R be the energy functional defined by

AL

—fl P _ z||P — i(z, x(2))dz
o) £ 2 Vlp - 2L ol /ZJ(,())d-

Let ¢ : WP (Z) — R be defined by

By virtue of hypothesis H(j); (iii) and theorem 2. 7 5 of [7, p. 83], we see that
Y is locally Lipschitz. Furthermore, functionals Wy*(Z) 3 x v [Vz|h € R and
WiP(Z) 3z — [z[|h € R are convex, continuous, and hence locally Lipschitz on
Wyt (2). Therefore, ¢ is locally Lipschitz.

PRrROPOSITION 3.1. If hypotheses H(j)1 hold, then ¢ satisfies the non-smooth PS
condition.

Proof. Let {x,}ns1 € W, P (Z) be a sequence such that |¢(z,)| < M; for alln > 1
and m(z,) — 0 as n — +o0. Let =1 € 9¢(z,) be such that m(z,) = ||z¥||«
for n > 1. For every n > 1, its existence is a consequence of the fact that
Op(zy,) C (WO1 P(Z))* = WP (Z) is weakly compact and the norm functional is
weakly lower semicontinuous. Let A : WO1 P(Z) — W1 (Z) be the nonlinear oper-
ator defined by

(Az,v) / Va(2) || 2(Va(z), Vo(2))py dz - Va,0 € WyP(Z)

(by (-,-) we denote the duality brackets for the pair (W, (Z), W=7 (Z))). Tt is
straightforward to check that A is demicontinuous and strongly monotone, hence
maximal monotone (see [13, corollary II1.1.35, p. 309]). For every n > 1, we have

rh = Az, — M|an [P 2e, — ul, (3.1)

where u} € 8(1/)|W01,p(z))(xn), with ¢ : LP” (Z) — R defined by

From theorem 2.2 of [6, p. 110] and theorem 2.7.5 of [7, p. 83], we know that
u € LP"(Z) and u¥(2) € 9j(z, ,(z)) almost everywhere on Z.

First we will show that {z,}n>1 C Wy (Z) is bounded. Suppose that this is
not true. Then, by passing to a subsequence if necessary, we may assume that
|znl| = +o00 as n — +oo. Let y, = z,/||zn] for n > 1. Then, by passing to
another subsequence if necessary, we may assume that

Yo —y weakly in Wy P(Z) as n — +oo,

—
W w
w N
=z =

Yn — y in LP(Z) as m — +o0,

Yn — y almost everywhere on Z as n — 400,
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with some y € Wé’p(Z) and |y, (z)] < k(z) almost everywhere on Z, for alln > 1
and with some k € LP(Z) (see [4, theorem IV.9, p. 58]). From the choice of the
sequence {Tpn>1 C Wol’p(Z), for all m > 1, we have

< ;
lznlP~ llznlP

hmsup(—nwnnp 2yl - /Z wd) <0, (3.4)

n— oo [lnI?

SO

By virtue of the Lebourg mean-value theorem (see [16] or [7, theorem 2.3.7,
p. 41]), we know that for all n > 1 and almost all z € Z, we can find w,(z) €
0j(z,trnxn(2)) with 0 < t,, < 1 such that

3z, 20(2)) = (2, 0) = lwn(2)zn(2)].
From hypothesis H (j); (iii), for almost all z € Z, we have that
13z, 2n (2))] < 13(2,0)] + a(z)zn(2)], (3.5)

where a € L?"(Z). So, from (3.5), hypothesis H(j)1(i) and the continuity of the
embedding W, ?(Z) C Lp*(Z) we have

|] (2,20 (2 L < /Z(|](z,0)| N a(2)|$n(2)|> dz

||xn||” P [l P
il | .
llzn P lln P
_ ali.0)l
[l P [ L
with cl 1 and some ¢y > 0, and thus
/ MdZHO as n — +00.
z  llzal?
Also, from (3.3), we have
1
=[lynllp — leyllﬁ as n — +00,
so, from (3.4), we have
1. A1
—limsup [|[Vy, |5 < = lylb. (3.6)
P n—+oco P

From (3.2), the weak lower semicontinuity of the norm functional and the Rayleigh
quotient (see (2.1)), we have

ST | 1. .
— < —||Vy|lE < -1 [ Vynl®. 3.7
) lyllb pll yllp i inf IVynllh (3.7)
So from (3.6) and (3.7), it follows that
IVylly = Ay} (3.8)
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and
[Vynlp — [Vyllh  asn — +oc.

