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We are given a graph G with n vertices, where a random subset of k vertices has been

made into a clique, and the remaining edges are chosen independently with probability 1
2 .

This random graph model is denoted G(n, 1
2 , k). The hidden clique problem is to design an

algorithm that finds the k-clique in polynomial time with high probability. An algorithm due

to Alon, Krivelevich and Sudakov [3] uses spectral techniques to find the hidden clique with

high probability when k = c
√
n for a sufficiently large constant c > 0. Recently, an algorithm

that solves the same problem was proposed by Feige and Ron [12]. It has the advantages

of being simpler and more intuitive, and of an improved running time of O(n2). However,

the analysis in [12] gives a success probability of only 2/3. In this paper we present a new

algorithm for finding hidden cliques that both runs in time O(n2) (that is, linear in the size

of the input) and has a failure probability that tends to 0 as n tends to ∞. We develop this

algorithm in the more general setting where the clique is replaced by a dense random graph.

2010 Mathematics subject classification: Primary 05C80

Secondary 05C85, 68W20

1. Introduction

A clique in a graph G is a subset of its vertices any two of which are connected by an

edge. The problem of determining the size of the maximum clique in a graph is known

to be NP-complete [22]. It has also been proved [5, 4, 13] that assuming P �= NP, there

exists a constant b > 0 for which it is hard to approximate the size of the maximum clique

within a factor of nb. Therefore, it is natural to investigate the hardness of this problem

in the average case.
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The Erdős–Rényi random graph model, also denoted G(n, 1
2
), is a probability measure

on graphs with n vertices. In this model, a random graph is generated by including each

pair of vertices as an edge in the graph independently with probability 1
2
. It is known

that with probability tending to 1 as n tends to infinity, the size of the largest clique in

G(n, 1
2
) is (2 + o(1)) log2 n. There exists a polynomial-time algorithm (see, e.g., [17]) that

finds a clique of size (1 + o(1)) log2 n in G(n, 1
2
) with high probability, but even though

in expectation G(n, 1
2
) contains many cliques of size (1 + ε) log2 n for any fixed 0 < ε < 1,

there is no known polynomial-time algorithm that finds one. It is plausible to conjecture

that this problem is computationally hard, and this hardness has been used in several

cryptographic applications [21, 24].

Finding a large clique may be easier in models where the graphs contain larger

cliques. Define, therefore, the hidden clique model, denoted G(n, 1
2
, k). Let G(n, 1

2
, k) be the

probability space whose members are pairs (G,K), where G is an n vertex graph with

vertex set V , and K is a subset of V of size k. The edges between vertices in V \ K are

present independently with probability p, as are the edges between a vertex in V \ K and

a vertex in K . The edges between vertices in K are all present with probability 1. The

construction of an instance of G(n, 1
2
, k) can be reformulated as follows: First construct

a random graph G(n, 1
2
), then randomly choose k vertices to form a clique. Jerrum [20]

and Kučera [25] suggested this model independently and posed the problem of finding

the hidden clique. When k � c0

√
n log n for some sufficiently large constant c0, Kučera

observed [25, Theorem 6.1] that the hidden clique can be found with high probability by

taking the k highest degree vertices in the graph. For k = c
√
n, there is an algorithm due

to Alon, Krivelevich and Sudakov [3] that uses spectral techniques to find the hidden

clique with high probability when c is sufficiently large. In a more recent paper [12],

Feige and Ron propose a simple algorithm that runs in time O(n2) and finds the hidden

clique for k = c
√
n with probability at least 2/3. Both of these algorithms can work also

for smaller values of c, at the expense of increasing the running time, using a technique

introduced in [3]. In this paper we present a new algorithm that has the advantages of

both algorithms, as it runs in time O(n2), and fails with probability at most exp(−nε) for

some 0 < ε < 1. We study the hidden dense graph model, a different, more general model,

denoted G(n, p, k, q), where k � n and 0 < p < q � 1. Here too, G(n, p, k, q) is a probability

distribution over pairs (G,K), where G is an n-vertex graph on vertex set V , and K is a

subset of V of size k. The edges between vertices in V \ K are present independently with

probability p, as are the edges between a vertex in V \ K and a vertex in K . The edges

between vertices in K are present independently with probability q. In this model too, a

random n-vertex graph can equivalently be generated by randomly choosing k vertices

from the vertex set, and including each pair of vertices among them as an edge in the

graph independently with probability q. Every other pair of vertices is included as an

edge in the graph independently with probability p. The hidden clique model G(n, 1
2
, k)

is equivalent to G(n, 1
2
, k, 1). The algorithm we present in this paper is an algorithm that

finds hidden dense graphs in G(n, p, k, q) for any p < q � 1 and k = c
√
n, where c is a large

enough constant. In particular, it can find hidden cliques of size k = c
√
n in G(n, 1

2
, k). In

Section 4 we give a generalization of the technique used in [3] to reduce the constant c

that works in the hidden dense graph model.
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1.1. Main result

We now describe the algorithm presented in this paper. The algorithm is assumed to

know the value of k, and it uses the following parameters: 0 < α < 1, β, η > 0 and an

integer t > 0. There are three phases of the algorithm. In the first phase, we iteratively

find subgraphs of the input graph G, denoted G1, G2, . . . , Gt. We do so in such a way that

the relative size of the subset of the hidden dense graph contained in the subgraph grows

with each iteration. In the second phase, we find a subset of the hidden dense graph that

is contained in Gt. Finally, in the third phase we find the whole hidden dense graph using

its subset found in the second phase. In order to describe the algorithm more precisely,

we use the following notations and definitions.

Notation 1.1. Given a graph G = (V , E), for every v ∈ V and S ⊆ V we denote by dS (v)

the number of neighbours v has in S . Formally,

dS (v) = |{u ∈ S : {u, v} ∈ E}|.

We abbreviate dV (v) by d(v).

Notation 1.2. Let ϕ(x) denote the Gaussian probability density function

ϕ(x) =
1√
2π

exp(−x2/2).

