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Abstract This paper is concerned with the resolution of an inverse problem related to the recovery of a

function V from the source to solution map of the semi-linear equation (2g + V )u+ u3
= 0 on a globally

hyperbolic Lorentzian manifold (M, g). We first study the simpler model problem, where (M, g) is the
Minkowski space, and prove the unique recovery of V through the use of geometric optics and a three-fold

wave interaction arising from the cubic non-linearity. Subsequently, the result is generalized to globally

hyperbolic Lorentzian manifolds by using Gaussian beams.

Keywords: Inverse problems; non-linear wave equations; Gaussian beams; Lorentzian manifolds

2010 Mathematics subject classification: Primary 35R30

Contents

1 Introduction 368

1.1 Previous literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

2 The case of Minkowski geometry

2.1 Geometric optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

2.2 Source terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

2.3 Three-parameter family of sources . . . . . . . . . . . . . . . . . . . . . . 374

2.4 Recovery of V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

3 The case of globally hyperbolic Lorentzian geometries 378

4 Gaussian beams 380

4.1 Fermi coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

4.2 WKB approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

5 Proof of Theorem 2 386

5.1 Source terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

5.2 Three-parameter family of sources . . . . . . . . . . . . . . . . . . . . . . 387

5.3 Recovery of V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

References

J. Inst. Math. Jussieu (2022), 21(2), 367–393

first published online 18 September 2020)

;

392

369

https://doi.org/10.1017/S1474748020000122 Published online by Cambridge University Press

HTTPS://ORCID.ORG/0000-0002-3850-8091
HTTPS://ORCID.ORG/0000-0002-3228-7507
mailto:a.feizmohammadi@ucl.ac.uk
mailto:l.oksanen@ucl.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1474748020000122&domain=pdf
https://doi.org/10.1017/S1474748020000122


368 A. Feizmohammadi and L. Oksanen

1. Introduction

Let n > 2 and let (M, g) be a 1+ n dimensional Lorentzian manifold. We consider the

non-linear hyperbolic equation

2gu+ V u+ u3
= f, (1)

where 2g denotes the wave operator and V ∈ C∞(M;C) is an a priori unknown

complex-valued potential function. In this paper, we study the inverse problem of remote

sensing of the unknown potential V through applying various small localized sources f in

a fixed open subset 0 of the space–time M and subsequently observing the corresponding

solutions u in the same set 0. In physical terms, our main result (Theorem 2) says that

the potential V can be uniquely recovered from such measurements in the optimal causal

diamond, that is, in the largest set D such that waves generated in 0 can reach each

x ∈ D and travel from x back to 0. We emphasize that the presence of the non-linearity
is the key to the generality of our result. Indeed, the corresponding problem for the linear

operator 2g + V is open to this date.

Inverse problems for non-linear wave equations in the geometric context have been

under active study recently. Starting from [15], the recovery of leading order coefficients

has been studied in a series of works that we will briefly review below. However, the

only previous work considering the recovery of subleading terms is [5], where the first
order coefficients were recovered. Lower order terms have a weaker effect on solutions. To

illustrate the difference between the zeroth order case, studied in the present paper, and

the second and first order cases in the previous literature, let us consider a parametrix

Q for a linear wave operator P. The leading order coefficients of P affect the Lagrangian

geometry of Q and the first order coefficients of P the principal symbol of Q, while the

zeroth order coefficients of P affect Q only at the subprincipal level.
To access information on the subprincipal level, we modify the approach of [15]

substantially by using wave packets instead of microlocal analysis based on conormal

distributions. Wave packets are easy to construct in the Minkowski geometry using

classical geometric optics, and as an introduction, we give first a proof in this case

(Theorem 1). Then we proceed to show our main result (Theorem 2) on a globally
hyperbolic Lorentzian manifold (M, g). In this case, the wave packets that we use are

Gaussian beams.

Finally, let us mention that although a cubic leading order non-linearity is considered
here, the approach also works, with minor modifications, for higher order non-linearities.

The case of quadratic non-linearity presents additional technical challenges and is not

covered by the analysis here.

1.1. Previous literature

As mentioned above, Kurylev, Lassas and Uhlmann introduced an approach to solve

inverse coefficient determination problems for non-linear hyperbolic equations in [15]. The

approach is based on considering multi-parameter families of solutions, and simultaneous

linearizations with respect to each of the parameters. If only a one-parameter family

of solutions is employed, the linearization yields simply a solution to the linearized
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version of the non-linear hyperbolic equation under consideration. However, simultaneous

linearizations cause solutions to the linearized equation to interact in a non-linear manner,

and this leads to richer dynamics in propagation of singularities (or wave packets) than

in the case of linear hyperbolic equations.

In [15], the approach was applied to the determination of the conformal class of the

Lorentzian metric tensor giving the leading order coefficients in a wave equation with

quadratic non-linearity. The recovery of leading order coefficients has been considered

also in the context of Einstein equations in [14] and subsequently in [18, 24]. We mention

also [25] where the leading order coefficients were recovered in the presence of a quadratic

derivative non-linearity, [17] where the approach of [15] was applied to the recovery of
coefficients appearing in non-linear terms, and [9] where it was applied to a problem

arising in seismic imaging.

Recently two approaches different from [15] were used by Nakamura and Vashisth to

recover time-independent leading order coefficients, as well as coefficients in non-linear

terms [19], and by Kian to recover a general function corresponding to the non-linearity

and also including zeroth order coefficients [13]. The latter result is based on a reduction
via linearization to the problem to recover the zeroth order coefficient in a linear wave

equation. For this reason, contrary to our result, the geometric context in [13] is confined

to the cases where results are available for linear wave equations.

2. The case of Minkowski geometry

We consider R1+n , with n > 2, and write (x0, x1, . . . , xn) = (t, x ′) = x for the Cartesian

coordinates. Let r, T > 0 and write

0 = (0, T )× B(0, r), (2)

where B(0, r) denotes the ball centered at the origin and radius r in Rn . We will formulate

an inverse coefficient determination problem with data given on 0. Let κ > 0 be a fixed
sufficiently large integer and define C as a small neighborhood of the origin in the Cκc (0)
topology. Let V ∈ C∞(R1+n), and for each f ∈ C , consider the non-linear wave equation2u+ V u+ u3

= f, ∀(t, x ′) ∈ (0, T )×Rn,

u(0, x ′) = 0, ∂t u(0, x ′) = 0, ∀x ′ ∈ Rn,
(3)

where 2 is the d’Alembert operator, that is,

2u = ∂2
t u−

n∑
j=1

∂2
x j u.

When κ is large enough and C is small enough, there exists a unique solution u to

equation (3). We subsequently define the source to solution map for equation (3) as

LV ( f ) = u|0, ∀ f ∈ C .

The inverse coefficient determination problem is to find V given the map LV , up to

the natural obstruction due to the finite speed of propagation.
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In order to be able to determine V (p) for a point p ∈ R1+n , there must be a signal, in

the form of a non-vanishing solution to (3), from 0 to p and from p to 0. Due to the

finite speed of propagation, a signal from a point q = (t0, x ′0) ∈ R1+n can reach only the

set

J+(q) = {(t, x ′) ∈ R1+n
| t > t0, |x ′− x ′0| 6 t − t0}, (4)

called the future of q. We define also the past of q by

J−(q) = {(t, x ′) ∈ R1+n
| t 6 t0, |x ′− x ′0| 6 t0− t}, (5)

and write J±(0) =
⋃

q∈0 J±(q). Then LV contains no information on V outside the

causal diamond

D :=J+(0)∩J−(0) = {(t, x ′) ∈ (0, T )×Rn
| |x ′| 6 r + t, |x ′| 6 r + T − t};

see Figure 1. On the other hand, we will show the following theorem saying that LV
determines V on D.

Theorem 1. Let LV1 , LV2 denote the source to solution map for equation (3) subject to

functions V1, V2 ∈ C∞(R1+n) respectively. Then

LV1( f ) = LV2( f ) ∀ f ∈ C H⇒ V1 = V2 on D.

The non-trivial content of the theorem is the remote determination on D \0, as it
is straightforward to see that LV determines V on 0. To see this, let f ∈ C∞c (0) and

consider the one-parameter family of sources fε := ε f , ε ∈ R. For small enough ε, it

holds that fε ∈ C , and we let uε denote the unique solution to (3) subject to this source

term. Then u := ∂εuε |ε=0 solves the linear wave equation2u+ V u = f, ∀(t, x ′) ∈ (0, T )×Rn,

u(0, x ′) = 0, ∂t u(0, x ′) = 0, ∀x ′ ∈ Rn,
(6)

and u|0 = ∂εLV ( fε)|ε=0. Observe that if u(q) 6= 0 for a point q ∈ 0, then

V (q) =
f (q)−2u(q)

u(q)
.