Since we already know that Vy, — Vy weakly in LP(Z;RY) as n — +oo and
space LP(Z;RY) is uniformly convex, from the Kadec-Klee property (see [13, defi-
nition I.1.72(d) and lemma 1.1.74, p. 28]), we have that Vy,, — Vy in L?(Z;R) and
80 Y, — y in Wy P(Z) asn — +oo. Since ||y,|| = 1, we have that [ly|| = 1,i.e.y # 0.
Therefore, from (3.8), we infer that y = fu; (see the Rayleigh quotient (2.1)). With-
out any loss of generality, we can assume that y = u; (the case y = —uy is treated
similarly). Since uq(z) > 0 for all z € Z, we have that z,(z) — +oo for all z € Z.
Because ||z% ||« — 0, from (3.1), at least for a subsequence, we have that

1
(Azp, zn) — )\1(|xn|p_2xnaxn)pp’ - /Zu:z(z)xn(z) dz < g||33n||,

and so
1
IVzalls = Aullzally = [ i (an(z) dz < % ol
zZ

From the Rayleigh quotient (see (2.1)), we have

1
- [ wiGen(rdz < el
z n

Dividing the last inequality by ||z,||, we obtain

_/Zu;;(z)yn(z)dz <. (3.9)

Recall that {u*},>1 C L?"(Z) and, by virtue of hypothesis H(j); (iii), this
sequence is bounded. So, passing to a subsequence if necessary, we may assume
that u* — u* weakly in LP"(Z) as n — 4o00. As y, — uy in WP (Z), so also
Yn — uq in LP"(Z) as n — +oo. Thus, passing to the limit in (3.9) as n — +o0,
we obtain

—/Zu*(z)ul(z)dz < 0.

Invoking proposition VIL.3.9 of [13, p. 694], we have that u*(z) < vy(z) almost
everywhere on Z (see hypothesis H(j)1 (iv)). As u; > 0, so we obtain

- [ vz <o,
A

which contradicts hypothesis H(j); (iv). This proves that {a,}n>1 C Wy (Z) is
bounded. Hence we may assume that x,, — x weakly in W&’p(Z) and, from the com-
pactness of the embedding W&’p(Z) C L9(Z) (where g is such that 1/¢+ 1/¢' = 1;
note that p < ¢ < p*), we have that =, — z in L9(Z). Because sequence
{&n}n>1 C WyP(Z) is bounded and |z%], — 0 as n — +0o so, at least for a
subsequence, we have that

S|

(@5, @ — 2)] <
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From (3.1), we obtain
1
n
(by (-, -)qq we denote the duality brackets for the pair (L(Z), L9 (Z))). Because
Tn — x in LY(Z), x, — z in LP(Z) as n — 400, and from the continuity
of the operator LP(Z) 3 x — |z|P~2z € LP (Z), we have that |x,|P~ 2%z, — |z[P722
in LP (Z) as n — 400. From hypothesis H(j); (iii), we know that the sequence
{ul}n>1 € LY (Z) is bounded and thus (u},z, — z)qe — 0 as n — +00. So, pass-
ing to the limit in (3.10), we obtain

<A$na Ty — 33‘) - )\1(|l‘n|p_1l‘n,.7}n - x)pp’ - (u:wxn - x)qq’ < (310)

limsup{Ax,, z, — z) < 0.

n—-+oo
Employing the maximal monotonicity of A, the Kadec—Klee property of uniformly
convex spaces and arguing as before, we obtain that x, — x in Wol’p(Z). So ¢
satisfies the non-smooth PS condition. O

PROPOSITION 3.2. If hypotheses H(j)1 hold, then ¢ is coercive (i.e. if |z| — +0o0,
then ¢(x) — +00).

Proof. Let us suppose that this is not true. Then we can find {x,}n>1 C Wol’p(Z)
anc(lifMg > 0 such that ||z,|| — +oo and |¢(z,)| < My for all n > 1. Let
Yn = T /||| for all n > 1. Arguing as in the proof of proposition 3.1, we can
check that y, — fu; weakly in Wol’ (Z) as m — 400 (at least for a subsequence).
Assume that the last limit is uq (the case when it is —u; is treated similarly). Then
we have z,,(z) — +00 almost everywhere on Z. Let Zg, ez xn(2) # 0} and

ar | j(z,2n(2))/2n(z) if 2 € Zon,

(=) =14 if2e 72\ Zon.

