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José Godoy and Robert Hakl
Institute of Mathematics, Czech Academy of Sciences, Žižkova 22, 616
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The existence and multiplicity of T -periodic solutions to a class of differential
equations with attractive singularities at the origin are investigated in the paper.
The approach is based on a new method of construction of strict upper and lower
functions. The multiplicity results of Ambrosetti–Prodi type are established using a
priori estimates and certain properties of topological degree.
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1. Introduction

The study of differential equations with some type of singularity has been attracting
the attention of many researchers during the recent decades. The main reason is the
applicability of theoretical results to important problems arising in natural sciences
(see, e.g., [1, 8, 16, 24, 28, 29]). From the mathematical point of view, differential
equations with singularities can be divided into three major classes according to
the type of singularity involved in the equation—attractive, repulsive, and mixed
(attractive–repulsive) type. Each one of the above-mentioned classes possesses its
own property, that means a different approach in their study. As for the problems
with attractive-type singularity we recommend the papers [3, 4, 9–14, 17–22, 25,
27] (see also the references therein).

One of the first important works studying the solvability of a periodic problem
for such equations is the well-known paper of Lazer and Solimini published in 1987
(see [17]) where the authors dealt, in particular, with the family of equations

u′′ +
ν

uλ
= h(t), (1.1)
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supposing λ > 0, ν ∈ R \ {0}, and h is a T -periodic function. They proved that (1.1)
in the attractive case, i.e. in the case when ν > 0, admits a T -periodic solution if
and only if h > 0 provided h is a continuous function (condition on the regularity
of the external force). The boundedness of the function h in the result of Lazer and
Solimini is essential and it cannot be extended to the general case h ∈ Lp

(
R/TZ

)
for

all λ > 0. Recently, Hakl and Zamora established a relation between the existence
of a T -periodic solution and the orders of regularity of h and singularity λ (see
[12]). More precisely, the main results of [12] can be formulated as follows:

• If h ∈ Lp
(
R/TZ

)
, λ � 1/(2p− 1) then (1.1) with ν > 0 has a positive T -

periodic solution iff h > 0. Moreover, this solution is unique.

• If λ ∈ (0, 1/(2p− 1)) then there exists h ∈ Lp
(
R/TZ

)
with h > 0 such that

(1.1) with ν > 0 has no positive T -periodic solution.

Another step in this direction was done in [13] where the ideas of the paper [12]
were generalized for the equation of the form

u′′ +
g(t)
uλ

= h(t)uδ,

with g, h ∈ L
(
R/TZ

)
, g(t) � 0 for a. e. t ∈ [0, T ], δ ∈ [0, 1), λ > 0. The main impor-

tance of the results established in [13] lies in the fact that the function g is not
necessarily bounded from below by some positive constant. The results obtained
there play an important role also in the present work where the existence and
multiplicity of the positive T -periodic solutions to the differential equation of the
form

u′′ +
g(t)
uλ

= h(t, u) + μf(t), (1.2)

is studied. Here, in addition, h is a Carathéodory function, f ∈ L
(
R/TZ

)
with f >

0, and μ ∈ R is a parameter. The aim of this paper is to find conditions guaranteeing
the existence of a critical parameter μ† such that the equation (1.2) has at least
two, at least one, or no solution provided μ > μ†, μ = μ†, or μ < μ†, respectively.

The basic tool used to handle with the equation (1.2) relies on a priori estimates
of all possible T -periodic solutions to (1.2), the construction of well-ordered strict
lower and upper functions, and the direct application of the degree theory. The idea
how to obtain multiplicity results is similar to the previous works, usually we use
homotopy invariance and additivity property of Leray-Schauder degree (see, e.g. [2,
6, 7, 15, 19, 23, 30]). However, the nature of this kind of problems request quite
new approach in how to construct the strict lower and upper functions.

The paper is organized as follows: the statement of the problem and some basic
notation are introduced in § 2. Section 3 is devoted to the main results; theorems
3.2–3.6 deal with the general case, the effective conditions for a particular case are
established in theorems 3.8–3.10. Auxiliary propositions and the construction of
strict lower and upper functions are included in §§ 4 and 5, respectively. The proofs
of the main results can be found in § 6.
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2. Statement of problem

Our contribution to the above-described topics deals with the existence and mul-
tiplicity of T -periodic solutions to the following differential equation with an
attractive singularity

u′′ +
g(t)
uλ

= h(t, u) + μf(t). (2.1)

Here λ > 0, μ ∈ R is a parameter, f , g are T -periodic Lebesgue integrable functions
with positive mean values, i.e., f, g ∈ L

(
R/TZ

)
and

∫ T

0

f(s) ds > 0,
∫ T

0

g(s) ds > 0, (2.2)

g(t) � 0 for a. e. t ∈ [0, T ], and h : R/TZ × R+ → R is a Carathéodory function,
i.e.