It remains to show that for any q ∈ 0, there is f ∈ C∞c (0) such that the solution u of (6)
satisfies u(q) 6= 0. But this follows simply by taking any u ∈ C∞c (0) with this property,

and setting f = 2u+ V u.

Let us also point out that it is an open question if V |D is determined by the linearized
source to solution map,

LV f = u|0, ∀ f ∈ Cκc (0),
where u is the solution of (6). Only in the case that V (t, x ′) is real-analytic in t , this

is known to hold due to the variant of the boundary control method by Eskin [7]. The

boundary control method fails to generalize to the case of smooth V since the method

depends on the sharp unique continuation result by Tataru [23], which is known not to

hold for smooth V due to a counter-example by Alinhac [1].
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In addition, the approach to recover time-dependent coefficients in wave equations

based on geometric optics, originating from [22], fails since no wave packet leaving 0

returns there. For this approach to work, the set on which the data is given (i.e., 0 in our

case) needs to enclose the region where V is to be determined (i.e., D in our case). Like

[22], the approach in the present section is based on geometric optics, but the difference

is that the cubic non-linearity in (3) allows us to solve the inverse problem with the

optimal relation between 0 and D.

Before entering into the proof of Theorem 1 in detail, let us briefly explain how the

non-linearity is used. Let f1, f2, f3 ∈ C∞c (0) and consider the three-parameter family of

sources

fε := ε1 f1+ ε2 f2+ ε3 f3, ∀ε := (ε1, ε2, ε3) ∈ R3. (7)

For small enough ε1, ε2 and ε3, it holds that fε ∈ C , and we let uε denote the unique

solution to (3) subject to this source term. Then

u := ∂ε1∂ε2∂ε3 uε |ε=0 (8)

solves the linear wave equation (6) with

f = −6u(1)u(2)u(3), u( j)
= ∂ε j uε

∣∣∣
ε=0

, (9)

and u( j) satisfies the same equation with f = f j . In the proof below, we will use sources

f j that generate geometric optics solutions u( j) with carefully chosen phases. This will

allows us to employ u as a highly structured signal from a point p ∈ D back to 0.

The remainder of this section is organized as follows. We start by briefly reviewing the

geometric optic solutions for the linearized equation (6) in Section 2.1. In Section 2.2,

we show that sources supported in 0 can be explicitly chosen so that they generate the

geometric optics solutions for (6) that pass through 0, and in Section 2.3, we use these
sources to construct the three-parameter family (7). Then, in Section 2.4, we consider

the interaction of u(1), u(2) and u(3), as encoded by u in (8), and conclude the proof of

Theorem 1.

The proof in the case of general, globally hyperbolic Lorentzian manifolds reflects the

proof in Sections 2.2–2.4. Our main theorem is formulated in Section 3, and in Section 4,

we present the Gaussian beam construction that replaces the classical geometric optics

of Section 2.1 in the general case. Finally in Section 5, we perform the analogues of the

steps in Sections 2.2–2.4 in the general case.

2.1. Geometric optics

In this section, we recall the classical construction of approximate geometric optics

solutions to the wave equation

2u+ V u = 0 in R1+n . (10)

The construction is based on the ansatz

uτ (x) = eiτξ ·x aτ (x) = eiτξ ·x

( N∑
k=0

ak(x)
τ k

)
, (11)
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where τ > 0 is a large parameter, and ξ ∈ R1+n and a large integer N > 0 are fixed. Here

the notation ξ · x =
∑n

j=0 ξ j x j is used. We will view ξ = (ξ0, ξ
′) = (ξ0, ξ1, . . . , ξn) as a

covector, and it needs to be non-zero and light-like, that is to say,

|ξ0|
2
= |ξ ′|2 := |ξ1|

2
+ · · ·+ |ξn|

2.

We denote by ξ ] the vector version of ξ with respect to the Minkowski metric. In other

words, ξ ] = (−ξ0, ξ
′). Let q = (t0, x ′0) be a point in R1+n . We will construct the amplitude

functions ak , k = 0, 1, . . . , N , so that uτ satisfies (10) up to a remainder term that tends

to zero as τ →∞ and that uτ is supported near the line

γq,ξ (s) := sξ ]+ q = (−sξ0+ t0, sξ ′+ x ′0), ∀s ∈ R. (12)

As ξ is light-like, it holds that

(2+ V )(eiτξ ·x aτ ) = eiτξ ·x (−2iτTξaτ + (2+ V )aτ ), (13)

where Tξ = −ξ0∂x0 +
∑n

j=1 ξ j∂x j . The construction of the amplitudes ak is driven by the

requirement that expression (13) vanishes in powers of τ . In particular, this imposes the

transport equation

Tξa0 = 0 (14)

on a0. Note that if ω ∈ R1+n satisfies ξ ] ·ω = 0, then for any χ ∈ C1(R) it holds that

Tξ (χ(ω · (x − q))) = 0.

We choose ω′j ∈ Rn so that the covectors

ξ ′

|ξ ′|
, ω′1, . . . , ω

′

n−1 (15)

form an orthonormal basis for Rn with respect to the Euclidean metric, and write ω j =

(0, ω′j ). Observe that ξ ] ·ω j = 0 and that

{γq,ξ (s) | s ∈ R} = {x ∈ R1+n
| ξ · (x − q) = ω1 · (x − q) = · · · = ωn−1 · (x − q) = 0}.

Let δ > 0 and let χδ ∈ C∞c ((−δ, δ)). We choose

a0(x) = χδ(|ξ0|
−1ξ · (x − q))

n−1∏
j=1

χδ(ω j · (x − q)). (16)

Then (14) holds and

supp(a0(t, ·)) ⊂ H(t, δ), ∀t ∈ R, (17)

where H(t, δ) is the hypercube in Rn with side length 2δ, centered at the unique

point x ′ ∈ Rn satisfying (t, x ′) = γq,ξ (s) for some s ∈ R, and with the edges pointing

to directions (15).
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The subsequent terms ak with k > 1 are chosen iteratively through the transport

equations

−2iTξak + (2+ V )ak−1 = 0. (18)

We impose vanishing initial conditions on the hyperplane

Σq,ξ = {x ∈ R1+n
| ξ ] · (x − q) = 0},

and obtain

ak(sξ ]+ y) =
1
2i

∫ s

0
((2+ V )ak−1)(s̃ξ ]+ y) ds̃, (19)

where s ∈ R and y ∈ Σq,ξ . It follows from (17), via an induction, that also supp(ak(t, ·)) ⊂
H(t, δ), and therefore uτ is supported near γq,ξ . Moreover, equations (14) and (18),

together with (13), imply that

‖(2+ V )uτ‖Ck ((0,T )×Rn) . τ−N+k . (20)

2.2. Source terms

As in the previous section, let ξ ∈ R1+n be non-zero and light-like and let q = (t0, x ′0) ∈
R1+n . We will assume, furthermore, that q ∈ 0, and proceed to construct a source

f ∈ C∞c (0) such that the solution to the linear wave equation (6) is close to the

approximate geometric optics solution (11) in a sense that will be made precise below.

For this construction to work, it is necessary to require that δ > 0 in (16) is small enough

so that

H(t0, δ) ⊂ B(0, r); (21)

cf. (2) and (17).

It follows from (17) and (21) that there exists ρ > 0 such that

supp(uτ (t, ·)) ⊂ B(0, r), ∀t ∈ (t0− ρ, t0+ ρ). (22)

Next, we choose two non-negative functions ζ± ∈ C∞(R1+n) such that

ζ−(t, x ′) =

0, t < t0− ρ

1, t > t0,
and ζ+(t, x ′) =

0, t > t0+ ρ

1, t < t0.
(23)

We are now ready to define the source. Emphasizing the dependence on τ , q and ξ , we

write

fτ,q,ξ = ζ+(2+ V )(ζ−uτ ). (24)

Note that since ζ−(t) = 0 for t < t0− ρ and ζ+(t) = 0 for t > t0+ ρ, it follows together

with (22) that

supp fτ,q,ξ ⊂ (t0− ρ, t0+ ρ)× B(0, r) ⊂ 0.

