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Abstract
We show how concurrent quantales and concurrent Kleene algebras arise as convolution algebras of func-
tions from relational structures with two ternary relations that satisfy relational interchange laws into
concurrent quantales or Kleene algebras, among others. The elements of the quantales can be understood
as weights; the case where weights are drawn from the booleans corresponds to languages. We develop
a correspondence theory between properties of the relational structures and algebraic properties in the
weight and convolution algebras in the sense of modal and substructural logics, or boolean algebras with
operators. The resulting correspondence triangles yield in particular general construction principles for
models of concurrent quantales and Kleene algebras as convolution algebras from much simpler rela-
tional structures, including weighted ones for quantitative applications. As examples, we construct the
concurrent quantales and Kleene algebras of weighted words, digraphs, posets, isomorphism classes of
finite digraphs and pomsets.

Keywords: Relational monoids; quantales; Kleene algebras; convolution algebras; concurrency theory

1. Introduction
Our initial motivation for this work has been the provision of generic recipes for construct-
ing graph models for concurrent quantales and concurrent Kleene algebras (Hoare et al. 2011),
including quantitative ones. This seems important because real-world models of concurrent pro-
grammes that are compatible with concurrent Kleene algebras are rare, and this impedes the
transfer of the successes of sequential Kleene algebras into concurrency verification. Concurrent
Kleene algebras axiomatise the sequential and parallel compositions · and ‖ of concurrent and dis-
tributed systems as well as their finite unbounded sequential and parallel iterations and impose,
in particular, that the two compositions interact via a lax interchange law

(w‖x) · (y‖z)≤ (w · y)‖(x · z).
Two classical models of concurrent Kleene algebra are languages over finite words with respect to
sequential and shuffle composition in interleaving concurrency, and languages over partial orders
or partial words (pomsets) with respect to serial and parallel composition in true concurrency.
The relation ≤ is interpreted as set inclusion in these models.

In both models, the language-level algebras are constructed by lifting structural properties of
compositions from single objects – single words, single posets, single pomsets – to power sets. In
fact, both liftings are instances of the classical Stone-type duality between (n+ 1)-ary relations
and n-ary operators (or modalities) on power set boolean algebras that is due to Jónsson and
Tarski (1951), Goldblatt (1989), here in the special case of ternary relations and binary operators.
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In the word model, for instance, the ternary relations on words are u= v ·w and u ∈ v‖w. The
binary operators on power sets are

X · Y = {u · v | u ∈ X ∧ v ∈ Y} and X‖Y =
⋃
{u‖v | u ∈ Y ∧ v ∈ Y}.

In the poset model, the first ternary relation on posets is P= P1 · P2 provided P1 · P2 is defined
(more precisely, P1 · P2 is disjoint union, which is only defined if P1 and P2 are disjoint, with
additional arrows from each element of P1 to each element of P2). The second ternary relation is
P� P1‖P2 provided P1‖P2 is defined (P1‖P2 is disjoint union and the relation � holds if there is
a bijective order morphism from P1‖P2 to P). The binary operators on power sets are

X · Y = {P1 · P2 | P1 ∈ X, P2 ∈ Y and P1 · P2 is defined},
X‖Y = {P | ∃P1 ∈ X, P2 ∈ Y . P1‖P2 is defined and P� P1‖P2}.

Both constructions generalise further to weighted words and weighted po(m)sets (Droste et al.
2009) and beyond that – yet ignoring interchange – to arbitrary functions X→Q from partial
monoids or ternary relations over X into quantales Q (Dongol et al. 2016, 2021). The binary
operations on function spaces QX then become convolutions of the form

(f ∗ g) x=
∨
{f y • g z | Rxyz},

where • indicates composition inQ, and the convolution algebra on the function spaceQX is again
a quantale.

This raises the question how concurrent quantales and similar structures on QX could be con-
structed from ternary relations on X and value quantales Q, and in particular how the above lax
interchange law and its variants on QX arise from properties in X and Q. This question is not only
of structural interest. Operationally, checking relational properties on X tends to be much sim-
pler than those on QX , and the first activity supports a generic construction recipe for models of
concurrent quantales and Kleene algebras if the construction ofQX from X andQ is uniform. The
rest of this article investigates this question.

First, in Section 2, we summarise the previous approach to relational convolution in
QX (Dongol et al. 2021), where X is a set equipped with a ternary relation and Q a quantale, and
recall the basic lifting construction, namely thatQX forms a quantale ifX satisfies a relational asso-
ciativity law and Q is a quantale. Further, QX forms a unital quantale if a suitable set of relational
units is present in X and Q is itself unital.

In Section 3, we derive novel correspondence results between relational interchange laws on
X and algebraic interchange laws on Q and QX . These are indeed modal correspondences that
generalise those between relational structures and boolean algebras with operators in the con-
text of Jónsson-Tarski duality to the weighted setting. Proposition 11 shows that interchange
laws on X and Q give rise to those on QX . In addition, under mild nondegeneracy conditions
on Q, interchange laws on Q and QX give rise to those on X (Proposition 14). Similarly, under
mild nondegeneracy conditions on X, interchange laws on X and QX give rise to those on Q
(Proposition 15). In combination, these correspondence triangles show that interchange laws on
X and Q are precisely what is needed to obtain such laws on QX .

Additional correspondence triangles are presented in Section 4. First, we prove such results for
sets of relational units in X and quantalic units on Q and QX and show how the above nondegen-
eracy conditions simplify in the presence of units. Secondly, we show how correspondences for
(semi-)associativity and commutativity laws arise from those for interchange.

Equipped with these correspondences, we then introduce relational interchange monoids and
interchange quantales in Section 5 and summarise the individual correspondences for these struc-
tures in the main theorem of this article (Theorem 5). It yields a correspondence triangle between
relational interchange monoids X, interchange quantales Q and interchange quantales QX .
Interchange quantales are essentially concurrent quantales without commutativity assumptions
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on the ‘parallel’ composition. In addition, we prove a generalised Eckmann-Hilton argument,
which shows that certain small interchange laws, as known from concurrent Kleene algebras, are
subsumed by the one presented above.

In light of the duality between (n+ 1)-ary relations and boolean algebras with n-ary operators,
the natural question arises how a more general duality between X, Q and QX can be obtained.
Partial results are already known (Harding et al. 2018). We leave the general case for future work.

In Section 6, we specialise Theorem 5 to a correspondence triangle for interchange semirings
and Kleene algebras and to concurrent semirings and Kleene algebras, which requires finiteness
and grading assumptions on ternary relations (Theorem 6).

Finally, in Sections 7–10 we apply the general constructions from Theorems 5 and 6 to the
examples from concurrency theory mentioned above. In Section 7, we construct the concurrent
quantale and Kleene algebra ofQ-weighted shuffle languages using an isomorphism between rela-
tional monoids and certain multimonoids (Galmiche and Larchey-Wendling 2006; Kudryavtseva
and Mazorchuk 2015). Shuffle languages are used, for instance, in the rely-guarantee method for
shared-variable concurrency (de Roever et al. 2001). In Sections 9 and 10, we construct the con-
current quantale and Kleene algebra of Q-weighted digraph languages and those of isomorphism
classes of finite digraphs. To prepare for these constructions, Section 8 introduces partial inter-
change monoids, which are special cases of relational interchange monoids. It then suffices to
show that graphs under the operations · and ‖ outlined form such monoids. The specialisation to
(weighted) partial orders and partial words or pomsets, which are isomorphism classes of labelled
partial orders, is then straightforward. Pomsets languages yield partial order semantics of true
concurrency (Vogler 1992), for instance in the context of Petri nets. They are receiving renewed
attention for verifying weak memory models, where ad hoc methods currently seem to proliferate.

In sum, our results yield uniform construction principles for (weighted) concurrent quantales
and Kleene algebras from simpler structures such as ternary relations, multimonoids and similar
ordered monoidal structures: to construct such convolution algebras or power set algebras it suf-
fices to know the underlying relational structure, the rest is then automatic. This may certainly
be of use for constructing Kleene-algebraic semantics for real-world concurrent programmes, as
mentioned. Beyond that, our results provide valuable structural insights for future duality results.

2. Relational Convolution: A Summary
In this section, we summarise the general approach to the construction of quantale-valued
convolution algebras from ternary relations.

Relational convolution (Dongol et al. 2021) has its origins in Jónsson and Tarski’s boolean alge-
bras with operators (Jónsson and Tarski 1951), Rota’s foundations of combinatorics (Rota 1964),
Schützenberger’s approach to language theory (Berstel and Reutenauer 1984; Droste et al. 2009),
Goguen’s L-fuzzy maps and relations (Goguen 1967) and arguably (Connes 1995) Heisenberg’s
first article on the foundations of quantummechanics (Heisenberg 1925). The group algebras used
in the representation theory of finite groups (Lang 2003) and, more generally, category algebras
are other sources of inspiration.

Here, convolution is an operation in the algebra of functions X→Q from a set X into a
complete lattice Q equipped with an additional operation • of composition and constrained by
a ternary relation R on X, which we identify with a predicate of type X→ X→ X→B. It is
defined as

(f ∗ g) x=
∨

y,z:Rxyz
f y • g z,

where the right-hand side abbreviates
∨{f y • g z | Rxyz} and ∨

denotes the supremum in Q. It is
well known that the function space QX forms a complete lattice when the order and sups in Q
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are extended pointwise (Abramsky and Jung 1994). Yet the convolution ∗ need not satisfy any
algebraic laws on QX , unless conditions on R and Q are imposed.

This situation is reminiscent of modal correspondence theory, where conditions on relational
Kripke frames force algebraic properties of modal operators and vice versa, or more generally
to dualities between categories of (n+ 1)-ary relational structures and those of boolean algebras
with n-ary operators (Goldblatt 1989; Jónsson and Tarski 1951). In fact, R is a ternary relational
structure and ∗ a binary modality similar to the product of the Lambek calculus (Lambek 1958),
the chop operation of interval temporal logics (Moszkowski and Manna 1983) or the separating
conjunction of separation logic (O’Hearn et al. 2001), but generalised to a Q-weighted setting.

Example 1. Let X be an incidence algebra of closed intervals (over R, say) (Rota 1964), with
interval composition [p, q][r, s] equal to [p, s] if q= r, and undefined otherwise. Let Rxyz hold if the
composition of intervals y and z is defined and equal to x. Let Q=B be the (complete) lattice of
booleans with • as meet. Functions X→B are then predicates ranging over intervals in X. The
predicate f ∗ g holds of an interval x whenever it can be decomposed into a prefix interval y and
a suffix interval z such that x= yz and f y and g z both hold. This captures the semantics of the
binary chop modality of interval temporal logics (Moszkowski and Manna 1983).

It is well known that chop is associative in the convolution algebra BX due to associativity of
meet in B and associativity of interval fusion in X – up to definedness.

Definition 2 (Rosenthal 1990). A quantale Q is a complete lattice equipped with an associative
composition • that preserves sups in both arguments: for all a, b ∈Q and A, B⊆Q,

a •
(∨

B
)
=

∨
{a • b | b ∈ B} and

(∨
A
)
• b=

∨
{a • b | a ∈A}.