We denote by Φ(x) the Gaussian cumulative distribution function Φ(x) =
∫ x

−∞ ϕ(t)dt, and

we denote Φ(x) = 1 − Φ(x).

Definition 1.3. Throughout the paper, the subgraph of the graph where the edge prob-

ability is q, will be referred to as the ‘dense graph’, and its k vertices will be referred to as

‘dense graph vertices’.

Definition 1.4. Given 0 < α < 1, 0 < p � 1 and β, η, c > 0, we define

γ = αΦ(η),

δ = αΦ

(
η − c

√
α

√
1 − p

p

)
,

τ = (1 − α)Φ(β),

and

ρ = (1 − α)Φ

(
β − cδ

√
γ

√
1 − p

p

)
.

Definition 1.5. For every i � 0, define ni = τin and ki = ρik. Also, define ñ0, ñ1, . . . and

k̃0, k̃1, . . . to be the actual sizes of Gi and the hidden dense graph in Gi, respectively, when
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running the algorithm. Note that ñ0, ñ1, . . . and k̃0, k̃1, . . . are random variables. Note also

that the user of the algorithm has no way of determining the values of k̃1, k̃2 and so on.

Definition 1.6. For every i, we call iteration i successful with respect to constants M, ε1
and ε2, if for some constants M and ε1, ε2 > 0, |ñi − ni| � Mn1−ε1

i and |k̃i − ki| � Mk1−ε2
i .

The definition of a successful iteration is given only for the purpose of proving the

correctness of the algorithm and computing its success probability. As mentioned in

Definition 1.5, the user of the algorithm has no way of determining k̃i, and thus has no

way of determining whether a particular iteration has been successful or not.

Definition 1.7. For every 0 < α < 1, 0 < p � 1 and β, η > 0, denote the minimal c for

which ρ � √
τ by c̃(α, β, η, p). Define c∗ as the infimum of c̃(α, β, η, p) over α, β and η (note

that c∗ depends on p).

The algorithm proceeds as follows.

• (First phase.) Iteratively find a decreasing sequence of subgraphs of G of length

t, denoted G = G0 ⊃ G1 ⊃ · · · ⊃ Gt, with vertex sets V = V0 ⊃ V1 ⊃ · · · ⊃ Vt. For i =

1, . . . , t, in the ith iteration we pick the graph Gi. To do so, we first pick a random subset

of vertices Si ⊆ Vi−1 by including each vertex in Si independently with probability α.

Then define

S̃i =
{
v ∈ Si : dSi(v) � p|Si| + η

√
p(1 − p)|Si|

}
.

Vi is defined as

Vi =
{
v ∈ Vi−1 \ Si : dS̃i (v) � p|S̃i| + β

√
p(1 − p)|S̃i|

}
,

and Gi is defined as the induced subgraph of Gi−1 containing the vertices in Vi.

• (Second phase.) Let K̃ be the set of vertices in Gt whose degree is at least

p|Vt| +
1

2
(p + q)kt.

• (Third phase.) Let K ′ be the set of vertices containing K̃ and all the vertices in G that

have at least 1
2
(p + q)|K̃| neighbours in K̃ . Let K∗ be the set of all vertices in G that

have at least 1
2
(p + q)k neighbours in K ′.

• Return K∗ as the candidate for the hidden dense graph.

Note that in the algorithm just described, there is no control imposed on the number

of vertices in the set K∗. Despite this striking feature of the algorithm, when choosing

the parameters correctly, with high probability K∗ is equal to the hidden dense graph.

We choose α, β and η in such a way that the relative size of the subset of the hidden

dense graph contained in Ṽi grows with each iteration. We choose t to be sufficiently large

that with high probability K̃ is a subset of the hidden dense graph contained in Gt. A

logarithmic number of iterations is enough. For the exact way of choosing α, β, η and t,

see the proof of Lemma 3.5. We now state the main theorem of the paper.
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Theorem 1.8. For every c > c∗ and 0 < p < q � 1, there exist α, β, η that depend only on

c, p and q, and an integer t = O(log n) such that, given G ∼ G(n, p, c
√
n, q), the probability

that K∗ = K∗(α, β, η, t) is the hidden dense graph is at least 1 − exp(−Θ(nε0 )) for some

ε0 = ε0(c).

1.2. Related work

Since the work of Alon, Krivelevich and Sudakov [3], there have been many papers

describing algorithms that solve different variants of the hidden clique problem. Feige

and Krauthgamer [14] give an algorithm for finding hidden cliques of size Ω(
√
n) based

on the Lovász theta function, that has two advantages over previously known algorithms.

The first is its ability to find the clique in a semi-random hidden clique model, in which

an adversary can remove edges that are not in the clique, and the second is its ability

to certify the optimality of its solution by providing an upper bound on the size of the

maximum clique in the graph.

McSherry [26] gives an algorithm that solves the more general problem of finding a

planted partition. In the random graph model described there, we are given a graph where

the vertices are randomly partitioned into m classes, and between every pair of vertices

where one is in class i and the other in class j there is an edge with probability pij . With

the appropriate parameters, this model can be reduced to the hidden dense graph model,

and thus also to the hidden clique model. For both these cases, the result is a polynomial-

time algorithm that finds the hidden clique (dense graph) with high probability for

k = c
√
n.

Several attempts have been made to develop polynomial-time algorithms for finding

hidden cliques of size k = o(
√
n), so far with no success. For example, Jerrum [20]

described the Metropolis process and proved that it cannot find the clique when

k = o(
√
n). Feige and Krauthgamer [15] explain why the algorithm described in [14]

fails when k = o(
√
n). Frieze and Kannan [16] give an algorithm to find a hidden

clique of size k = Ω(n1/3 log4 n). However, the algorithm maximizes a certain cubic

form, and there are no known polynomial-time algorithms for maximizing cubic

forms.