Recall that V is known on 0, thanks to the knowledge of LV and therefore the amplitude

terms given by (19) are also known over the support of fτ,q,ξ . Hence fτ,q,ξ is determined

from the source to solution map.
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We write Uτ = u, where u is the solution of the linear wave equation (6) with the source

f = fτ,q,ξ . For the remainder of this section, we aim to show that the solution Uτ will be

approximately equal to the geometric optic ansatz uτ , for times t > t0+ ρ. To this end,

note that as ζ− = 1 on the support of 1− ζ+, it holds that

(2+ V )(ζ−uτ )− fτ,q,ξ = (1− ζ+)(2+ V )uτ ,

and (20) implies the estimate

‖(2+ V )(ζ−uτ )− fτ,q,ξ‖H k ((0,T )×Rn) . τ−N+k .

Next, by combining the above estimate with the usual energy estimate for the

wave equation and the Sobolev embedding of C((0, T )×Rn) in H k+1((0, T )×Rn) for

k > (n− 1)/2, we obtain

‖ζ−uτ −Uτ‖C((0,T )×Rn) . τ−2 (25)

when N > k+ 2.

We will also need a test function whose construction differs from that of fτ,q,ξ only to

the extent that the roles of ζ+ and ζ− are reversed in (24). That is, we define

f +τ,q,ξ = ζ−(2+ V )(ζ+uτ ) ∈ C∞c (0). (26)

Again, LV determines f +τ,q,ξ , and the analogue of (25) reads as

‖ζ+uτ −Uτ‖C((0,T )×Rn) . τ−2, (27)

where Uτ is now the solution of the linear wave equation2u+ V u = f, ∀(t, x ′) ∈ (0, T )×Rn,

u(T, x ′) = 0, ∂t u(T, x ′) = 0, ∀x ′ ∈ Rn,
(28)

with f = f +τ,q,ξ .

2.3. Three-parameter family of sources

Let p = (t1, x ′1) ∈ D \0. In this section, we will construct a three-parameter family of

sources fε of form (7) so that cross derivative (8) will act as a structured signal from the

point p back to 0.

As p ∈ D, there are q− = (t0, x ′0) ∈ 0 and non-zero, light-like ξ− ∈ R1+n such that

t1 > t0 and p = γq−,ξ−(s0) for some s0 ∈ R. Here we use notation (12). We also normalize
the covector ξ− = (ξ−0 , . . . , ξ

−
n ) so that ξ−0 = −1. Then s0 = t1− t0. Using again the fact

that p ∈ D, we see that the point q+ := (t0+ 2s0, x ′0) is in 0. Moreover, setting ξ+ =

(−1,−ξ−1 , . . . ,−ξ
−
n ), it holds that p = γq+,ξ+(−s0); see Figure 1.

We will next choose two light-like covectors, that are small perturbations of ξ−, in such

a way that ξ+ can be written as a linear combination of ξ− and the two perturbations.

Noting that the time coordinate of p is the average of the time coordinates of q± and

that the spatial coordinates of q± are identical, we may rotate the coordinate system in
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Figure 1. The causal diamond D is drawn with dashed curves, and 0 is the blue cylinder. The black line
segments are on γq±,ξ± , joining q± to p. We write also q+ = q(0) and q− = q(1), and denote by q(2) and

q(3) two perturbations of q(1).

the spatial variables (x1, . . . , xn) ∈ Rn so that in the rotated coordinates, ξ+ and ξ− are

represented by

ξ̃ (0) = (−1,−1, 0, . . . , 0︸ ︷︷ ︸
n−1 times

), ξ̃ (1) = (−1, 1, 0, . . . , 0︸ ︷︷ ︸
n−1 times

), (29)

respectively. We define for small σ > 0

ξ̃ (2) = (−1,
√

1− σ 2, σ, 0, . . . , 0︸ ︷︷ ︸
n−2 times

), ξ̃ (3) = (−1,
√

1− σ 2,−σ, 0, . . . , 0︸ ︷︷ ︸
n−2 times

), (30)

and have

σ 2ξ̃ (0)+ κ1ξ̃
(1)
+ κ2ξ̃

(2)
+ κ3ξ̃

(3)
= 0, (31)

where

κ1 = 2(1+
√

1− σ 2)− σ 2, κ2 = κ3 = −1−
√

1− σ 2. (32)

Finally, we define the covector ξ (0) to be the representation of σ 2ξ̃ (0), after passing back to

the original coordinate system, and ξ ( j) for j = 1, 2, 3 to be the analogous representations

of the covectors κ j ξ̃
( j). Then ξ (0) = σ 2ξ+, ξ (1) = κ1ξ

− and both ξ (2) and ξ (3) are small

perturbations of −2ξ−. Note also that κ1 is close to 4.

Define

q(0) = γp,ξ (0)(s0/σ
2), q( j)

= γp,ξ ( j)(−s0/κ j ), for j = 1, 2, 3. (33)
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Then q(0) = q+, q(1) = q− and q(2), q(3) ∈ 0 for small enough σ > 0. We are now ready

to define the following three-parameter family of sources

fε,τ = ε1 fτ,q(1),ξ (1) + ε2 fτ,q(2),ξ (2) + ε3 fτ,q(3),ξ (3) , (34)

where each fτ,q( j),ξ ( j) is defined by (24).

2.4. Recovery of V

Let fε,τ be as in (34). Recall that p is an arbitrary point in D \0. In this section, we will

prove Theorem 1 by showing that V (p) is determined by LV .

For a fixed τ > 0 and small enough ε j > 0, it holds that fε,τ ∈ C , and we let uε,τ
denote the unique solution to (3) subject to this source term. We write U ( j)

τ = ∂ε j uε,τ |ε=0

for j = 1, 2, 3. Then the function U ( j)
τ is close, in the sense of estimate (25), to the

approximate geometric optics solution of form (11) supported near the line γq( j),ξ ( j) .
Moreover, it follows from (9) that the function

vτ = −
1
6

∂3uε,τ
∂ε1∂ε2∂ε3

|ε=0

satisfies the equation2vτ + V vτ = U (1)τ U (2)τ U (3)τ , ∀(t, x ′) ∈ (0, T )×Rn,

vτ (0, x ′) = 0, ∂tvτ (0, x ′) = 0, ∀x ′ ∈ Rn .
(35)

Recall that q(0) is defined by (33) and, modulo a rotation and the rescaling by σ 2, ξ (0)

is defined by (29). Consider the test function f +
τ,q(0),ξ (0) defined by (26) and denote by

U (0)τ the solution of (28) with f = f +
τ,q(0),ξ (0) . As f +

τ,q(0),ξ (0) is supported in 0, there holds

−
1
6

∫
(0,T )×Rn

∂ε1∂ε2∂ε3 LV ( fε,τ )|ε=0 f +
τ,q(0),ξ (0) dx =

∫
(0,T )×Rn

vτ (2+ V )U (0)τ dx .

After integrating by parts twice, we see that LV determines the integral

I =
∫
(0,T )×Rn

U (0)τ U (1)τ U (2)τ U (3)τ dx .

It follows from (25) and (27) that U ( j)
τ , with j = 0, 1, 2, 3, coincides with the corre-

sponding approximate geometric optics solution up to an error of order τ−2. We denote

by a( j)
k the corresponding amplitude functions. We will expand I in the powers of τ ,

I = I0+ I−1τ
−1
+O(τ−2).

Observe that as a(0)0 is supported near γq(0),ξ (0) and as a(1)0 is supported near γq(1),ξ (1) , their

product is supported near the point p; cf. (33). For this reason, the cut-off functions ζ−
and ζ+ in (25) and (27) do not appear in I0 and I−1. Moreover, (31) implies that the

phases of the four approximate geometric optics solutions cancel each other under the

product in I. Therefore

I0 =

∫
(0,T )×Rn

a(0)0 a(1)0 a(2)0 a(3)0 dx,
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and analogously,

I−1 =
∑
|e|=1

∫
(0,T )×Rn

a(0)e0
a(1)e1

a(2)e2
a(3)e3

dx,

where e = (e0, e1, e2, e3) ∈ {0, 1, . . . }4 is a multi-index. In particular, LV determines I−1.

Recall that a( j)
1 is of the form a( j)

1 = b( j)
1 + c( j)

1 , where for s ∈ R and y ∈ Σq( j),ξ ( j) ,

b( j)
1 (sξ ( j)]

+ y) =
1
2i

∫ s

0
(2a( j)

0 )(s̃ξ ( j)]
+ y) ds̃, (36)

c( j)
1 (sξ ( j)]

+ y) =
1
2i

∫ s

0
(V a( j)

0 )(s̃ξ ( j)]
+ y) ds̃;

cf. (19).