A quantale is unital if • has a unit 1.

We write 0 for the least and � for the greatest element of Q with respect to the lattice order.
Sup-preservation implies that x • 0= 0= 0 • x.

Convolution is then associative inQX if the relational structure (X, R) is relationally associative:

∃y. Ryuv ∧ Rxyw⇔∃y. Rxuy ∧ Ryvw for all x, u, v,w ∈ X.

This yields one direction of a correspondence between the ternary relation or Kripke frame R and
convolution ∗ viewed as a binary modality. Similarly, convolution is commutative in QX if (X, R)
is relationally commutative:

Rxuv⇒ Rxvu for all x, u, v ∈ X.

To construct a unit of convolution, we first equip (X, R) with a set of units. Their definition is
similar to those in an object-free category (Mac Lane 1998). An element e ∈ X is a left relational
unit in (X, R) if

∃x ∈ X. Rxex and ∀x, y ∈ X. Rxey⇒ x= y.

Similarly, x is a right relational unit in (X, R) if ∃x ∈ X. Rxxe and ∀x, y ∈ X. Rxye⇒ x= y.
We write E for the set of all left and right relational units of (X, R) and call this relational

structure unital if every element of X has a left and right unit.
Then, if X, or more precisely (X, R), is unital with set of relational units E and if the quantale Q

is unital with unit of composition 1, then convolution has the indicator function idE : X→Q as
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its left and right unit, where

idE x=
{
1 if x ∈ E,
0 otherwise.

In particular, each x ∈ X has a unique left unit and a unique right one if the relational structure
(X, R) is relationally associative (Cranch et al. 2020). With the Kronecker delta δx : X→B defined
as δx y equal to 1 if x= y and to 0 otherwise, therefore,

idE =
∨
e∈E

δe.

The convolution algebras on QX can now be described as follows.

Definition 3.

(1) A relational magma (X, R) is a set X equipped with a ternary relation R.
(2) A relational semigroup is a relationally associative relational magma.
(3) A relational monoid is a unital relational semigroup.

Relational monoids are well known in category theory. They are monoids in the monoidal
category Rel with the standard tensor.

Theorem. (Dongol et al. 2021).

(1) If X is a relational semigroup and Q a quantale, then QX is a quantale.
(2) If R is an abelian relational semigroup and Q an abelian quantale, then QX is an abelian

quantale.
(3) If R is a relational monoid and Q is a unital quantale, then QX is a unital quantale.

Example 4. Let (X∗, ·, ε) be the free monoid over X. For u, v,w ∈ X∗ define Ruvw⇔ u= v ·w. This
makes X a relational monoid with E= {ε}. For any quantale Q, the convolution algebra is the
quantale QX∗ of Q-weighted languages over X and B

X∗ is the usual language quantale over X.
Convolution is (weighted) language product. This construction generalises to arbitrary monoids.

Words are finitely decomposable in that each word can only be split into finitely many pre-
fix/suffix pairs. All sups in convolutions therefore remain finite and Q can be replaced by an
arbitrary semiring. This yields the usual weighted languages formalised as rational power series in
the sense of Schützenberger and Eilenberg (Berstel and Reutenauer 1984; Droste et al. 2009).

Example 5. Let X be a set. Define the composition · : (X× X)× (X× X)→ (X× X) such that
(a, b) · (c, d) is equal to (a, d) if b= c and undefined otherwise. For x, y, z ∈ X× X, let Rxyz hold if
and only if y · z is defined and equal to x, and let E= {(a, a) | a ∈ X} be the identity relation on X.
This turns (X× X, R, E) into a relational monoid, which is also known as pair groupoid. For any
quantaleQ, the convolution algebraQX×X over the pair groupoid on X is the quantale ofQ-valued
binary relations overX, whileBX×X is simply the quantale of binary relations overX. Convolution
is (weighted) relational composition. This convolution quantale is studied in Goguen’s seminal
article on fuzzy relations (Goguen 1967).

The construction specialises first to quantales of weighted closed intervals in linear orders, as
in Example 1, which can be represented by ordered pairs (a, b) in which a≤ b. Categorically, it
is given by a poset (X, R), for R⊆ X× X, regarded as a posetal category. This makes incidence
algebras a special case of a category algebra.

A second specialisation are possibly infinitary matrices with matrix product as convolution,
as studied by Heisenberg (1925). When X is finite, (semi)rings and similar algebras can be
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taken again as value algebras. Alternatively, it can be assumed that f (x) • g(z)= 0 for all buy
finitelymany (x, y) ∈ X× X. Binary relations are of course boolean-valuedmatrices with relational
composition as matrix product.

A third specialisation, using the one-object groupoid, yields group algebras if convolution is
finitely supported in the sense just explained.

Example 6. As a generalisation of incidence algebras, one can define a ternary relation Rxyz on
the arrows of an arbitrary (small) category if arrows y and z can be composed and are equal to x.
Further, one can define E as the set of all identity arrows. It is then easy to see that the arrows of any
(small) category form a relational monoid (Cranch et al. 2020) that can be lifted to a convolution
quantale. This can be specialised to a category algebra into a (semi)ring or similar structure if
convolution is finitely supported.

Example 7. Define a composition ⊕ on the set of partial functions or heaplets of type X⇀ Y
such that f ⊕ g is f ∪ g if dom f ∩ dom g =∅ and undefined otherwise. The set YX can be used
to model the heap memory area with addresses in X, values in Y and ⊕ as heaplet addition. For
f , g, h : X⇀ Y let Rfgh hold if and only if g ⊕ h is defined and equal to f . Then, R is relationally
associative and commutative; the empty partial function (which is undefined everywhere) is its
relational unit. For any abelian quantale Q, the convolution algebra is the abelian quantale Q(YX)

of Q-weighted assertions of separation logic over the set YX of heaps. Convolution is separating
conjunction (Dongol et al. 2016). The standard assertion algebra of separation logic is formed by
B
(YX). The abelian relational monoid of heaplets is not a category (Cranch et al. 2020).

3. Correspondences for Interchange Laws
Theorem 2 generalises to correspondences between quantales with two compositions • and •
related by seven interchange laws, as they appear in concurrent Kleene algebras, and relational
structures with suitable relational constraints. The choice of the interchange laws is explained
further in Section 5; the six small interchange laws are precisely those that can be derived from the
seventh in the presence of suitable units, using a generalised Eckmann-Hilton argument. We start
with the relational structures.

Definition 8. A relational bi-magma (X, R, R) is a set X equipped with two ternary relations R
and R. It is unital if (X, R) and (X, R) are unital with sets of relational units E and E, respectively.

The constraints considered on a bi-magma X are, for t, u, v,w, x, y, z ∈ X, the relational inter-
change laws

Rxuv⇒ Rxuv, (RI1)
Rxuv⇒ Rxvu, (RI2)

∃y. Rxuy ∧ Ryvw⇒∃y. Ryuv ∧ Rxyw, (RI3)

∃y. Ryuv ∧ Rxyw⇒∃y. Rxuy ∧ Ryvw, (RI4)

∃y. Rxuy ∧ Ryvw⇒∃y.Rxvy ∧ Ryuw, (RI5)

∃y. Ryuv ∧ Rxyw⇒∃y.Ryuw ∧ Rxyv, (RI6)

∃y, z. Rytu ∧ Rxyz ∧ Rzvw⇒∃y, z. Rytv ∧ Rxyz ∧ Rzuw. (RI7)

They are represented by the relationships between the trees in X shown in Figure 1.
https://doi.org/10.1017/S0960129522000081 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000081


924 J. Cranch et al.

Figure 1. Trees representing the relational
interchange laws.

Next, we turn to quantales. As their monoidal structure emerges in our constructions, we
generalise.

Definition 9.

(1) A prequantale (Rosenthal 1990) is a structure (Q,≤, •) such that (Q,≤ ) is a complete lattice
and the binary operation • on Q preserves sups in both arguments. It is unital if • has unit 1.

(2) A bi-prequantale is a structure (Q,≤, • , • ) such that (Q,≤, • ) and (Q,≤, • ) are both
prequantales. It is unital if • has unit 1 and • unit 1.

A quantale is thus nothing but a prequantale with associative composition.
For a, b, c, d ∈Q, we define the algebraic interchange laws

a • b≤ a • b, (I1)
a • b≤ b • c, (I2)

a • (b • c)≤ (a • b) • c, (I3)
(a • b) • c≤ a • (b • c), (I4)
a • (b • c)≤ b • (a • c), (I5)
(a • b) • c≤ (a • c) • b, (I6)

(a • b) • (c • d)≤ (a • c) • (b • d). (I7)

The interchange laws of odd index are the most significant laws of concurrent Kleene alge-
bra (Hoare et al. 2011). Those of even index need to be added if • is not commutative.

Interestingly, the syntax trees of these laws in Q, as shown in Figure 2, have the structure of the
trees representing the relational interchange laws inX in Figure 1. The following example provides
some intuition.
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Figure 2. Syntax trees of the algebraic interchange laws.

Example 10. Let X=Q, Rxab⇔ x≤ a • b and Rxab⇔ x≤ a • b. Then, for instance,

∃y, z. Ryab ∧ Rxyz ∧ Rzcd⇔ x≤ (a • b) • (c • d),
and likewise for the other terms in interchange laws. The relational and algebraic interchange laws
then translate into each other. For instance, for (RI7) and (I7),(
∃y, z. Ryab ∧ Rxyz ∧ Rzcd⇒∃y, z. Ryac ∧ Rxyz ∧ Rzbd

)
⇔ (

x≤ (a • b) • (c • d)⇒ x≤ (a • c) • (b • d))
⇔ (a • b) • (c • d)≤ (a • c) • (b • d),

that is,⎛
⎜⎜⎜⎝

x

◦ ◦
t u v w

⇒
x

◦ ◦
t v u w

⎞
⎟⎟⎟⎠ ⇔

⎛
⎜⎜⎜⎝

•
• •

t u v w

≤
•

• •
t v u w

⎞
⎟⎟⎟⎠ .

With this particular encoding, the relational interchange laws simply represent the algebraic
ones.

In general, however, the relationship between relational and algebraic convolution is more
complex. The left-to-right translation in Example 10 can therefore fail.

For functions f , g : X→Q, we define the convolutions

(f ∗ g) x=
∨

y,z:Rxyz
f y • g z and (f ∗ g) x=

∨
y,z:Rxyz

f y • g z.
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They can be represented using trees in X, Q and QX as

∗
f g

= λx.
∨ ⎧⎨

⎩
•

f y g z

∣∣∣∣∣∣
x

y z

⎫⎬
⎭ ,

∗
f g

= λx.
∨ ⎧⎨

⎩
•

f y g z

∣∣∣∣∣∣
x

y z

⎫⎬
⎭ .

Convolution thus translates trees with the same structure in X and Q into trees in QX .
One can then prove modal correspondences between relational and algebraic interchange laws.

First, we show that relational interchange laws in X and algebraic interchange laws in Q yield
algebraic interchange laws in the convolution algebra on QX . This generalises the well-known
modal correspondence from ternary Kripke frames to binary modal operators, which occur for
instance in substructural logics, first to more than one relation and second to a weighted setting.