First we will show that for almost all z € Z, we have

limsup g, (z) < vy(2). (3.11)

n—-4oo

For this purpose, let 0 < € < 1. From the Lebourg mean-value theorem, for almost
all z € Z, we have

3z 2n(2)) = j(z,62n(2)) + wn(2)(1 = e)zn(2), (3.12)

with wy,(2) € 9j(z,mn(2)), where 7, (2) = (1 —&n)zn(2) + nexn(2) and 0 < &, < 1.
Recall that for almost all z € Z, we have z,(z) — +00 as n — 4o00. Hence, for
almost all z € Z, we get

> xn(z) - (1= E)xn(z)

=exn(2).
So 7, (2) = +oo for almost all 2 € Z as n — +oo. From (3.12), for z € Zy,, we
e Jemn() _ j(nera(z)

o (?) = () + wn(2)(1—¢).
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As in the proof of proposition 3.1 (see (3.5)), we get that
7 (2,620 (2))] < 1(2,0) + a(z)e|zn (2)]
for almost all z € Z. So, for n > 1 large enough and almost all z € Z,,, we have

jeaa(z) _ Li(z0)

+ a(z)e + wp(2)(1 —e).

From the definition of v;, we see that limsup,,_,, , wn(2) < v4(z) for almost all
z € Z. Thus, finally, for almost all z € Z, we can write that

msup A7)

S a(z)e o (2)(1 )
n— -+o0o .Z‘n(Z)

(recall that |Zy,| — |Z] as n — +00, where | - | denotes the Lebesgue measure on
RY). As the last inequality holds for any 0 < ¢ < 1, it follows that

msup S 2()

< v4(z
n—-+oo .Z‘n(Z) = +( )

for almost all z € Z, which proves (3.11).
From the definition of g,, for n > 1, we have

/dez':/z Gn(2)yn(2) dz—|—/ i(2,0) dz. (3.13)

]| 2\ Zon [0l

Note that since j(-,0) € L?" (Z) and ||z| — 400 as n — 400, we have

i(z,0
/ iz )dz—>0 as n — —+o0o.
Z\ Zon |l

Note that 9, xz,, = yn for alln > 1 (as yn|z\z,, = 0). So, at least for a subsequence,

we have
X ZonYn — U1 iD LP(Z) asn — 4o0. (314)
From (3.13), we obtain
limsup/ wdz = limsup/ 9n(2) (X 2o yn)(2) dz. (3.15)
n—+oo J 7 ||xn|| n—+oo JZ

Using (3.14), (3.11) and Fatou’s lemma, from (3.15) it follows that

: iz 2 (2))
lirgilig/zwdzé/zv+(z)ul(z)dz. (3.16)

From the choice of the sequence {, },>1 € W, ?(Z), we have
1 » A1 » )
() = —||V33n||p - _Hanp — | J(z,2n(2))dz < Mo,
p p Z
so, from the Rayleigh quotient (see (2.1)), we get

—/ j(z, 2, (2))dz < Mo.
zZ
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Dividing both sides of the last inequality by ||z, | and using (3.16), we get

/ v+ (z)ur(z)dz 2 0.
z
This contradicts the Landesman—Lazer-type condition in H(j); (iv). Therefore, ¢ is

coercive. O

Using propositions 3.1 and 3.2, we can prove our first existence theorem concern-
ing problem (HVI).

THEOREM 3.3. If hypotheses H(j)1 hold, then (HVI) has a solution xg € Wol’p(Z).

Proof. From proposition 3.2, we know that ¢ is bounded below. Also, by propo-
sition 3.1, it satisfies the non-smooth PS condition. So we apply theorem 2.1 and
obtain zo € Wy(Z), such that ¢(x¢) = inf{¢(x) : & € Wy P(Z)}. Then 0 € d¢(x0)
and so

Axg — )\1|3’J0|p_233‘0 =" in W_l’q(Z),

with u* € 8y (x0), hence u* € LP”'(Z) and u*(z) € 9j(z,xo(z)) almost everywhere
on Z. We have

<A$07 19> = )\1(|x0|p_2x07 19);01)/ + (U*aﬁ)p*p*’ Vi € CSO(Z)
and, by Green’s theorem,
(= div(I Vol Vo), 0) = Aa(|ao[P =20, )y + (u*,0)peper V0 € C5°(2).