Remark 1. We emphasize that the functions a( j)
0 (x), b( j)

1 (x) and c( j)
1 (x) are defined for

all x ∈ R1+n but that for each fixed j = 0, 1, 2, 3, the value at each point is given by the
(s, y) coordinate representation of the point x with respect to γq( j),ξ ( j) , with s ∈ R and

y ∈ Σq( j),ξ ( j) . We also note that these functions are all supported in δ neighborhoods of

the rays γq( j),ξ ( j) . More precisely, the amplitudes a( j)
0 , b( j)

1 and c( j)
1 are supported in the

set

P( j)
δ =

{
x ∈ R1+n

∣∣∣∣∣
∣∣∣∣∣ξ ( j)

ξ
( j)
0

· (x − q( j))

∣∣∣∣∣ 6 δ, |ω
( j)
k · (x − q( j))| 6 δ k = 1, . . . , n− 1

}
.

We return to the expression I−1, which is determined by LV . As a( j)
0 is independent

from V , so is b( j)
1 . Therefore LV determines the quantity

J =
∫
(0,T )×Rn

c(0)1 a(1)0 a(2)0 a(3)0 dx +
∫
(0,T )×Rn

a(0)0 c(1)1 a(2)0 a(3)0 dx

+

∫
(0,T )×Rn

a(0)0 a(1)0 c(2)1 a(3)0 dx +
∫
(0,T )×Rn

a(0)0 a(1)0 a(2)0 c(3)1 dx .

For each j = 0, 1, 2, 3, we let the cut-off function χδ in the definition of the leading

amplitude (16) converge to the indicator function of the interval (−δ, δ). Then J
converges to

Jδ =
3∑

j=0

∫
Pδ

c( j)dx,

where

Pδ =
3⋂

j=0

P( j)
δ

is a small polygonal neighborhood of the point p and for each j = 0, 1, 2, 3, we have

c( j)(sξ ( j)]
+ y) =

1
2i

∫ s

0
V (s̃ξ ( j)]

+ y) ds̃ for s ∈ R and y ∈ Σq( j),ξ ( j) .
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Since c( j), j = 0, 1, 2, 3, are smooth functions, the Lebesgue differentiation theorem

applies to obtain

lim
δ→0

Jδ
|Pδ|
=

3∑
j=0

c( j)(p).

Due to (33), we have

2ic(0)(p) =
∫
−s0/σ

2

0
V (s̃ξ (0)]+ q(0)) ds̃ = σ−2

∫ s0

0
V (−sξ+]+ q(0)) ds,

and

2ic( j)(p) =
∫ s0/κ j

0
V (s̃ξ ( j)]

+ q( j)) ds̃, ∀ j = 1, 2, 3.

Recalling the explicit dependence (32) of κ j on σ , we see that

2i lim
σ→0

σ 2
3∑

j=0

c( j)(p) =
∫ s0

0
V (−sξ+]+ q(0)) ds.

Repeating the same analysis for points on γ (0) in a small neighborhood of the point p,

together with the fact that V is known on the set 0, we conclude that the map LV
determines the truncated integrals∫ s

0
V (−s̃ξ+]+ q(0)) ds̃,

for all s in a small neighborhood of s0. Keeping q(0) fixed, differentiating with respect

to s and evaluating at s = s0 shows that V (p) is determined by LV. This concludes the
proof of Theorem 1.

3. The case of globally hyperbolic Lorentzian geometries

The rest of this paper is concerned with generalizing Theorem 1 to more general

Lorentzian geometries. We begin by reviewing some key concepts from Lorentzian

geometry, following the notations and definitions in [20].

Let us consider a smooth 1+ n dimensional Lorentzian manifold (M, g), with n > 2.

The metric tensor g is taken to have the signature (−,+, . . . ,+), and writing 〈v,w〉g =∑n
i, j=0 gi jv

iw j for vectors v,w ∈ TpM, p ∈M, we recall that

v is time-like (resp. space-like) if 〈v, v〉g < 0 (resp. > 0),

v is light-like (or null) if 〈v,w〉g = 0.

The manifold M is assumed to be time-orientable in the sense that there exists a globally

defined, smooth time-like vector field Z on M . A curve α on M is said to be causal if its

tangent vector α̇ is time-like or light-like for all points on the curve, and a causal curve
is future-pointing if 〈α̇, Z〉g < 0. We write p 4 q if there exists a causal future-pointing

curve from p to q (the case p = q is allowed). The generalizations of (4) and (5) read as

J+(p) = {q ∈M | p 4 q}, J−(p) = {q ∈M | q 4 p}, ∀p ∈M.
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We will make the typical assumption that (M, g) is globally hyperbolic. This guarantees

that the natural, linear wave equation is well-posed on M. There are several equivalent

characterizations of global hyperbolicity, and we recall the one in [4]: there are no closed

causal paths on M, and the intersection J+(p)∩J−(q) is compact for any pair of points

p, q ∈M.

Global hyperbolicity implies that there is a global splitting in “time” and “space” in

the sense that (M, g) is isometric to R×M with the metric

g = −β(t, x ′) dt ⊗ dt + g0(t, x ′), ∀t ∈ R, x ′ ∈ M, (37)

where β is a smooth positive function and g0 is a Riemannian metric on the n dimensional

manifold M smoothly depending on the parameter t . Moreover, each set {t}×M is a

Cauchy hypersurface in M, that is to say, any causal curve intersects it at most once.

To simplify the notation, we fix a global splitting of form (37) and use it throughout

the rest of the paper. Analogously to (2), we set

0 = (0, T )×O,

where T > 0 and O is an open, bounded set in M . Analogously with the Minkowski case,

we write again J±(0) =
⋃

q∈0 J±(q) and define

D =J+(0)∩J−(0).

We will denote by ∇g the Levi-Civita connection on M and let divg denote the

divergence operator on M. The wave (or Laplace–Beltrami) operator 2g acting on

smooth functions C∞(M) is subsequently defined through 2gu = −divg∇
gu. In local

coordinates x = (t := x0, x1, . . . , xn) = (t, x ′), we have

2gu = −
n∑

i, j=0

|g|−
1
2
∂

∂xi

(
|g|

1
2 gi j ∂u

∂x j

)
.

We consider the following Cauchy problem:2gu+ V u+ u3
= f, ∀x ∈ (0, T )×M,

u(0, x ′) = 0, ∂t u(0, x ′) = 0, ∀x ′ ∈ M,
(38)

where V ∈ C∞(M). This equation is well-posed for f ∈ C , where C denotes a neighbor-

hood of origin in the Cκc (0) topology with κ a sufficiently large but explicit constant. In

other words, for each f ∈ C , there exists a unique small solution u ∈ H1((0, T )×M) to

(38).

We define the source to solution map LV associated with the Cauchy problem (38)

through

LV f := u |0, ∀ f ∈ C . (39)

As in the Minkowski case, we are interested in the problem of determining the unknown

potential function V on the causal diamond D, given the map LV . We have the following

result.
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Theorem 2. The source to solution map LV determines V on D in the sense that

LV1 f = LV2 f ∀ f ∈ C H⇒ V1 = V2 on D.

The rest of this paper is concerned with the proof of this theorem. This is organized

as follows. In Section 4, we recall the construction of Gaussian beams, which generalizes

the Minkowski geometric optic construction to the globally hyperbolic manifold (M, ḡ).
Section 5 begins with the construction of the appropriate source terms that produce these

Gaussian beams. Next, in Section 5.2, we consider the geometry of null geodesics and

study the intersections of such curves. Finally, in Section 5.3, we study the interaction of

waves corresponding to a three-fold linearization of the semi-linear equation and derive

uniqueness of V .

4. Gaussian beams

This section is concerned with the review of (formal) Gaussian beams for the wave

equation. Gaussian beams are a classical construction that was introduced in [2, 21].

The construction in [21] works in general Lorentzian manifolds. We also refer the reader

to [12], where an analogous construction is carried out in static Lorentzian manifolds

that are products of a time interval with a Riemannian manifold. Gaussian beams were

first used in the context of inverse problems in [3, 11]. For the convenience of the reader

and to make the notation self-contained, we will present the construction here.

4.1. Fermi coordinates

In this section, we recall Fermi coordinates (or geodesic coordinates) near a null geodesic

γ , that is, a geodesic with a light-like tangent vector γ̇ . For similar constructions in the

context of stationary Lorentzian geometries or Riemannian geometries with a product

structure, we refer the reader to [8] and [6], respectively.

Lemma 1 (Fermi coordinates). Let δ > 0, a < b and let γ : (a− δ, b+ δ)→M be a null

geodesic on M. There exists a coordinate neighborhood (U,8) of γ ([a, b]), with the

coordinates denoted by (z0
:= s, z1, . . . , zn), such that:

(i) 8(U ) = (a− δ′, b+ δ′)× B(0, δ′), where B(0, δ′) denotes a ball in Rn with a small

radius δ′ > 0.