There are many problems in different fields of computer science that are related to the

hidden clique problem. Among others, there are connections to cryptography, testing and

game theory. For connections to cryptography, see for example Kučera [24], where an

encryption scheme is described that is based on hiding an independent set in a graph,

or Juels and Peinado [21], where the function whose input is a graph G and a set K

of k vertices and whose output is G with a clique on K is proposed as a one-way

function for certain values of k. For connections to testing see [2], where Alon and co-

workers prove that if there is no polynomial-time algorithm to find hidden cliques of size

k > log3 n then there is no polynomial-time algorithm that can test t-wise independence of

a distribution even when given a polynomial number of samples from it, for t = Θ(log n).

For connections to game theory, see [18], where Hazan and Krauthgamer prove that if

there is a polynomial-time algorithm that finds a Nash equilibrium of a two player game

whose social welfare is close to the maximum, then there is a randomized polynomial-time

algorithm that finds the hidden clique for k = O(log n). The hidden clique model is also
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related to the planted-SAT model (see, e.g., Ben Sasson, Bilu and Gutfreund [8, 23]) and

some models in computational biology (see, e.g., Ben-Dor, Shamir and Yakhini [7]).

2. Probability of success in the first phase

In this section we calculate the probability of success in a single iteration of the first

phase, as defined in Definition 1.6. In order to do so, we first prove that in every iteration,

conditioned on Vi−1, Si and the values of ñi and k̃i, the graph Gi has the same distribution

as G(ñi, p, k̃i, q), and therefore it is enough to calculate the success probability of the first

iteration.

The calculations of the success probability rely on the following two well-known

theorems. The first is the central limit theorem for binomial random variables and its rate

of convergence, which was independently discovered by Berry in 1941 [9] and by Esseen

in 1942 [11]. For details, see, e.g., [10, Section 3.4.4].

Theorem 2.1 (Berry–Esseen). Let B(n, p) be a binomial random variable with parameters

n, p. Then, for every x ∈ R,∣∣∣∣P
(
B(n, p) − pn√
p(1 − p)n

� x

)
− Φ(x)

∣∣∣∣ = O

(
1√
n

)
.

The second is the well-known Azuma–Hoeffding inequality (see [19, 6]).

Theorem 2.2 (Azuma–Hoeffding inequality). Let S = X1 + · · · + Xn, where X1, X2, . . . is a

sequence of martingale differences such that ai � Xi � bi. Then, for every t > 0,

P(|S − ES | � t) � 2 exp

(
−2t2/

n∑
i=1

(bi − ai)
2

)
.

The first step in calculating the success probability of a single iteration is the following

lemma.

Lemma 2.3. For every i � 0, conditioned on Vi−1, Si and the values of ñi and k̃i, the graph

Gi defined in the ith iteration of the algorithm has the same distribution as G(ñi, p, k̃i, q).

Proof. Assume, by induction, that Gi−1 is distributed as G(ñi−1, p, k̃i−1, q), and conditioned

on the set Si. Consider the following equivalent way of generating G(ñi−1, p, k̃i−1, q) (given

Si). First, pick the k̃i−1 hidden dense graph vertices. Then, pick all the edges between

Vi−1 \ Si and Si, and all the edges inside Si. At this point, we still need to pick the edges in

Vi−1 \ Si, but Vi, and thus ñi and k̃i, are already determined. Since we can find the vertices

of Gi before exposing any of the edges in it, and since the dense graph vertices of Gi are

picked randomly, Gi has the same distribution as G(ñi, p, k̃i, q).

As a result of Lemma 2.3, it is enough to calculate the success probability of the first

iteration. We therefore begin with a concentration result for the size of S1 and S1 ∩ K .
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Lemma 2.4. For every 0 < ε1 <
1
2

and 0 < ε2 <
1
2
, and for every M > 0, the set S1 satisfies

P
(
||S1| − αn| � Mn1−ε1

)
� 2 exp

(
−2M2n1−2ε1

)
and

P
(
||S1 ∩ K| − αk| � Mk1−ε2

)
� 2 exp

(
−2M2k1−2ε2

)
.

Proof. The proof follows directly from Theorem 2.2, by setting t = Mn1−ε1 for the bound

on |S1| and t = Mk1−ε2 for the bound on |S1 ∩ K|.

To prove concentration results for the sizes of S̃1 and V1 and their intersections with

K we use the following two concentration results. The first is a concentration result for

the number of vertices above a certain degree in bipartite graphs (this result is used for

the concentration of the size of V1, of its intersection with K , and of S̃1 ∩ K), and the

second is a concentration result for the number of vertices above a certain degree in a

non-bipartite graph (this result is used for the concentration of the size of S̃1).

The first result is a simple corollary of Theorem 2.2.

Corollary 2.5. Let A,B be two disjoint sets of vertices in G ∼ G(n, p) with |A| = n1 and

|B| = n2, where n1 = n1(n) and n2 = n2(n) are such that n1 � O(n2). Given a ∈ R, define the

random variable

X = |{v ∈ A : dB(v) � pn2 + a
√
p(1 − p)n2}|.

Then, for every M > 0 and 0 < ε < 1
2

it holds that

P
(
|X − Φ(a)n1| � Mn1−ε

1

)
� 2 exp

(
−M2n1−2ε

1

)
.

Proof. From Theorem 2.1 we know that

|Φ(a)n1 − EX| � c
n1√
n2

for some constant c > 0. Therefore, by Theorem 2.2, for any constant M > 0,

P
(
|X − Φ(a)n1| � Mn1−ε

1

)
� P

(
|X − EX| � Mn1−ε

1 − c
n1√
n2

)

� 2 exp

(
−2

(
Mn1−ε

1 − cn1/
√
n2

)2

n1

)
� 2 exp

(
−M2n1−2ε

1

)
,

where the last inequality holds because

n1√
n2

� O
(√

n1

)
= o

(
n1−ε

1

)
.

Next, we prove a concentration result for the number of vertices above a certain degree

in a non-bipartite graph.
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Lemma 2.6. Let G ∼ G(n, p) and a, c′ > 0. Define a random variable

X = |{v ∈ V (G) : d(v) � pn + a
√
p(1 − p)n}|.

Then, for every 0 < ε′ < 1
4
,

P
(
|X − Φ(a)n| � c′n1−ε′) � 2 exp

(
− π

32
c′4p(1 − p)n1−4ε′

)
.

