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The paper deals with the resonance oscillations of a drop (bubble) surrounded by a fluid
of different density in a container subjected to small amplitude vibrations in zero gravity
conditions. The drop size is considered to be large in comparison with both the vibration
amplitude and the thickness of viscous Stokes layers. The calculations for parametrically
excited oscillations of the drop are carried out in the linear approximation, for inviscid
and low viscous media, neglecting compressibility effects. The resonant oscillation is
a doublet of neighbouring modes of eigen-oscillations of the drop, for which the sum
of frequencies coincides with the frequency of the forced vibrations. This means that
the basic state becomes unstable against quasi-periodic oscillations. The finite viscosity
implies a finite threshold for the excitation of resonance. On the other hand, the viscosity
plays a destabilizing role; at non-zero (even infinitesimal) viscosity the width of the
instability frequency range turns out to be greater than in the case of inviscid fluids.
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1. Introduction

It is known that vibrations change considerably the behaviour of mechanical systems.
Even in a case as simple as a mechanical pendulum, the action of vibration can lead to
opposite effects: at some frequencies vertical oscillations of the suspension point can lead
to the parametric excitation of the oscillations while, on the other hand, high frequency
vibrations can result in the stabilization of equilibrium states, which are unstable in the
absence of vibrations (Stephenson 1908; Kapitsa 1951; Landau & Lifshitz 1976).

In many situations, a hydrodynamic system in the absence of vibrations is capable of
performing periodic motions and has a spectrum of eigenfrequencies. Examples of this
kind are capillary–gravitational waves on the surface of a liquid or interface of liquids, free
oscillations of a bubble suspended in a liquid matrix, etc. In the absence of external forces,
due to viscous dissipation, free oscillations, as a rule, damp. The pumping of energy into
the system due to vibrations can lead to resonant excitation of oscillations. Although the
pioneering work of Faraday (1831), where the parametric resonance was first described,
is devoted specifically to the vibrational excitation of capillary–gravitational waves and
came up almost two centuries ago, the question of the vibrational excitation of resonant
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oscillations in hydrodynamic systems still cannot be considered fully investigated. The
present paper deals with the oscillations of an isolated drop or bubble in a vibrating
fluid of different density. The study of drop (bubble) oscillations is very important not
only from a theoretical point of view, but also for applications. The measurements of
the frequencies and damping coefficients of oscillations of drops levitating in an acoustic
or electromagnetic field and of pendant drops are used for the determination of the
material properties of the media (Keene et al. 1986; Asaki, Thiessen & Marston 1995;
Przyborowski et al. 1995; Tian, Holt & Apfel 1997; Lyubimov et al. 2011; Abi Chebel
et al. 2019; Shao et al. 2020).

A drop of liquid (or a gas bubble) suspended in a liquid of a different density is an
example of a hydrodynamic system with a spectrum of free oscillations. Rayleigh (1879)
was the first to calculate the frequencies of free oscillations of non-viscous spherical liquid
drop. Later on, Lamb (1881) generalized the formulas obtained by Rayleigh, taking into
account the viscosity. The damping of the viscous drop oscillations was considered by
Chandrasekhar (1959) and Reid (1960).

There are large number of works where the drop (bubble) oscillations are studied
for acoustic fields, where compressibility plays an important role. Under the action of
a modulated pressure field far from the bubble, the compressible gas in the bubble is
able to change its volume, including with the preservation of a spherical shape, which
is described by the well-known Rayleigh–Plesset equation (Rayleigh 1917; Plesset 1949).
Marston & Apfel (1980) experimentally observed quadrupole oscillations of an air bubble
and liquid drop in a liquid matrix, induced by two acoustic waves with close high
frequencies. The frequency of bubble oscillations was found to be equal to the difference
of frequencies of the imposed fields. In a theoretical paper (Marston 1980) it was shown
that these oscillations are not parametric since there is no threshold for their excitation.
The excitation of oscillations of a bubble in a liquid subjected to a monochromatic
acoustic field was studied theoretically in Mei & Zhou (1991). It has been shown that,
due to the interaction of the acoustic field with non-symmetric modes of the bubble
eigen-oscillations, radially symmetric oscillations become unstable when the wave power
exceeds some critical value.

In Leal (1992), the stability of a non-stationary state of a gaseous bubble surrounded
by a liquid is considered. It is assumed that in the basic state the bubble centroid is
quiescent and its radius is a function of time. For such symmetry of a system, in the
linear stability problem the spherical harmonics do not interact, and for each of them we
obtain an independent problem. For periodic time dependence of the bubble radius this
problem is reduced to the Mathieu equation. A quite different situation should take place
if in the basic state the bubble undergoes translational motions. In this case, the spherical
harmonics, which we can expand the basic state perturbations in, should all be coupled
to one another, even in the linear approximation. The study of this situation is one of the
goals of the present work.

