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We consider irreducible Markov chains on a finite state space. We show that the mixing

time of any such chain is equivalent to the maximum, over initial states x and moving large

sets (As)s, of the hitting time of (As)s starting from x. We prove that in the case of the

d-dimensional torus the maximum hitting time of moving targets is equal to the maximum

hitting time of stationary targets. Nevertheless, we construct a transitive graph where these

two quantities are not equal, resolving an open question of Aldous and Fill on a ‘cat and

mouse’ game.
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1. Introduction

Mixing times and hitting times are fundamental notions for finite-state Markov chains.

Both have been widely studied (see, e.g., [1] or [5] for background and numerous

references) and a great variety of techniques have been developed to analyse them.

We begin by fixing some notation and reviewing previous work relating these two

quantities.

Let (Xt)t�0 be an irreducible Markov chain on a finite state space with transition matrix

P and stationary distribution π. For x, y in the state space we write

P t(x, y) = Px(Xt = y),

for the transition probability in t steps.

Let d(t) = maxx ‖P t(x, ·) − π‖, where ‖μ − ν‖ stands for the total variation distance

between the two probability measures μ and ν. The total variation mixing is defined as

follows:

tmix(ε) = min{t � 0 : d(t) � ε}.

We use the convention that tmix = tmix(1/4).
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Before stating our first theorem, we introduce the maximum hitting time of ‘big’ sets.

Let α < 1/2. Then we define

tH(α) = max
x,A:π(A)�α

Ex[τA],

where τA stands for the first hitting time of the set A.

We say that two real-valued functions f and g are equivalent, denoted by f � g, if

there are universal positive constants c and c′ such that cf � g � c′f. If the constants are

allowed to depend on a parameter α, we write f �α g.

Aldous (1981) related mixing and hitting times by proving that tcts � maxx,A π(A)Ex[τA]

for all reversible chains, where tcts is the mixing time of the continuous time chain. In two

independent recent papers by Oliveira [4] and Peres and Sousi [8], it was proved that, for

all reversible chains, if α < 1/2 then

tL �α tH(α), (1.1)

where tL is the mixing time of the lazy version of the chain, i.e., the chain with transition

matrix P+I
2

.

Very recently, Griffiths, Kang, Oliveira and Patel [3] showed that tH(α) � tH(1/2)/α for

all α < 1/2. Hence this together with (1.1) or with the result of Aldous implies that for

all reversible chains, if α � 1/2 then

tL �α tH(α),

with the equivalence failing if α > 1/2.

For non-reversible chains equation (1.1) may fail, e.g., for biased random walk on the

cycle Zn we have tL � n2, while tH(α) � n, for any α > 0. During a lecture on [8] by Yuval

Peres, Guy Kindler proposed that for non-reversible chains the right analogue of (1.1)

involves moving targets. Our first result establishes this equivalence.

Let α ∈ (0, 1) and A(α) denote the collection of sequences of sets defined as follows:

A(α) = {A = (At)t�0 : ∀t � 0, π(At) � α}.

For A ∈ A(α) define τA = inf{t � 0 : Xt ∈ At} and

tmov(α) = sup
x,A∈A(α)

Ex[τA].

Theorem 1.1. For α < 1/2, tmix � tmov(α).

We will prove Theorem 1.1 in Section 2.

Remark. We note that Theorem 1.1 does not require the chain to be either lazy or

reversible, as is the case for (1.1). In this setting the equivalence holds for any chain.

Theorem 1.1 and (1.1) immediately give that for all reversible lazy chains and for any

α < 1/2,

tmov(α) �α tH(α).
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If the chain is not reversible, however, the above equivalence can fail. For instance, for the

biased random walk on Zn, if A = (Ai)i are sets moving at the same speed as the random

walk, then E[τA] � n2, agreeing with the mixing time tL.

We next consider the problem of colliding with a moving target on a graph. In the

following theorem we show that in the case of toroidal grids, the best strategy for the

target, to avoid collision as long as possible, is to stay in place at the maximum distance

from the starting point. As a corollary, we show that in the one-dimensional case the two

quantities tH and tmov are equal.

Theorem 1.2. Let X be a lazy simple random walk on Z
d
n and let f : N → Z

d
n be a function.

Then, setting a = (	n/2
, . . . , 	n/2
), we have for all t

P0(X1 �= f(1), . . . , Xt �= f(t)) � P0(X1 �= a, . . . , Xt �= a).