Proof. For every v ∈ V (G) define a random variable

Xv =

{
1 d(v) � pn + a

√
p(1 − p)n,

0 otherwise.

Then X =
∑

Xv . By Theorem 2.1 we have

|Φ(a)n − EX| � c′′√n

for some constant c′′. To prove that X is concentrated around its mean we define additional

random variables. Let ε > 0, to be defined later, and define three thresholds:

t1 = pn + (a − ε)
√
p(1 − p)n,

t2 = pn + a
√
p(1 − p)n,

and

t3 = pn + (a + ε)
√
p(1 − p)n.

For every v ∈ V (G) define

Fv =

⎧⎪⎪⎨
⎪⎪⎩

0 d(v) < t1,
d(v)−t1

ε
√
p(1−p)n

t1 � d(v) � t2,

1 d(v) > t2,

and

Gv =

⎧⎪⎪⎨
⎪⎪⎩

0 d(v) < t2,
d(v)−t2

ε
√
p(1−p)n

t2 � d(v) � t3,

1 d(v) > t3.

Define F =
∑

v Fv and G =
∑

v Gv . For every v ∈ V , we bound EFv − EXv and EXv − EGv:

EFv − EXv =

t2∑
i=t1

pi(1 − p)n−1−i i − t1

ε
√
p(1 − p)n

(
n − 1

i

)
(2.1)

�
t2∑

i=t1

pi(1 − p)n−1−i

(
n − 1

i

)
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� ε
√

p(1 − p)npp(n−1)(1 − p)(1−p)(n−1)

(
n − 1

p(n − 1)�

)
(2.2)

� ε√
2π

(
1 + O

(
1

n

))
� 2ε√

2π
, (2.3)

where the inequality in (2.2) follows from the fact that pi(1 − p)n−1−i
(
n−1
i

)
is maximized

when i = p(n − 1)�, and the inequality in (2.3) follows from Stirling’s approximation (see,

e.g., [1]):

n! =
√

2πn

(
n

e

)n(
1 + O

(
1

n

))
.

Repeating this calculation for EXv − EGv gives

EXv − EGv =

t3∑
i=t2

pi(1 − p)n−1−i

(
1 − i − t2

ε
√
p(1 − p)n

)(
n − 1

i

)

� ε√
2π

(
1 + O

(
1

n

))
� 2ε√

2π
. (2.4)

From (2.1) and (2.4) we have that for λ > 0

P
(
|X − EX| � λn

)
� P

(
F − EF �

(
λ − 2ε√

2π

)
n

)

+ P

(
G − EG � −

(
λ − 2ε√

2π

)
n

)
.

Thus, we need to calculate the concentration of F and G. Both are edge exposure

martingales with Lipschitz constant at most

2

ε
√
p(1 − p)n

.

Therefore, by Theorem 2.2 we get

P
(
|X − EX|� λn

)
� 2 exp

(
−

(
λ − 2ε√

2π

)2
n2

2
(
n
2

)(
2

ε
√
p(1−p)n

)2

)

� 2 exp

(
−p(1 − p)

4
ε2

(
λ − 2ε√

2π

)2

n

)
.

Choosing λ = 2c′n−ε′
and ε = 1

2

√
2πc′n−ε′

concludes the proof.

In the next two lemmas we prove concentration results for the sizes of S̃1, V1 and their

intersections with K .

Lemma 2.7. Let

S̃1 = {v ∈ S1 : dS1
(v) � p|S1| + η

√
p(1 − p)|S1|}.

Then, for every 0 < ε1 <
1
4
, 0 < ε2 <

1
2
, and M > 0,

P
(
||S̃1| − γn| � Mn1−ε1

)
� exp(−Θ(n1−4ε1 )) (2.5)

https://doi.org/10.1017/S096354831300045X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831300045X


38 Y. Dekel, O. Gurel-Gurevich and Y. Peres

and

P
(
||S̃1 ∩ K| − δk| � Mk1−ε2

)
� exp(−Θ(k1−2ε2 )). (2.6)

The Θs in the exponents depend on p and on η.

Proof. We begin by proving inequality (2.5). From Lemma 2.4, we have that

P
(
||S1| − αn| � Mn1−ε1

)
� exp

(
−Θ

(
n1−2ε1

))
.

Therefore,

P
(
||S̃1|−Φ(η)αn| � Mn1−ε1

)
� exp

(
−Θ

(
n1−2ε1

))
+ P

(
||S1| − αn| � M ′n1−ε1 ∧ ||S̃1| − Φ(η)αn| � Mn1−ε1

)
� exp

(
−Θ

(
n1−2ε1

))
+ P

(
||S̃1| − Φ(η)|S1|| �

(
M − Φ(η)M ′)n1−ε1

)
.

Now, by Lemma 2.6, we have

P
(
||S̃1| − Φ(η)|S1|| �

(
M − Φ(η)M ′)n1−ε1

)
� exp

(
−Θ

(
n1−4ε1

))
.

This concludes the proof of inequality (2.5).

To prove inequality (2.6), consider a dense graph vertex v ∈ S1. Notice that if dS1
(v) �

p|S1| + η
√
p(1 − p)|S1|, then

dS1\K (v) � p|S1 \ K| +

(
η −

√
1 − p

p

|S1 ∩ K|√
|S1|

)√
|S1|

|S1 \ K|
√

p(1 − p)|S1 \ K|.

On the other hand, if dS1
(v) < p|S1| + η

√
p(1 − p)|S1|, then

dS1\K (v) < p|S1 \ K| +

(
η +

√
p

1 − p

|S1 ∩ K|√
|S1|

)√
|S1|

|S1 \ K|
√

p(1 − p)|S1 \ K|.

Therefore,

P
(
||S̃1 ∩ K| − δk| � Mk1−ε2

)
� P

(
|S̃1 ∩ K| − δ′αk � Mk1−ε2

)
+ P

(
|S̃1 ∩ K| − δ′′αk � −Mk1−ε2

)
,

where

δ′ = Φ

((
η −

√
1 − p

p

|S1 ∩ K|√
|S1|

)√
|S1|

|S1 \ K|

)

and

δ′′ = Φ

((
η +

√
p

1 − p

|S1 ∩ K|√
|S1|

)√
|S1|

|S1 \ K|

)
.