In another paper (Feng & Leal 1995) it is shown that the interaction of two adjacent
modes of shape oscillations of a bubble can lead to a translational instability. The
mechanism of this instability is essentially related to the bubble volume variations. The
subject of the present study, in some sense, is opposite to one discussed in Feng & Leal
(1995); we are interested in the energy transfer from forced translational oscillations to the
connected adjacent modes of eigen-oscillations. As it will be shown below, this mechanism
does not require variations of the bubble volume and can be observed in an incompressible
fluid.
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In experiments (Shen, Xie & Wei 2010), a parametric instability arising from
modulation of the sound pressure was discovered that breaks the axial symmetry of a
liquid drop suspended in air by the acoustic levitation method.

Large amplitude shape oscillations of drops and bubbles immersed in an
immiscible liquid have been investigated in Trinh, Thiessen & Holt (1998) using
the ultrasonic radiation pressure technique. The interaction between axisymmetric and
non-axisymmetric l = 3 and l = 2 modes (l is the degree of the Legendre polynomial) has
been documented; if large amplitude drop shape oscillations corresponding to l = 3 are
excited then the l = 2 mode is also excited in a subharmonic way, moreover, the frequency
of oscillations for the l = 2 mode is twice lower than that of the l = 3 mode. A similar
behaviour has been found for the other resonant pairs too.

In most of the cited papers, a considerable role is played by the compressibility effects,
since for an incompressible medium inside the bubble radially symmetric oscillations are
impossible.

In the present paper we consider oscillations of a drop or bubble suspended in a fluid of
differing density, in a container subjected to vibrations under zero gravity conditions. The
study is performed neglecting the compressibility of media. Since a bubble (or a drop)
surrounded by a fluid of differing density is an oscillatory system with a discrete spectrum
of eigen-oscillations, one should expect the resonance excitation of oscillations when
certain relations between the vibration frequency and eigenfrequencies of oscillations of
the bubble (drop) are fulfilled.

2. Equations and boundary conditions

It is known (Faraday 1831) that vibrations of a container filled with a fluid or a system of
fluids can lead to parametrically excited waves (Faraday ripple) at a free surface of the fluid
or at the fluid interface. Similar phenomena can take place for a drop (bubble) suspended
in a medium of differing density when such a system is subjected to vibrations. Since
this system possesses eigenfrequencies, at certain ratios between them and the vibration
frequency one should expect resonant phenomena. To study the conditions for parametric
excitation of the drop oscillations, we consider the following problem.

Let a fluid of density ρ1 fill a container, where a drop of different fluid (of density
ρ2) immiscible with the surrounding medium, is suspended. In the absence of gravity
and other external fields, the drop, affected by the surface tension, assumes a spherical
shape of radius R0. We suppose that the container size and the distance of the drop from
its walls by far exceeds the drop size. Let the container undergo translational sinusoidal
vibrations with frequency ω and amplitude a. In this case, the inertia forces arise in the
reference frame of the container. If the densities of the drop and the surrounding medium
are different, these forces are non-uniform, which sets both fluids in motion.

Let the vibration frequency be such that the corresponding sound wavelength is larger
than the container size, and the quantity aω, which determines the order of magnitude of
the velocities of the fluids, is small compared with the sound velocity. In this case, the
fluids may be considered as incompressible. Additionally, at the first stage of calculations
we will neglect the media viscosities, assuming the flow of the fluids to be potential.

In this case, the velocity potentials in both media ϕj satisfy the Laplace equations

Δϕj = 0, (2.1)

(j = 1, 2; the subscript 1 refers to the outer fluid, and 2 to the inner one).
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On the rigid walls of the container the impermeability condition is satisfied

∇ϕ1 · n = 0, (2.2)

where n is the unit vector normal to the surface.
Since the drop size is assumed to be small as compared with the distance from the

container walls, condition (2.2) may be replaced by the condition of vanishing fluid
velocity far from the drop

∇ϕ1 → 0 at r → ∞, (2.3)

where r is the length of the radius vector drawn from the inertial centre of the drop.
The conditions at the drop surface described by equation G(r, t) = 0, which has to be

determined itself, are the following:

(i) The continuity condition for the normal components of fluid velocities

[∇ϕ] · n = 0. (2.4)

(ii) The kinematic condition connecting the displacement of the drop surface with the
fluids velocities

∂G
∂t

+ ∇ϕ · ∇G = 0. (2.5)

(iii) The condition of the normal stress balance accounting for the inertial forces and
surface tension[

ρ

(
∂ϕ

∂t
+ 1

2
(∇ϕ)2 + aω2z cos ωt

)]
= α div n + const. (2.6)

Here, the brackets denote the jump of the value across the interface, α is the surface
tension coefficient and the z-axis is directed along the vibration axis. Equation (2.6) results
from combining Bernoulli’s equation with the normal stress balance at the interface. The
constant in this equation, generally speaking, can be a function of time, but not coordinates
since it results from the integration of the Euler equations describing the flow in the
absence of viscosity.

Let us introduce dimensionless variables. We choose the equilibrium radius of a drop
as the length scale and the inverse frequency of vibrations ω−1 and ωR0

2 as the scales
for time and the velocity potential, respectively. For the densities of the fluids we take the
scale (ρ1 + ρ2).