Remark. Note that if the random walk X on Z
d
n is not lazy, then one can always choose

a function f : N → Z
d
n so that

P0(X1 �= f(1), . . . , Xt �= f(t)) = 1,

and hence the conclusion of Theorem 1.2 fails.

Corollary 1.3. Let X be a lazy simple random walk on Zn = {0, 1, . . . , n − 1}. Then, for all

n, α, we have

tH(α) = tmov(α).

We prove Theorem 1.2 and Corollary 1.3 in Section 3 using a discrete version of

rearrangement inequalities. We employ a polarization technique which has been used

extensively in the continuous setting to prove several classical rearrangement inequalities

(see, e.g., [2]). As a by-product of the discrete rearrangement inequality, we also prove

that the expected volume of the ‘sausage’ around a discrete lazy simple random walk on

Z
d with drift is minimized when the drift is equal to 0.

Proposition 1.4. Let X be a lazy simple random walk on Z
d and let f : N → Z

d be a

function. Then, for all t ∈ N and all n ∈ N,

E

[
vol

( t⋃
s=0

(Xs + f(s) + Qn)

)]
� E

[
vol

( t⋃
s=0

(Xs + Qn)

)]
,

where Qn = [−n, n]d.

A more general isoperimetric inequality for the expected volume of the Wiener sausage

has been proved in [9]; the stronger Proposition 1.4 makes use of the symmetries of Z
d

and does not hold in general.
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Finally, in the last theorem, we show that that the equality of Proposition 1.3 is not

always true for a reversible Markov chain. This resolves an open question of Aldous [1,

Chapter 4, Open Problem 20] and of Oliveira [7].

We say that X is a continuous time random walk on a graph if it stays at every vertex

for an exponential amount of time of mean 1, and then jumps to one of the neighbours

uniformly at random.

Theorem 1.5. There exists a transitive graph G = (V , E) such that if X is a continuous time

or lazy random walk on G, then

max
x,y

Ex[τy] < sup
x,f∈VR+

Ex[τf],

where τf = inf{t � 0 : Xt = f(t)}.

In [1] and [7] this was stated as a cat and mouse problem and it was conjectured that

the best strategy for the mouse to maximize the expected capture time is to stay in place.

In our graph G we show that this is not the case. We prove Theorem 1.5 in Section 4.

2. Moving targets

In this section we give the proof of Theorem 1.1. We note that the ideas used are similar

to the ones in the proof of [8, Theorem 6.1].

Proof of Theorem 1.1. We first show that tmov � c1tmix, where c1 is a positive constant.

Let t = tmix(α/2) � �log2(1/α)
tmix. Then, for all x and all sets A, we have

P t(x, A) � π(A) − α

2
.

Take a sequence of sets A = (As) ∈ A(α). Then, for all s and all starting points x, we have

P t(x, As) � α

2
. (2.1)

If τ = min{k � 0 : Xkt ∈ Akt}, then obviously we have τA � tτ. By (2.1), it follows that τ

is stochastically dominated by a geometric random variable of success probability α/2.

Therefore,

Ex[τA] � tEx[τ] � 2t

α
,

and hence this gives that

tmov � 2�log2(1/α)

α

tmix,

and this completes the proof of the upper bound.

We now show the other direction, i.e., that there exists a positive constant c2 so that

tmix � c2tmov(α).
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Since α < 1/2, there exists ε > 0 such that α + ε < 1/2. By [5, 4.35], it follows that there

exists a positive constant c3 such that tmix(α + ε) � c3tmix. Let t < tmix(α + ε). Then this

means that there exists x and a set A so that

P t(x, A) < π(A) − (α + ε). (2.2)

From that we immediately get that π(A) > α + ε. We now use the set A to define a

sequence of sets (Bs) as follows. For s < t define

Bs = {y : P t−s(y, A) > π(A) − α}

and for s � t we let Bs = Ω. Since π is stationary, it follows that

π(A) =
∑
y∈Bs

P t−s(y, A)π(y) +
∑
y∈Bc

s

P t−s(y, A)π(y) � π(Bs) + π(A) − α.

Rearranging gives that π(Bs) � α for all s. We write τB = min{t � 0 : Xt ∈ Bt}. We will

show that for a constant θ to be determined later we have

Ex[τB] � θt. (2.3)

We will show that for a θ to be specified later, assuming

max
z

Ez[τB] � θt (2.4)

will yield a contradiction.