Proposition 11. Let X be a relational bi-magma and Q a bi-prequantale. Then, (RIk) in X and (Ik)
in Q imply (Ik) in QX, for each 1≤ k≤ 7.

Proof. Suppose that ∃y, z. Rytu ∧ Rxyz ∧ Rzvw⇒∃y, z. Rytv ∧ Rxyz ∧ Rzuw holds in X and further that
(w • x) • (y • z)≤ (w • y) • (x • z) holds in Q. Then

(
(f ∗ g) ∗ (h ∗ k)) x=

∨ {∨ {
f t • g u | Rytu

} • ∨ {
h v • k w | Rzvw

} ∣∣∣ Rxyz}
=

∨ {
(f t • g u) • (h v • k w)

∣∣∣ ∃y, z. Rytu ∧ Rxyz ∧ Rzvw
}

≤
∨ {

(f t • h v) • (g u • k w)
∣∣∣ ∃y, z. Rytv ∧ Rxyz ∧ Rzuw

}
=

∨ {∨ {
f t • h v | Rytv

} • ∨ {
g u • k w | Rzuw

} ∣∣∣ Rxyz}
= (

(f ∗ h) ∗ (g ∗ k)) x

proves (I7) in QX . Alternatively, using trees,

∗
∗ ∗

f g h k

= λx.
∨

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

•
• •

f t g u h v k w

∣∣∣∣∣∣∣∣∣
x

◦ ◦
t u v w

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≤ λx.
∨

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

•
• •

f t h v g u k w

∣∣∣∣∣∣∣∣∣
x

◦ ◦
t v u w

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
∗

∗ ∗
f h g k

.

The proofs for the small interchange laws are similar and left to the reader. In particular, that of
(I3) from (RI3) and that of (I4) from (RI4) are related by opposition: one can be obtained from the
other by swapping the operands of ∗ , ∗ , • and • and the lower indices of R and R, that is, by
reversing the algebraic syntax trees inQ and the trees in X for the relational interchange laws. The
same holds for the proof of (I5) from (RI5) and that of (I6) from (RI6).
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The correspondences from X and Q to QX form one of three kinds of ‘two-cells’ in correspon-
dence triangles. They show how Q-valued interchange laws arise in convolution algebras from
relational interchange laws and interchange laws on a suitable value algebra.

Next we show the remaining two, namely that, under mild nondegeneracy conditions on Q,
algebraic interchange laws in QX force relational interchange laws in X, and that under mild non-
degeneracy conditions on X, algebraic interchange laws in QX force algebraic interchange laws in
Q. We begin with a definition and some lemmas.

For all x, y ∈ X and a ∈Q, we define the function δax : X→Q by

δax y=
{
a, if x= y,
0 otherwise

and the function (− |−) :Q→B→Q, for all a ∈Q and P :B, by

(a | P)=
{
a, if P,
0, otherwise.

Obviously, δax y= (a | x= y).

Lemma 12. Let X be a relational bi-magma and Q a bi-prequantale. For all a, b, c, d ∈Q and
x, t, u, v,w ∈ X,

(1)
(
δau ∗ δbv

)
x= (

a • b | Rxuv
)
,

(2)
(
δau ∗

(
δbv ∗ δcw

))
x=

(
a • (b • c) | ∃y. Rxuy ∧ Ryvw

)
,

(3)
((
δau ∗ δbv

)
∗ δcw

)
x=

(
(a • b) • c | ∃y. Ryuv ∧ Rxyw

)
,

(4)
((
δat ∗ δbu

)
∗

(
δcv ∗ δdw

))
x=

(
(a • b) • (c • d) | ∃y, z. Rytu ∧ Rxyz ∧ Rzvw

)
,

(5) properties (1)–(4) hold with colours interchanged.

Proof. For (4), we use the proof of Proposition 11 to calculate((
δat ∗ δbu

)
∗

(
δcv ∗ δdw

))
x=

∨ {(
δat x1 • δbu x2

)
•

(
δcv x3 • δdw x4

)
| ∃y, z. Ryx1x2 ∧ Rxyz ∧ Rzx3x4

}
=

(
(a • b) • (c • d) | ∃y, z. Rytu ∧ Rxyz ∧ Rzvw

)
.

Alternatively, using trees,

∗
∗ ∗

δat δbu δcv δdw

= λx.
∨

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

•
• •

δat x1 δbu x2 δcv x3 δdw x4

∣∣∣∣∣∣∣∣∣∣

x

◦ ◦
x1 x2 x3 x4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= λx.

⎛
⎜⎜⎜⎝

•
• •

a b c d

∣∣∣∣∣∣∣∣∣
x

◦ ◦
t u v w

.

⎞
⎟⎟⎟⎠

All other proofs are similar and left to the reader. In particular, (3) follows from (2) by
opposition.
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Figure 3.
(
δat ∗ δbu

) ∗ (
δcv ∗ δdw

)
x representing ∃y, z. Rytu ∧ Rxyz ∧ Rzvw using (a • b) • (c • d) in Lemma 13(4) together with its

dual.

The next lemma shows that the trees represented by the relational interchange laws can be
expressed in terms of deltas and convolution in the presence of the following mild nondegeneracy
conditions on Q:

∃a, b ∈Q. a • b �= 0, (D1)
∃a, b, c ∈Q. a • (b • c) �= 0, (D2)
∃a, b, c ∈Q. (a • b) • c �= 0, (D3)

∃a, b, c, d ∈Q. (a • b) • (c • d) �= 0. (D4)

Lemma 13. Let X be a relational bi-magma and Q a bi-prequantale. Then

(1) Rxyz⇒
(
δay ∗ δbz

)
x= a • b, and the converse implication follows from (D1),

(2) ∃y. Rxuy ∧ Ryvw⇒
(
δau ∗

(
δbv ∗ δcw

))
x= a • (b • c), and the converse implication follows from

(D2),
(3) ∃y. Ryuv ∧ Rxyw⇒

((
δau ∗ δbv

)
∗ δcw

)
x= (a • b) • c, and the converse implication follows from

(D3),
(4) ∃y, z. Rytu ∧ Rxyz ∧ Rzvw⇒

((
δat ∗ δbu

)
∗

(
δcv ∗ δdw

))
x= (a • b) • (c • d), and the converse

implication follows from (D4),
(5) properties (1)–(5) hold with colours interchanged, including in the nondegeneracy conditions.

Proof. For (4), suppose ∃y, z. Rytu ∧ Rxyz ∧ Rzvw. Then((
δat ∗ δbu

)
∗

(
δcv ∗ δdw

))
x=

(
(a • b) • (c • d) | ∃y, z. Rytu ∧ Rxyz ∧ Rzvw

)
= (a • b) • (c • d)

by Lemma 12(4). For the converse implication, using the elements a, b, c, d ∈Q that are guaran-
teed to satisfy (a • b) • (c • d) �= 0 by (D4),

0 �= (a • b) • (c • d)=
(
(δat ∗ δbu) • (δcv ∗ δdw)

)
x=

(
(a • b) • (c • d) | ∃y, z. Rytu ∧ Rxyz ∧ Rzvw

)
by Lemma 12(4) and therefore ∃y, z. Rytu ∧ Rxyz ∧ Rzvw.

All other proofs are similar and left to the reader. (3) follow from (2) by opposition.

Intuitively, convolutions of delta functions represent trees in X in the function space QX by
creating their ‘shadows’ in Q – which requires nondegeneracy. The case of Lemma 13(4) and its
dual are shown in Figure 3.

We are now prepared to prove our second correspondence result, namely that algebraic inter-
change laws inQX force relational interchange laws inX subject tomild nondegeneracy conditions
on Q.
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Proposition 14. Let X be a relational bi-magma and Q a bi-prequantale. Then (D� k2 �) in Q and
(Ik) in QX imply (RIk) in X, for each 1≤ k≤ 7.

Proof. Suppose

(a • b) • (c • d) �= 0

for some a, b, c, d ∈Q and(
δat ∗ δbu

)
∗

(
δcv ∗ δdw

)
≤ (
δat ∗ δcv

) ∗ (
δbu ∗ δdw

)
.

Then, using Lemma 13(4),

∃y, z. Rytu ∧ Rxyz ∧ Rzvw⇔
((
δat ∗ δbu

)
∗

(
δcv ∗ δdw

))
x �= 0

⇒
((
δat ∗ δcv

) ∗ (
δbu ∗ δdw

))
x �= 0

⇔∃y, z. Rytv ∧ Rxyz ∧ Rzuw
proves (RI7). The remaining proofs are similar. Those for (RI3) and (RI4) and those for (RI5) and
(RI6) are related by opposition.

Finally, we prove the third correspondence result for interchange laws, namely that algebraic
interchange laws onQX force those onQ, subject to the following mild nondegeneracy conditions
on X:

∃x, u, v. Rxuv, (RD1)
∃x, y, u, v,w. Rxuy ∧ Ryvw, (RD2)

∃x, y, u, v,w. Ryuv ∧ Rxyw, (RD3)

∃x, y, z, t, u, v,w. Rytu ∧ Rxyz ∧ Rzvw. (RD4)

Proposition 15. . Let X be a relational bi-magma and Q a bi-prequantale. Then (RD� k2 �) in X and
(Ik) in QX imply (Ik) in Q, for each 1≤ k≤ 7.

Proof. Suppose (δat ∗ δbu) ∗ (δcv ∗ δdw)≤ (δat ∗ δcv) ∗ (δbu ∗ δdw) for some a, b, c, d ∈Q and let
∃y, z. Rytu ∧ Rxyz ∧ Rzvw for some t, u, v,w ∈ X. Then, using Lemma 13(4),

(a • b) • (c • d)= ((δat ∗ δbu) ∗ (δcv ∗ δdw)) x≤ ((δat ∗ δcv) ∗ (δbu ∗ δdw)) x≤ (a • c) • (b • d)
proves (I7) inQ. The remaining proofs are similar. Those for (RD3) and (RD4) and those for (RD5)
and (RD6) are related by opposition.

It may be helpful to check the proofs of Propositions 14 and 15 with the diagrams in Figure 3.
The nondegeneracy conditions are necessary. Indeed, if Q is a singleton set, then so is QX and
hence it will obey all axioms independently of X. Similarly, if all products on Q vanish, then QX

will automatically satisfy many axioms as all convolutions will be trivial.
This finishes the proof of the correspondence triangles for interchange laws in X, Q and QX .

The result of Proposition 11 shows that interchange laws inX andQ give us interchange laws inQX

for free; Propositions 14 and 15 show us that all interchange laws in the convolution algebra arise
this way. To construct a convolution algebra satisfying an interchange law, it therefore suffices
to find a suitable relational structure satisfying a relational interchange law, which is often much
easier.
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4. Further Correspondences
The next step towards modal correspondence results for concurrent quantales and Kleene alge-
bras consists in the study of correspondence triangles for units and the monoidal structure on a
quantale, completing those outlined in Section 2.