(i) h(·, x) : [0, T ] → R is measurable for every x ∈ R+;

(ii) h(t, ·) : R+ → R is continuous for a. e. t ∈ [0, T ];

(iii) for every r > 0 there exist non-negative functions ψ+
r , ψ−

r ∈ L
(
R/TZ

)
such

that

− ψ−
r (t) � h(t, x) � ψ+

r (t) for a. e. t ∈ [0, T ], x ∈ [0, r]. (2.3)

Remark 2.1. Without loss of generality we can assume that the functions ψ+
r are

nondecreasing with respect to r, i.e., ψ+
r (t) � ψ+

s (t) for a. e. t ∈ [0, T ] whenever
r � s. Moreover, we assume that the functions ψ+

r are nontrivial, i.e.,

∫ T

0

ψ+
r (s) ds > 0 for r > 0. (2.4)

These relations will be used later in the paper.

By a T -periodic solution to the equation (2.1) we understand a positive function
u that is absolutely continuous together with its first derivative and satisfies the
equality (2.1) almost everywhere on [0, T ]. We write u(t;μ) in order to emphasize
that u is a solution to (2.1) with a parameter μ.

For convenience, we introduce the following notation that is used throughout the
paper.

N, Z, and R are the sets of natural, integer, and real numbers, respectively,
R+ = [0,+∞), R− = (−∞, 0].
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Lp
(
R/TZ

)
, where p � 1, is the Banach space of T -periodic functions y : R/TZ →

R that are Lebesgue integrable on [0, T ] in the p-th power, endowed with the norm

‖y‖p =

(∫ T

0

|y(s)|p ds

)1/p

.

We write L
(
R/TZ

)
instead of L1(R/TZ). If y ∈ L

(
R/TZ

)
then

y =
1
T

∫ T

0

y(s) ds, [y]+(t) =
|y(t)| + y(t)

2
, [y]−(t) =

|y(t)| − y(t)
2

.

L∞(
R/TZ

)
is the Banach space of T -periodic functions y : R/TZ → R that are

essentially bounded with the norm

‖y‖∞ = ess sup
{|y(t)| : t ∈ [0, T ]

}
.

AC1
(
R/TZ

)
is a set of T -periodic functions y : R/TZ → R such that y and y′ are

absolutely continuous on [0, T ].
C
(
R/TZ

)
is the Banach space of T -periodic continuous functions y : R/TZ → R

with the norm

‖y‖C = max
{|y(t)| : t ∈ [0, T ]

}
.

For every Carathéodory function y : R/TZ × R → R we define a continuous func-
tion y : R → R by setting

y(x) =
1
T

∫ T

0

y(s, x) ds for x ∈ R.

If E ⊆ R then measE is the Lebesgue measure of the set E.
Now we introduce (strict) lower and upper functions in a form suitable for us.

For more details about the topics see, e.g., [5, 25, 26] and references therein.

Definition 2.2. A function α ∈ AC1
(
R/TZ

)
is said to be a lower function to (2.1)

if α(t) > 0 for t ∈ [0, T ] and

α′′(t) +
g(t)
αλ(t)

� h(t, α(t)) + μf(t) for a.e. t ∈ [0, T ]. (2.5)

A lower function α to (2.1) is said to be strict if every T -periodic solution u to (2.1)
satisfying u(t) � α(t) for t ∈ [0, T ] admits the inequality u(t) > α(t) for t ∈ [0, T ].

Definition 2.3. A function β ∈ AC1
(
R/TZ

)
is said to be an upper function to

(2.1) if β(t) > 0 for t ∈ [0, T ] and

β′′(t) +
g(t)
βλ(t)

� h(t, β(t)) + μf(t) for a.e. t ∈ [0, T ]. (2.6)

An upper function β to (2.1) is said to be strict if every T -periodic solution u
to (2.1) satisfying u(t) � β(t) for t ∈ [0, T ] admits the inequality u(t) < β(t) for
t ∈ [0, T ].
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The following assertion can be found in [5].