By Markov’s inequality and (2.4), we have that for all z

Pz(τB � t) � 1 − θ.

By the strong Markov property applied to the stopping time τB and Markov’s inequality,

we have

Px(Xt ∈ A) � Px(Xt ∈ A | τB � t)Px(τB � t)

� inf
s�t

inf
w∈Bs

Pw(Xt−s ∈ A)(1 − θ)

� (π(A) − α)(1 − θ),

which by choosing θ small enough can be made bigger than π(A) − (α + ε). This contradicts

the choice of x in (2.2). Therefore (2.3) holds and this completes the proof.

Remark. We note that the idea of the proof of [3, Theorem 1.3] cannot be applied in

our setting, because the sets are changing with time.

3. Collision with a moving target on Z
d
n and Z

d

In this section we prove Theorem 1.2 and Proposition 1.4. We start by introducing some

notation and background on rearrangement inequalities. We closely follow Section 2.1 of

Burchard and Schmuckenschläger [2].
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3.1. Notation and background

Let M be a metric space. A reflection σ : M → M is an isometry such that:

• σ2x = x for all x ∈ M;

• M is the disjoint union of the set of fixed points H0, and two half-spaces H− and H+

which are exchanged by σ, i.e.,

σx = x x ∈ H0,

σH+ = H−,

• d(x, y) < d(x, σy) for all x, y ∈ H+.

From now on, whenever we define a reflection σ we will specify H+ and H−.

The two-point rearrangement of a function f is defined to be

fσ(x) =

⎧⎪⎪⎨⎪⎪⎩
max{f(x), f(σx)} if x ∈ H+,

min{f(x), f(σx)} if x ∈ H−,

f(x) if x ∈ H0.

By taking f = 1(A) we get that the two-point rearrangement of a set A, denoted Aσ ,

satisfies

Aσ ∩ H+ = (A ∪ σA) ∩ H+,

Aσ ∩ H− = (A ∩ σA) ∩ H−.

We now recall a combinatorial lemma from [2, Lemma 2.6].

Consider the two-point space {+,−} with the metric defined by d(+,−) = 1. The map

σ that exchanges + and − is a reflection with no fixed points and with H+ = {+} and

H− = {−} as the positive and negative half-spaces. For any function ϕ on {+,−}, let ϕσ

be the corresponding two-point rearrangement of ϕ:

ϕσ(+) = max{ϕ(+), ϕ(−)} and ϕσ(−) = min{ϕ(+), ϕ(−)}. (3.1)

Lemma 3.1 (Burchard and Schmuckenschläger [2]). Let ϕ1, . . . , ϕn be non-negative func-

tions on the set {+,−}. For each pair ij, let ki,j(ε, ε
′) = aij + bij1(ε = ε′) with aij , bij � 0.

Consider the function

J(ϕ1, . . . , ϕn) =
∑

±

∏
1�i�n

ϕi(εi)
∏

1�i�j�n

ki,j(εi, εj).

Then

J(ϕ1, . . . , ϕn) � J(ϕσ
1 , . . . , ϕ

σ
n ).

3.2. Random walk on Z
d
n

Lemma 3.2. Let σ be a reflection in Z
d
n and let X be a lazy simple random walk in Z

d
n.

Then, for all times t, all starting states b and all sets Di ⊆ Z
d
n, we have

P(X1 ∈ D1, . . . , Xt ∈ Dt | X0 ∈ {b}) � P(X1 ∈ Dσ
1 , . . . , Xt ∈ Dσ

t | X0 ∈ {b}σ).
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Proof. Let p(x, y) be the transition probability in one step of the lazy simple random

walk in Z
d
n, i.e.,

p(x, y) = 1(x = y)
1

2
+ 1(|x − y| = 1)

1

4d
.

By the Markov property we have

P(X1 ∈ D1, . . . , Xt ∈ Dt | X0 ∈ {b}) =
∑
x0 ,...,xt

t∏
i=1

p(xi−1, xi)

t∏
i=0

1(xi ∈ Di),

where D0 = {b}. Let H+ and H− be the positive and negative, respectively, half-spaces

exchanged by σ. Then, as in the proof of Lemma 2.7 in [2], we can write the above sum

as ∑
x0 ,...,xt

t∏
i=1

p(xi−1, xi)

t∏
i=0

1(xi ∈ Di) =
∑

x0 ,...,xt∈H+

∑
±

t∏
i=1

p(x±
i−1, x

±
i )

t∏
i=0

1(x±
i ∈ Di),

where

x+ =

{
x if x ∈ H+,

σx if x ∈ H−,
and x− =

{
σx if x ∈ H+,

x if x ∈ H−.
(3.2)