We start with units. When the relational bi-magma X and the bi-prequantaleQ are both unital,
units can be defined in QX as in Section 2:

idE x=
{
1, if x ∈ E,
0, otherwise

and idE x=
{
1, if x ∈ E,
0, otherwise.

Theorem 2 then shows thatQX is a unital quantale ifQ is a unital quantale and both compositions
are associative and unital in X. We restate the three kinds of correspondences for units in the
weaker setting of relational magmas and prequantales.

Proposition 16. Let X be a relational magma and Q a prequantale.

(1) If X and Q are unital, then so is QX.
(2) If QX is unital and 1 �= 0 in Q, then so is X.
(3) If QX is unital and E �= ∅ in X, then so is Q.

Proof. In the following we write δx and likewise for δ1x .

(1) If X and Q are unital, then

(f ∗ idE) x=
∨
{f y • δe z | Rxyz ∧ Ee}

=
∨
{f y • 1 | ∃e. Rxye ∧ Ee}

= (f x | ∃e. Rxxe ∧ Ee)
= f x,

where the last two steps use the relational unit axioms. The proof for left units follows by
opposition.

(2) If idE is the right unit in QX , then

(1 | (y= x))= δy x= (δy ∗ idE) x= (1 | ∃e. Rxye ∧ Ee).

Suppose 1 �= 0. Then, x= y implies ∃e. Rxxe ∧ Ee, the existence axiom for right relational
units, and ∃e. Rxye ∧ Ee implies that x= y, the uniqueness axiom. The proofs for left units
follow by opposition.

(3) If idE is the right unit in QX , then

a • 1= (a • 1 | ∃e. Rxxe ∧ Ee)=
∨
{δx x | ∃e. Rxxe ∧ Ee} = (δax ∗ idE) x= δax x= a

proves that 1 is a right unit in Q. The left unit law follows by opposition.

In the presence of non-trivial units in X and Q, the nondegeneracy conditions for interchange
laws in Propositions 14 and 15 simplify. Condition (D1) becomes trivial with 1 • 1= 1 �= 0, con-
dition (D2) with 1 • (1 • 1)= 1 �= 0 and condition (D3) by opposition. Condition (D4) reduces to
(1 • 1) • (1 • 1)= 1 • 1 �= 0, but remains non-trivial. It becomes trivial when 1= 1. It is easy to
check that the nondegeneracy conditions (RD1)–(RD3) become trivial in a similar way, using the
fact that Reee holds for all e ∈ E and Reee for all e ∈ E. Once again, (RD4) becomes trivial when E= E.
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Figure 4. Nondegeneracy condition (D4) in the presence of units.

Corollary 17. Let X be a unital relational bi-magma satisfying E= E �= ∅ and Q a unital bi-
prequantale satisfying 1= 1 �= 0. Then (Ik) holds in QX if and only if (Ik) holds in Q and (RIk)
holds in X, for each 1≤ k≤ 7.

In the only-if directions, functions δx can now be used. This leads to a simpler relationship
between deltas and ternary relations than in Lemma 13.

Corollary 18. Let X be a relational magma and Q a unital prequantale with 1 �= 0. Then

Rxyz⇔ (δy ∗ δz) x= 1.

It is therefore compelling to see B as the sublattice over {0, 1} of Q and write Rxyz = (δy ∗ δz) x or
even (f ∗ g) x=∨

y,z f y • g z • Rxyz, similar to a coend. Figure 4 shows how the presence of units
affects the right-hand term in (RI7).

Next, we present a correspondence result for relational units that is useful in Section 5.

Lemma 19. Let X be a unital bi-magma and Q a unital bi-prequantale.

(1) If E⊆ E in X and 1≤ 1 in Q, then idE ≤ idE in QX.
(2) If idE ≤ idE in QX and 1 �= 0 in Q, then E⊆ E in X.
(3) If idE ≤ idE in QX and E �= ∅ in X, then 1≤ 1 in Q.

Proof.

(1) Let E⊆ E and 1≤ 1. Then, idE x= 0⇔ x /∈ E⇒ x /∈ E⇔ idE x= 0, for all x ∈ X, and there-
fore idE ≤ idE.

(2) Let idE ≤ idE. If Ex, then 0 �= 1= idE x≤ idE x, for all x ∈ X, and therefore Ex.
(3) Let idE ≤ idE and Ex. Then, 1= idE x≤ idE x≤ 1, for all x ∈ X.

Corollary 20. Let X be a unital bi-magma with E �= ∅ and Q a unital bi-prequantale with 1 �= 0.
Then idE ≤ idE in QX if and only E⊆ E in X and 1≤ 1 in Q.

Because of the symmetry in the definitions of unital bi-magmas and bi-prequantales, Lemma 19
and Corollary 20 hold with colours swapped. We do not spell them out explicitly.

Next we turn to correspondence triangles for relational monoids and quantales. In fact, the
correspondences between interchange laws can be specialised to obtain the associativity laws for a
quantale. The relational interchange law (RI3), ∃y. Rxuy ∧ Ryvw⇒∃y. Ryuv ∧ Rxyw, becomes the rela-
tional semi-associativity law ∃y.Rxuy ∧ Ryvw⇒∃y. Ryu v ∧ Rxy w when colours are switched off; (RI4)
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translates into the opposite implication. Both laws establish relational associativity. Similarly,
the interchange laws (I3) and (I4), a • (b • c)≤ (a • b) • c and (a • b) • c≤ a • (b • c), become the
semi-associativity laws a • (b • c)≤ (a • b) • c and (a • b) • c≤ a • (b • c). This yields the following
corollary to Propositions 11, 14 and 15.

Corollary 21. Let X be a relational magma and Q a prequantale.

(1) If X is relationally associative and Q associative, then QX is associative.
(2) If QX is associative and some a, b, c ∈Q satisfy a • (b • c) �= 0 �= (a • b) • c, then X is relation-

ally associative.
(3) If QX is associative and some x, y, z, u, v,w ∈ X satisfy Rxuz, Rxyw Rzvw and Ryuv, then Q is

associative.

Similar correspondences between semi-associativity laws are straightforward, but not as interest-
ing for our purposes. In the presence of units, Corollary 21 simplifies further.

Corollary 22. Let X be a unital relational magma satisfying E �= ∅ and Q a unital prequantale
satisfying 1 �= 0. Then, QX is associative if and only if X is relationally associative andQ is associative.

Finally, the correspondence triangles between interchange laws can also be specialised to com-
mutativity laws. The relational interchange law (RI2), Rxuv⇒ Rxvu, specialises to Rxuv⇒ Rxvu when
colours are switched off while the interchange law (I2), a • b≤ b • a, becomes a • b≤ b • a. This
yields another corollary to Propositions 11, 14 and 15.

Corollary 23. Let X be a relational magma and Q a prequantale.

(1) If X is relationally commutative and Q abelian, then QX is abelian.
(2) If QX is abelian and there exist a, b ∈Q with a • b �= 0, then X is relationally commutative.
(3) If QX is abelian and there exist x, y, z ∈ X with Rxyz, then Q is abelian.

In the presence of units, this corollary simplifies further.

Corollary 24. Let X be a unital relational magma satisfying E �= ∅ and Q a unital quantale
satisfying 1 �= 0. Then QX is abelian if and only if X is relationally commutative and Q abelian.

The correspondence triangles in this section thus extend those for interchange laws in a com-
positional way to units and monoidal laws by specialisation. We summarise them in the following
sections to correspondence triangles for concurrent quantales and Kleene algebras.

5. Relational Interchange Monoids and Interchange Quantales
We now start shifting the focus from correspondence theory to construction recipes for quantales
with interchange laws, and in particular concurrent quantales. To avoid nondegeneracy condi-
tions, we assume that relational magmas and quantales are unital and impose an order between
units: ∅ �= E⊆ E and 0 �= 1≤ 1.

Yet first we prove a weak variant of the classical Eckmann-Hilton argument (Eckmann and
Hilton 1962). Its standard version shows that if a unital bi-magma, a set equipped with com-
position • and unit 1 and composition • with unit 1, satisfies the strong interchange law
(a • b) • (c • d)= (a • c) • (b • d), then 1= 1, • and • coincide, and they are associative and
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commutative. We show how these properties generalise if strong interchange is weakened to (I7).
In this case, all interchange laws with lower indices become derivable. This of course requires
ordered bi-magmas, where the underlying set is partially ordered and the two compositions 1 and
1 preserve the order in both arguments.

Lemma 25 (weak Eckmann-Hilton). Let (S,≤, • , • , 1, 1) be an ordered bi-magma in which (I7)
holds. Then 1≤ 1, and (I1)–(I6) are derivable whenever 1≤ 1.

The proofs, like the classical Eckmann-Hilton ones, substitute 1 and 1 in (I7) and are straight-
forward. Analogous results hold for relational bi-magmas because of the various correspondence
results in the previous section and Lemma 25.

Lemma 26. Let (X, R, R, E, E) be a unital relational bi-magma in which (RI7) holds. Then E⊆ E,
and (RI1)–(RI6) hold whenever E⊆ E.

Proof. First, for all e ∈ S, and with (RI7) in the fourth step,

Ee⇔ Ee ∧ Reee
⇔ Ee ∧ ∃x, y, e′, e′′. Ee′ ∧ Rxe′e ∧ Rexy ∧ Ryee′′

⇒ ∃e′, e′′. Ee ∧ Ee
′ ∧ Ree′e ∧ Reee ∧ Reee′′

⇒ ∃e′, e′′. Ee ∧ Ee
′ ∧ Ree′e ∧ Reee ∧ Reee′′

⇒ Ee ∧ Ee ∧ Reee ∧ Reee ∧ Reee
⇒ Ee.

Second, let E⊆ E and assume (RI7). Then,

∃y. Ryuv ∧ Rxyw⇔∃e, y. Ryuv ∧ Rxyw ∧ Rwew ∧ Ee

⇔∃e, y, z. Ryuv ∧ Rxyz ∧ Rzew ∧ Ee

⇒∃e, y, z. Ryue ∧ Rxyz ∧ Rzvw ∧ Ee

⇔∃e, z. Ruue ∧ Rxuz ∧ Rzvw ∧ Ee

⇔∃z.Rxu z ∧ Rzv w
proves (RI6). The proofs of (RI1), (RI2), (RI3) and (RI5) from (RI7) are similar and left to the
reader.

Next we package the correspondence results from previous sections using suitable alge-
braic structures and relate these with concurrent quantales and later with concurrent Kleene
algebras.

Definition 27. A relational interchange monoid is a structure (X, R, R, E) such that (X, R, E) and
(X, R, E) are ordered relational monoids and the relational interchange law (RI7) holds.

Definition 28. An interchange quantale is a structure (Q,≤, • , • , 1) such that (Q,≤, • , 1) and
(Q,≤, • , 1) are (unital) quantales, and the interchange law (I7) holds.

In light of Lemmas 25 and 26, we always assume that relational interchange monoids and
interchange quantales have one single unit that is shared between the relations and compositions,
respectively. The following result then summarises these two lemmas.

https://doi.org/10.1017/S0960129522000081 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000081


934 J. Cranch et al.

Corollary 29.