(ii) 8(γ (s)) = (s, 0, . . . , 0︸ ︷︷ ︸
n times

).

Moreover, the metric tensor g satisfies in this coordinate system

g|γ = 2ds⊗ dz1
+

n∑
α=2

dzα ⊗ dzα, (40)

and ∂i g jk |γ = 0 for i, j, k = 0, . . . , n. Here, |γ denotes the restriction on the curve γ .
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Proof. Write q = γ (a− δ) and e0 = γ̇ (a− δ). Note that g(e0, e0) = 0. There are non-zero

c0 ∈ R and e′0 ∈ Tq M such that e0 = c0∂t + e′0. We set

e1 =
1
βc2

0
(−c0∂t + e′0).

Then g(e1, e1) = 0 and g(e0, e1) = 2. Finally, we choose vectors e2, . . . en ∈ TqM such that

g(ek, ek) = 1 for all k = 2, . . . , n, and g(ei , e j ) = 0 for all i = 0, 1, . . . , n and j = 2, . . . , n
with i 6= j . Then e0, . . . , en is a pseudo-orthonormal basis on TqM. For each k = 0, . . . , n,
let Ek(s) ∈ Tγ (s)M denote the parallel transport of ek along γ to the point γ (s). Observe

that E0 = γ̇ . Then E0(s), . . . , En(s) is a pseudo-orthonormal basis on Tγ (s)M.

We now define the coordinate system (z0
:= s, . . . , zn) through the map

F(s, z1, . . . , zn) = expγ (s)

( n∑
k=1

zk Ek(s)

)
,

where expp : TpM→M denotes the exponential map on M at a point p. Clearly,

F(s, 0, . . . , 0︸ ︷︷ ︸
n times

) = γ (s), ∀s ∈ (a− δ, b+ δ)

is injective as γ is not self-intersecting due to global hyperbolicity. Furthermore,

∂

∂zk F(s, 0, . . . , 0︸ ︷︷ ︸
n times

) = Ek(s), for k = 0, . . . , n.

The inverse function theorem applies, and we conclude that F is a smooth diffeomorphism

in a neighborhood of (a− δ, b+ δ)×{0}. We define 8 = F−1 and note that (i) and (ii)

are satisfied.

Since E0(s), . . . , En(s) is a pseudo-orthonormal basis, (40) holds. Let us now study the

derivatives of g on γ . Let (s, a1, . . . an) ∈ 8(U ) be fixed and consider the path h(t) =
expγ (s)(t

∑n
i=1 ai Ei (s)). As h is a geodesic, it satisfies

ḧk
+0k

αβ ḣα ḣβ = 0,

where 0k
αβ are the Christoffel symbols of the second kind for g. In the Fermi coordinates,

h0
= s and hi

= tai for i = 1, . . . , n, and therefore ḧk
= 0 for all k = 0, . . . , n. By varying

(a1, . . . , an), we see that 0k
αβ = 0 for k = 0, . . . , n and α, β = 1, . . . , n.

As Eα is defined as a parallel transport, there holds

∇
g
∂0
∂ j = ∇

g
γ̇ (s)E j (s) = 0,

and therefore, using the symmetry of the Levi-Civita connection, 0k
0 j = 0

k
j0 = 0 for k, j =

0, . . . , n. Thus all the Christoffel symbols 0k
i j , i, j, k = 0, . . . , n, vanish on γ . Hence, there

holds on γ ,

∂k gi j = 〈∇
g
∂k
∂i , ∂ j 〉g +〈∂i ,∇

g
∂k
∂ j 〉g = 0ki j +0ik j = 0,

where 0αi j = gαβ0
β
i j are the Christoffel symbols of the first kind.
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4.2. WKB approximation

We use the shorthand notation

PV u = (2g + V )u.

Analogously to the approximate geometric optics solutions in Section 2.1, we will

construct approximate solutions to PV u = 0, which concentrate on a given null geodesic

γ : (a− δ, b+ δ)→M. We write I = [a− δ′, b+ δ′] with δ′ > 0 as in Lemma 1, and define

the tubular set

V = {x ∈M | s ∈ I, |z′| :=
√
|z1|2+ · · ·+ |zn|2 < δ′}.

We consider the WKB ansatz

uτ (s, z′) = eiτφ(s,z′)aτ (s, z′)

in the Fermi coordinates z = (s, z′) near γ . The complex-valued phase φ ∈ C∞(V) and

amplitude aτ ∈ C∞c (V) will be constructed below.

We have

PV (eiτφaτ ) = eiτφ
(
τ 2(Hφ)aτ − iτT aτ +PV aτ

)
, (41)

where the operators H, T : C∞(M)→ C∞(M) are defined through

Hφ := 〈dφ, dφ〉g, T a := 2〈dφ, da〉g − (2gφ)a. (42)

We make the following ansatz for φ and a, respectively:

φ =

N∑
j=0

φ j (s, z′) and aτ (s, z′) = χ
(
|z′|
δ′

) N∑
k=0

τ−kvk(s, z′),

vk(s, z′) =
N∑

j=0

vk, j (s, z′),

(43)

where for each j, k = 0, . . . , N , φ j and vk, j are complex-valued homogeneous polynomials

of degree j with respect to the variables zi with i = 1, . . . , n, and χ(t) is a non-negative

smooth function of compact support such that χ(t) = 1 for |t | 6 1
4 and χ = 0 for |t | > 1

2 .

The equation Hφ = 0 is often called the eikonal equation, and we require that it is

satisfied in the following sense on γ ,

∂α

∂zα
(Hφ)(s, 0, . . . , 0) = 0, ∀s ∈ I, (44)

for all multi-indices α = {0, 1, . . . }1+n with |α| 6 N . Here I is the interval in Lemma 1.

We also require that the following transport type equations are satisfied on γ by the

leading v0 and subsequent vk , k = 1, . . . , N , amplitudes,

∂α

∂zα
(T v0)(s, 0, . . . , 0) = 0, ∀s ∈ I, (45)

∂α

∂zα
(−iT vk +PV vk−1)(s, 0, . . . , 0) = 0, ∀s ∈ I, (46)

for all α = {0, 1, . . . }1+n with |α| 6 N . With these notations, we will define the following.
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Definition 1. An approximate Gaussian beam of order N along γ is a function uτ = eiτφaτ
with φ, aτ defined as in (43) such that the following properties hold:

(i) Equations (44)–(46) hold.

(ii) =(φ)|γ = 0, that is, the imaginary part of φ vanishes on γ .

(iii) =(φ)(z) > C |z′|2 for all points z ∈ V, where C > 0.

It follows from (i) and (iii) that uτ is an approximate solution to equation PV u = 0 in

the sense of the following lemma.

Lemma 2. Let uτ be an approximate Gaussian beam of order N along γ in the sense of

Definition 1. Suppose that the end points of γ are outside [0, T ]×M in the sense that

γ (a), γ (b) /∈ [0, T ]×M. Then for all τ > 0,

‖PV uτ‖H k ((0,T )×M) . τ−K , ‖uτ‖C((0,T )×M) . 1,

where K = N+1
2 +

n
4 − k− 2.

Proof. The second estimate follows trivially from (43) and (iii). Note that equations (44),
(45) and (46) imply that

|∂αz PV uτ | . τ |α||eiτφ
|(C0τ

2
|z′|N+1

+C1τ |z′|N+1
+C2τ

−N ).

Moreover, |eiτφ
| 6 e−Cτ |z′|2 by (iii). Writing r = |z′|, we obtain the first estimate by using

the estimates∣∣∣∣∫
B(0,δ′)

e−Cτ |z′|2
|z′|2 j dz′

∣∣∣∣ 6 ∣∣∣∣∫
R

e−Cτr2
r2 jrn−1 dr

∣∣∣∣ 6 C jτ
− j− n

2 ∀ j ∈ N∪ {0},

for all δ′ small, where C j =
∫
R e−Cρ2

ρ2 j+n−1dρ.

Observe also that if uτ = eiτφaτ is an approximate Gaussian beam, then also

ũτ = e−iτ φ̄ āτ (47)

satisfies the estimates in Lemma 2. Here, the notation ·̄ means complex conjugation.

4.2.1. The phase function. Let us now construct φ and aτ satisfying (44)–(46). We

begin by constructing the expansion of the phase function φ in such a way that equation

(44) holds. For |α| = 0, we obtain the equation on γ

n∑
k,l=0

gkl ∂φ

∂zk
∂φ

∂zl = 0.