We now fix a choice of x1, . . . , xt ∈ H+. It suffices to show that∑
±

t∏
i=1

p(x±
i−1, x

±
i )

t∏
i=0

1(x±
i ∈ Di) �

∑
±

t∏
i=1

p(x±
i−1, x

±
i )

t∏
i=0

1
(
x±
i ∈ Dσ

i

)
. (3.3)

For ε, ε′ ∈ {+,−} we define ki,j(ε, ε
′) = 1 if j − i �= 1, and otherwise

ki−1,i(ε, ε
′) = p(x−

i−1, x
+
i ) + 1(ε = ε′)(p(x+

i−1, x
+
i ) − p(x−

i−1, x
+
i )).

By the definition of the transition probability we have p(x−
i−1, x

+
i ) � p(x+

i−1, x
+
i ) for xi−1, xi ∈

H+. Therefore ki,j satisfies the assumptions of Lemma 3.1, and if we set ϕi(ε) = 1(xεi ∈ Di),

then we can write∑
±

t∏
i=1

p(x±
i−1, x

±
i )

t∏
i=0

1(x±
i ∈ Di) =

∑
±

t∏
i=0

ϕi(εi)
∏

0�i�j�t

ki,j(εi, εj). (3.4)

Applying Lemma 3.1 we infer∑
±

t∏
i=0

ϕi(εi)
∏

0�i�j�t

ki,j(εi, εj) �
∑

±

t∏
i=0

ϕσ
i (εi)

∏
0�i�j�t

ki,j(εi, εj). (3.5)

Since ϕσ
i (ε) = 1(xεi ∈ Dσ

i ), inequality (3.5) together with (3.4) concludes the proof of (3.3)

and thus completes the proof of the lemma.

Remark. Note that it is essential that the random walk on Z
d
n be lazy. In the proof above

this was used to show that the kernel k satisfies the assumptions of Lemma 3.1.
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Figure 1. (Colour online) A reflection on Z8.

Proof of Theorem 1.2. We first prove the theorem for d = 1. For i = 1, . . . , t we write

Di = Zn \ {f(i)}. Then we have

P0(X1 �= f(1), . . . , Xt �= f(t)) = P0(X1 ∈ D1, . . . , Xt ∈ Dt).

We now want to find a sequence of reflections σ1, . . . , σk such that Dσ1 ...σk
i = Zn \ {a}.

We first give the reflection σ such that Dσ
1 = Zn \ {a}. We carry out all the details in

the case when n is odd and f(1) + a is even and satisfies f(1) + a � n − 1. The other cases

follow similarly. We define

σ1(x) = (a + f(1) − x) mod n

and we let

H+ = Zn ∩
((

a + f(1)

2
, n − 1

]
∪

[
0,

a + f(1)

2
− n − 1

2

))
and

H− = (H+)c \
{
a + f(1)

2

}
.

Then, with this definition of H+ and H− it is clear that Dσ1

1 = Zn \ {a} and (Zn \ {a})σ1 =

Zn \ {a} and {0}σ1 = {0}.
Having symmetrized the set D1, we now want to find a reflection σ2 such that Dσ1σ2

2 =

Zn \ {a}. To do that we use exactly the same construction as for σ1 above. Hence we

get (Zn \ {a})σ2 = Zn \ {a} and {0}σ2 = {0}. Therefore Dσ1σ2

1 = Zn \ {a}. Continuing in this

manner, we find k � t reflections σ1, . . . , σk such that, for all i,

Dσ1 ...σk
i = Zn \ {a}.

Applying Lemma 3.2 k times when b = 0, i.e., for the reflections σ1, . . . , σk , concludes

the proof in the case d = 1.
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Figure 2. (Colour online) A reflection on Z9.

For higher dimensions, the statement follows from carrying out the above procedure

coordinate by coordinate.

Remark. We note that for a continuous time random walk on Z
d
n, the analogue of

Theorem 1.2 holds, i.e.,

P0(Xs �= f(s), ∀s � t) � P0(Xs �= a, ∀s � t).

To see this, view the continuous time walk as the continuous time version of the lazy

walk with exponential clocks of rate 2. Then condition on the number of lazy steps taken

by the continuous time walk by time t, and apply Theorem 1.2.