Dimensionless equations (2.1) and the boundary conditions (2.3)–(2.5) have the same
form as earlier and condition (2.6) takes the form[

ρ̃

(
∂ϕ

∂t
+ 1

2
(∇ϕ)2

)]
+ [

ρ̃
]

ãz cos t = 1
We

div n + const. (2.7)

Here

ρ̃j = ρj

ρ1 + ρ2
, ã = a

R0
(2.8a,b)

are the dimensionless densities of two media and the vibration amplitude and

We = (ρ1 + ρ2) ω2R0
3

α
(2.9)
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is the Weber number. Note that, for the scales chosen, the dimensionless densities satisfy
the relation

ρ̃1 + ρ̃2 = 1. (2.10)

Below we omit the tilde for the dimensionless density and vibration amplitude.
Let the amplitude of the imposed vibrations be so small that the inequality

a � 1 (2.11)

holds.
In a real situation in the absence of vibrations the drop oscillations will be damped due

to the dissipative effects. Periodic forcing (vibrations, as in our case), in principle, can lead
to the resonance excitation of undamped oscillations. Such oscillations can also occur in
the case of a small deviation of the vibration frequency from the exact resonance value. In
our paper, we consider only small amplitudes of vibrations for which condition (2.11) is
satisfied. In this case, the resonance oscillations will take place only at small dissipation of
energy. That is why we will restrict ourselves to media with zero or very small viscosities.

Thus, in the problem under consideration arise two different, generally independent,
small quantities: the vibration amplitude and the deviation of the frequency from the
resonance value. In this situation it is suitable to introduce a formal small dimensionless
parameter ε and to search for the solution of the problem in the form of a power series
with respect to this parameter. Let us set

a = εa1, (2.12)

We = We0 + εWe1. (2.13)

In (2.13) the Weber number, which can be interpreted as the squared vibration frequency,
is expanded into a power series with respect to ε instead of frequency itself. By We0 we
denote the resonance value of We which is to be determined from the solution of the
problem).

Let us consider small deviations of a drop shape from equilibrium

r = 1 + εf (θ, t). (2.14)

In (2.14), r and θ are the spherical coordinates, the polar angle θ is measured from the
vibrations axis. Due to the symmetry of the problem, axisymmetrical flows are considered,
and all the variables are assumed to be independent of the azimuthal angle.

As ε is small (and, consequently, so are the ϕj), the problem may be solved by expanding
the variables into power series with respect to ε. Assuming that the ϕj are of the same order
of magnitude as ε, we write down the potential in the form ϕj = εϕ̃j, where ϕ̃j is a finite
quantity.

The boundary conditions (2.4), (2.5), (2.7) are to be imposed at the drop surface, i.e. at
r = 1 + εf . Expanding these conditions in Taylor series with respect to the deviation of
the drop shape from the spherical one, one obtains the relations to be satisfied at r = 1.
For example, condition (2.4), written in a detailed form, is

r = 1 + εf :
[
εϕ̃r − ε2

r2
fϑ ϕ̃ϑ

]
= 0, (2.15)

since for the axisymmetric case and small deviations of the drop shape from the spherical
one we have

∇ϕ̃ = ϕ̃rer + 1
r
ϕ̃ϑeϑ, n = er − 1

r
fϑeϑ . (2.16a,b)
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By changing

ϕ̃r|r=1+εf = ϕ̃r|r=1 + εf ϕ̃rr|r=1 + O(ε2), (2.17)

we obtain

r = 1 : ε
[
ϕ̃r
]+ ε2 [f ϕ̃rr − fθ ϕ̃θ

]+ O(ε3) = 0, (2.18)

or, dividing by ε, and omitting the tilde for the potential

ϕ1r + ε(ϕ1rrf − ϕ1θ fθ ) = ϕ2r + ε(ϕ2rrf − ϕ2θ fθ ). (2.19)

Applying the same operations to the boundary conditions (2.5), (2.7) we obtain

ft = ϕ2r + ε(ϕ2rrf − ϕ2θ fθ ), (2.20)

− ρ2

[
εϕ2t + ε2

(
ϕ2trf + 1

2
ϕ2

2r + 1
2
ϕ2

2θ

)]

+ ρ1

[
εϕ1t + ε2

(
ϕ1trf + 1

2
ϕ2

1r + 1
2
ϕ2

1θ

)]

= 1
We

[
2 − ε(2f + fθθ + fθ cot θ) + 2ε2f ( f + fθθ + fθ cot θ)

]
+ (ρ2 − ρ1)εa1 cos θ cos t + (ρ2 − ρ1)ε

2a1f cos θ cos t + const. (2.21)

Letter subscripts in (2.20)–(2.21) stand for differentiation with respect to the
corresponding variables; the curvature of the surface div n is calculated with an accuracy
of up to ε2.