By Lemma 2.4, we can condition on the events

||S1| − αn| � Mn1−ε1

and

||S1 ∩ K| − αk| � M ′k1−ε2 ,
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and replace δ′ and δ′′ by constants ν ′ and ν ′′ such that

ν ′ � Φ

((
η −

√
1 − p

p

(
c
√
α − Θ

(
1

nε1

)
− Θ

(
1

kε2

)))(
1 + Θ

(
1

k

)
+ Θ

(
1

nε1

)))

and

ν ′′ � Φ

((
η +

√
p

1 − p

(
c
√
α − Θ

(
1

nε1

)
− Θ

(
1

kε2

)))(
1 + Θ

(
1

nε1

)))
.

Now, we start by bounding P
(
|S̃1 ∩ K| − ν ′αk � Mk1−ε2

)
. Recall that we have condi-

tioned on the event ||S1 ∩ K| − αk| � M ′k1−ε2 , and therefore, by replacing αk with its lower

bound |S1 ∩ K| − M ′k1−ε2 , Corollary 2.5 gives us that

P
(
|S̃1 ∩ K| − ν ′αk � Mk1−ε2

)
� P

(
||S̃1 ∩ K| − ν ′|S1 ∩ K|| �

(
M − ν ′M ′)k1−ε2

)
� exp

(
−Θ

(
k1−2ε2

))
.

Using Corollary 2.5 and replacing αk with its upper bound |S1 ∩ K| + M ′k1−ε2 gives us

the second bound

P
(
|S̃1 ∩ K| − ν ′′αk � −Mk1−ε2

)
� P

(
||S̃1 ∩ K| − ν ′′|S1 ∩ K|| �

(
M − ν ′′M ′)k1−ε2

)
� exp

(
−Θ

(
k1−2ε2

))
,

which concludes the proof.

Lemma 2.8. Let

V1 =
{
v ∈ V \ S1 : dS̃1

(v) � p|S̃1| + β

√
p(1 − p)|S̃1|

}
.

For every 0 < ε1 <
1
4

and 0 < ε2 <
1
2
, the set V1 satisfies

P
(
||V1| − τn| � Mn1−ε1

)
� exp

(
−Θ(n1−2ε1 )

)
(2.7)

and

P
(
||V1 ∩ K| − ρk| � Mk1−ε2

)
� exp

(
−Θ(k1−2ε2 )

)
. (2.8)

The Θs in the exponents depend on p and on β.

Proof. To prove (2.7), we consider the vertices in (V \ S1) \ K . From Lemma 2.4, we have

that

P
(
||V \ S1| − (1 − α)n| � Mn1−ε1

)
� exp

(
−Θ(n1−2ε1 )

)
.

Therefore, we can condition on the event ||V \ S1| − (1 − α)n| � M ′n1−ε1 . Replacing (1 −
α)n with its upper and lower bounds gives that

P
(
||V1| − Φ(β)(1 − α)n| � Mn1−ε1

)
� exp

(
−Θ(n1−2ε1 )

)
+ P

(
||V1| − Φ(β)|V \ S1|| �

(
M − Φ(β)M ′)n1−ε1

)
.
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Now, by Corollary 2.5, we have

P
(
||V1| − Φ(β)|V \ S1|| � (M − Φ(β)M ′)n1−ε1

)
� exp

(
−Θ(n1−2ε1 )

)
.

This concludes the proof of inequality (2.7).

To prove (2.8), we consider a dense graph vertex v ∈ V \ S1. If

dS̃1
(v) � p|S̃1| + β

√
p(1 − p)|S̃1|,

then

dS̃1\K (v) � p|S̃1 \ K| +

(
β −

√
1 − p

p

|S̃1 ∩ K|√
|S̃1|

)√
|S̃1|

|S̃1 \ K|

√
p(1 − p)|S̃1 \ K|.

On the other hand, if

dS̃1
(v) < p|S̃1| + β

√
p(1 − p)|S̃1|,

then

dS̃1\K (v) < p|S̃1 \ K| +

(
β +

√
p

1 − p

|S̃1 ∩ K|√
|S̃1|

)√
|S̃1|

|S̃1 \ K|

√
p(1 − p)|S̃1 \ K|.

Therefore,

P
(
||V1 ∩ K| − ρk| � Mk1−ε2

)
� P

(
|V1 ∩ K| − ρ′(1 − α)k � Mk1−ε2

)
+ P

(
|V1 ∩ K| − ρ′′(1 − α)k � −Mk1−ε2

)
,

where

ρ′ = Φ

((
β −

√
1 − p

p

|S̃1 ∩ K|√
|S̃1|

)√
|S̃1|

|S̃1 \ K|

)

and

ρ′′ = Φ

((
β +

√
p

1 − p

|S̃1 ∩ K|√
|S̃1|

)√
|S̃1|

|S̃1 \ K|

)
.

Again, by Lemma 2.4 we can condition on the events

||V \ S1| − (1 − α)n| � Mn1−ε1

and

||(V \ S1) ∩ K| − (1 − α)k| � M ′k1−ε2 ,

and replace ρ′ and ρ′′ by constants ν ′ and ν ′′ such that

ν ′ � Φ

((
β −

√
1 − p

p

(
cδ
√
γ

− Θ

(
1

nε1

)
− Θ

(
1

kε2

)))(
1 + Θ

(
1

k

)
+ Θ

(
1

nε1

)))
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and

ν ′′ � Φ

((
β +

√
p

1 − p

(
cδ

γ
− Θ

(
1

nε1

)
− Θ

(
1

kε2

)))(
1 + Θ

(
1

nε1

)))
.

Now, we start by bounding

P
(
|V1 ∩ K| − ν ′(1 − α)k � Mk1−ε2

)
.

Recall that we have conditioned on the event

||(V \ S1) ∩ K| − (1 − α)k| � M ′k1−ε2 .