Note that from the representation theorem for the elements in the dual space
WP (Z) = (W, P(Z))* (see [1, theorem 3.10, p. 50]), we have that

div(||Vao||P~2Vay) € WP (2).
Since C§°(Z) is dense in Wol’p(Z), we deduce that

— div([| Varo(2) [ Vzo(2)) = Mlzo(2)[P 220 (2) = u*(2) € (2, 20(2))
almost everywhere on Z,
.170|[’ = 07

and so xg is a solution of (HVI). O

We can have another existence result, with the reverse Landesman-Lazer-type
condition, by adding an additional hypothesis, dictating a subresonant behaviour
near the origin. More precisely, our hypotheses on j(z, () are the following.

HYPOTHESES H (j)2. j: Z x R+ R is a function such that:

(i) for all ¢ € R, function Z 3 z — j(z,{) € R is measurable, j(-,0) € L>(Z)
and [, j(z,0)dz > 0;

(i) for almost all z € Z, function R 3 ¢ — j(z,¢) € R is locally Lipschitz;

(iii) for almost all z € Z, all ¢ € R and all n € 9j(2,(), we have |n| < a(z) with
some a € L>®(Z);
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(iv) there exist functions 9, ,9_ € L'(Z) such that, for almost all z € Z, we have

04 (2) = liminfu,(2) and v_(z)= limsupwv,(z)

n—-+00 n—-+oo
where {vp}ns1 © LP"(Z) is such that v,(z) € j(z,(,) with ¢, — +oo

(respectively, ¢, — —o0) and

/Z@_(z)ul(z)dz <0< / 04 (2)u1(z) dz;

Z

(v) there exists p1 > A1 such that

lim sup b
¢—0 |<|;D

uniformly for almost all z € Z.

PROPOSITION 3.4. If hypotheses H(j)a hold, then there exist (1,32 > 0 such that,
for all x € WyP(Z), we have

¢(x) = Bullz|” = Ball”,
with p < 9 < p*.

Proof. From hypothesis H(j)s (v), we can find § > 0 such that, for almost all z € Z
and all |[¢] <, we have

- Ay
J(z,0) < . Iq

(recall that g > A1). On the other hand, from the Lebourg mean-value theorem
and hypotheses H(j)2 (i) and (iii), one can show that for almost all z € Z and all
[¢] > &, we have

|](Za <)| Sez+ C4|<|a

with some c3, ¢4 > 0. Thus, for almost all z € Z and all { € R, we have
. A1
](Za C) < _?|<|p + C5|<|ﬂ7

with c5 = (c3 4+ ¢40)077 4+ (A1 /p)6?~7 and p < ¥ < p*. Using this, we obtain that

1 A
@) = Vally = 2ol - /Z i(za(2)) dz

1 )\1 )\1 9
> —[|Vz|p — —=|lz|5 + —|lzl|} — csllz||
“p poop Iy TR K

1
= ZIIVxllﬁ = cslell3-

Since ¢ < p*, from the Sobolev embedding theorem we have that Wol’p(Z) is embed-
ded continuously in L?(Z). So, using Poincaré’s inequality, it follows that

o(z) = Bz — Bal||”
for some 1, B2 > 0 and all z € W, *(Z). O
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THEOREM 3.5. If hypotheses H(j)2 hold, then problem (HVI) has a non-trivial
solution xo € Wy*(Z).

Proof. From proposition 3.4, we know that there exist 31,32 > 0 such that, for all
x € WP (Z), we have
¢(x) = Bullz|” = Ball”,

with some p < ¢ < p*. Evidently, if we choose > 0 small enough, we will have
that ¢(z) > ¢ > 0 for all z € W, *(Z) such that ||z| = r and some ¢g > 0.
Next let ¢ > 0 and let us consider the quantity ¢(tu;). Using the fact that

[Vui || = Arflui|h, we have

otur) = SVl = 225l = [ Gt dz == [ )

By a simple modification of the argumentation for (3.11) in the proof of proposi-
tion 3.2, we can verify that
(2,1
lim inf (& tn(z)

> v,(z) almost everywhere on Z.
t— 400 tu1(2) = +( ) Yy

If t,, — 400, using Fatou’s lemma, we have that

liminf/ Mm(z’)dz > / U4 (2)ui(z)dz > 0.
n—too Sz thui(z) Z
Because (e ty (2))
. J 2, lpUu1 (2
z,thu (2 dz=tn/ — " uy(2)dz,
| itetan(2) [ Leteil
we have