The summary of the assumptions used in our theory in the inviscid case is the following:

ω � 2πc/R0, a � R0, We − We0 � 1. (2.22a–c)

3. Forced oscillations of the drop

At zeroth order, the constant in (2.21) is evaluated, and to the next order we obtain the
following problem for the determination of the fluid velocities and the drop shape (the
corresponding variables of the linear problem are capitalized):

ΔΦj = 0, (3.1)

at r → ∞
∇Φ1 = 0, (3.2)

and at r = 1

Ft = Φ2r, (3.3)

Φ1r = Φ2r, (3.4)

−ρ2Φ2t + ρ1Φ1t − (ρ2 − ρ1)a1 cos θ cos t = − 1
We

(2F + Fθθ + Fθ cot θ) . (3.5)

Here, now Φ is the leading part of the velocity potential.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

94
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.949
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The solution of the linear problem (3.1)–(3.5) is

F = 2
3μ cos θ cos t, (3.6)

Φ1 = 1
3r2 μ cos θ sin t, (3.7)

Φ2 = − 2
3μr cos θ sin t, (3.8)

where the following notation is introduced

μ = 3(ρ1 − ρ2)

2ρ2 + ρ1
a1. (3.9)

Thus, to the first order with respect to ε we obtain the solution which corresponds to the
translational oscillation of the drop with the amplitude 2με/3 and the frequency equal to
that of the container oscillations. Moreover, the shape of the drop does not change. The
amplitude of these oscillations becomes zero at ρ1 = ρ2, since in this case the inertial
forces are uniform. The phase of oscillations of the drop is determined by the density
difference: the oscillations of a denser drop occur in the counterphase relative to the
container oscillations, the phase of oscillations of a lighter drop is the same as that of
the container.

4. Stability analysis

To analyse the stability of the obtained solution, it is convenient to transit to the reference
framework moving with the drop. In this framework, the basic solution (3.6)–(3.8) has the
form

F = 0, (4.1)

Φ2 = 0, (4.2)

Φ1 = 2
3μ
(
r + 1

2r2

)
cos θ sin t. (4.3)

The problem for the perturbations of the basic solution (4.1)–(4.3) is obtained
from (2.1)–(2.3) and (2.20)–(2.21) in the linear approximation, taking into account the
modification of the inertial forces with the transition to the new reference frame. The
perturbations of the velocity potentials satisfy the Laplace equations, they vanish far from
the drop (for the outer medium) and satisfy the following conditions at the drop surface,
r = 1:

ft = ϕ2r, (4.4)

ϕ2r − ϕ1r = 2μ sin t
(

f cos θ + 1
2 fθ sin θ

)
, (4.5)

ρ1ϕ1t − ρ2ϕ2t + 1
We

(2f + fθθ + fθ cot θ) = μρ1(ϕ1θ sin θ sin t + f cos θ cos t). (4.6)

For the perturbations we use the same notations as for the functions themselves.
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909 A18-8 D. V. Lyubimov, T. P. Lyubimova and A. A. Cherepanov

The solution to the Laplace equation that vanishes at infinity and does not have any
singularities at the drop centre, has the form

ϕ1 =
∑ Ak(t)

rk+1
Pk(cos θ), (4.7)

ϕ2 =
∑

Bk(t)rkPk(cos θ). (4.8)

At the same time, the following equality holds

f =
∑

fkPk(cos θ), (4.9)

where Pk are Legendre polynomials of kth order.
Substituting (4.7)–(4.9) into (4.4)–(4.6), at the zeroth order with respect to μ we arrive

at the known problem (Landau & Lifshitz 1987) of the eigen-oscillations of the drop. In
this case, the spectrum of eigenfrequencies is

Ω2
k = 1

We
k(k2 − 1)(k + 2)

ρ1k + ρ2(k + 1)
, (4.10)

where k ≥ 2 since the case k = 0 is impossible because of incompressibility of the fluids,
and k = 1 corresponds to a uniform displacement of the drop, and not to oscillations.

Analysis of (4.4)–(4.6) at the next order shows that, in principle, the resonant excitation
of harmonics is possible under the following synchronism condition:

Ωk+1 + Ωk = 1. (4.11)

Let the value of the Weber number be in such a range that the synchronism condition
(4.11) is satisfied for some pair of modes. Then, all the harmonics of the solution
(4.7)–(4.9), except for the kth and (k + 1)th, are non-resonant and, consequently, to find the
resonance conditions it is sufficient to restrict ourselves to just this pair of the harmonics
of (4.7)–(4.9), assuming that

f = fkPk + fk+1Pk+1, (4.12)

ϕ1 = Ak

rk+1
Pk + Ak+1

rk+2
Pk+1, (4.13)

ϕ2 = BkrkPk + Bk+1rk+1Pk+1. (4.14)

Here, the argument in Legendre polynomials is cos θ ; fk, Ak and Bk are the functions of
time.

Substitution of (4.12)–(4.14) into (4.4)–(4.6) after omitting non-resonant harmonics
yields the set of ordinary differential equations

.

f k= kBk, (4.15)
.

f k+1= (k + 1)Bk+1, (4.16)
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kBk + (k + 1)Ak = −μ
k(k + 1)

2k + 3
fk+1 sin t, (4.17)

(k + 1)Bk+1 + (k + 2)Ak+1 = μ
(k + 1)(k + 2)

2k + 1
fk sin t, (4.18)

ρ1
.

Ak −ρ2Ḃk − βk

We
fk = ρ1μ

k + 1
2k + 3

[−(k + 2)Ak+1 sin t + fk+1 cos t
]
, (4.19)

ρ1
.