Therefore, by replacing (1 − α)k with its lower bound |(V \ S1) ∩ K| − M ′k1−ε2 , Corol-

lary 2.5 gives us that

P
(
||V1 ∩ K| − ν ′(1 − α)k| � Mk1−ε2

)
� P

(
||V1 ∩ K| − ν ′|(V \ S1) ∩ K| �

(
M − ν ′M ′)k1−ε2

)
� exp

(
−Θ(k1−2ε2 )

)
.

Using Corollary 2.5 and replacing (1 − α)k with its upper bound |(V \ S1) ∩ K| + M ′k1−ε2

gives us the second bound

P
(
||V1 ∩ K| − ν ′′(1 − α)k| � −Mk1−ε2

)
� P

(
||V1 ∩ K| − ν ′′|(V \ S1) ∩ K| �

(
M − ν ′′M ′)k1−ε2

)
� exp

(
−Θ(k1−2ε2 )

)
,

which concludes the proof.

3. Proof of Theorem 1.8

In order to prove the correctness of the algorithm, we first calculate the success probability

in each of the three phases, assuming that t is still an unknown parameter with t >

C log log n for some sufficiently large constant C . In Lemma 3.1 we calculate the success

probability of the first phase, in Lemma 3.2 we calculate the success probability of the

second phase conditioned on the success of the first phase, and in Lemma 3.4 we calculate

the success probability of the third phase, conditioned on the success of the first and

second phases. We then optimize the values of α, β, η, t to minimize the failure probability

of the algorithm in Lemma 3.5. The logarithms in the definitions and lemmas in this

section are natural logarithms.

Lemma 3.1. Let G ∼ G(n, p, k, q), where k = c
√
n and c > c∗. Then if we run the algorithm

with parameters α, β, η and t > C log log n, the failure probability of the first phase is at

most

t
(
exp(−Θ(τt(1−4ε1)n1−4ε1 )) + exp(−Θ(ρt(1−2ε2)k1−2ε2 ))

)

Proof. This is a simple consequence of Lemma 2.8 and the union bound.
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Next we prove a lemma about graphs distributed as G(m, p, r, q). This lemma can be

applied to all values of m and r that are relevant to our algorithm, i.e., to n0, n1, . . . and

k0, k1, . . . .

Lemma 3.2. Let G ∼ G(m, p, r, q). Define the thresholds

D1 = pm +
1

3
(q − p)r

and

D2 = pm +
2

3
(q − p)r − q.

Then

P
(
∃v ∈ V \ K : d(v) � D1 or ∃u ∈ K : d(u) < D2

)
� (m + r) exp(−(2(q − p)2r2/9m)).

Proof. By Theorem 2.2

P
(
∃v �∈ K : d(v) � D1

)
� mP

(
B

(
m, p

)
� D1

)
� mP

(
|B

(
m, p

)
− pm| � 1

3
(q − p)r

)
� 2m exp(−2(q − p)2r2/9m).

On the other hand,

P
(
∃u ∈ K : d(u) < D2

)
� rP

(
B

(
m − r, p

)
+ B(r − 1, q) � D2

)
� rP

(
|B

(
m − r, p

)
+ B(r − 1, q) − p(m − r) − q(r − 1)| � 1

3
(q − p)r

)
� 2r exp(−2(q − p)2r2/9m).

Therefore, the probability that there exists a vertex v ∈ V \ K such that d(v) � D1, or a

vertex u ∈ K such that d(u) < D2, is at most 2(m + r) exp(−2(q − p)2r2/9m).

Corollary 3.3. There exists a constant C such that, for t > C log log n, if K̃ is the set

produced by the second phase of the algorithm after t iterations of the first phase, then,

conditioned on the success of all t iterations, with probability at least

1 − exp

(
−Θ

((
ρ2

τ

)t))
,

we have K̃ = Vt ∩ K .

Proof. The algorithm estimates k̃t, the number of hidden dense graph vertices in Gt, by

kt = ρtk. If the input graph has n vertices and a hidden dense graph K of size k = c
√
n,

and all the iterations are successful, then |k̃t − kt| � O(k1−ε2
t ). In this case, by Lemma 3.2,

with probability at least

1 − exp

(
−Θ

(
ρ2tk2

τtn

))
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every vertex v ∈ Vt \ K has

d(v) < pñt +
1

3
(q − p)k̃t � pñt +

1

3
(q − p)

(
kt + O(k1−ε2

t )
)
< pñt +

1

2
(q − p)kt,

and every vertex u ∈ Vt ∩ K has

d(u) � pñt +
2

3
(q − p)k̃t − q � pñt +

2

3
(q − p)

(
kt − O(k1−ε2

t )
)
> pñt +

1

2
(q − p)kt.

Recall that K̃ is defined as the subset of vertices of Gt with degree above pñt + 1
2
(q − p)kt,

and therefore, with probability at least

1 − exp

(
−Θ

(
ρ2tk2

τtn

))
,

K̃ is exactly equal to Vt ∩ K .

Using the bound on t and the fact that ρ >
√
τ, the expression

exp

(
−Θ

(
ρ2tk2

τtn

))

becomes o(1). The last step in proving the correctness of the algorithm is proving the

correctness of the third phase.

3.1. Finding hidden dense graphs from partial information

In this subsection we consider a problem of independent interest: reconstructing a hidden

dense graph given a small part of it (possibly chosen by an adversary). This is used in

Lemma 3.5 to bound the failure probability of the third phase.

Lemma 3.4. Let G ∼ G(n, p, r, q) be a random graph with a hidden dense graph K of size

r, where r � Ω(log n). Let A be an arbitrary subset of K of size s � r. Suppose that either

(1) r = O(log n log log n) and s �
(

2
(q−p)2

+ ε
)
log n for some constant ε > 0, or

(2) r � ω(log n log log n) and s � 2
(q−p)2

log n + 1.

Let

K ′ = A ∪
{
v ∈ G : dA(v) � 1

2
(p + q)s

}
.