Proposition 2.4. Let β ∈ AC1
(
R/TZ

)
be such that β(t) > 0 for t ∈ [0, T ]. Assume

that β is not a T -periodic solution to (2.1) and let there exist ε > 0 such that

β′′(t) +
g(t)
xλ

� h(t, x) + μf(t) for a. e. t ∈ [0, T ], x ∈ [β(t) − ε, β(t)]. (2.7)

Then β is a strict upper function to (2.1).

3. Main results and applications

In order to obtain a priori estimates for all possible T -periodic solutions to the
equation (2.1) we need some assumptions. The first one is a technical condition
that helps us to get an upper bound.

(H1) Suppose that there exists r > 0 such that

− η(t, x) � h(t, x) � h+(t, x) − h−(t, x) for a. e. t ∈ [0, T ], x � r, (3.1)

where η, h+, h− : R/TZ × R+ → R+ are Carathéodory functions non-
decreasing with respect to the second variable satisfying

lim
x→+∞

η(x)
x

= 0, lim
x→+∞h−(x) = +∞. (3.2)

Furthermore, we assume that there exists ζ ∈ (0, 1) such that

L
def= lim sup

x→+∞
h+(x)

h−((1 − ζ)x)
< 1. (3.3)

Remark 3.1. Note that according to (2.3) we can assume without loss of generality
that the first inequality in (3.1) holds for all x � 0, i.e., we will assume

− η(t, x) � h(t, x) for a. e. t ∈ [0, T ], x � 0. (3.4)

The following assumptions help us to obtain a lower bound.

(H2) Let ψ+
r , f ∈ Lp

(
R/TZ

)
(r > 0, p � 1) and let for every r > 0 there exists ϕr ∈

Lq
(
R/TZ

)
(q � 1) such that1

ψ+
r (t) + |f(t)| � ϕr(t)g(q−1)/q(t) for a. e. t ∈ [0, T ].

(H3) Assume that

lim
x→t+

∫ t+T

x

g(s)
(s− t)σ

ds+ lim
x→t−

∫ x

t−T

g(s)
(t− s)σ

ds = +∞ for t ∈ [0, T ],

where σ = λ(2p−1)q
p .

1if q = 1 then we put g(q−1)/q(t) = 1 for t ∈ [0, T ].
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3.1. Main results

Theorem 3.2. Let (H1)–(H3) be fulfilled. Then there exist μ∗, μ∗ ∈ R such that
μ∗ � μ∗ and

(i) the equation (2.1) has no T -periodic solution provided μ < μ∗;

(ii) the equation (2.1) has at least one T -periodic solution provided μ = μ∗;

(iii) the equation (2.1) has at least two T -periodic solutions provided μ > μ∗.

Remark 3.3. Note that, in general, μ∗ �= μ∗ as shown in example 3.12. In order to
guarantee the equality μ∗ = μ∗ we have to strengthen conditions imposed on the
functions h and f .

Theorem 3.4. Let (H1)–(H3) be fulfilled. Let, moreover, the function h(t, x)/x is
nondecreasing with respect to x, i.e.,

h(t, x)
x

� h(t, y)
y

for a. e. t ∈ [0, T ], 0 < x � y. (3.5)

Then there exists a critical value μ† > 0 such that

(i) the equation (2.1) has no T -periodic solution provided μ < μ†;

(ii) the equation (2.1) has at least one T -periodic solution provided μ = μ†;

(iii) the equation (2.1) has at least two T -periodic solutions provided μ > μ†.

Remark 3.5. An example of h satisfying all the assumptions of theorem 3.4 is a
function

h(t, x) =
n∑

i=1

[
hi(t)xδi +

ki(t)
(1 + x)λi

]
+ q(t) for a. e. t ∈ [0, T ], x ∈ R+,

where hi(t) � 0, ki(t) � 0, q(t) � 0 for a. e. t ∈ [0, T ], δi ∈ (0, 1), and λi > 0 (i =
1, . . . , n).