Ak+1 −ρ2Ḃk+1 − βk+1

We
fk+1 = ρ1μ

k + 1
2k + 1

[
kAk sin t + fk cos t

]
. (4.20)

Here, overdots stand for differentiation of functions with respect to time and we denote

βk = (k − 1)(k + 2). (4.21)

The set (4.15)–(4.20) can be reduced to two equations for fk and fk+1

−αk

..

f k − βk

We
fk = ρ1μ

2k + 1
2k + 3

( .

f k+1 sin t + fk+1 cos t
)

, (4.22)

−αk+1

..

f k+1 −βk+1

We
fk+1 = −ρ1μ

.

f k sin t, (4.23)

where
αk = ρ2

k
+ ρ1

k + 1
. (4.24)

To study (4.22)–(4.23), it is convenient to use the multiple scale method (Nayfeh 1981).
In accordance with it, we introduce a hierarchy of time scales, so that the time derivative
is represented as the series

∂

∂t
= ∂

∂t0
+ ε

∂

∂t1
+ · · · . (4.25)

The functions fk and fk+1 are also presented in series form

fk = fk
(0) + εfk

(1) + · · · , (4.26)

fk+1 = fk+1
(0) + εfk+1

(1) + · · · . (4.27)

Substitution of series (4.25)–(4.27) into the set of equations (4.22)–(4.23) yields, to the
leading order,

..

fk
(0) +Ωk

2fk
(0) = 0, (4.28)

..

f
(0)

k+1 +Ω2
k+1 f (0)

k+1 = 0, (4.29)

i.e. the solutions are independent oscillations with the frequencies Ωk and Ωk+1, defined
by (4.10). Thus,

fk
(0) = C exp(iΩkt0) + C∗ exp(−iΩkt0), (4.30)

f (0)

k+1 = D exp(iΩk+1t0) + D∗ exp(−iΩk+1t0), (4.31)

where ‘∗’ stands for complex conjugation, the amplitudes C and D do not depend on the
‘fast’ time t0, but, generally speaking, are functions of ‘slow’ time t1.
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To the next order, (4.22)–(4.23) with allowance for (4.25)–(4.27) yield

−αk
∂2f (1)

k

∂t2
0

− 2αk
∂2f (0)

k

∂t0∂t1
− βk

We0
f (1)

k + βk

We2
0
We1f (0)

k

= ρ1μ
2k + 1
2k + 3

(
∂f (0)

k+1

∂t0
sin t0 + f (0)

k+1 cos t0

)
, (4.32)

−αk+1
∂2f (1)

k+1

∂t2
0

− 2αk+1
∂2f (0)

k+1

∂t0∂t1
− βk+1

We0
f (1)

k+1 + βk+1

We2
0

We1f (0)

k+1 = −ρ1μ
∂f (0)

k

∂t0
sin t0. (4.33)

Here, We0 is the value of the Weber number at which the synchronism condition (4.11) is
satisfied and εWe1 is a small deviation from this value.

If condition (4.11) is satisfied, the non-uniformities of equations (4.32)–(4.33), which
determine fk and fk+1, contain the resonance terms. The requirement of the absence of
secular solutions to this set determines the evolution of C and D as

−2iαkΩk
∂C
∂t1

+ βk

We0
2 We1C = 1

2
ρ1μ

2k + 1
2k + 3

(1 − Ωk+1)D∗, (4.34)

2iαk+1Ωk+1
∂D∗

∂t1
+ βk+1

We0
2 We1D∗ = 1

2
ρ1μΩkC. (4.35)

Since the set (4.34)–(4.35) is linear, it admits a solution proportional to exp(κt1).
Substituting this solution into (4.34)–(4.35), one gets the set of linear algebraic equations
for the corresponding amplitudes. These solutions are non-zero if the determinant equals
zero. This condition yields the equation for the increment κ

4αkαk+1ΩkΩk+1κ
2 + 2i

We1

We2
0

κ (αk+1Ωk+1βk − αkΩkβk+1)

+ βkβk+1
We2

1

We4
0

− μ2

4
2k + 1
2k + 3

Ω2
k ρ1

2 = 0. (4.36)

In the parameter range where the increment κ is positive (instability area) the solutions
of (4.34)–(4.35) are exponentially growing and expansions (4.26), (4.27) become invalid
at large time. From algebraic equation (4.36) it follows that the solutions of equations
(4.34)–(4.35) are growing if the discriminant of (4.36) is positive, i.e. if

ρ1
2μ2 2k + 1

2k + 3
Ω2

k αkαk+1ΩkΩk+1 >
We2

1

We4
0

(αkΩkβk+1 + αk+1Ωk+1βk)
2 . (4.37)

5. Discussion of the results for the inviscid case

Thus, the instability range in the coordinates a1, We1 is limited by the straight lines

a1 = ±qkWe1, qk = 2ρ2 + ρ1

3ρ1|ρ2 − ρ1|
1

ΩkWe2
0

√
2k + 3
2k + 1

(αk+1Ωk+1βk + αkΩkβk+1)√
αkαk+1ΩkΩk+1

. (5.1)

Each pair of neighbouring modes is related to its own instability region, since the values
We0, which satisfy (4.11), and the coefficient qk depend on the number of interacting pairs.
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FIGURE 1. First two resonance zones (k = 2 and k = 3) for the case of inviscid media with
ρ1 = 0.55, ρ2 = 0.45.