Proof of Corollary 1.3. It is clear that on the cycle Zn, among all sets A of the same

measure the hardest to hit is an interval. The first hitting time of an interval on the cycle

is the same as the first hitting time of the endpoints, which can be glued to a single point,

and hence the hitting time is maximized when this point stays fixed.

3.3. Random walk on Z
d

In this section we prove Proposition 1.4. The proof follows in a similar way to the proof

of Proposition 1.3 and again uses Lemma 3.1.

Lemma 3.3. Let X be a lazy simple random walk on Z
d starting from 0 and let (Di) be

subsets of Z
d. If σ is a reflection on Z

d, then for all t we have

E

[
vol

( t⋃
s=0

(Xs + Ds)

)]
� E

[
vol

( t⋃
s=0

(
Xs + Dσ

s

))]
.
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Proof. Since the random walk X has the same law as −X, we have

E

[
vol

( t⋃
s=0

(Xs + Ds)

)]
= E

[ ∑
x0∈Zd

1
(
x0 ∈

t⋃
s=0

(Xs + Ds)

)]

= E

[ ∑
x0∈Zd

1(∃s � t : −Xs ∈ −x0 + Ds)

]

= E

[ ∑
x0∈Zd

1(∃s � t : Xs ∈ −x0 + Ds)

]
.

Let p(x, y) be the transition probability in one step of the lazy simple random walk in Z
d,

i.e.,

p(x, y) = 1(x = y)
1

2
+ 1(|x − y| = 1)

1

4d
.

Then the Markov property of the random walk gives

P(∃s � t : Xs ∈ −x0 + Ds) = 1 −
∑
y1 ,...,yt

t∏
i=1

p(yi−1, yi)

t∏
i=0

1(yi /∈ −x0 + Di), (3.6)

where y0 = 0. Changing variables to yi + x0 and noticing that p(0, y1 − x0) = p(x0, y1)

gives that the sum appearing on the right-hand side of (3.6) is equal to∑
y1 ,...,yt

p(x0, y1)1(x0 /∈ D0)

t∏
i=2

p(yi−1, yi)

t∏
i=1

1(yi /∈ Di).

Putting everything together in the expression for the expected volume of ∪s�t(ξ(s) + Ds),

we get

E

[
vol

( t⋃
s=0

Qn(f(s) + ξ(s))

)]
=

∑
x0 ,x1 ,...,xt

t∏
i=1

p(xi−1, xi)

(
1 −

t∏
i=0

1(xi /∈ Di)

)
. (3.7)

Decomposing the above sum into the positive and negative half-spaces of σ, the right-hand

side of (3.7) can be written as∑
x0 ,x1 ,...,xt∈H+

∑
±

t∏
i=1

p(x±
i−1, x

±
i )

(
1 −

t∏
i=0

1(x±
i /∈ Di)

)
,

where x+ and x− are as defined in (3.2) in the proof of Lemma 3.2. Repeating the same

arguments as in the proof of (3.3) in Lemma 3.2, we get∑
±

t∏
i=1

p(x±
i−1, x

±
i )

(
1 −

t∏
i=0

1(x±
i /∈ Di)

)
�

∑
±

t∏
i=1

p(x±
i−1, x

±
i )

(
1 −

t∏
i=0

1
(
x±
i /∈ Dσ

i

))
.

Hence, we conclude that

E

[
vol

( t⋃
s=0

(ξ(s) + Ds)

)]
� E

[
vol

( t⋃
s=0

(ξ(s) + Dσ
s )

)]
and this finishes the proof of the lemma.
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Proof of Proposition 1.4. Let r > 0, x ∈ Z
d and

Qr(x) = [−r + x1, r + x1] × · · · × [−r + xd, r + xd]

be the box in Z
d of side length 2r + 1 centred at x. We want to show that

E

[
vol

( t⋃
s=0

(ξ(s) + Qn(f(s)))

)]
� E

[
vol

( t⋃
s=0

(ξ(s) + Qn)

)]
,

where Qn = [−n, n]d as defined in the statement of the proposition.

We now want to find a sequence of reflections σ1, . . . , σk such that Qn(f(s))σ1 ...σk = Qn

for all s � t.

First we show how to bring a non-centred interval to a centred one in Z. Let A =

[a − n, a + n], where a ∈ Z and n ∈ N. Define the reflection σ around the point a/2 via

σ(x) = a − x.