(1) In every relational interchange monoid, (RI1)–(RI6) are derivable.
(2) In every unital interchange quantale, (I1)–(I6) are derivable.

The correspondence results from Sections 3 and 4 can now be summarised in terms of
interchange monoids and interchange quantales as well.

Theorem.

(1) If X is a relational interchange monoid and Q an interchange quantale, then QX is an
interchange quantale.

(2) If QX is an interchange quantale and 1 �= 0, then X is a relational interchange monoid.
(3) If QX is an interchange quantale and E �= ∅, then Q is an interchange quantale.

Proof. The correspondence for associativity and units in the subquantales is given by Corollary 21
and Proposition 16; that for interchange between the subquantales is given by Propositions 11, 14
and 15.

Theorem 5 shows that, up to mild nondegeneracy assumptions, all interchange quantales of
type X→Q are obtained from a relational interchange monoid on X and an interchange quantale
Q. To build such quantales, one should therefore look for relational interchange monoids, and the
advantage is that fewer properties need to be checked.

Interchange quantales generalise concurrent quantales and are strongly related to concurrent
Kleene algebras (Hoare et al. 2011). The difference is that here we do not assume that ‘parallel
composition’ • is commutative. Yet Theorem 5 adapts easily to the commutative case. For a
concurrent quantale in QX , an interchange monoid X with relationally commutative R and an
interchange quantaleQwith commutative • is needed. A variant of Theorem 5 then follows from
Corollaries 24 and 17. In particular, the nondegeneracy assumptions simplify to non-triviality
assumptions for units and unit sets.

An interesting specialisation of Theorem 5 is the case of Q=B, which forms an interchange
quantale with both compositions being meet and both units of composition 1. In particular, in the
booleans, 0 �= 1. The interchange law (I7) holds trivially because

(w∧ x)∧ (y∧ z)= (w∧ y)∧ (x∧ z)

in any semilattice by associativity and commutativity of meet.

Corollary 30. B
X ∼=P X is an interchange quantale if and only if X is a relational interchange

monoid.

In this case, by Corollary 18 and Lemma 13, Rxyz⇔ (δy ∗ δz) x= 1, Rxyz⇔ (δy ∗ δz) x= 1 and
likewise for the other relational nondegeneracy conditions.

6. Interchange Kleene Algebras
Wementioned in Section 2 that in many classical convolution algebras, including Rota’s incidence
algebras and the formal power series of Schützenberger and Eilenberg’s approach to formal lan-
guages, the underlying set X has a finite decomposition property (Rota calls partial orders with
this property locally finite Rota 1964). As infinite sups are then not needed to express convolu-
tions, one can specialise quantales to semirings and Kleene algebras, and in particular concurrent
Kleene algebras. We work out the details in this section.
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Definition 31. A dioid is a semiring (S,+, •, 0, 1) in which addition is idempotent.

Hence (S,+, 0) is a sup-semilattice ordered by a≤ b⇔ a+ b= b and least element 0.
Moreover, • preserves ≤ in both arguments. A quantale can thus be seen as a complete
dioid.

Definition 32. An interchange semiring is a structure (S,+, • , • , 0, 1) such that (S,+, • , 0, 1)
and (S,+, • , 0, 1) are dioids, and the interchange law (I7) holds.

The six small interchange laws are of course derivable in this setting.

Definition 33.

(1) AKleene algebra is a dioid with a unary star operation � that satisfies the unfold and induction
axioms

1+ a • a� ≤ a�, c+ a • b≤ b⇒ a� • c≤ b,
1+ a� • a≤ a�, c+ b • a≤ b⇒ c • a� ≤ b.

(2) An interchange Kleene algebra is a structure (K,+, • , • , 0, 1,� ,� ) such that
(K,+, • , 0, 1,� ) and (K,+, • , 0, 1,� ) are Kleene algebras and (I7) holds.

We write (− )� instead of the usual (− )∗ to distinguish the Kleene star from the convolution
operation. Note also that equational variants of the two unfold axioms are derivable from the
Kleene algebra axioms. We use them in proofs below.

To translate Theorem 5 from quantales to Kleene algebras, all sups must be guaranteed to be
finite. This can be achieved by imposing that all functions have finite support or that the relations
Rxyz and Rxyz are finitely decomposable, that is, for each x the fibres {(y, z) | Rxyz} and {(y, z) | Rxyz} are
finite. If this is the case, we call the relational interchange monoid finitely decomposable as well.

Theorem. If X is a finitely decomposable relational interchange monoid and S an interchange
semiring, then SX is an interchange semiring.

Proof. In the construction of the convolution algebra on SX , it is routine to check that all sups
remain finite.

It is easy to generalise these results from dioids to proper semirings that are ordered. We do
not spell out the details. Beyond that it seems interesting to extend Theorem 6 to interchange
Kleene algebras. First of all, every interchange quantale is an interchange Kleene algebra, because
� and � can be defined explicitly in this setting using Kleene’s fixpoint theorem: x� =∨

k∈N xk
and x� =∨

k∈N xk satisfy the star axioms, with powers defined recursively in the standard way as
x0 = 1 and xi+1 = x • xi and likewise for xi.

When infinite sups and the sup-preservation properties needed for Kleene’s fixpoint theorem
are not available, another approach is needed. It is known (Armstrong et al. 2014) that formal
power series – functions of type �∗ →K, where �∗ is the free monoid over the finite alphabet �
and K a Kleene algebra – form Kleene algebras. In this setting, the star of a power series can be
defined recursively as

f � ε= (f ε)�, f � x= (f ε)� •
∑

y,z:x=y·z,y �=ε
f y • f � z,
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where
∑

indicates a finite sup (Kuich and Salomaa 1986). The verification of the star axioms
for power series uses structural induction over finite words. Yet this is not applicable for gen-
eral ternary relations. Instead we use a notion of grading that has been introduced for arbitrary
monoids by Sakarovitch (2003).

The function | − | : X→N is a grading on the relational monoid (X, R, E) if

• |x|> 0 for all x ∈ X such that x /∈ E,
• |x| = |y| + |z| whenever Rxyz.

Then, (X, R, E) is graded if there is a grading on X. Thus, in a graded monoid, |e| = 0 if and only if
e ∈ E.

Proposition 34. If (X, R, {e}) is a graded, finitely decomposable, relational monoid and K a Kleene
algebra, then KX is a Kleene algebra with

f � e= (f e)�, f � x= (f e)� •
∑

y,z:Rxyz ,y �=e
f y • f � z.

Proof. We need to check the unfold and induction axioms of Kleene algebra. First, the axiom
1+ a� • a≤ a� is implied by the other axioms in any Kleene algebra and can be ignored (von
Wright 2002): the first unfold axiom implies 1≤ a� and a+ a • a� ≤ a • a� ≤ a�, so that 1+ a� •
a≤ a� follows using the second induction axiom. Second, c+ a • b≤ b⇒ a� • c≤ b follows from
the simpler formula a • b≤ b⇒ a� • b≤ b, and likewise, by opposition, c+ b • a≤ b⇒ c • a� ≤ b
follows from b • a≤ b⇒ b • a� ≤ b, in any Kleene algebra (Kozen 1994). It thus remains to check
that

ide + f ∗ f � ≤ f �, f ∗ g ≤ g⇒ f � ∗ g ≤ g, g ∗ f ≤ g⇒ g ∗ f � ≤ g

hold in the convolution algebra KX , where ide indicates the single unit e in E.

(1) ide + f ∗ f � = f �. If x= e, then (ide + f ∗ f �) e= 1+ (f e) • (f e)� = (f e)� = f � e.
Otherwise, if x �= e,

(ide + f ∗ f �) x=
∑ {

f y • f � z | Rxyz
}

= f e • f � x+
∑ {

f y • f � z | Rxyz ∧ y �= e
}

= f e • f � e •
∑ {

f y • f � z | Rxyz ∧ y �= e
}
+

∑ {
f y • f � z | Rxyz ∧ y �= e

}
= (

f e • f � e+ ide e
) •∑ {

f y • f � z | Rxyz ∧ y �= e
}

= (
f e

)� •∑ {
f y • f � z | Rxyz ∧ y �= e

}
= f � x.

(2)
(∀x. (f ∗ g) x≤ gx

)⇒ (∀x. (f � ∗ g) x≤ gx
)
. We proceed by induction on |x|.

a. Let |x| = 0 and hence x= e. Then, (f � ∗ g) e= (f e)� • g e≤ g e follows from the
assumption f e • g e≤ g e and the first induction axiom of Kleene algebra.

b. Let |x|> 0 and therefore x �= e. Then, by the induction hypothesis,
(
f ∗ g) y≤ g y

holds for all y with |y|< |x|. In addition, the assumption implies that

∀x, y, z. Rxyz⇒ f y • g z≤ g x,
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from which (f e)� • g x= f � e • g x≤ g x follows by star induction in K. With this
property,

(f � ∗ g) x= f � e • g x+
∑ {

f � e •
∑ {

f u • f � v | Ryuv ∧ u �= e
} • g z | Rxyz ∧ y �= e

}
= f � e •

(
g x+

∑ {
(f u • f � v) • g z | ∃y. Ryuv ∧ Rxyz ∧ u �= e∧ y �= e

})
= f � e •

(
g x+

∑ {
f u • (f � v • g z) | ∃y. Rxuy ∧ Ryvz ∧ u �= e∧ y �= e

})
≤ f � e •

(
g x+

∑ {
f u • (f � ∗ g) y | Rxuy ∧ u �= e

})
≤ f � e •

(
g x+

∑ {
f u • g y | Rxuy

})
≤ f � e • (

g x+ (f ∗ g) x)
= f � e • (

g x+ g x
)

≤ g x.

The first step unfolds the definition of convolution and the Kleene star in KX . The sec-
ond step applies distributivity laws in K; the third one associativity in X and K. The
fourth step introduces a convolution as an upper bound, thus dropping the constraint
y �= e. The fifth step applies the induction hypothesis to y. The condition u �= e guar-
antees that |y|< |x|. The sixth step applies the assumption; the last step the derived
property.

(3) g ∗ f ≤ g⇒ g ∗ f � ≤ g follows by opposition from (2).

The following theorem is then immediate.

Theorem. If X is a graded relational interchange monoid with unit e and K an interchange Kleene
algebra, then KX is an interchange Kleene algebra.

A generalisation of this theorem tomore than one relational unit is left for future work; it seems
to require a different proof technique.

We have already discussed the relationship between interchange quantales and concurrent
quantales in Section 5, namely that concurrent quantales are interchange quantales in which •
is commutative and 1= 1. Similarly, concurrent semirings and concurrent Kleene algebras are
interchange semirings and interchange Kleene algebras satisfying these two conditions. It is then
a trivial consequence of Theorem 6, Corollaries 24 and 17 that SX is a concurrent semiring if S is
a concurrent semiring and X a finitely decomposable relational monoid. Similarly, by Theorem 6
and these corollaries, KX is a concurrent Kleene algebra if K is a concurrent Kleene algebra and X
a graded relational monoid.

In the setting of concurrent Kleene algebras (Hoare et al. 2011), Theorem 6 thus shows that for
every graded relational interchange monoid with a single unit we get a concurrent Kleene algebra
as a convolution algebra for free.