Theorem 3.6. Let (H1)–(H3) be fulfilled, and let there exist h0 ∈ L
(
R/TZ

)
and a

continuous function ϕ : R
2
+ → R+ such that

h0(t) � 0 for a. e. t ∈ [0, T ], ϕ(x, x) = 0 for x ∈ R+, (3.6)

h(t, x) − h(t, y) � h0(t)ϕ(x, y) for a. e. t ∈ [0, T ], 0 � x � y. (3.7)

Let, moreover, there exist c > 0 such that

h0(t) � cf(t) for a. e. t ∈ [0, T ]. (3.8)

Then there exists a critical value μ† ∈ R such that the items (i)–(iii) of theorem 3.4
hold.

In particular, from theorem 3.6 we obtain the following assertion.
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Corollary 3.7. Let (H1)–(H3) be fulfilled, and let there exist h0 ∈ L∞(
R/TZ

)
and

a continuous function ϕ : R
2
+ → R+ such that (3.6) and (3.7) hold. Let, moreover,

ess inf
{
f(t) : t ∈ [0, T ]

}
> 0. (3.9)

Then the conclusion of theorem 3.6 is valid.

3.2. A particular case

We apply the results established above to a particular case of the equation (2.1),
namely to the equation of the form

u′′ +
g(t)
uλ

=
n∑

i=1

[
hi(t)uδi +

ki(t)
(ci + u)λi

]
+ q(t) + μf(t). (3.10)

Here, g, f , μ, and λ are as in (2.1), hi, ki, q ∈ L
(
R/TZ

)
, δi ∈ (0, 1), λi > 0, ci > 0

(i = 1, . . . , n), and δ1 > · · · > δn.

Theorem 3.8. Let [hi]+, [ki]+, [q]+, f ∈ Lp
(
R/TZ

)
(p � 1; i = 1, . . . , n), h1 < 0,

and let there exist c0 > 0, αi, βi � 0, ti ∈ R (i = 1, . . . ,m) such that t1 < t2 < · · · <
tm < t1 + T and

g(t) � c0(ti+1 − t)αi+1(t− ti)βi for a. e. t ∈ (ti, ti+1), i = 1, . . . ,m− 1, (3.11)

g(t) � c0(t1 + T − t)α1(t− tm)βm for a. e. t ∈ (tm, t1 + T ). (3.12)

Let, moreover,

λ � 1 + γ0

2p− 1
if p = 1 or γ = 0, λ >

(1 + γ0)(1 + γp)
(1 + γ)(2p− 1)

otherwise (3.13)

where

γ0 = max
{

min{αi, βi} : i = 1, . . . ,m
}
, γ = max

{
αi, βi : i = 1, . . . ,m

}
. (3.14)

Then there exist μ∗, μ∗ ∈ R such that μ∗ � μ∗ and

(i) the equation (3.10) has no T -periodic solution provided μ < μ∗;

(ii) the equation (3.10) has at least one T -periodic solution provided μ = μ∗;

(iii) the equation (3.10) has at least two T -periodic solutions provided μ > μ∗.

Theorem 3.9. Let f ∈ Lp
(
R/TZ

)
(p � 1), h1 < 0,

hi(t) � 0, ki(t) � 0, q(t) � 0 for a. e. t ∈ [0, T ] (i = 1, . . . , n),

and let there exist c0 > 0, αi, βi � 0, ti ∈ R (i = 1, . . . ,m) such that t1 < t2 < · · · <
tm < t1 + T and (3.11)–(3.13) is fulfilled with γ0 and γ given by (3.14). Then there
exists a critical value μ† > 0 such that

(i) the equation (3.10) has no T -periodic solution provided μ < μ†;
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(ii) the equation (3.10) has at least one T -periodic solution provided μ = μ†;

(iii) the equation (3.10) has at least two T -periodic solutions provided μ > μ†.

Theorem 3.10. Let [hi]+, [ki]+, [q]+, f ∈ Lp
(
R/TZ

)
(p � 1; i = 1, . . . , n), h1 < 0,

and let there exist c0 > 0, αi, βi � 0, ti ∈ R (i = 1, . . . ,m) such that t1 < t2 <
· · · < tm < t1 + T and (3.11)–(3.13) is fulfilled with γ0 and γ given by (3.14). Let,
moreover, there exists c > 0 such that

n∑
i=1

([hi]−(t) + [ki]+(t)) � cf(t) for a. e. t ∈ [0, T ].

Then there exists a critical value μ† ∈ R such that the items (i)–(iii) of theorem 3.9
hold.

In particular, from theorem 3.10 we obtain the following assertion.