In figure 1 the two first instability regions are shown for ρ1 = 0.55 and ρ2 = 0.45, which
correspond to a kerosene drop in water. The resonance Ω2 + Ω3 = 1 is related to We0 =
81.5 and the next resonance to We0 = 221.8.

Although in the considered problem one cannot derive directly the Mathieu-type
equation for the perturbations, the stability map, typical for the parametric resonance,
shows that the specific parametric resonance takes place. Namely, the frequency of the
forcing is decomposed into two eigenfrequencies. However, these frequencies are not
identical, as for the Mathieu equation. Here, they are different and correspond to the
neighbouring modes of eigen-oscillations. This situation is encountered when parametric
oscillations of coupled systems are studied (see Schmidt 1975).

The slope coefficient qk of the straight lines bounding the resonance region is a function
of the densities of the drop and the surrounding medium. In figure 2 the dependence
of qk on ρ1 is presented for the first resonant doublet (k = 2, k + 1 = 3). Recall that, in
the adopted notations, once determined, ρ1 quite simply determines ρ2 = 1 − ρ1. As one
can see, the resonance is impossible for ρ1 = 0.5, since in this case of fluids of equal
densities the inertial forces are uniform, and the drop does not displace relative to the
surrounding medium under vibrations of the container. The resonance is also impossible
for ρ1 = 0, that is, when the density of the surrounding medium is negligible as compared
with the drop density. At ρ1 < 0.5 (a heavy drop in a light matrix) the dependence qk(ρ1)

is non-monotonic. For the resonance under consideration, there exists a minimum close to
ρ1 ≈ 0.29, where the width of the resonance region is maximal, since the straight lines,
bounding the instability region, have the smallest slope with respect to the axis We1. At
ρ1 > 0.5 the value of qk monotonically decreases as ρ1 grows, and the resonance region is
wider the denser the surrounding medium as compared with the drop density.

If one considers non-axisymmetric perturbations with azimuthal number m, then the
results do not change qualitatively. As known (Landau & Lifshitz 1987), the spectrum
of eigenfrequencies of the drop oscillations (4.10) is degenerate and does not depend
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FIGURE 2. Value of qk versus ρ1 for the first resonance zone.

on the value of m. Calculations show that, when all the other conditions are the same,
the resonance region for perturbations with m /= 0 is always narrower than that for the
axisymmetric ones and it is always located inside the domain bounded by the straight
lines (5.1). This means that axisymmetric oscillations are always the most dangerous ones.

6. Accounting for small viscosity

The threshold of excitation of parametric oscillations in figure 1 equals zero at We1 = 0,
i.e. when the resonance condition (4.11) is satisfied identically. The absence of a finite
threshold for parametric excitation is due to the inviscid media model.

For fluids of low viscosity νj, when the condition

νj

ωR0
2 � 1 (6.1)

holds, one can account for the viscous dissipation with the aid of the following scheme.
Since we assume that inequality (6.1) is satisfied, then the viscous corrections to the
eigenfrequency for the spherical kth mode (for comparable densities of media) to the
leading order have the form (Chandrasekhar 1959)

ω1k = ε(i − 1)γk, (6.2)

where

γk = 1
2

√
Ωk

2
(2k + 1)2 W e−(1/4)

αk

ρ1ρ2
√

ν1ν2

ρ1
√

ν1 + ρ2
√

ν2
. (6.3)

Here, νj denote dimensionless analogues of the viscosity coefficients scaled with√
αR0/(ρ1 + ρ2).
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We remark that the order of magnitude for the viscosity coefficients is explicitly
predetermined. It follows from (6.2) that, in the approximation applied, one should take
the viscosity as the small quantity of the second order.

As seen from (6.3), the correction depends on the mode number, and its presence, since
ω1k is complex, leads not only to the damping of eigen-oscillations but also to the viscous
shift of their frequencies.

Since we consider low viscosity fluids, then γk is a small quantity and to account for the
viscous dissipation it suffices to introduce this quantity in (4.34)–(4.35) just replacing

∂

∂t1
→ ∂

∂t1
− i(i − 1)γk. (6.4)

Such a way of accounting for the weak dissipation is certainly approximate and has to be
looked at as a phenomenological one. It does not allow for nonlinear dissipative effects
and requires an additional assumption regarding the order of the damping coefficient
smallness. However, a quite similar approach is traditionally used in the studies of
waves at the free surface or interface, particularly, including studies of parametrically
excited oscillations (see, for example, Miles & Henderson 1990; Edwards & Fauve 1994;
Kumar & Tuckerman 1994; Christiansen, Alstrom & Levinsen 1995; Lyubimova et al.
2019) and often allows one to obtain qualitatively good results. In Kumar & Tuckerman
(1994) the instability threshold and critical wavelength obtained using a phenomenological
approach and by numerical simulation based on the full Navier–Stokes equations (FHS)
are compared. It is found that the wavelengths predicted by the two approaches do
not differ significantly for low viscosity. The authors also compare the results of the
phenomenological and FHS approaches with the experimental results obtained for a
viscous glycerine–water mixture in contact with air in Edwards & Fauve (1993). It
is found that both the phenomenological and FHS approaches agree reasonably well
with the experimentally measured wavelengths. In Lyubimova et al. (2019), the Faraday
waves on a band pattern formed in two-phase systems near the critical point under
zero gravity conditions were studied. Comparison of the instability threshold values
obtained analytically using a phenomenological approach, numerically by direct numerical
simulation based on the Navier–Stokes equations and experimentally has shown good
agreement.