For Q=B, the situation becomes much simpler. Then, convolution specialises to a product
between sets, A ∗ B= {x · y | x ∈A, y ∈ B}, as explained in the introduction; the star can be defined
as a union of powers taken with respect to ∗. Many models under consideration form a fortiori
quantales. Others that are finitely generated, such as generalisations of regular languages to posets
and pomsets, form concurrent Kleene algebras, but not necessarily concurrent quantales. They are
best characterised as subalgebras of concurrent quantales that are closed under operations such as
the two compositions, finite unions and the two Kleene stars mentioned at the beginning of this
section.
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7. Weighted Shuffle Languages
This extended example shows how weighted shuffle languages (Droste et al. 2009) can be con-
structed with our approach. Yet an alternative view on relational interchange monoids is helpful.
Obviously, the sets P (X× X× X) and X× X→P X are isomorphic. A ternary relation R can
thus be seen as amultioperation� : X× X→P X defined by

x ∈ y� z⇔ Rxyz.

It can be extended Kleisli-style to� :P S→P S→P S defined, for all A, B⊆ X, by

A� B=
⋃
{x� y | x ∈A∧ y ∈ B}.

It follows that (A� B) x=∨{A y∧ B z | Rxyz} if the sets A and B are identified with their indicator
functions. This turns� into a convolution.

Overloading the multioperation� and its extension allows rewriting the relational interchange
laws more compactly in algebraic form. It is easy to see that relational associativity becomes

{x} � (x� z)= (x� y)� {z};
the relational interchange law (RI7) becomes

(w�x)�(y�z)⊆ (w�y)�(x�z).
Multisemigroups, multimonoids and other multialgebras have been studied in mathematics

for many decades (Connes and Consani 2010; Krasner 1983; Kudryavtseva and Mazorchuk 2015;
Marty 1934). In computer science, they appear in the semantics of separation logic (Galmiche
and Larchey-Wendling 2006) and, very naturally, the algebra of shuffle. We have developed a
multioperational approach to convolution, but for modal quantales and Kleene algebras instead
of concurrent ones, in a companion article (Fahrenberg et al. 2021b), see also Cranch et al. (2020)
for the relationship between relational monoids and multimonoids.

The shuffle of two words from an alphabet� is a multioperation ‖ :�∗ →�∗ →P �∗. It can
be defined recursively as

v‖ε= {v} = ε‖v, and (av)‖(bw)= {a} · (v‖(bw))∪ {b} · ((av)‖w),
where a and b are letters, v and w words, and the language product · has been tacitly used in the
second identity. It yields the shuffle or Hurwitz product

A‖B=
⋃
{x‖y | x ∈A∧ y ∈ B}

for A, B⊆�∗ at language level.
To construct the quantale of Q-weighted shuffle languages using Theorem 5(1), it remains to

check that the structure M= (�∗, R, R, {ε}) is a relational interchange monoid with shared unit
E= E= {ε}, where Rxyz⇔ x= y · z, for word concatenation · and Rxyz⇔ x ∈ y‖z for shuffle.

It is of course straightforward to verify that (�∗, R, {ε}) is a relational monoid: it is in fact
isomorphic to the free monoid (�∗, ·, ε) and checking the relational associativity and relational
unit laws in the first monoid amounts to checking their algebraic counterparts in the second one.
Verifying that (�∗, R, {ε}) is a relational monoid – or (�∗, ‖, ε) a multimonoid – and that the
relational interchange law (RI7) holds – or the interchange law (w‖x) · (y‖z)⊆ (w · y)‖(x · z) with
language product · in the left-hand term and word concatenation · in the right-hand one – is a
surprisingly tedious exercise that requires nested inductions.

The result of this verification is summarised as follows.

Lemma 35. M is a relational interchange monoid with unit ε and relationally commutative R.

The following corollary to Theorem 5(1) is then automatic.
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Corollary 36. If Q is an interchange quantale with unit 1= 1= 1 and • commutative, then QM is
an interchange quantale with ∗ commutative and

(f ∗ g) x=
∨

y,z:x=y·z
f y • g z, (f ∗ g) x=

∨
y,z:x∈y‖z

f y • g z, id x= δε x.

The operation ∗ is similar to the standard convolution of formal power series, a Q-valued gen-
eralisation of the standard language product. The operation ∗ generalises the standard shuffle
product ‖ of languages to the Q-valued setting. Yet semirings or at least Kleene algebras are nor-
mally used as weight algebras. A grading on words is needed, and in this particular case, the length
of words can be used. It is then obvious that�∗n – the set of words of length n – is finite whenever
� is finite. This yields the following corollary to Theorem 6.

Corollary 37. If K is an interchange Kleene algebra with unit 1 and • commutative, then KM is an
interchange Kleene algebra with unit δε and ∗ commutative.

As we have shared units and a commutative shuffle operation, the convolution algebras of
weighted shuffle form in fact concurrent Kleene algebras, as expected.

Weighted languages are usually defined over semirings instead of dioids. Instead of Kleene
algebras, one can then use star semirings (Droste et al. 2009). The Kleene star can then be defined
on QM as before. We conjecture that Corollary 37 still holds for ordered star semirings, though
we have not checked all details.

Shuffle languages are widely used in the interleaving semantics of concurrent programmes.
The finite transition and Aczel traces of the rely-guarantee calculus (de Roever et al. 2001), in
particular, form concurrent quantales, which suffices at least for the analysis of safety and invariant
properties. We expect that our generic recipe for building shuffle quantales and Kleene algebra
from underlying relational interchange monoids can be beneficial for building more refined rely-
guarantee algebras. In particular, our results open the door to probabilistic and other quantitative
variants, using for instance the standard value quantale on the unit interval that is popular with
such applications (Dongol et al. 2021).

8. Partial Interchange Monoids
Next we prepare for our second example, namely of digraphs under serial and parallel compo-
sition. It is then natural to consider these compositions not as ternary relations, but as partial
operations on graphs. This leads to more general notions of partial semigroups and monoids.
Convolution based on partial semigroups and monoids has previously been studied in Dongol
et al. (2016). First, we briefly recall the relationship between relational and partial monoids.

Definition 38 (Dongol et al. 2016). A partial monoid is a structure (S,⊗,D, E) where S is a set,
D⊆ S× S the domain of definition of the composition ⊗ :D→ S, which is associative in the sense
that

D x y∧D (x⊗ y) z⇔D y z ∧D x (y⊗ z), D x y∧D (x⊗ y) z⇒ x⊗ (y⊗ z)= (x⊗ y)⊗ z,

and E⊆ X is a set of units, which satisfy

∃e ∈ E. D e x∧ e⊗ x= x, ∃e ∈ E. D x e∧ x⊗ e= x, ∀e1, e2 ∈ E. D e1 e2⇒ e1 = e2.

This definition captures the following intuition of partiality, namely that the left-hand side
of the identity x⊗ (y⊗ z)= (x⊗ y)⊗ z is defined if and only if the right-hand side is, and, if
either side is defined, then the two sides are equal. This notion of equality is known as Kleene
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equality. Categories, monoids and the interval algebras in Example 1, ordered pair algebras in
Example 5 and heaplet algebras in Example 7 all form partial monoids. Instead of the unit axioms
presented here, we could equally use those of object-free categories (Mac Lane 1998). The pre-
cise relationship between partial monoids and object-free categories is discussed in Cranch et al.
(2020).

The relationship between partial and relational monoids is straightforward. A relational
monoid (X, R, E) is functional if

Rxyz = Rx
′
yz⇒ x= x′ for all x, x′, y, z ∈ X.

With every functional relational monoid (X, R, E), one can then associate a partial monoid
(X,⊗,D, E) with D y z⇔∃x. Rxyz and y⊗ z being the unique x ∈ X that satisfies Rxyz – if D y z
is defined. We are particularly interested in the converse construction.

Lemma 39 (Dongol et al. 2021). If (S,⊗,D, E) is a partial monoid, then (S, R, E) is a (functional)
relational monoid with

Rxyz⇔ x= y⊗ z ∧D y z.

Next we relate partial monoids with relational interchange monoids. Expressing a variant of
the interchange law (I7) in the context of partial monoids requires once again an ordering on S.
This motivates the following definition.

Definition 40. A preordered partial monoid is a structure (S,�,⊗,D, E) such that (S,� ) is a
preorder, (S,⊗,D, E) a partial monoid, and⊗ is order preserving in the sense that

x� y∧D z x⇒ z⊗ x� z⊗ y∧D z y, x� y∧D x z⇒ x⊗ z� y⊗ z ∧D y z.

Lemma 39 can then be generalised.

Lemma 41. Let (S,�,⊗,D, E) be a preordered partial monoid. Then, (S, R) is a relational
semigroup with

Rxyz⇔ x� y⊗ z ∧D y z.

Proof. For relational associativity,

∃y. Rxuy ∧ Ryvw⇔∃y. x� u⊗ y∧D u y∧ y� v⊗w∧D v w
⇔ x� u⊗ (v⊗w)∧D v w∧D u (v⊗w)
⇔ x� (u⊗ v)⊗w∧D u v∧D (u⊗ v)w
⇔∃y. D y w∧ y� u⊗ v∧D u v∧ x� y⊗w
⇔∃y. Ryuv ∧ Rxyw.

However, the unit laws of preordered partial monoids need not translate to units in relational
semigroups.

Lemma 42. Let (S,�,⊗,D, E) be a preordered partial monoid and Rxyz⇔ x� y⊗ z ∧D y z. Then

(1) ∃e ∈ E. Rxex and ∃e ∈ E. Rxxe,
(2) ∃e ∈ E. Rxey⇒ x� y and ∃e ∈ E. Rxye⇒ x� y.
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In (2), it cannot generally be expected that x= y. The relationship x� y cannot be captured
directly within relational semigroups or monoids.

Definition 43. A partial interchange monoid is a structure (S,�,⊗,⊗,D,D, E E) such that
(S,�,⊗,D, E) and (S,�,⊗,D, E) are preordered partial monoids, E⊆ E and the following inter-
change law holds:

D w x∧D (w⊗x) (y⊗z)∧D y z ⇒
Dw y∧D (w⊗y) (x⊗z)∧D x z ∧ (w⊗x)⊗(y⊗z)� (w⊗y)⊗(x⊗z). (PI7)

In light of Lemmas 41 and 42, we cannot expect to relate partial interchange monoids directly
with relational interchange monoids. But the relationship is straightforward if we forget relational
units and restrict to a single monoidal unit.

Lemma 44. Let (S,�,⊗,⊗,D,D, E, E) be a partial interchange monoid in which E= {e} = E. Then
the following small interchange laws hold.

(1) D x y⇒D x y∧ x⊗y� x⊗y,
(2) D x y⇒D y x∧ x⊗y� y⊗x,
(3) D x (y⊗z)∧D y z⇒D x y∧D (x⊗y) x∧ x⊗(y⊗z)� (x⊗y)⊗z,
(4) D x y∧D (x⊗y) z⇒D x (y⊗z)∧D y z ∧ (x⊗y)⊗z� x⊗(y⊗z),
(5) D x (y⊗z)∧D y z⇒D y (x⊗z)∧D y z ∧ x⊗(y⊗z)� y⊗(x⊗z),
(6) D x y∧D (x⊗y) z⇒D x z ∧D (x⊗z) y∧ (x⊗y)⊗z� (x⊗z)⊗y.