Corollary 3.11. Let [hi]+, [q]+, f ∈ Lp
(
R/TZ

)
, [hi]−, [ki]+ ∈ L∞(

R/TZ
)

(p �
1; i = 1, . . . , n), h1 < 0, and let there exist c0 > 0, αi, βi � 0, ti ∈ R (i = 1, . . . ,m)
such that t1 < t2 < · · · < tm < t1 + T and (3.11)–(3.13) is fulfilled with γ0 and γ
given by (3.14). Let, moreover, (3.9) hold. Then the conclusion of theorem 3.10 is
valid.

3.3. An example

Example 3.12. Let us consider a particular case of the equation (3.10), namely
the equation

u′′ +
g(t)
uλ

= h(t)uδ + μf(t), (3.15)

where f , g, h are 2π-periodic functions given by

h(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π

ε
for t ∈ [0, ε),

0, for t ∈ [ε, π − ε],

−π + η

ε
for t ∈ (π − ε, π],

h(t) = h(2π − t) for t ∈ (π, 2π],

g(t) = η(2 + cos t)λ, f(t) = h(t)(2 + cos t)δ − η + cos t for t ∈ [0, 2π],

numbers λ > 0, δ ∈ (0, 1) are arbitrary but fixed, and the constants ε ∈ (0, π/2)
and η > 0 are such that[

(2 + cos ε)δ − (2 − cos ε)δ
]
π >

[
(2 − cos ε)δ + π

]
η.

Then it can be easily verified that g(t) � η for t ∈ [0, 2π], h = −2η, and∫ 2π

0

f(s) ds = 2
[∫ ε

0

π

ε
(2 + cos s)δ ds−

∫ π

π−ε

π + η

ε
(2 + cos s)δ ds

]
− 2πη

� 2[π(2 + cos ε)δ − (π + η)(2 − cos ε)δ] − 2πη > 0.
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Furthermore, one can easily verify that the assumptions of theorem 3.8 are fulfilled
with αi = 0, βi = 0, c0 = η, and p � (1 + λ)/2λ. Consequently, there exist μ∗, μ∗ ∈
R such that the conclusion of theorem 3.8 is fulfilled with T = 2π. Moreover, the
equation (3.15) with μ = 0 has no 2π-periodic solution. Indeed, assume on the
contrary that there is a 2π-periodic solution to (3.15) with μ = 0. Then dividing
both sides of (3.15) by uδ and integrating it over [0, 2π] we find

∫ 2π

0

g(s)
uλ+δ

ds �
∫ 2π

0

h(s) ds,

that contradicts h < 0. Therefore, necessarily, μ∗ > 0.
On the other hand, it can be easily verified that u(t) = 2 + cos t for t ∈ [0, 2π] is

a 2π-periodic solution to (3.15) with μ = −1. That means, μ∗ � −1.

4. Auxiliary propositions

First we introduce two lemmas established in [11] and [10], respectively, which will
be useful to obtain a priori estimates.

Lemma 4.1 (see [11, lemma 2.4]). Let u ∈ AC1
(
R/TZ

)
. Then

(
M −m

)2 � T

4

∫ T

0

u′2(s)ds,

where

M = max
{
u(t) : t ∈ [0, T ]

}
, m = min

{
u(t) : t ∈ [0, T ]

}
. (4.1)

Lemma 4.2 (see [10, lemma 2.4]). Let u ∈ AC1
(
R/TZ

)
. Then

M −m � T

4

∫ T

0

[u′′]+(s)ds,

where M and m are given by (4.1).

Lemma 4.3. Let (H1) be fulfilled. Then

lim
x→+∞

h−(x)
x

= 0 (4.2)

and

lim
x→+∞

h+(x)
x

= 0. (4.3)

Proof. The integration of (3.1) over [0, T ] yields

η(x) � h−(x) − h+(x) for x � r. (4.4)
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According to (3.2) there exists r0 � r such that h−((1 − ζ)x) > 0 for x � r0.
Therefore, from (4.4), since h− is nondecreasing, we obtain

η(x)
h−(x)

� 1 − h+(x)
h−(x)

� 1 − h+(x)
h−((1 − ζ)x)

for x � r0. (4.5)

Consequently, on account of (3.3), from (4.5) it follows that

lim inf
x→+∞

η(x)
h−(x)

� 1 − L > 0.