Further calculations for the region of parametric resonance are carried out according
to the above-described scheme. The neutral curve obtained in this way has the following
form in the coordinates a1, We1:

γkγk+1

[
(αkΩkβk+1 + αk+1Ωk+1βk)

2

αkαk+1ΩkΩk+1(γk + γk+1)2

We2
1

We4
0

+ 4(αkΩkβk+1 + αk+1Ωk+1βk)

γk + γk+1

We1

We2
0

]

+ 8γkγk+1αkαk+1ΩkΩk+1 − 9ρ2
1(ρ2 − ρ1)

2

4(2ρ2 + ρ1)2
a2

1
2k + 1
2k + 3

Ωk
2 = 0. (6.5)

Viscous dissipation, if taken into account, leads to two different effects. First, the
parametric excitation for the resonance becomes that of a finite amplitude type so that
the oscillations arise (in the minimum of the neutral curve) when a1 exceeds some critical
value

a∗ = 4(2ρ2 + ρ1)

3ρ1Ωk|ρ2 − ρ1|

√
2k + 3
2k + 1

γkγk+1αkαk+1ΩkΩk+1. (6.6)
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Second, a viscous shift of the frequency from the value determined by (4.11) takes place.
The minimum of the neutral curve occurs not at We1 = 0 but when it assumes the value

We1∗ = −2We2
0(γk + γk+1)αkαk+1ΩkΩk+1

αkΩkβk+1 + αk+1Ωk+1βk
. (6.7)

The threshold value of the vibration amplitude (6.6) decreases as the number k grows.
However, the threshold value of the amplitude of the vibration velocity, which is equal
the product aω and experimentally characterizes the power loss at the vibrating plate,
increases with k. This means that the most easily excited resonance is the one where the
second and third modes of eigen-oscillations interact.

Formula (6.5) has one important feature. When the viscosity tends to zero, it does not
turn into (5.1), yielding instead

a1 = ±ΓkqkWe1, (6.8)

where

Γk
2 = 4αkαk+1

√
ΩkΩk+1(2k + 1)2(2k + 3)2[

αk+1
√

Ωk(2k + 1)2 + αk
√

Ωk+1(2k + 3)2
]2 . (6.9)

The value Γk is always less than unity, therefore the straight lines (6.8) are inclined
to the We1-axis more than those given by (5.1). Thus, the presence of an infinitesimal
dissipation considerably changes the resonance properties as compared with the case ν1 =
ν2 = 0. Cases of such paradoxical behaviour are known in the mechanics of elastic discrete
systems (Schmidt 1975). However, the situation is different in the case of Faraday ripple at
a flat interface and for the Mathieu equation, which makes this result paradoxical. In the
next subsection we show that, in reality, the increase of the width of the instability zone
including a small viscosity is a general situation whereas Faraday ripple is a particular case
where the destabilizing effect is reduced due to the symmetry properties of the system.

In figure 3 the stability map is presented for the second and third resonant modes for the
dimensionless densities ρ1 = 0.555, ρ2 = 0.445. Dotted lines correspond to ν1 = ν2 = 0
(that is the same resonance as in figure 1), dashed lines correspond to ν1, ν2 → 0. Solid
line is plotted for a kerosene drop of the radius 1 cm in water. As one can see, at small
deviations of We from the resonance value (that is, at small εWe1), viscosity stabilizes the
equilibrium by increasing the excitation threshold as compared with the case of inviscid
media. However, at further deviation of We from the resonance value, the solid line crosses
the dashed and dotted lines. This means that, in these regions, the viscosity plays a
destabilizing role.

If the density of the drop is very small as compared with the density of the surrounding
medium (a gaseous bubble in a liquid matrix), one should take a different value for the
damping coefficient. In this case, instead of (6.2)–(6.3) we take

ω1k = iγk, γk = ν1(2k + 1)(k + 2). (6.10)

Then we obtain

a∗2 = 16Ωk+1ν1
2(k + 3)(2k + 1)(2k + 3)(3k + 5)

9Ωk(k + 1)(3k + 2)
. (6.11)

As one can see, unlike the case of fluids with comparable densities, the resonance
excitation threshold is now proportional to the viscosity and not to its square root as in
(6.6). That is, in the low viscosity approximation, oscillations of a gas bubble are induced
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FIGURE 3. First resonance zone (k = 2) for different dimensionless viscosities: dotted lines -
ν1 = 0, ν2 = 0; dashed lines - ν1 = 10−6, ν2 = 10−6; solid lines - ν1 = 0.00190, ν2 = 0.00133.

by the container oscillations with smaller amplitude than the oscillations of a heavy drop.
There is no viscous shift of frequency in this case.