Then it is clear that σ maps the interval [a − n, a + n] to the interval [−n, n]. If a > 0,

define H+ = {k ∈ Z : k � a/2} and H− to be its complement. If a < 0, define H+ = {k ∈
Z : k � a/2}. It is then easy to see that Aσ = [−n, n] and [−n, n]σ = [−n, n].

Next we define reflections in Z
d. Let

A = [a1 − n1, a1 + n1] × · · · × [ad − nd, ad + nd]

and for i = 1, . . . , d let

σi(x1, . . . , xd) = (x1, . . . , xi−1, ai − xi, xi+1, . . . , xd).

Then Aσ1 ...σd = [−n1, n1] × · · · × [−nd, nd], and if B is a centred rectangle, then Bσ1 ...σd = B.

This way we see that there exist k � td reflections σ1, . . . , σk such that

Qn(f(s))σ1 ...σk = Qn for all s � t.

Applying Lemma 3.3 k times concludes the proof of the proposition.

4. Better to run than hide

In this section we give the proof of Theorem 1.5. Before launching into our construction,

we note that the quantities in question are related by a constant, i.e., there exists a positive

c such that

sup
x,h∈VR+

Ex[τh] � cmax
x,y

Ex[τy] = cthit (4.1)

for all reversible, continuous time Markov chains. To show this we make use of a recent

result of Oliveira [7, Lemma 1.1], which says

sup
h∈VR+

Eπ[τh] � thit. (4.2)

Let

tunif = inf

{
t � 0 : max

x,y

∣∣∣∣1 − P t(x, y)

π(y)

∣∣∣∣ � 1

4

}
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and

τ̃h = inf{t � 0 : Xt+tunif
= h(t + tunif )}.

We then have

τh � tunif + τ̃h. (4.3)

By conditioning on the value of Xtunif
we have

Ex[̃τh] =
∑
y

Ex[̃τh1(Xtunif
= y)] =

∑
y

Px(Xtunif
= y)Ey[τθh],

where θh = (h(t + tunif ))t�0. By the definition of tunif , for all y we have

Px(Xtunif
= y) � 5

4
π(y),

and hence

Ex[̃τh] � 5

4

∑
y

π(y)Ey[τθh] =
5

4
Eπ[τθh] � 5

4
thit,

where the last inequality follows from (4.2). This together with (4.3) and the following

claim completes the proof of (4.1).

Claim 4.1. For any reversible, continuous time chain, tunif � 4thit.

Proof. Proposition A.1 of [6] gives that for a continuous time chain for all t

max
x,y

∣∣∣∣1 − P t(x, y)

π(y)

∣∣∣∣ = max
x

∣∣∣∣1 − P t(x, x)

π(x)

∣∣∣∣.
The penultimate displayed equation in [5, Proof of Theorem 10.14, p. 137] can be adapted

to continuous time, and gives that∣∣∣∣Pm(x, x)

π(x)
− 1

∣∣∣∣ � Eπ[τx]

m
,

and hence the statement of the claim follows.

We now turn to the proof of Theorem 1.5, in which we construct simple vertex-transitive

graphs where an evader is better off moving to avoid a random walk. To motivate our

construction we start by describing a very simple example, which is a multigraph satisfying

the inequality of Theorem 1.5 for a discrete lazy random walk. The vertices of the graph

are the elements of Z6. We place 10 edges between adjacent nodes and one edge connecting

every pair of antipodal nodes. Then, if we set f(0) = 2 and f(t) = 3 for t � 1, it is an easy

calculation to check that E0[τf] > E0[τ3].

We next define a class of simple graphs indexed by n, m and denoted by Gn,m. For n = 2

and m = 12 the graph is illustrated in Figure 3. We then prove that G2,12 is an example

of a graph satisfying the statement of Theorem 1.5 for a lazy discrete time walk. We

conclude the section by proving that G7,20 is such that it is best for a target to move in

order to avoid collision with a continuous time walk.
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Figure 3. (Colour online) Graph G2,12.

Definition. Let m be a multiple of 4 and Gn,m a graph on n2m vertices divided into m

clusters. We think of the clusters as the nodes of Zm and so we number them 0, . . . , m−1.