Therefore, there exists r1 � r0 such that

η(x) � (1 − L)
2

h−(x) > 0 for x � r1,

and thus (4.2) follows from the first relation in (3.2).
Further, since h− is nondecreasing, we have

h+(x)
h−(x)

� h+(x)
h−((1 − ζ)x)

for x � r0,

and so, with respect to (3.3), there exists r2 � r0 such that

0 � h+(x) � (L+ 1)h−(x) for x � r2.

Consequently, the latter inequality together with (4.2) implies (4.3). �

Lemma 4.4. Let (H1) and (3.5) be fulfilled. Then

h(t, x) � 0 for a. e. t ∈ [0, T ], x > 0, (4.6)

and for every c > 1 and every x0 > 0 there exists ε > 0 such that

ch(t, x) � h(t, y) for a. e. t ∈ [0, T ], y ∈ [cx− ε, cx], x � x0. (4.7)

Proof. First we will show that (4.6) holds. Assume on the contrary that there exists
x1 > 0 and E ⊆ [0, T ] such that

measE > 0, h(t, x1) > 0 for t ∈ E.

Then, in view of (H1) and (3.5) we have

0 <
∫

E

h(t, x1)
x1

dt �
∫

E

h(t, x)
x

dt

�
∫

E

h+(t, x)
x

dt � Th+(x)
x

for x > max{x1, r}. (4.8)

However, according to lemma 4.3 the relation (4.3) holds and this contradicts (4.8).
Now let c > 1 and x0 > 0 be arbitrary but fixed. Choose ε ∈ (0, (c− 1)x0), and let

y ∈ [cx− ε, cx] for some x � x0. Then, obviously, x < y and y/x � c. Consequently,
from (3.5) in view of (4.6) we obtain (4.7). �
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Notation 4.5. Let u(·;μn) (n ∈ N) be a sequence of T -periodic solutions to (2.1)
with μ = μn. Then, in what follows, for the sake of brevity we put

Mn = max
{
u(t;μn) : t ∈ [0, T ]

}
, mn = min

{
u(t;μn) : t ∈ [0, T ]

}
.

Lemma 4.6. Let (H1) hold and let un = u(·;μn) (n ∈ N) be a sequence of T -periodic
solutions to (2.1) with μ = μn such that

lim
n→+∞Mn = +∞, lim

n→+∞
|μn|
Mn

= 0. (4.9)

Then

lim
n→+∞

mn

Mn
= 1. (4.10)

Proof. Multiplying both sides of (2.1) by uλ
n and integrating it on [0, T ], for every

n ∈ N, we get∫ T

0

u′′n(s)uλ
n(s) ds = −

∫ T

0

g(s)ds+
∫ T

0

h(s, un(s))uλ
n(s) ds+

∫ T

0

μnf(s)uλ
n(s) ds,

which together with (3.4) leads to

−λ
∫ T

0

uλ−1
n (s)u′2n (s) ds � −Tg−

∫ T

0

η(s, un(s))uλ
n(s) ds− |μn|

∫ T

0

|f(s)|uλ
n(s) ds.

The latter inequality implies

λ

∫ T

0

uλ−1
n (s)u′2n (s) ds � T (g + η(Mn)Mλ

n + |μn||f |Mλ
n ). (4.11)

On the other hand, according to lemma 4.1, we have

(
M

λ+1
2

n −m
λ+1
2

n

)2

� T

4

∫ T

0

((
u

λ+1
2

n (s)
)′)2

ds

=
T (λ+ 1)2

16

∫ T

0

uλ−1
n (s)u′2n (s) ds. (4.12)

Therefore, using (4.11) in (4.12) we obtain

(
M

λ+1
2

n −m
λ+1
2

n

)2

� T 2(λ+ 1)2

16λ

[
g + η(Mn)Mλ

n + |μn||f |Mλ
n

]
,

and, consequently,

(
1 −

(
mn

Mn

)λ+1
2
)2

� T 2(λ+ 1)2

16λ

[
g

Mλ+1
n

+
η(Mn)
Mn

+
|μn||f |
Mn

]
.