/ j(z, thui(z))dz — 400 as n — +oo.
z

Therefore, it follows that for n > 1 large enough, we will have ¢(t,u1) < 0. Also,
¢(0) < 0 (see hypothesis H(j)2 (i)). Finally, by a simple modification of the proof
of proposition 3.1, we can check that ¢ satisfies the non-smooth PS condition. So
we can apply theorem 2.2 and obtain zg € Wol’p(Z), such that

¢(w0) = inf{o(z) : ||zl =} = 6 > 0= $(0)
(hence xg # 0) and 0 € 9¢ (o). As in the proof of theorem 3.3, we can verify that
Zo is a solution of (HVI). O
4. Multiplicity results

In this section we prove the multiplicity result for problem (HVI) under the condi-
tion of strong resonance at infinity. The hypotheses on j(z, () are the following.

HYPOTHESES H (j)s. j: Z x R+ R is a function such that:

(i) for all ¢ € R, function Z 3 z — j(z,¢) € R is measurable, j(-,0) € L}(Z) and
J73(2,0)dz > 0;
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(i) for almost all z € Z, function R 3 ¢ — j(z,¢) € R is locally Lipschitz;

(iii) for almost all z € Z, all ¢ € R and all n € 9j(2,(), we have || < a(z) with
some a € L*®(Z);

(iv) there exist functions j,j_ € L*(Z) such that j(z,¢) — j4(z) as ¢ — +o00 and
j(2,¢) = j—(z) as ¢ — —oc uniformly for almost all z € Z, [, j+(z)dz > 0;

(v) there exists p1 > A1 such that
iz Q)

. S H

lim sup
¢—0

uniformly for almost all z € Z.

(vi) there exist t_ < 0 < t4 such that
[ is@rae < [ etz
z z

(vii) for almost all z € Z and all ¢ € R, we have pj(z,() < (A2y,, — A1)[¢[? with
some topological complement Y,,, of Ru; (see §2) and

/ Uy (2)xn(2)dz = 0 asn — +oo
z

for any sequences {2n}n>1 C Wy (Z) and {uf},>1 C LP"(Z) such that

uk(2) € 9j(2,2,(2)) and |z, (2)] — 400 almost everywhere on Z.

We can also modify hypothesis H(j)s (iv) and still have a multiplicity result.
Namely we assume the following.

HYPOTHESES H(j)4. j: Z xR — R is a function satisfying H (j)s, with H(j)s (iv)
and (vi) replaced by:

(iv) there exist functions j,,7_ € L'(Z) such that

limsup j(z,¢) = j4(z) and liminf j(z,¢) = j_(2)
|¢|—+o0 |¢]—=+o0

uniformly for almost all z € Z and
/ j+(z)dz >0, / j-(z)dz = 0;
z z
(vi) there exist t_ < 0 < t4 such that

/Zji(z)dz</Zj(2’,tiu1(z))dz.

REMARK 4.1. Hypotheses H(j)s (iv) and H(j)4 (iv) are the strong resonance con-
ditions, since they imply that, for almost all z € Z, the limits lim¢_ 1+ j(2, () are
finite (the term ‘strong resonance’ was first used by Bartolo et al. [3]). Evidently,

https://doi.org/10.1017/50308210500001281 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001281

Multiple solutions 1105

the growth condition in hypothesis H(j)3 4 (vii) is automatically satisfied in a neigh-
bourhood of the origin, by virtue of hypothesis H(j)s.4 (v). Moreover, the growth
condition in hypothesis H(j)s 4 (vii) is analogous to hypothesis H,, of Goncalves
and Miyagaki [12, theorem 1, p. 266]. Let

¢
i) = /0 f(zir)dr

with f: Z x R +— R a measurable function such that, for almost all z € Z and all
¢ € R, we have |f(z,¢)| < a(z), with a € L*>(Z). Then j(z,() satisfies hypothe-
ses H(j)s.4 (1)—(iii). If we set
fi(z,¢) = hg:,ﬂ_l)?ff(zv C/)v f2(2,¢) = hnglép f(z, C/)a

and if, for i = 1,2, we assume that f;(z,()¢ — 0 as |(| — +0o0, then the second part
of hypothesis H ()3 4 (vii) is satisfied. This setting corresponds to problems with a
discontinuous right-hand side (see [6, problem (0.1), p. 102 and §5, pp. 122-128]).
Hypothesis H(j)s.4 (v) is needed in order to obtain the third non-trivial solution.
Without it, we can not guarantee that the third solution is also non-trivial. When
hypothesis H(j)s.4 (v) is present, we will see in the sequel that the third solution
is obtained via the mountain-pass theorem (see theorem 2.2). Without H(j)34 (v),
the third solution can be established using the saddle-point theorem (see [20]).