Using (40), this reduces to

2∂0φ ∂1φ+

n∑
k=2

(∂kφ)
2
= 0. (48)

https://doi.org/10.1017/S1474748020000122 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000122


384 A. Feizmohammadi and L. Oksanen

Recalling that for all i, j, k = 0, . . . , n, we have ∂i g jk
= 0 on γ , we obtain similarly for

|α| = 1,
n∑

k,l=0

gkl∂2
ikφ ∂lφ = 0 (49)

for all i = 1, . . . , n. Equations (48) and (49) are satisfied setting

φ0 = 0 and φ1 = z1. (50)

Indeed, (48) holds since ∂0φ = ∂kφ = 0 for k = 2, . . . , n, and (49) holds since gkl∂lφ 6= 0
on γ only if k = 0 and l = 1, and since ∂2

i0φ = 0 on γ for all i = 1, . . . , n.

Next, we write

φ2(s, z′) :=
∑

16i, j6n

Hi j (s)zi z j ,

where Hi j = H j i is a complex-valued matrix. By Definition 1, we require that the

imaginary part of H is positive definite, that is,

=H(s) > 0, ∀s ∈ I. (51)

Equation (44) with |α| = 2 is equivalent to

n∑
k,l=0

(2gkl∂3
ki jφ ∂lφ+ 2gkl∂2

kiφ ∂
2
l jφ+ ∂

2
i j g

kl∂kφ ∂lφ+ 4∂i gkl∂2
jkφ ∂lφ) = 0

for all i, j = 1, . . . , n. Using (40) and (50), ∂2
i0φ = 0, i = 1, . . . , n and ∂i gkl

= 0, this

reduces to

2g10∂3
0i jφ+ 2

n∑
k=2

∂2
kiφ ∂

2
k jφ+ ∂

2
i j g

11
= 0.

Noting that ∂2
i jφ = 2Hi j , we obtain the following Riccati equation for H(s):

d
ds

H + HC H + D = 0, ∀s ∈ I, (52)

where C and D are the matrices defined through
C11 = 0

Ci i = 2 i = 2, . . . , n,

Ci j = 0 otherwise,

Di j =
1
4
∂2

i j g
11. (53)

We recall the following result from [12, Section 8] regarding solvability of the Riccati

equation.

Lemma 3. Let ŝ0 ∈ I and let H0 be a symmetric matrix with =H0 > 0. The Riccati

equation (52), together with the initial condition H(ŝ0) = H0, has a unique solution H(s)
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for all s ∈ I . We have =H > 0 and H(s) = Z(s)Y−1(s), where the matrix-valued functions

Z(s), Y (s) solve the first order linear system

d
ds

Y = C Z and
d
ds

Z = −DY, subject to Y (ŝ0) = I, Z(ŝ0) = H0.

Moreover, the matrix Y (s) is non-degenerate on I , and there holds

det(=H(s)) · | det(Y (s))|2 = det(=(H0)).

We refer the reader to [8, Section 3.5] for a geometrically invariant interpretation of the

function Y (s) above. With the help of Lemma 3, we have so far succeeded in determining
the coefficients of φ up to the third term in (43). The remaining terms can be solved

through linear first order ordinary differential equations (ODEs).

We will describe only the case j = 3 in detail, the cases j > 3 being analogous. We see

that equation (44) with ∂αz = ∂p∂q∂r is equivalent to

2
n∑

k,l=0

(gkl∂k∂
α
z φ ∂lφ+ gkl∂3

kpqφ ∂
2
lrφ+ gkl∂3

kprφ ∂
2
lqφ+ gkl∂3

kqrφ ∂
2
lpφ)+Fα = 0,

where Fα depends only on φ j with j 6 2. It holds on γ that

n∑
k,l=0

gkl∂k∂
α
z φ ∂lφ = ∂s∂

α
z φ,

and we see that the coefficients ∂αz φ with |α| = 3 satisfy a system of linear ODEs with

the right-hand side depending on φ j and ∂sφ j with j 6 2. Solving this system with any

fixed initial condition gives ∂αz φ with |α| = 3, and the polynomials φ j of higher degree

are constructed analogously.

4.2.2. The amplitude function. We study next the leading amplitude function v0
by determining the terms {v0,k}k>0 in such a way that equation (45) holds for all m =
0, . . . , N . For |α| = 0, using the definition of T , we obtain on γ

2
n∑

k,l=0

gkl ∂φ

∂zk
∂v0

∂zl − (2gφ)v0 = 0, ∀s ∈ I.

Recalling Lemma 1, we have on γ

−2gφ =

n∑
i, j=0

gi j∂2
i jφ =

n∑
i=2

∂2
i iφ = Tr(C H),

and therefore

2
d
ds
v0,0+Tr(C H)v0,0 = 0, ∀s ∈ I.

Lemma 3 yields

Tr(C H) = Tr(Ẏ Y−1) = Tr
d
ds

log Y =
d
ds

log det Y,
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which implies that we can set

v0,0(s) = (det Y (s))−
1
2 , ∀s ∈ I. (54)

The subsequent terms v0,k with k = 1, . . . , N can be constructed by solving linear first

order ODEs. Indeed, taking m = k in equation (45) and recalling the definition of T , we

obtain the following equation for the homogeneous polynomial v0,k(s, z′):

2
∂

∂s
v0,k +Tr(C H)v0,k + Ek = 0 ∀k > 1, s ∈ I and v0,k(ŝ0) = 0, (55)

where Ek is a homogeneous polynomial of degree k in the z′ coordinates with the

coefficients only depending on {v0,l}
k−1
l=0 and {φl}

k+2
l=0 . These first order differential equations

can be solved uniquely by prescribing zero initial data at ŝ0 ∈ I .

To determine the subsequent terms v j , we need to solve equation (46), but this can be

accomplished analogously to the above argument and is therefore omitted for the sake of

brevity. However, let us establish in detail the analogue of (36) that will be needed later.

Equation (46) with k = 1 and |α| = 0 reads on γ as

2
d
ds
v1,0+Tr(C H)v1,0 = 2gv0+ V v0,0,

and therefore we may take

v1,0(s) = b1,0(s)+ c1,0(s),

b1,0(s) = −
i
2
(det Y (s))−

1
2

∫ s

ŝ0

(2gv0)(s̃, 0)(det Y (s̃))
1
2 ds̃,

c1,0(s) = −
i
2
(det Y (s))−

1
2

∫ s

ŝ0

V (s̃, 0) ds̃.

(56)

This completes the construction of solutions φ and aτ to equations (44)–(46). The

function uτ = eiτφaτ is then a formal Gaussian of order N when δ′ > 0 in (43) is

sufficiently small. Indeed, conditions (i) and (ii) in Definition 1 follow from (44)–(46)

and (50), respectively, and (iii) follows from (51) for small δ′ > 0.

5. Proof of Theorem 2

5.1. Source terms

Let γ be a null geodesic and suppose that the end points of γ are outside [0, T ]×M in

the sense of Lemma 2. Suppose also that γ intersects 0 and write

γ (0) = q ∈ 0, γ̇ (0) = Z ∈ TqM. (57)

Let uτ be a formal Gaussian beam along γ (with ŝ0 = 0). Analogously to (24), we can

choose cut-off functions ζ± such that the solution Uτ ofPVUτ = fτ,q,Z , ∀(t, x ′) ∈ (0, T )×M,

Uτ (0, x ′) = 0, ∂tUτ (0, x ′) = 0, ∀x ′ ∈ M
(58)
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with the source

fτ,q,Z = ζ+(2g + V )(ζ−uτ ) ∈ C∞c (0)

satisfies the estimate

‖Uτ − ζ−uτ‖H k+1((0,T )×M) . τ−K . (59)

Here K is as in Lemma 2 and ζ− = 1 in J+(q).
It is important to choose the higher order amplitudes vk, j , k > 1, j > 0, of the formal

Gaussian beam uτ so that their initial conditions are set to be zero at the point q. A

concrete example is given by v1,0 in (56). We take ŝ0 = 0 in (56), and then the term c1,0(s)
that depends on the potential V is known for small s. Indeed, the map LV determines

V |0 uniquely, and therefore V is known near γ (0) = q; cf. (57). As in the Minkowski

case, for suitable cut-off functions ζ±, the source fτ,q,Z can be then constructed given

LV . Finally, we can also construct a test function f +τ,q,Z analogously to (26).

5.2. Three-parameter family of sources

We start by recalling a key lemma; see [16, Lemma 2.3]. We will reproduce the proof for

completeness, and toward that end, we recall some concepts from Lorentzian geometry,

namely, the notions of lengths of causal curves α : I → R and time separation between
points p, q ∈M. We can define the length L of a causal curve α : I → R as follows:

L(α) =
∫

I

√
−g(α̇(s), α̇(s)) ds.