Now, passing to the limit as n→ +∞ together with (3.2) and (4.9) we obtain
(4.10). �
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4.1. Upper bounds

Lemma 4.7. Let (H1) be fulfilled. Then there exists a nondecreasing function γ :
R+ → (0,+∞) such that every T -periodic solution u to (2.1) admits the inequality

u(t;μ) � γ(μ) for t ∈ [0, T ], μ ∈ R+. (4.13)

Proof. First we show that for every fixed μ0 ∈ R+ there exists γ0(μ0) > 0 such that

u(t;μ) � γ0(μ0) for t ∈ [0, T ], μ ∈ [0, μ0]. (4.14)

Assume on the contrary that (4.14) does not hold. Then there exists a sequence of
T -periodic solutions un = u(·;μn) (n ∈ N) to (2.1) with μ = μn ∈ [0, μ0] such that
Mn > n (n ∈ N). Obviously, (4.9) holds, and so, according to lemma 4.6 we have
that (4.10) is fulfilled. Therefore, there exists n0 ∈ N such that

mn � (1 − ζ)Mn � r for n � n0. (4.15)

Now the integration of (2.1) over [0, T ] results in

0 <
∫ T

0

g(t)
uλ

n(t)
dt =

∫ T

0

h(t, un(t)) dt+ μn

∫ T

0

f(t) dt, (4.16)

and in view of (2.2), (3.1), and (4.15), from (4.16) it follows that

0 < h+(Mn) − h−(mn) + μnf � h+(Mn) − h−((1 − ζ)Mn) + μ0f for n � n0.
(4.17)

However, from (4.17) we get

0 <
h+(Mn)

h−((1 − ζ)Mn)
− 1 +

μ0f

h−((1 − ζ)Mn)
for n � n1, (4.18)

where n1 � n0 is such that h−((1 − ζ)Mn) > 0 for n � n1. Passing to the limit as
n→ +∞, in view of (3.2) and (4.9), from (4.18) we get 0 � L− 1 that contradicts
(3.3).

Now we put

γ(μ) def= inf
{
γ0(μ0) : μ0 � μ

}
for μ ∈ R+.

Obviously, γ is the required nondecreasing function satisfying (4.13). �

Lemma 4.8. Let (H1) be fulfilled. Then there exists a positive constant A such that
every T -periodic solution u to (2.1) admits the inequality

u(t;μ) � A(1 + |μ|) for t ∈ [0, T ], μ ∈ R−. (4.19)
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Proof. Assume on the contrary that (4.19) does not hold. Then there exists a
sequence of T -periodic solutions un = u(·;μn) (n ∈ N) to (2.1) with μ = μn ∈ R−
such that

Mn > n(1 + |μn|) for n ∈ N. (4.20)

Obviously, from (4.20) it follows that

1
n
>

1
Mn

+
|μn|
Mn

for n ∈ N,

and so (4.9) holds. Thus, according to lemma 4.6 we have that (4.10) is fulfilled.
Therefore, there exists n0 ∈ N such that (4.15) is valid. Now the integration of (2.1)
over [0, T ] results in (4.16), and in view of (2.2), (3.1), and (4.15), from (4.16) it
follows that

0 < h+(Mn) − h−(mn) + μnf � h+(Mn) − h−((1 − ζ)Mn) for n � n0. (4.21)

However, from (4.21) we get

0 <
h+(Mn)

h−((1 − ζ)Mn)
− 1 for n � n1, (4.22)

where n1 � n0 is such that h−((1 − ζ)Mn) > 0 for n � n1. Passing to the limit as
n→ +∞, in view of (3.2) and (4.9), from (4.22) we get 0 � L− 1 which contradicts
(3.3). �

Now we put

ρ(μ) def=

{
γ(μ) for μ ∈ R+,

A(1 + |μ|) for μ ∈ (−∞, 0),
(4.23)

where γ is a function appearing in lemma 4.7 and A is a number from lemma 4.8.
Obviously, the following lemma is valid.

Lemma 4.9. Let (H1) be fulfilled. Then every T -periodic solution u to (2.1) admits
the inequality

u(t;μ) � ρ(μ) for t ∈ [0, T ], μ ∈ R, (4.24)

where ρ is given by (4.23).