PROPOSITION 4.2. If hypotheses H(j)s or H(j)s hold, then there exists function
b€ LY(Z) such that |j(z,()| < b(2) for almost all z € Z and all { € R.

Proof. Let us assume that hypotheses H(j)3 hold. By virtue of H(j)s (iv), we can
find M3 > 0 such that, for almost all z € Z, we have

3(2,Q) —Js(2)[ <1 V¢ = Ms,
§(2,¢) —j-(2)I <1 V(< —Ms.

So, for almost all z € Z, we have

i(:0) ’ } (4.1)
](ZaC) M3

On the other hand, using the Lebourg mean-value theorem (see [16] or [7, theo-
rem 2.3.7, p. 41]) and hypothesis H(j)s (iii), for all { € R and almost all z € Z, we
have |7(z,¢)| < |7(z,0)| + |a(2)][¢|. Thus, for almost all z € Z, we have

7(2, Q1 < 17(2,0)| + Msla(z)] VI¢] < Ms. (4.2)
From (4.1) and (4.2), for a(%lf( € R and almost all z € Z, we get |7(z,()| < b(z), with
b € LY(Z), namely b(z) = max{1 + |54 (2)],1 + |j_(2)], M3|a(z)|}, which finishes
the proof. The proof is similar when we assume that hypotheses H(j)4 are in effect.

O

L+ [j4(2)] V.
L+1]j-(2)] V.

//\ WV
5

| < ¢
| < ¢

As in § 3, let energy functional ¢ : Wol’p(Z) — R be defined by

ar 1 p—ﬁx”— i(z,2(2)) dz
o) £ 2 Vlp - 2 ol /ZJ(,())d-
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ProrosITION 4.3. If hypotheses H(j)s hold, then ¢ satisfies the non-smooth C con-
dition at all levels ¢ # — fZ Jj+(2)dz.

Proof. Let {z,}n>1 C W0 P(Z) be a sequence such that ¢(z,) — ¢ as n — 400,
with ¢ # — [, j+(2) dz and let (1 + ||z, [[)m(z,) — 0 as n — +o0.

We will show that {Z, }n>1 is bounded. Suppose that this is not true. Passing to
a subsequence if necessary, we may assume that ||z, || — +oo. Let y, a Tp /||l for
n 2 1. Arguing as in the proof of the proposition 3.1, we can show that y,, — $u;
in Wol’p(Z) as n — 4o00. From this it follows that z,(z) — £o00 almost everywhere
on Z as n — 400. Let us choose any € > 0. Since ¢(z,) — ¢, we can find ng(e) > 1
such that, for all n > ng(e), we have

c—e< P(xn) <c+e

and so N
c—e< —||Vxn||p - —||xn||p / j(z,xn(2))dz < c+e. (4.3)
p p A

Let a7 € d¢(xy,) be such that m(z,) = ||z%|| for n > 1. Since (1+ ||z ||)m(2,) — 0,
lznll - [lz%]l« — 0 as n — +00 and, at least for a subsequence, we have
1 1

—— < (l‘n,l‘n) < =
n n

for all n > 1. However, recall that =} = Az, — A\|2,[P 22, — u}, with
A Wol’p(Z) — W~LP(Z) as in the proof of proposition 3.1 and u} € LP" (Z) such
that u,(z) € 9j(z,xn(2)) almost everywhere on Z. So we have

—_

1
L < IVzallp = bl — [ wn@)eaz) dz <
n z n

By virtue of H(j)3 (vii), we have that
/ Uy (2)xn(z)dz = 0 asn — +oo
z

and so we infer that ||V, [|B =\, ||z, |5 — 0 as n — 4-00. Using this fact in (4.3) and
applying the Lebesgue dominated convergence theorem for the sequence j(-, x,(+))
(note that, by virtue of proposition 4.2, its usage is allowed), we have

c—sé—/ji(z)dz<c+5.
z

As € > 0 was arbitrary, so we conclude that ¢ = —fZ jx(z )dz thus we reach
a contradiction. This proves the boundedness of {z,},>1 C W0 P(Z). Arguing as
in the proof of proposition 3.1, via the Kadec—Klee property, we can show that
{zn}n>1 C Wol’p(Z) has a Strongly convergent subsequence. O

We can have a similar result, if hypotheses H(j)4 are in effect.