We give coordinates to each element of every cluster. The elements of cluster i have

coordinates i(a, b), where a, b ∈ Zn. We put an edge between

(1) all pairs i(a, b), j(c, d) with |i − j| = 1,

(2) all pairs i(a, b), j(a, d) with b �= d, i even and j = (i + m/4) mod m,

(3) all pairs i(a, b), j(c, b) with a �= c, i even and j = (i − m/4) mod m,

(4) all pairs i(a, b), j(c, b) with a �= c, i odd and j = (i + m/4) mod m,

(5) all pairs i(a, b), j(a, d) with b �= d, i odd and j = (i − m/4) mod m.

We call the edges of type (1) ‘short’ and the edges of type (2), (3), (4) and (5) ‘long’.

Remark. Intuitively, notice that for a fixed m as n goes to infinity, the long edges of Gn,m

are rarely used, and hence Gn,m looks more like Zm.

Claim 4.2. Gn,m is a vertex-transitive graph.

Proof. Let i(a, b), j(c, d) be two vertices of the graph Gn,m. In order to show that Gn,m is

vertex-transitive, we need to construct an automorphism ϕ : V → V that preserves edges

and satisfies ϕ(i(a, b)) = j(c, d). We consider two separate cases, depending on whether

j − i is even or odd. If j − i is even, then we set

ϕ(k(u, v)) = ((k + j − i) mod m)((u + c − a) mod n, (v + d − b) mod n).
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(a) short edges (b) long edges

Figure 4. (Colour online) Edges of G2,12.

If j − i is odd, then we set

ϕ(k(u, v)) = ((k + j − i) mod m)((v + c − b) mod n, (u + d − a) mod n).

It is straightforward to check that ϕ is an automorphism that preserves edges.

Lemma 4.1. Let X be a simple random walk on G2,12 which is either discrete or continuous.

Then we have

max
x,y

Ex[τy] = E0(0,0)[τ6(1,1)]. (4.4)

Proof. It suffices to prove the lemma for a discrete time random walk. Since G2,12 is

vertex-transitive, it follows that for x ∈ V we have

max
x,y

Ex[τy] = max
y

Ex[τy].

So taking x = 0(0, 0), it suffices to show that for all a, b ∈ Z2 we have

E0(0,0)[τ6(a,b)] = max
y

E0(0,0)[τy]. (4.5)

First we observe that starting from any point in cluster 0, the first time the random walk

hits cluster 6, the position is uniform. Indeed, if we reach cluster 6 having used at least

one short edge, then this is clear. If we use only long edges, then by the construction of

the graph, with the first long edge we have randomized the column and with the second

long edge we have randomized the row. Arguing similarly, if we start from cluster 0, the

position at the first hitting time of cluster i �= 3, 9 is uniform. Hence, if Ti is the first time

https://doi.org/10.1017/S0963548313000539 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548313000539


474 P. Sousi and P. Winkler

that we hit cluster i �= 3, 9, then

E0(0,0)[τi(a,b)] = E0(0,0)[Ti] + EUi
[τi(a,b)],

where the last expectation means that we start from a uniform point in cluster i and wait

to hit i(a, b). Since the graph is transitive, it follows that for all clusters i and all a, b,

EUi
[τi(a,b)] = z. (4.6)

We now define the process Y to be the number of the cluster we are at. More precisely,

Yt = i if and only if Xt = i(a, b) for some a, b. It is easy to check that Y is a Markov chain

even with respect to the enlarged filtration which at time t also contains the information

about X up to time t. The process Y is a walk on Z12 with additional edges. From that

it follows that for all a, b we have

E0(a,b)[Ti] = h(i) = E[0 → i],

and h(i) satisfies a system of 6 (by symmetry) linear equations, with solution given by

h(6) = 16, h(5) = h(7) = 16, h(4) = h(8) = 15,

h(3) = h(9) = 13, h(2) = h(10) = 13, h(1) = h(11) = 10. (4.7)

Putting everything together, we deduce that for all i �= 3, 9

E0(0,0)[τi(a,b)] = E[0 → i] + EUi
[τi(a,b)] = h(i) + z. (4.8)

From (4.7), we obtain that

E0(0,0)[τ6(1,1)] = max
i�=3,9
a,b∈Z2

E0(0,0)[τi(a,b)], (4.9)

and it remains to show that

E0(0,0)[τ6(1,1)] � max
i=3,9
a,b∈Z2

E0(0,0)[τi(a,b)]. (4.10)

Let T be the first time that we hit cluster 3 without using the long edge 0 → 3 directly.

It then follows that at time T the position in cluster 3 is uniform. Hence we have

E0(0,0)[τ3(a,b)] � E[T ] + EU3
[τ3(a,b)] = E[T ] + z.