Thus, the vibrations of a container lead to excitation of a specific parametric resonance
owing to the coupling of the neighbouring modes of the eigen-oscillations of the drop
suspended in a fluid of different density. The threshold value of the vibration velocity
amplitude for this resonance is determined by the viscous dissipation and grows with the
increase of the number of resonating modes and, consequently, with the increase of the
frequency of the container oscillations.

7. On the paradoxical influence of the viscosity on parametric instability

Unlike a usual resonance of forced oscillations, for the parametric resonance the transfer
of energy from an external source does not occur directly but is due to the control of the
interaction of different modes of eigen-oscillations. In this case, for weak interaction, the
synchronism conditions should be satisfied. If there are two modes of eigen-oscillation
with frequencies ω1 and ω2 interacting with the external source with frequency Ω , then

Ω = ω1 + ω2. (7.1)

A deviation from exact synchronism does not prevent the resonance, but requires a finite
amplitude of forcing, which could provide synchronization of oscillations. For two modes
with frequencies only slightly different from those satisfying condition (7.1), in the absence
of forcing and dissipation, we can derive equations for a slow evolution of amplitudes

.

X +iδ1X = 0, (7.2)
.

Y +iδ2Y = 0, (7.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

94
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.949


909 A18-16 D. V. Lyubimov, T. P. Lyubimova and A. A. Cherepanov

λ

η

FIGURE 4. Dependence of the real part of growth rate on the parameter of forcing η = η1η2.

where δ1 and δ2 are frequency mismatch parameters. In the case of interaction with an
external energy source, the equations are modified

.

X +iδ1X + η1Y = 0, (7.4)
.

Y +iδ2Y + η2X = 0. (7.5)

Here, η1 and η2 are parameters proportional to the amplitude of forcing. Solutions to
equation (7.4) are proportional to exp(λt) where the growth rate λ is determined by the
characteristic equation

λ2 + i(δ1 + δ2)λ− δ1δ2 − η1η2 = 0. (7.6)

Dependence of the real part of growth rate on the parameter of forcing η = η1η2 is plotted
in figure 4.

Critical (threshold) amplitude for excitation η∗ differs from zero for different
mismatches of two interacting modes

η∗ = 1
4(δ1 − δ2)

2. (7.7)

If η < η∗, the growth rate is purely imaginary, which corresponds to the absence of
synchronization.

To account for dissipation, one needs to add dissipative terms into (7.4)
.

X +iδ1X + σ1X + η1Y = 0, (7.8)
.

Y +iδ2Y + σ2Y + η2X = 0. (7.9)

Growing solutions of (7.8)–(7.9) appear when the parameter η reaches the threshold
value ηd

ηd = σ1σ2

[
1 +

(
δ1 − δ2

σ1 + σ2

)2
]

. (7.10)
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λ

η

FIGURE 5. Typical dependence of the real part of the growth rate on η.

For σ1 = σ2 = σ we obtain from (7.10) η = ηe, where

ηe = 1
4 (δ1 − δ2)

2 + σ 2 = η∗ + σ 2, (7.11)

i.e. ηe > η∗; at equal damping coefficients the dissipation increases the instability
threshold. However, at σ1 /= σ2, as one can see from (7.10), ηd can assume any small values.
Moreover, for small enough but different damping coefficients, ηd is necessarily less than
η∗. Indeed, by introducing the notation σ2/σ1 = q we can rewrite (7.10) in the form

ηd = 4q
(1 + q)2

η∗ + qσ1
2, (7.12)

from which we have

ηd − η∗ = −
(

1 − q
1 + q

)2

η∗ + σ1σ2. (7.13)

The right-hand side of (7.13) is negative at any k /= 1 and with small enough product σ1σ2.
Typical dependence of the real part of growth rate on η is presented in figure 5.

Thus, the extension of the parameter range for excitation of parametric resonance when
weak dissipation is accounted for is a general result. The situation is different only in
some particular cases when σ1 = σ2. One of these particular cases is the excitation of
Faraday ripple at a flat surface of a fluid. In that case, two interacting modes are two
waves propagating in opposite directions. Due to the symmetry of the problem, for these
waves δ2 = −δ1 and σ2 = σ1 and accounting for the dissipation results in a decrease of the
instability range. In the situation under consideration, two interacting modes are different
modes of eigen-oscillations of a drop with different spatial structures and consequently
different damping coefficients.

The paradoxical extension of the instability domain in the parameter space under
the influence of infinitesimal dissipative forces is also known for linear, autonomous,
non-conservative mechanical systems (see, for example, Kirillov 2007).
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8. Conclusions

Vibrations significantly affect the behaviour of an incompressible drop or bubble
suspended in a fluid of different density.

Since the drop is an oscillatory system, under certain conditions, vibrations lead to a
parametric resonance.

One interesting feature of this resonance is that it is twofold: vibrations induce coupled
oscillations of two neighbouring modes.

Another peculiarity is the paradoxical effect of the viscosity on the conditions of the
resonance excitation. As in the other cases, viscosity leads to a non-zero threshold of
resonance excitation and a viscous shift of frequency. However, what is more, viscosity
widens the resonance zone to such an extent that parametric resonance becomes possible
at the vibration frequencies and amplitudes at which it is impossible for an inviscid fluid.
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