Proof. We show (3) as an example. Suppose D x (y⊗z) and D y z. Then, D x e and D (x⊗e) (y⊗z)
and therefore D x y, D (x⊗y) (e⊗z), D e z and (x⊗e)⊗(y⊗z)� (x⊗y)⊗(e⊗z) by (PI7). Hence,
x⊗(y⊗z)� (x⊗y)⊗z by the unit laws of partial monoids. The other proofs are similar and left
to the reader.

With multiple units, it seems necessary to require that parallel units are sequential units for all
elements, which is artificial.

From now on, we call relational interchange semigroup a relational interchange monoid in
which units may be absent, and the small interchange laws (RI1)–(RI6) hold in addition to (RI7).

Lemma 45. If (S,�,⊗,⊗,D,D, {e}) is a partial interchange monoid, then (S, R, R) is a relational
interchange semigroup with

Rxyz⇔ x= y⊗z ∧D y z and Rxyz⇔ x� y⊗z ∧D y z.

Proof. We need to check that (PI7) implies (RI7).

∃y, z. Rytu ∧ Rxyz ∧ Rzvw⇔∃y, z. y� t⊗u∧D t u∧ x= y⊗z ∧D y z ∧ z� v⊗w∧D v w
⇔ x� (t⊗u)⊗(v⊗w)∧D t u∧D (t⊗u) (v⊗w)∧D v w
⇒ x� (t⊗v)⊗(u⊗w)∧D t v∧D (t⊗v) (u⊗w)∧D u w
⇔∃y, z. y= t⊗v∧D t v∧ x� y⊗z ∧D y z ∧ z= u⊗w∧D u w
⇔∃y, z. Rytv ∧ Rxyz ∧ Rzuw.

This calculation does not depend on the presence of units. Small interchange laws hold in S by
Lemma 44. These allow deriving the small relational interchange laws (RI1)–(RI6) as in the proof
of (RI7). Hence, S is a relational interchange semigroup.
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We could have used Rxyz⇔ x� y⊗z ∧D y z instead of Rxyz⇔ x= y⊗z ∧D y z in the proof of
Lemma 45. Using an equational encoding for R, however, would have broken the proof. The
following example shows that even (RI1) would break if two equational encodings were used.

Example 46. Consider the partial monoid over {a, b} with D= {(a, a)}, D= S× S, order and
compositions defined by b⊗b= a⊗b= b⊗a= a⊗a= b≺ a= a⊗a, and a suitable unit adjoined.
The small interchange law D x y⇒D x y∧ x⊗y� x⊗y then holds for all x and y. Now define
Rxyz⇔ x= y⊗z ∧D y z and Rxyz⇔ x= y⊗z ∧D y z. Then R �⊆ R, that is, Rbaa and ¬Rbaa, because
D a a, b= a⊗a and b �= a= a⊗a.

Lemma 45 yields the following corollary to Theorem 5(1).

Corollary 47. If S is a partial interchange monoid with unit e and Q an interchange quantale, then
QS is a non-unital interchange quantale with convolutions

(f ∗ g) x=
∨

y,z:x=y⊗z
f y • g z, (f ∗ g) x=

∨
y,z:x�y⊗z

f y • g z

that satisfies the small interchange laws (I1)–(I6) in addition to (I7).

Unitality fails in general because the unit id of ∗ need not be the unit of ∗ :
(f ∗ id) x=

∨ {
f y • 1 | Rxye

}
=

∨ {
f y | x� y

}≥ f x,

using Lemma 42(2), but not necessarily f ∗ id= f , and similarly for id ∗ f = f . Obviously, the
retract (Q,≤, ∗ ) has unit id; only the retract (Q,≤, ∗ ) does not have id as a unit. To obtain
equality, and hence unital interchange quantales, conditions on f are needed.

A partial interchange monoid (S,⊗,⊗, {e}) is positive if e is a minimal element of Swith respect
to �. It satisfies the serial Riesz decomposition property if x� y1⊗y2 implies that there exists x1,
x2 such that x1 � y1, x2 � y2 and x= x1⊗x2. An analogous property is well-known from ordered
vector spaces.

Lemma 48. Let f be antitone, that is, x� y⇒ f y≤ f x. Then, f ∗ id= f = id ∗ f .

Proof. (f ∗ id) x=∨ {
f y • 1 | Rxye

}
=∨{f y | x� y} = f x. The ≤-direction holds by antitonicity,

the ≥-direction by the above calculation. The proof of id ∗ f = f is similar.

To make id antitone, it seems appropriate to require that e is minimal with respect to � and
hence that the partial interchange monoid is positive. We also need to check that ∗ and ∗
preserve antitonicity.

Proposition 49. Let (S,⊗,⊗, {e}) be a positive serially Riesz decomposable partial interchange
monoid and Q an interchange quantale. Then the antitone functions in QS form a (unital)
interchange subquantale.

Proof. Unitality follows from Lemma 48. It remains to show that id is antitone and that ∗ and ∗
preserve antitonicity. The first fact follows from positivity. For preservation of ∗ , suppose x� y.
Then,

(f ∗ g) y=
∨
{f y1 • f y2 | y� y1⊗y2} ≤

∨
{f x1 • f x2 | x� x1⊗x2} = (f ∗ g) x.
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For preservation of ∗ , suppose once again x� y. Then,

(f ∗ g) y=
∨
{f y1 • f y2 | y= y1⊗y2} ≤

∨
{f x1 • f x2 | x= x1⊗x2} = (f ∗ g) x

by Riesz decomposability of⊗.

In sum, the results of this section show how the general lifting result from Theorem 5(1)
specialised from relational interchange monoids to partial interchange monoids, which are pre-
ordered. But, perhaps surprisingly, units cannot generally be lifted. We have thus identified
conditions on partial interchange monoids – positivity and a serial Riesz decomposition prop-
erty – and restricted the convolution algebra to antitone functions that enable such a lifting. In the
next section, we apply these results to weighted graph languages.

9. Weighted Graph Languages
Our second extended example shows how weighted graph languages can be constructed with our
approach. A partial interchange monoid structure can be imposed on graphs in various ways.
Partiality arises because, typically, the vertices of the graph operands are supposed to be disjoint.
Henceforth, we mean digraph when we say graph. Graphs with undirected edges can be obtained
from these in the obvious way.

Formally, we view graphs as binary relations on some set X. Let graphs G1 and G2 be disjoint,
that is, they have disjoint vertex sets: VG1 ∩VG2 =∅. Their serial composition (complete join) and
disjoint union (parallel composition) are defined as

G1 ·G2 =G1 �G2 � (VG1 ×VG2 ), G1‖G2 =G1 �G2,

where � denotes disjoint union. Both operations are standard (Courcelle and Engelfriet 2012).
This turns graphs under serial composition into partial monoids, and graphs under parallel
composition into partial abelian monoids.

A graph morphism ϕ :G1→G2 between graphs G1 and G2 preserves edges:

(x, y) ∈G1⇒ (ϕ x, ϕ y) ∈G2.

A morphism ϕ is faithful, or a graph embedding, if (ϕ x, ϕ y) ∈G2 implies (x, y) ∈G1. A graph
isomorphism is a bijective (on vertices) graph embedding. We writeG1 ∼=G2 if there exists a graph
isomorphism between G1 and G2. We say that G1 and G2 are isomorphic or have the same graph
type if G1 ∼=G2 and call G/∼= the isomorphism class or graph type of G.

The subsumption relation � between graphs, which is defined by G1 �G2 if and only if there
exists a bijective (on vertices) graph morphism ϕ :G2→G1, is a preorder. The associated sub-
sumption equivalence � need not coincide with ∼=, as will be explained in Section 10. We now
fix any set G of (di)graphs that contains the empty graph ε and is closed under serial and parallel
composition.

Proposition 50. The structure (G , ·, ‖, {ε}) forms a partial interchange monoid with commutative
parallel composition and shared unit ε.

Proof. First, the partial associativity and unit laws, partial commutativity of disjoint union as well
as partial isotonicity of the two compositions must be shown. This is routine. In the presence of a
shared unit ε, it then remains to verify (PI7). For this, we need the following isotonicity property
of Cartesian products: A⊆ B implies A× C⊆ B× C and C×A⊆ C× B.

We only show that the weak interchange law

(G1‖G2) · (G3‖G4)� (G1 ·G2)‖(G2 ·G4)
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holds and leaves the remaining laws to the reader. We use the identity function on the Gi
to construct the bijective morphism. We need to show that V(G1‖G2)·(G3‖G4) =V(G1·G3)‖(G2·G4)
and (G1 ·G1)‖(G3 ·G4)⊆ (G1‖G3) · (G2‖G4) as a relation. First, VGi·Gj =VGi ∪VGj =VGi‖Gj and
therefore

V(G1‖G2)·(G3‖G4) =VG1 ∪VG2 ∪VG3 ∪VG4 =V(G1·G3)‖(G2·G4).
Second,

(G1 ·G1)‖(G3 ·G4)= (G1 ∪G2 ∪VG1 ×VG2 )‖(G3 ∪G4 ∪VG3 ×VG4 )
=G1 ∪G2 ∪VG1 ×VG2 ∪G3 ∪G4 ∪VG3 ×VG4

⊆G1 ∪G3 ∪G2 ∪G4 ∪ (VG1 ∪VG3 )× (VG2 ∪VG4 )
= (G1‖G3)∪ (G2‖G4)∪VG1‖G3 ×VG2‖G4

= (G1‖G3) · (G2‖G4).

Lemma 45 and Corollary 47 then imply that weighted graph languages form interchange
quantales up to unitality of the parallel quantale retract. But one can do better.

Lemma 51. The partial interchange monoid (G , ·, ‖, {ε}) is positive and serially Riesz decompos-
able.

Proof. It is clear that ε is an isolated point with respect to� and hence minimal. This proves posi-
tivity. The proof of serial decomposability is intuitive, but somewhat tedious to spell out formally.
Suppose G�G1 ·G2. Then, the vertices of G1 and G2 are disjoint, and in addition to the arrows
of G1 and G2, we have VG1 ×VG2 . Hence if G�G1 ·G2, then the arrows added by the bijective
graph morphism ϕ :G1 ·G1→Gmust either be added to G1 or to G2, while VG1 ×VG2 stays the
same. There must thus be G′1 �G1 and G′2 �G such that G=G′1 ·G′2.

Proposition 49 then specialises as follows.

Corollary 52. If Q is an interchange quantale with unit 1 and • commutative, then QG is a
(generally non-unital) interchange quantale with ∗ commutative and

(f ∗ g) x=
∨

y,z:x=y·z
f y • g z, (f ∗ g) x=

∨
y,z:x�y‖z

f y • g z.

The subquantale of antitone functions in QG is unital.