Define K∗ to be the set of vertices of G that have at least 1
2
(p + q)r neighbours in K ′. Then,

for every 0 < ε3 <
1
2
,

P
(
K∗ �= K

)
� exp(−Θ(s log r + log n)) + exp(−Θ(r1−2ε3 )).

Proof. Consider an arbitrary subset B ⊆ K of size s. For every such set, we define Bbad

as the set of vertices in V \ B that are either in K and have less than 1
2
(p + q)s neighbours

in B, or not in K and have more than 1
2
(p + q)s neighbours in B. By Theorem 2.2,

the probability that a specific vertex v �∈ K has more than 1
2
(p + q)s neighbours in B

is at most exp(−(q − p)2s/2). The probability that a specific vertex v ∈ K has less than
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1
2
(p + q)s neighbours in B is also at most exp(−(q − p)2s/2). Therefore, the probability

that |Bbad| � l0 is at most
∑n

l=l0
nl exp(−(q − p)2sl/2). Taking the union bound over all

subsets of size s of K gives that the probability that there exists a subset B with |Bbad| � l0
is at most

rs
n∑

l=l0

exp

(
l

(
log n − (q − p)2s

2

))
� n exp

(
s log r − l0

(
(q − p)2s

2
− log n

))

= exp

(
log n + s log r − l0

(
(q − p)2s

2
− log n

))
.

Therefore, this is also a bound on the probability that |Abad| � l0. By our assumptions on

s, we know that (q−p)2s
2

− log n is positive. Therefore, we can take

l0 =
2(log n + s log r)

(q − p)2s/2 − log n
,

and get that the probability that |Abad| � l0 is at most exp(− log n − s log r). Therefore,

with probability at least 1 − exp(− log n − s log r) there are at most l0 bad vertices in K ′.

Specifically, this implies that K ′ contains at least r − l0 vertices from K and at most l0
vertices not from K , and that |K ′| � r + l0. By Theorem 2.2 and the union bound, the

probability that there exists a vertex v ∈ K with less than qr − r1−ε3 neighbours in K is at

most exp(−Θ(r1−2ε3 )), and so is the probability that there exists a vertex v �∈ K with more

than pr + r1−ε3 neighbours in K . Therefore, with probability at least 1 − exp(−Θ(r1−2ε3 ))

the number of neighbours every v ∈ K has in K ′ is at least qr − r1−ε3 − l0, and the number

of neighbours every v �∈ K has in K ′ is at most pr + r1−ε3 + l0. Thus, if s and r are such

that l0 = o(r) then

P
(
K∗ �= K

)
� exp(− log n − s log r) + exp(−Θ(r1−2ε3 )).

If r = ω(log n log log n), then letting s = 2
(q−p)2

log n + 1 gives

l0 =
4

(q − p)2

(
log n +

2

(q − p)2
log n log r + log r

)
.

Clearly, log n + log r = o(r). To see that log n log r = o(r), denote

r = log nf(n),

where

f(n) = ω(log log n).

Then

log n log r = log n
(
log log n + log

(
f(n)

))
.

Clearly,

log n log(f(n)) = o(log nf(n)),

and from the definition of f(n) we also have

log n log log n = o(log nf(n)).
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If r � O(log n log log n), then letting

s =

(
2

(q − p)2
+ ε

)
log n

for some small constant ε > 0 is enough, since then

l0 =
4

(q − p)2ε
+

4
(

2
(q−p)2

+ ε
)

(q − p)2ε
log r = o(r).

3.2. Bounding the failure probability

Lemma 3.5. For every c > c∗, there exist 0 < α < 1 and β, η > 0 such that if we define τ, ρ

as in Definition 1.4, and

a = − log τ

log ρ2

τ

,

then for every ε0 <
1
a
, the failure probability of the algorithm, when the first phase is iterated

t =
ε4 log n

log ρ2

τ

times for some 0 < ε4 <
1
a
, is at most exp(−Θ(nε0 )).

Proof. In order for the probability proved in Corollary 3.3 to tend to 0, we need τ and

ρ to satisfy ρ√
τ
> 1. From Definition 1.7 we know that there exists a constant c∗ > 0 such

that for every c > c∗ there exist α, β, η that satisfy this inequality.

Denote

b = − log ρ2

log ρ2

τ

.

By Lemma 3.1, the failure probability during the iteration phase of the algorithm can be

bounded above by

exp(−Θ(n(1−4ε1)(1−ε4a))) + exp(−Θ(n
1
2 (1−2ε2)(1−ε4b))).

By Corollary 3.3, the failure probability in the second phase of the algorithm is at most

exp(−Θ(nε4 )).

Finally, if t is as defined above, then assuming that the first two phases succeed, we know

that

|K̃| � ρtk − o(ρtk) = k1−bε4 (1 − o(1))

(notice that b = a − 1 so ε4 <
1
a

implies that 1 − bε4 > 0). The set K̃ is sufficiently large

that we can use Lemma 3.4 to conclude that the probability of failing in the third phase

is at most

exp(−Θ(n
1
2 (1−ε4b) log n)) + exp(−Θ(k1−2ε3 )).
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For any choice of 0 < ε1 <
1
4
, 0 < ε2 <

1
2

and 0 < ε4 <
1
a
, denote

ε0 = min

{
ε4, (1 − 4ε1)(1 − ε4a),

1

2
(1 − 2ε2)(1 − ε4b)

}
,

and take ε3 = 1−2ε0
2

(notice that ε3 > 0 because ε0 <
1
2
). With these parameters, the failure

probability of the whole algorithm is at most exp(−Θ(nε0 )).

3.3. Analysis of the running time

To find the total running time of the algorithm, we calculate the running time of each

of the three phases. The running time of the first phase is O(n2), since every edge that

is examined in an iteration i does not participate in iteration i + 1: it is either an edge

within Si or an edge between Vi \ Si and S̃i. Since none of the vertices of Si participate in

subsequent iterations, none of these edges participate either.

In the second phase, we calculate the degrees of the vertices in Vt. In this calculation,

each edge in Gt is examined at most twice, so the running time of this phase is O(n2).