We also define the time-separation function τ(p, q) ∈ [0,∞) for p 4 q through

τ(p, q) = sup{L(α) |α is a future-pointing causal curve from p to q}. (60)

We set τ to be zero if p 4 q does not hold. Under the global hyperbolicity assumption,

τ :M×M→ R is continuous. Heuristically, time separation in globally hyperbolic

Lorentzian geometries plays the role of Riemannian distance in Riemannian geometries.

Indeed, we have the well-known proposition that given p 4 q, there exists a causal

geodesic from p to q of length τ(p, q). Furthermore given a curve α, we say that a path

α on M is a pre-geodesic if it is C1 smooth and admits a parametrization α : I →M
such that α̇(t) 6= 0 for all t ∈ I and t 7→ α(t) is a geodesic.

Lemma 4. For any point p ∈ D \0, there are a point q+ = (t+, x ′+) ∈ 0 and a null

geodesic γ+ such that q+ = γ+(0) and p = γ+(s0) for some s0 < 0 and that the following

statement holds. Given any s̃0 > s0 in a small neighborhood of s0, there are a point

q− = (t−, x ′−) ∈ 0 and a null geodesic γ− going through the points q− and γ+(s̃0) such

that γ+(s̃0) is the only point in [t−, t+]×M where the null geodesics γ± intersect.

Proof. By the definition of D, there is a point q̂+ = (t̂+, x̂ ′+) in 0 such that p 4 q̂+.

Analogous to [16], we define the earliest observation time,

t̃+ = inf{t ∈ [0, T ] | τ(p, (t, x̂ ′+)) > 0},
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and set q̃+ = (t̃+, x̂ ′+). As p /∈ 0, the points q̃+ and p are distinct. Writing p = (tp, x ′p),
this implies that tp < t̃+. Since M is globally hyperbolic, τ is continuous and therefore

τ(p, q̃+) = 0.

But then [20, Proposition 10.46] implies that the causal curve from p to q̃+ is a null

pre-geodesic. In particular, there is a null geodesic γ+ going through p and q̃+. Finally,

we choose q+ = (t+, x ′+) ∈ 0 on γ+ such that it lies strictly between p and q̃+. We also

parametrize γ+ so that γ+(0) = q+ and p = γ+(s0) for some s0 < 0.
Let us now consider s̃0 > s0 in a small neighborhood of s0 so that γ+(s̃0) ∈ D \0.

Again, by the definition of D, there is a point q̂− = (t̂−, x̂ ′−) ∈ 0 such that q̂− 4 γ+(s̃0).

We define the earliest observation time,

t̃− = sup{t ∈ [0, T ] | τ((t, x̂ ′−), γ+(s̃0)) > 0},

and set q̃− = (t̃−, x̂ ′−). Analogously as above, we conclude that there exists a null geodesic

γ− that goes through the points q̃− and γ+(s̃0). Finally, we choose q− = (t−, x ′−) ∈ 0

on γ− such that it lies strictly between p and q̃− and p.

We remark that as it stands, the two null geodesics γ+ and γ− could be different

parametrizations of the same geodesic. Next, we show how to remove this possibility.

Indeed, we define q̂−ε = (t̃
−
− ε, x̂ ′−), where ε is sufficiently small so that this point lies

in the set 0. Then, the path from q̂−ε to γ+(s̃0), consisting of a time-like path from q̂−ε
to q̃− together with γ− from q̃− to γ+(s̃0), is not a null pre-geodesic. Therefore [20,

Proposition 10.46] implies that τ(q̂−ε , γ
+(s̃0)) > 0. The same is true for all points in a

small neighborhood of q̂−ε , and therefore we could replace q̂− with such a point in the

above construction and proceed as before to determine γ− and q−. Hence, we may assume

without loss of generality that γ+ and γ− are not segments of the same null geodesic.

To get a contradiction, let us assume that the two null geodesics γ+ and γ− intersect

at a point q̃ = (t, x ′) ∈ [t−, t+]×M and q̃ 6= γ+(s̃0) = (t1, x ′1). Suppose for the moment

that t1 < t 6 t+. Recall that t+ < t̃+. Following γ− from γ+(s̃0) to q̃ and then γ+ from q̃
to q̃+ gives a causal path from γ+(s̃0) to q̃+. As γ+ and γ− are not segments of the same

geodesic, this path is not a pre-geodesic. Therefore it follows from [20, Proposition 10.46]
that τ(γ+(s̃0), q̃+) > 0, a contradiction with τ(p, q̃+) = 0. The other scenario t− 6 t < t1
can be treated analogously.

We now proceed as in Section 2.3 with some minor modifications. Consider a point p =
(tp, x ′p) ∈ D \0. Let γ (0) := γ+ and q+ = γ (0)(0) be as in Lemma 4. We write p = γ (0)(s0)

for some s0 < 0 and let s̃0 > s0 be in a small neighborhood of s0 so that γ (0)(s̃0) ∈ D \0.

We define

p̃ = γ (0)(s̃0) (61)

and let the null geodesic γ (1) := γ− and the point q− ∈ 0 be as given by Lemma 4. We

emphasize here that the two null geodesics γ (0) and γ (1) only intersect at p̃. Next, denote

by ξ (0)], ξ (1)] ∈ Tp̃M the tangent vector to γ (0) and γ (1), respectively, at the point p̃. We

may reparametrize γ ( j) and choose local coordinates near p̃ so that g coincides with the

Minkowski metric at p̃, and that

ξ (0)] = (1, cos θ, sin θ, 0, . . . , 0︸ ︷︷ ︸
n−2 times

), ξ (1)] = (1, 1, 0, 0, . . . , 0︸ ︷︷ ︸
n−2 times

)
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with θ ∈ [0, 2π ]. Here, we emphasize the contrast with the Minkowski setting, where

without loss of generality, θ above could be taken to be π . In the Minkowski case, the

geodesic from p̃ with the direction (1,−1, 0, . . . , 0) returns to 0 since this direction is

obtained by reversing the spatial component of ξ (1)]. Due to lack of symmetries in the

general case under consideration, the geodesic to the spatially reversed direction may not

intersect 0 (and it may intersect γ (1) several times).

We now define

ξ (2)] = (1,
√

1− σ 2, σ, 0, . . . , 0︸ ︷︷ ︸
n−2 times

), ξ (3)] = (1,
√

1− σ 2,−σ, 0, . . . , 0︸ ︷︷ ︸
n−2 times

),

where σ ∈ (0, 1). By [5, Lemma 1], we have

σ 2ξ (0)]+ (2b(θ)+O(σ ))︸ ︷︷ ︸
κ1

ξ (1)]+ (−b(θ)+O(σ ))︸ ︷︷ ︸
κ2

ξ (2)]+ (−b(θ)+O(σ ))︸ ︷︷ ︸
κ3

ξ (3)] = 0, (62)

where b(θ) = 1− cos θ . As ξ (0)] 6= ξ (1)] by Lemma 4, it holds that b(θ) 6= 0. In particular,

limσ→0 κ j (σ ) is finite and non-zero for j = 1, 2, 3. We will write also κ0(σ ) = σ
2.

Let γ ( j), j = 2, 3, be null geodesics with the tangent vectors ξ ( j)] at the point p̃. We

choose σ sufficiently small so that the geodesics γ ( j) intersect the set 0 at some points q( j)

near q(1) := q−. We write also q(0) := q+ = γ (0)(0). We may choose the parametrizations

of γ ( j), j = 1, 2, 3, so that q( j)
= γ ( j)(0). Then γ ( j)(s̃ j ) = p̃ for some s̃ j > 0, j = 1, 2, 3.

We write also γ̇ ( j)(0) = Z ( j) for j = 0, 1, 2, 3. To summarize, we have

γ ( j)(0) = q( j), γ̇ ( j)(0) = Z ( j), j = 0, 1, 2, 3 (63)

and

γ ( j)(s̃ j ) = p̃, γ̇ ( j)(s̃ j ) = ξ
( j)], j = 0, 1, 2, 3.

To simplify the discussion, we assume that κ j in (62) satisfy

κ1 > 0 and κ2, κ3 < 0. (64)

Other cases can be treated in a similar manner and are omitted for the sake of brevity.