Labels can be added to vertices ad libitum, which yields proper weighted graph languages.
Both the serial and the parallel composition preserve order properties, and it must be required
that graph morphisms preserve labels. Corollary 52 then specialises immediately to weighted par-
tial orders and weighted labelled partial orders. Their non-weighted variants are widely used in
concurrency theory as partial order semantics (Vogler 1992) and in the theory of distributed
systems (Lamport 1978). Our results thus yield quantitative variants.

Next we briefly consider such qualitative convolution algebras, which are based on powerset
liftings, that is, Q=B. Then, f : G →B is a set indicator function, and we may write x ∈ f instead
of f x, identifying the indicator function with the set it represents. Then,

(f ∗ g) x=
∨
{f y • g z | x= y · z}

rewrites as x ∈ f ∗ g⇔∃y, z. x= y · z ∧ y ∈ f ∧ z ∈ g, and hence,
f ∗ g = {y · z | y ∈ f ∧ z ∈ g}.
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Similarly,

f ∗ g = {x | x� y‖z ∧ y ∈ f ∧ z ∈ g} = {y‖z | y ∈ f ∧ z ∈ g}↓,
where↓ denotes the down-closure with respect to�. Moreover, the antitonicity condition rewrites
as x� y∧ f y⇒ f x, which is precisely f = f↓, that is, f is a down-set with respect to �.

Corollary 53. The down-sets in P G form a unital interchange quantale.

Finally, we consider the finite case and obtain the following corollary of Theorem 6.

Corollary 54. If K is an interchange Kleene algebra with unit 1 and G a partial interchange monoid
of finite graphs, then the antitone functions in KG form an interchange Kleene algebra.

This result holds because any finite graph can be decomposed in finitely many ways serially
or parallelly into subgraphs. Once again, all results specialise to partial orders, and in particular
to labelled partial orders, as already mentioned. The results in this section thus show how our
general lifting result in Theorem 5(1) supports the construction of standard models of true con-
currency (Grabowski 1981; Vogler 1992) and for distributed systems (Lamport 1978) based on
graphs and partial orders, labelled or unlabelled, and that these can be extended from the usual
qualitative setting to quantitative applications including probabilities or fuzziness. The next sec-
tion shows how these results specialise further to graph types and pomsets, which capture partial
order semantics of concurrency more faithfully.

10. Weighted Languages of Types of Finite Graphs
Many applications, including those in concurrency and distributed systems mentioned, require
equivalence or isomorphism classes and hence types of (labelled) graphs or (labelled) partial
orders. Lifting the results from Section 9 to these is not entirely straightforward. This is well
known (Ésik 2002), but we spell out details to make them easier to access.

Example 55 (Ésik 2002). Consider the infinite poset (P,≤P ) with

P= {pi,j | i, j ∈N∧ (i= 0∨ j= 0)}
and pi,j ≤P pk,l if and only if i= k= 0 and j≤ l. Consider also the infinite poset (Q,≤Q ) with

Q= {qi,j | i, j ∈N∧ (i= 0∨ i= 1∨ j= 0)}
and qi,j ≤P qk,l if and only if i= k= 0 or i= k= 1, and j≤ l.

Intuitively, P consists of the disjoint union of the infinite chain formed by the p0,j and the pi,0
with i> 0, whereas Q consists of the disjoint union of the infinite chain formed by the p0,j, the
infinite chain formed by the p1,j and the elements pi,0 with i≥ 1.

Define the functions ϕ : P→Q and ψ :Q→ P by

ϕ pi,j =

⎧⎪⎨
⎪⎩
q0,j if i= 0,
q1,k if i> 0∧ j= 2k+ 1,
qk,0 if i> 0∧ j= 2k,

ψ qi,j =

⎧⎪⎨
⎪⎩
p0,2k if i= 0,
p1,2k+1 if i= 1,
pi−1,0 if i> 1.

Intuitively, ϕ maps the chain in P onto the first chain in Q and the isolated elements in P alternat-
ingly onto the second chain and the isolated elements in Q, whereas ψ maps the elements of the
two chains in Q alternatingly onto the chain in P, and isolated points in Q onto isolated points in
P. The morphisms are shown in Figure 5.
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Figure 5. Posets P and Qwith bijective morphisms ϕ in left diagram andψ in right diagram.

By construction, ϕ and ψ are both bijective and order preserving. Hence P�Q and Q� P, but
of course neither P=Q nor P∼=Q.

At least in the finite case, the situation is simpler. An explanation requires two simple standard
facts about groups, which we recall without proofs.

Lemma 56. Let G be the cyclic group generated by x and let xi = xj for some integers i< j. Then
G=

{
1, x, x2, . . . xk−1

}
, where k= j− i.

Lemma 57. Let G be a finite cyclic group of order n generated by x. Then

G= {
1, x, x2, . . . , xn−1

}
and xn = 1.

Lemma 58. Let G1 and G1 be finite graphs such that G1 �G2 and G2 �G1. Then G1 ∼=G2.

Proof. By assumption, there exist order preserving bijections ϕ :G2→G1 and ψ :G1→G2;
hence, χ =ψ ◦ ϕ is an order preserving bijection on G1. As χ can be seen as a group action on
the finite set V1, it generates a finite cyclic group. Hence there is some k ∈N such that χk = idV1
by Lemma 57. It then follows that f is faithful: Suppose (ϕ x, ϕ y) ∈G2. Then

x= χk x= χk−1(ψ(ϕ x))→R1 χ
k−1(ψ(ϕ y))= χk y= y.

It follows that ϕ is a graph isomorphism and G1 ∼=G2.

A similar fact has been proved by Ésik (2002). We henceforth restrict our attention to finite
graphs.

Let [G]= {G′ |G′ ∼=G} denote the type of G. We extend the subsumption preorder � to
equivalence classes by [G1]� [G2]⇔G1 �G2, overloading notation. This relation is well defined.

Lemma 59. Let G′1 ∼=G1, G1 �G2 and G2 ∼=G′2. Then G′1 �G′2.

Proof. Let ϕ1 be the graph isomorphism of type G1→G′1, ϕ2 the graph isomorphism of type
G′2→G2 and ψ the bijective graph morphism of type G2→G1. Then, ϕ1 ◦ψ ◦ ϕ2 :G′2→G′1 is a
bijective graph morphism as well. Hence G′1 �G′2.

Lemma 60. The relation � is a partial order on G /∼= if all graphs in G are finite.
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Proof. Reflexivity and transitivity for � on G /∼= follows from reflexivity and transitivity of �
on G . For antisymmetry, [G1]� [G2] and [G2]� [G1] imply [G1]= [G2] for all G1,G2 ∈ G by
Lemma 58.

Extending serial and parallel composition of graphs is standard:

[G1] · [G2]= {G′1 ·G′2 |G′1 ∼=G∧G′2 ∼=G}
and likewise for [G1]‖[G2]. It is also known that both compositions are well defined: if G1 ∼=G′1
and G2 ∼=G′2, then [G1] · [G2]= [G′1] · [G′2] and [G1]‖[G2]= [G′1]‖[G′2]. By contrast to serial and
parallel compositions of graphs, those operations on graph types are total. Finally, equivalence
classes are closed with respect to serial and parallel composition.

Lemma 61. For all G1,G2 ∈ G ,

(1) [G1 ·G2]= [G1] · [G2],
(2) [G1‖G2]= [G1]‖[G2].

Proof. H ∈ [G1 ·G2] if and only if H ∼=G1 ·G2. This is the case if and only if there are graphs
G′1 and G′2 such that H =G′1 ·G′2 and G′1 ∼=G1 and G′2 ∼=G2, which, in turn, holds if and only if
H ∈ [G1] · [G2]. The proof for ‖ is similar.

Proposition 62. The structure (G /∼=, ·, ‖, [ε]) is a total interchange monoid in which ‖ is
commutative, if all graphs in G are finite.

Proof. The associativity, commutativity and unit laws are easy to check, noting that [ε]= {ε}.
For the interchange law, [(G1‖G2) · (G3‖G4)]� [(G1 ·G3)‖(G2 ·G4)], by definition of� on equiv-
alence classes, it suffices to show that (G1‖G2) · (G3‖G4)� (G1 ·G3)‖(G2 ·G4), which holds by
Proposition 50.

Proposition 62 specialises immediately to types of finite partial orders with serial and parallel
composition, which are known as partial words or pomsets in concurrency theory – when vertex
labels are added (Gischer 1988; Grabowski 1981). The instance of Proposition 62 for pomsets is
due to Gischer (1988).

Because compositions in G /∼=may result in the empty set, the interchange monoid usually has
an annihilator 0, that is, an element for which x · 0= 0= 0 · x and x‖0= 0 holds for any x.

The lifting to convolution algebras – interchange quantales, unital interchange quantales,
interchange Kleene algebras – then follows the results of the previous section, and of course
Theorem 5(1). The result that the powerset lifting of finite pomsets yields concurrent semirings,
interchange semirings in which • is commutative andQ=B, is due to Gischer (1988). Extensions
to concurrent Kleene algebras and concurrent quantales have been proved more recently (Hoare
et al. 2011).

This finishes the construction of the graph and pomset language models of concurrent quan-
tales and Kleene algebras as a second paradigmatic model of concurrency within our convolution
algebra framework and its extension to quantitative applications.

11. Conclusion
The results in this article yield a generic construction recipe for concurrent quantales and Kleene
algebras from relational structures, multimonoids and partial monoids, with qualitative and
quantitative applications. Beyond that, they yield correspondence triangles between relational
interchange monoids, value quantales and convolution quantales that from the mathematical
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foundations for this recipe. These results are suitable for formalisations in proof assistants and
applications in concurrency verification. In fact, the lifting from ternary relations and partial
monoids to quantalic convolution algebras – without interchange laws – has already been for-
malised with Isabelle/HOL (Dongol et al. 2017). Extending this to concurrency is left for future
work.

Another interesting avenue for research is the extension of Stone-type duality to our construc-
tions, building on work of Harding,Walker andWalker for lattice-valued functions (Harding et al.
2018). Moreover, a categorification of our approach will be published in a successor paper.

In a companion paper, similar correspondence triangles and lifting results have recently been
obtained for relational semigroups equipped with source and target maps instead of relational
units – so-called �r-multisemigroups and modal quantales and Kleene algebras (Fahrenberg et al.
2021b). In addition, it has been shown that certain languages of interval orders with interfaces
arise as languages of higher-dimensional automata, which arguably yield the most general models
of concurrency known (Fahrenberg et al. 2021a). Posets equipped with interfaces seem particu-
larly suitable for real-world algebraic models of concurrency, because the compositional nature of
algebra is a prima faciemismatch to the non-compositional nature of concurrency thatmay be due
to dependencies between events or communication. A combination of the correspondence results
for modal convolution algebras (Fahrenberg et al. 2021b) and concurrent convolution algebras,
as obtained in this article, will be needed for describing the algebra of languages of higher-
dimensional automata. We also expect that the polygraph model of higher-dimensional globular
Kleene algebras, which have recently been developed for applications in polygraph rewriting (Calk
et al. 2020), can be described as a generalisation of such a combination to higher dimensions.
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