In the third phase, we examine each edge in the graph at most twice: once when

counting the number of neighbours of each vertex in K̃ , and once when counting the

number of neighbours in K ′. Thus, the running time of the third phase is also O(n2).

More precise analysis of the second and third phases would yield asymptotically smaller

running times, since |Vt|, |K̃|, |K ′| = o(n). Because of the first phase, the total running time

of the algorithm cannot be asymptotically smaller than n2, so we leave the analysis as is.

4. Discussion

As mentioned in the Introduction, the algorithm presented in this paper is also an

algorithm for finding hidden cliques, since G(n, 1
2
, k) is equivalent to G(n, 1

2
, k, 1). Numerical

calculations show that for p = 1
2

and q = 1, the value of c∗ is close to 1.261, which means

that our algorithm can solve the hidden clique problem for any k � 1.261
√
n.

In the case of the hidden clique model, we can use a slightly simpler version of the

algorithm. In the third phase, after finding K ′ we can simply let K∗ be the set of k highest

degree vertices in the graph induced by the vertices in K ′, and we do not need to go over

the rest of the vertices in the graph to calculate their degree in K ′. This simplification

is possible due to the fact that when the dense graph is a clique, all the hidden clique

vertices have at least 1
2
(p + q)|K̃| (which is 3

4
|K̃| in the hidden clique case) neighbours in

K̃ . In fact, conditioned on the success of the second phase, all the hidden clique vertices

have |K̃| neighbours in K̃ . Furthermore, it can be easily proved that with high probability

there are very few non-clique vertices in K ′, and that their degree is smaller than that of

the clique vertices. On the other hand, when the dense graph is not a clique, we can only

prove (as we do in Lemma 3.4) that with high probability the set K ′ contains most of the

dense graph vertices and a few non-dense-graph vertices, which means that in order to

find all of the hidden dense graph vertices we need to examine the vertices that are not

in K ′.

Our results bring up some interesting questions for future research. For example, one of

the advantages of the algorithm presented here is a failure probability of at most exp(−nε)
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for some ε > 0. Experimental results shown by Feige and Ron [12] suggest that the failure

probability of the algorithm described there may also be o(1). Whether the analysis can

be improved to prove this rigorously is an interesting open question. One can also ask

whether Alon, Krivelevich and Sudakov’s analysis [3] can be improved to show failure

probability of at most exp
(
−nε

)
for some 0 < ε < 1.

Aside from the most interesting open question of whether there exists an algorithm

that finds hidden cliques for k = o(
√
n), one can ask about ways to find hidden cliques

of size k = c
√
n for small values of c. Alon, Krivelevich and Sudakov [3] show how to

improve the constant for which their algorithm works, at the expense of increasing the

running time. This technique can be used for any algorithm that finds hidden cliques,

so we describe it here. Pick a random vertex v ∈ V , and run the algorithm only on the

subgraph containing v and its neighbourhood. If v is a clique vertex, then the parameters

of the algorithm have improved, since instead of having a graph with n vertices and a

hidden clique of size c
√
n we now have a graph with n

2
vertices and a hidden clique of

size c
√
n. The expected number of trials we need to do until we pick a clique vertex is

O(
√
n). This means that if we have an algorithm that finds a hidden clique of size c

√
n,

where c � c0, we can also find a hidden clique for c � c0√
2
, while increasing the running

time by a factor of
√
n. If we wish to improve the constant even further, we can pick

r random vertices and run the algorithm on the subgraph containing them and their

common neighbourhood. This gives an algorithm that works for constants smaller by up

to a factor of 2r/2 than the original constant, at the expense of increasing the running

time of the algorithm by a factor of nr/2.

The technique described here can be generalized for G(n, p, k, q) in the following way.

Instead of picking r random vertices and running the algorithm on them and their

common neighbourhood, we pick a set of r random vertices (denoted R) and run the

algorithm on the graph containing R and all the vertices with at least 1
2
(p + q)r neighbours

in R (denoted G(R)). We call the set R ‘good’ if G(R) contains at least 99k
100

vertices of the

hidden dense graph. The probability that the set R is good can be bounded above by the

probability that R is contained in the hidden dense graph (this probability is Θ(n−r/2)),

multiplied by the probability that G(R) contains at least 99k
100

hidden dense graph vertices,

conditioned on R being contained in the hidden dense graph. The latter probability can

be estimated in the following way. By Theorem 2.2, the probability that a hidden dense

graph vertex has less than 1
2
(p + q)r neighbours in R is at most

exp

(
−1

2
(q − p)2r

)
.

Therefore, by the union bound, the probability that more than k
100

hidden dense graph

vertices have less than 1
2
(p + q)r neighbours in R is at most(

k

0.01k

)
exp

(
−1

2
(q − p)2r

k

100

)
.

If we choose r to be a large enough constant, then this expression is exp(−O(k)). Therefore,

if R is contained in the hidden dense graph, then with high probability R is good, so

the expected number of trials we have to do until we pick a good set R is O(nr/2). The
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expected number of non-dense graph vertices in G(R) is exp(− 1
2
(q − p)2r)n, so if we pick

a good set R, the parameters of the algorithm change from n vertices and k = c
√
n hidden

dense graph vertices to exp(− 1
2
(q − p)2r)n vertices and 99k

100
= 99

100
c
√
n hidden dense graph

vertices. Thus, an algorithm that finds hidden dense graphs for c � c∗ can be improved

to an algorithm that finds hidden dense graphs for

c � 100

99
exp

(
−1

4
(q − p)2r

)
c∗

at the expense of increasing the expected running time by a factor of nr/2.

In this section we have described a sequence of algorithms whose running times increase

by factors of
√
n. It is not known whether the constant can be decreased if we can only

increase the running time by a factor smaller than
√
n.

Question. Given an algorithm that runs in time O(n2) and finds hidden dense graphs of

size c
√
n for any c � c∗, is there an algorithm that runs in time O(n2+ε), where ε < 1

2
, and

finds hidden dense graphs of size c
√
n where c < c∗? How small can c be as a function of

ε, p and q?
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