PROPOSITION 4.4. If hypotheses H(j)4 hold, then ¢ satisfies the non-smooth C con-

dition at all levels
c€ (—oo, —/ j+(z)dz> U (0, 4+00).
z

https://doi.org/10.1017/50308210500001281 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001281

Multiple solutions 1107

Proof. Let {x,}n>1 C WyP(Z) be a sequence such that ¢(z,) — ¢ as n — +00,
with

ce (—oo,—/Zj+(z)dz> U (0, +00)

and let (1 + ||lz,|)m(z,) — 0 as n — +oo.

We will show that {x, }»>1 is bounded. As before, let us suppose that this is not
trugf Passing to a subsequence if necessary, we may assume that ||z, | — +oo. Let
Yn = T /||n|| for n > 1. Arguing as in the proof of proposition 3.1, we can show
that y, — £u; in Wol’p(Z) as n — 400, hence x,(z) — oo almost everywhere on
Z as n — +o00. Using the Rayleigh quotient (see (2.1)), we obtain

- [ iGan()dz < plan)
A

By proposition 4.2, for all n > 1 and almost all z € Z, we have |j(2,z,(2))| < b(z),
with b € L1(Z), so we can use Fatou’s lemma and obtain

— [ ji(z)dz=— [ limsupj(z,z,(z))dz
z z

n—-4oo

< —limsup/ j(z,zn(2))dz
n—-+oo z
< 1 njs
w Lo #00)
SO
—/ Jr(z)dz <ec. (4.4)
z
We have

1 A1 .
8(on) = 2192l = 2lally — [ 3Gea(2)
p p z
As in the proof of proposition 4.3, since (1 + ||z, ||)m(z,) — 0 and using hypothe-
sis H(j)4 (vil), we have that

M

1
EIIVxnllﬁ — —|[lzn[) — 0 asn — +o0.

So, by Fatou’s lemma (note that proposition 4.2 allows its usage) and by hypothe-
sis H(j)4 (iv), we obtain

c= lim ¢(z,) < —liminf/ j(z,zn(2))dz < —/ j-(z)dz 0.
z

n—-+oo n——4oo VA

Also using (4.4), we have that

ce€ I:—/Zj+(z)dz,0j|,

which contradicts our choice of ¢. So we have proved that {x,}n>1 C Wol’p(Z) is
bounded. Then, as in the proof of proposition 3.1, we produce a strongly convergent
subsequence. O
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PROPOSITION 4.5. If hypotheses H(j)3 or H(j)4 hold, then energy functional ¢ is
bounded below.

Proof. From the Rayleigh quotient (see (2.1)) and proposition 4.2, for all = €
Lp
Wy *(Z), we have

P 2 — i(z,2(2)) dz
@) = 219215 = el - [ e a2)a

> — / l7(z,2(2))|dz > / |b(2)|dz
= —[bll1,
which shows that ¢ is indeed bounded below. O

Let Yy, be a topological complement of the one-dimensional eigenspace Ru; as
in hypothesis H ()s4 (vii), i.e. Wy (Z) = Ruy @Yy, (see [13, p. 502]).

PROPOSITION 4.6. If hypotheses H(j)s or H(j)a hold, then ¢

v, =0

Proof. Let y € Y,,. Using hypothesis H(j)34 (vii) and the definition of X2y,
(see (2.2)), for all y € Y,,,, we have

po(y) = IVyIE — Allyllz — p /Z i (=) dz

> 199l = Mlyll =~ [ Qo M)l az
zZ
= 19~ dov, Il > 0
yo, > 0. O

so, indeed, ¢

One can see that proposition 3.4 is also valid under hypotheses H(j)3 4 (v). Now
we are ready to state and prove our multiplicity results.

THEOREM 4.7. If hypotheses H(j)s hold, then problem (HVI) has at least three
distinct non-trivial solutions in WyP (Z).

Proof. We introduce the open sets
U L {a e WP(Z) i 2= +tuy +y, t >0, y€ Yy, }.

Wed\fivill show that ¢ attains its infimum on both Ut and U~. To this end, let
ny = inf{p(x) : 2 € UT} = inf{¢(z) : x € UT} < 0 (since ¢ is locally Lipschitz and
using hypothesis H(j)s3 (iv) and (vi), which says that ¢(t1u;) < 0 and tyuy € UT).
Let us set

¢(x) ifxeUt,

polz) =
0 too if w € WIP(Z)\ U*.