In view of (4.8) it thus suffices to show

E[T ] < E[0 → 6] = 16. (4.11)

Let X be the first time that the walk is off the ‘shuttle’ 0 → 3. Then X has the geometric

distribution P(X = i) = qpi−1 with p = 1/6 and q = 1 − p = 5/6. We can now write

E[T ] = 1 +
∑

i=1,3,...

P(X = i)A1 +
∑

i=2,4,...

P(X = i)A2,

where A1 and A2 are given by

A1 =
2

5
E[1 → 3] +

2

5
E[11 → 3] +

1

5
E[9 → 3] =

72

5
,

A2 =
2

5
E[4 → 3] +

2

5
E[2 → 3] +

1

5
E[6 → 3] =

53

5
.
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Substituting, we deduce

E[T ] =
104

7
< 16,

and hence this concludes the proof of the lemma.

Proof of Theorem 1.5 (for lazy walk). From Lemma 4.1 we have that the pair that

maximizes Ex[τy] is x = 0(0, 0) and y = 6(1, 1). (Lemma 4.1 is stated for a non-lazy walk,

but the hitting times of the non-lazy and lazy walk are equal up to a factor of 2.) We will

now prove that if the moving target stays at position 5(1, 1) for two time steps and then

moves to 6(1, 1), then the expected hitting time is larger than E0(0,0)[6(1, 1)].

We write τ5→6 for the time to hit the moving target. Then notice that τ5→6 − τ6(1,1) is

non-zero if we hit 6 at time 1 or 2. We thus have

E0(0,0)[τ5→6 − τ6(1,1)] � P0(0,0)(τ6(1,1) � 2) � c > 0,

and this concludes the proof of the theorem for a lazy walk.

Proof of Theorem 1.5 (for continuous time walk). Consider the graph G7,20. Solving the

system of expected hitting times and arguing in exactly the same way as in the proof of

Lemma 4.1, we get that

E0(0,0)[τ10(1,1)] = max
x,y

Ex[τy].

We now describe a strategy for the moving particle that achieves bigger expected hitting

time. Suppose that f(t) = 8(1, 1) when t � ε and f(t) = 10(1, 1) for t > ε, where ε > 0 will

be determined.

Note that τf − τ10(1,1) is non-zero if and only if τ10(1,1) < ε or τf < ε. To simplify notation

we write 0 instead of 0(0, 0) and τ10 instead of τ10(1,1). We now have

E0[τf − τ10] = E0[(τf − τ10)1(τf < ε or τ10 < ε)]

= E0[(τf − τ10)1(τf < ε)] + E0[(τf − τ10)1(τ10 < ε, τf > ε)]. (4.12)

We look at each of these two terms separately. For the first one we get

E0[(τf − τ10)1(τf < ε)] � E0[τf − τ10 | τf < ε, τf < τ10] P0(τf < ε, τf < τ10). (4.13)

By the definition of τf we have {τf < ε} = {τ8(1,1) < ε}. We now describe an equivalent

way of viewing the continuous time chain. To every edge adjacent to a vertex x we assign

an exponential clock of parameter 1/d(x), where d(x) is the degree of x. Then the Markov

chain crosses the edge of the first exponential clock that rings. In order to hit 8(1, 1)

before time ε at least four exponential clocks of a constant parameter should have rung.

Thus

P0(τf < ε, τ10 > τf) � cε4.

It is easy to see that there exists a constant c′ independent of ε so that

E0[τ10 − τf | τf < ε, τ10 > τf] � c′.
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Indeed, this expectation can be bounded from above by the commute time between 8(1, 1)

and 10(1, 1), which is at most twice the distance between 8(1, 1) and 10(1, 1) times the

total number of edges of G7,20. Therefore, plugging these estimates in (4.13), we obtain

for a positive constant c1

E0[(τf − τ10)1(τf < ε)] � −c1ε
4. (4.14)

For the second term of (4.12) we have

E0[(τf − τ10)1(τ10 < ε, τf > ε)] � E0[(τf − τ10)1(τ10 < ε/2, τf > ε)]

� ε

2
P0(τ10 < ε/2, τf > ε),

and arguing as above we obtain

P0(τ10 < ε/2, τf > ε) � ε2.

Putting all these estimates together we deduce

E0[τf − τ10] � c2ε
3 − c1ε

4,

which can be made strictly positive by choosing ε > 0 sufficiently small, and this completes

the proof of the theorem.
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