We then construct formal Gaussian beams u( j)
τ , in the Fermi coordinates associated with

γ ( j), of order

N >
3n
2
+ 10, (65)

and the form
u(0)τ = eiκ0τφ

(0)
a(0)κ0τ

, u(1)τ = eiκ1τφ
(1)

a(1)κ1τ
,

u(2)τ = eiκ2τ φ̄
(2)

ā(2)κ2τ
, u(3)τ = eiκ3τ φ̄

(3)
ā(3)κ3τ

,
(66)

where the functions φ( j), a( j) are exactly as in Section 4.2 with the initial conditions for

all ODEs assigned at the points q( j)
= γ ( j)(0) in the sense that ŝ( j)

0 = 0; see (55) and

(56).

Remark 2. Recall that we are considering the case that (64) holds. Because of this,

we need the Gaussian beams corresponding to γ (2) and γ (3) to involve the complex
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conjugation of the phase and amplitude terms. The reason for this specific choice will

become clear in the proof of Lemma 5. If alternatively, for example, κ1 > 0, κ2 > 0 and

κ3 < 0, the complex conjugation will only appear for u(3)τ .

We consider the source terms fτ,q( j),Z ( j) for j = 1, 2, 3 and the test function f +
τ,q(0),Z (0) as

discussed in Section 5.1. Moreover, we define again the three-parameter family of source

fε,τ with ε = (ε1, ε2, ε3) by (34).

5.3. Recovery of V

We start by considering the formal Gaussian beams u( j)
τ given by (66). Let fε,τ be

the three-parameter family constructed in the previous section. In this section, we will

complete the proof of Theorem 2 by showing that V (p) is determined from LV for all

p ∈ D \0.

Repeating the argument in the beginning of Section 2.4 shows that LV determines the
integral

I =
∫
M

U (0)τ U (1)τ U (2)τ U (3)τ dVg,

where dVg =
√
|g| dt dx1 . . . dxn denotes the volume form on (M, g). Using the Sobolev

embedding, we obtain from (59),

‖U ( j)
τ − ζ

( j)
− u( j)

τ ‖C((0,T )×M) . τ−
n+1

2 −2, ∀ j = 1, 2, 3, (67)

where ζ
( j)
− = 1 in J+(q( j)). Indeed, choice (65) guarantees that K > (n+ 1)/2+ 2, where

K is as in Lemma 2 with k = n/2+ 1. Analogously, U (0)τ satisfies the estimate

‖U (0)τ − ζ
(0)
+ u(0)τ ‖C((0,T )×M) . τ−

n+1
2 −2, (68)

with ζ
(0)
+ = 1 in J−(q( j)).

We proceed to asymptotically analyze I. Applying estimates (67)–(68) together with

the boundedness of formal Gaussian beams (see Lemma 2), we have

τ
n+1

2 I = τ
n+1

2

∫
M

u(0)τ u(1)τ u(2)τ u(3)τ dVg +O(τ−2). (69)

We will use the method of stationary phase to analyze the product of the four formal

Gaussian beams in (69), and need the following lemma. In the lemma, we choose d to be

an auxiliary distance function on M.

Lemma 5. Consider the formal Gaussian beams along the geodesics γ (k), k = 0, 1, 2, 3,

in (66), and recall that these four geodesics intersect at p̃ = γ (0)(s̃0). Recall also that

κ0, κ1 > 0 while κ2, κ3 < 0. Then the function

S := κ0φ
(0)
+ κ1φ

(1)
+ κ2φ̄

(2)
+ κ3φ̄

(3)
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is well defined in a small neighborhood of the point p̃ and there holds the following:

(i) S( p̃) = 0;

(ii) ∇g S( p̃) = 0;

(iii) =S(q) > m d(q, p̃)2 for q in a neighborhood of p̃. Here m > 0 is a constant.

Proof. Note that the first claim is trivial as each of the four phases φ(k) vanishes along

γ (k) and therefore the sum must vanish at the point of intersection p̃. For the second

claim, we note that equation (50) applies to show that along each null geodesic γ (k), we

have ∇gφ(k)|γ (k) = γ̇
(k). Together with (62), the second claim follows.

Let us now consider the last claim. Note that it suffices to show that

D2
=S(X, X) > 0 ∀X ∈ Tp̃M \ 0.

First, note that =S =
∑3

k=0 |κk |=φ
(k), implying that D2

=S(X, X) > 0. Indeed, using the

Fermi coordinates, we see that for each k = 0, 1, 2, 3,

D2
=φ(k)(X, X) > 0 ∀X ∈ Tp̃M,

D2
=φ(k)(X, X) > 0 ∀X ∈ Tp̃M \ span ξ (k)]

due to (50) and (51) and the fact that the Christoffel symbols vanish on γ (k) in these

coordinates (see Lemma 1). Since ξ (0)] and ξ (1)] are linearly independent, the claim

follows.

We know from Lemma 4 that p is the only point of intersection of the four null geodesics

γ ( j), j = 0, 1, 2, 3. Thus the product

u(0)τ u(1)τ u(2)τ u(3)τ = eiτ Sa(0)κ0τ
a(1)κ1τ

ā(2)κ2τ
ā(3)κ3τ

is supported in a small neighborhood U of p̃. Let us record the following bounds that

follow from Lemma 5:

τ n+1
∫

U
|eiτ S
|
2 dVg + τ τ

n+1
∫

U
|eiτ S
|
2 d(·, p)2 dVg 6 C, (70)

where C > 0 is independent of τ .

We return to (69) and expand the amplitudes a( j)
κ j τ in terms of the functions v

( j)
k as in

(43). Applying (70), we obtain

τ
n+1

2 I −J = τ−1τ
n+1

2

∫
U

eiτ S F dVg +O(τ−
3
2 ), (71)

where

J = τ
n+1

2

∫
U

eiτ Sv
(0)
0 v

(1)
0 v̄

(2)
0 v̄

(3)
0 dVg

is known (since there is no dependence on V here) and

F =
1
κ0
v
(0)
10 v

(1)
00 v̄

(2)
00 v̄

(3)
00 +

1
κ1
v
(0)
00 v

(1)
10 v̄

(2)
00 v̄

(3)
00

+
1
κ2
v
(0)
00 v

(1)
00 v̄

(2)
10 v̄

(3)
00 +

1
κ3
v
(0)
00 v

(1)
00 v̄

(2)
00 v̄

(3)
10 .
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We now consider the right-hand side of (71) and apply the method of stationary phase;

see e.g., Theorem 7.7.5 in [10]. Observe that the assumptions of the theorem are satisfied

in view of Lemma 5 and the fact that the integrand in (71) is supported in a small

neighborhood of p̃. The method of stationary phase gives

τ−1
(

c0

κ0
v
(0)
10 ( p̃)+

c1

κ1
v
(1)
10 ( p̃)+

c2

κ2
v̄
(2)
10 ( p̃)+

c3

κ3
v̄
(3)
10 ( p̃)

)
c4+O(τ−

3
2 ),

where c j , j = 0, 1, 2, 3, are non-zero constants resulting from the leading amplitudes v
( j)
00

and c4 contains the determinant factor from the stationary phase. In particular, the

constants c j , j = 0, . . . , 4, do not depend on the potential V , and for j = 0, 1, 2, 3, they

do not depend on σ in (62).

Using the splitting v
( j)
1,0 = b( j)

1,0+ c( j)
1,0 as in (56) (recall here that ŝ( j)

0 = 0) together with

the fact that b( j)
1,0 does not depend on V , we see that the map LV uniquely determines

the expressions

1∑
j=0

c j

κ j

∫ s̃ j

0
V (γ ( j)(s)) ds+

3∑
j=2

c j

κ j

∫ s̃ j

0
V̄ (γ ( j)(s)) ds, (72)

where γ ( j)(s̃ j ) = p̃ for each j = 0, 1, 2, 3 and in accordance with Lemma 1 and the

initial condition (63), the integration along the null geodesics γ ( j) is with respect to the

parametrization that was fixed in (63). Finally, noting that limσ→0 κ j 6= 0 for j = 1, 2, 3
and limσ→0 κ0 = 0, and that γ (0) = γ+, we deduce that the knowledge of the source to

solution map LV uniquely determines the integral∫ s̃0

0
V (γ+(s)) ds, (73)

where we recall by (61) that γ+(s̃0) = p̃. Again, we emphasize that the choice of the

parametrization along γ+ = γ (0) is fixed here subject to (63). Recall also that p = γ+(s0)

and that s̃0 > s0 can vary in a neighborhood of s0 by Lemma 4. Hence, we can differentiate

the preceding expression with respect to the parameter s̃0 and evaluate it at s̃0 = s0 to

conclude that the source to solution map LV uniquely determines the value V (p) for

all p ∈ D \0. This completes the proof of Theorem 2 since V had also been determined

on 0.
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