Evidently, ¢q is lower semicontinuous and bounded bellow (see proposition 4.5).
So we can apply theorem 2.3 with ¢ = 1/n for all n > 1 and generate a sequence
{Zn}n>1 C U™ such that ¢g(z,) = ¢(xn) \u 7y < 0 and

Bo(n) < do(u) + LLllzn —ul

Yu e WiP(2),
T+ ] 0" (%)

https://doi.org/10.1017/50308210500001281 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001281

Multiple solutions 1109

S0
(1/n) [l — ull 1
- < do(u) = dolan) Vu € W(2).
T4 o] ) 02
Let u = x,, 4 tw, with ¢ > 0 and w € WP (Z). Because z,, € U" and the latter is

an open set, we can find § > 0 such that z,, +tw € Ut for all 0 < t < 6. Thus we

can write
1 n t - n
_( /n)HwH < ¢(.Z‘ + w) ¢($ ) Vo<t<d§ VYwe Wol’p(Z),
1+ [[zy| t
e (@/m) ]
n)||lw 1
= < W (mpsw) Yw € WP(2).
1+ Han ( ) 0 ( )
et 1+ loal
dar 1+ ||z,
I (w) = 1—(;50(30";11)).
/n
Then 9,,(+) is a sublinear continuous function and ¥,,(0) = 0. Moreover, —||w]|| <

O (w) for all w € Wol’p(Z). Thus we can apply lemma 1.3 of [21, p. 81] and obtain
yr € WP (Z) with [y« < 1 and (g, w) < 9, (w) for all w € WyP(Z) and all
n = 1. Set
o & (1/n)y;,
"o+ el
We have (2%, w) < ¢%(z,;w) for all w € WyP(Z) and so z* € d¢p(x,) for n > 1.
Also,

A+ llznlymizn) < A+ llznlDllzpl < ~llynll < ~ = 0.

Note that, by virtue of hypothesis H(j)s (vi), we have that

no<- [ e
zZ

and so we can apply proposition 4.3 and obtain that there exists y; € Wol’p(Z)
such that, at least for a subsequence, we have x,, — y; in Wé’p(Z) as n — +oo. If
y1 € OUT =Y, then n, > 0 (see proposition 4.6). But we know that 7, < 0. So
y1 € UT and y; is a local minimum of ¢. Therefore, 0 € 8¢(y1). In a similar fashion,
working with the set U™, we obtain yo € U~ minimizing ¢|y-. Again, 0 € d¢(y2)
and clearly y1 # y2, y1 # 0 and y2 # 0.

By virtue of proposition 3.4, we can find 0 < r < min{—¢_,#, } such that

inf{(a) : lo] = r} > 0 > ne.

Since ¢(0) < 0, we can apply theorem 2.2 with y = t,u; or y = t_u; and obtain

y3 # 0 such that ¢(ys) > inf{¢(z) : [|z[| =r} > 0 > ny. Then y3 # y1 and y3 # yo.
Finally, since 0 € 9¢(y;), i = 1,2,3, as before, we can check that y1, y2 and ys
are three non-trivial solutions of (HVI). O

We can have the same multiplicity result if we assume hypotheses H(j)a.

THEOREM 4.8. If hypotheses H(j)4 hold, then problem (HVI) has at least three
distinct non-trivial solutions in Wy (Z).
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Proof. The proof is identical to that of theorem 4.7, using this time proposition 4.4.
Note that we have

ne < —/ je(z)dz
A

(see hypothesis H(j)4 (vi), and this permits the use of proposition 4.4). O

REMARK 4.9. These are the first multiplicity results for quasilinear hemivariational
inequalities at resonance. In fact, to our knowledge, these are the first theorems that
prove the existence of at least three non-trivial solutions for quasilinear equations
involving the p-Laplacian and having strong resonance at infinity, even if the poten-
tial function is C''. Moreover, if

¢
i(20) = /0 F(eyr)dr,

with f : Z X R — R measurable, then our formulation incorporates problems with
discontinuities, which were studied in the context of semilinear equations (i.e. for
p = 2) by Chang [6].

Finally, a careful reading of § 4 reveals that the same multiplicity results are still
valid if hypotheses H(j)3 4 (iii) are replaced by:

(iii) for almostall z € Z, all ¢ € R and all g € 9j(z, (), we have |n| < a(z)+c|¢|*!
with some a € L>®(Z), ¢ >0 and 0 < p < p.
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