4.2. Lower bound

The approach how to get a lower bound for possible T -periodic solutions to (2.1)
is based on results obtained in [13]. Therefore, together with the assumption (H1)
we assume that (H2) and (H3) hold, as well.
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Lemma 4.10. Let (H1)–(H3) be fulfilled. Then, for every μ ∈ R, there exists a
positive function α(·;μ) ∈ AC1

(
R/TZ

)
such that

α(t;μ) � α(t; ν) for t ∈ [0, T ] whenever |μ| � |ν|, (4.25)

and every T -periodic solution u to (2.1) admits the estimate

α(t;μ) < u(t;μ) for t ∈ [0, T ]. (4.26)

Proof. Let μ ∈ R be arbitrary but fixed, and let u be an arbitrary T -periodic solu-
tion to (2.1). Then, according to lemma 4.9 the estimate (4.24) is fulfilled, and
consequently, in view of (2.3), we have

h(t, u(t;μ)) � ψ+
ρ(μ)(t) for a. e. t ∈ [0, T ]. (4.27)

According to [13, theorem 1], the equation

α′′ +
g(t)

21+λαλ
= ψ+

ρ(μ)(t) + ψ+
ρ(−μ)(t) + |μf(t)| (4.28)

has a unique positive T -periodic solution α(·;μ) ∈ AC1
(
R/TZ

)
. Note also that

α(t;μ) = α(t;−μ) for t ∈ [0, T ]. (4.29)

We will show that the inequality 2α(t;μ) � u(t;μ) for t ∈ [0, T ] holds. Then,
obviously, (4.26) holds, as well. Put

z(t;μ) def= u(t;μ) − 2α(t;μ) for t ∈ R (4.30)

and assume on the contrary that there exists an interval I ⊂ R such that

z(t;μ) < 0 for t ∈ I. (4.31)

Obviously, z ∈ AC1
(
R/TZ

)
and in view of (2.1), (4.27), (4.28), and (4.30) we have

z′′(t;μ) = − g(t)
uλ(t;μ)

+
g(t)(

2α(t;μ)
)λ + h(t, u(t;μ))

− 2ψ+
ρ(μ)(t) − 2ψ+

ρ(−μ)(t) + μf(t) − 2|μf(t)|

� − g(t)
uλ(t;μ)

+
g(t)(

2α(t;μ)
)λ − ψ+

ρ(μ)(t) for a. e. t ∈ I. (4.32)

Consequently, on account of (4.30) and (4.31), from (4.32) it follows that

z′′(t;μ) � −ψ+
ρ(μ)(t) � 0 for a. e. t ∈ I. (4.33)

Thus (4.31) implies (4.33). We will discuss two cases.
Case 1. There exist t1, t2 ∈ R such that t1 < t2,

z(t1;μ) = 0, z(t2;μ) = 0, (4.34)

and (4.31) is fulfilled with I = (t1, t2). Then, according to the above-proven, the
inequality (4.33) holds, a contradiction.
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Case 2. The inequality (4.31) is fulfilled with I = [0, T ]. Consequently, (4.33)
holds again. However, the integration of (4.33) over [0, T ] with respect to the
inclusion z ∈ AC1

(
R/TZ

)
and (2.4) yields

0 =
∫ T

0

z′′(t;μ) dt � −
∫ T

0

ψ+
ρ(μ)(t) dt < 0,

a contradiction.
Consequently, z(t;μ) � 0 for t ∈ [0, T ], which together with (4.30) results in

(4.26). It remains to show that (4.25) is true. Assume that |μ| � |ν| and put

w(t) def= α(t;μ) − α(t; ν) for t ∈ R. (4.35)

If |μ| = |ν| then (4.25) holds trivially because of the uniqueness of α and (4.29).
Suppose therefore that |μ| < |ν| and assume on the contrary that there exists an
interval I ⊂ R such that

w(t) < 0 for t ∈ I. (4.36)

Then, in view of (4.28), remark 2.1, and (4.23), we have

w′′(t) = − g(t)
21+λ

(
1

αλ(t;μ)
− 1
αλ(t; ν)

)
+ ψ+

ρ(μ)(t) + ψ+
ρ(−μ)(t)

− ψ+
ρ(ν)(t) − ψ+

ρ(−ν)(t) + (|μ| − |ν|)|f(t)|

� − g(t)
21+λ

(
1

αλ(t;μ)
− 1
αλ(t; ν)

)
+ (|μ| − |ν|)|f(t)| for a. e. t ∈ I. (4.37)

Consequently, in view of (4.35) and (4.36), from (4.37) we obtain

w′′(t) � (|μ| − |ν|)|f(t)| � 0 for a. e. t ∈ I.

Moreover, in view of (4.35) we have w ∈ AC1
(
R/TZ

)
. Therefore, in the same man-

ner as above, with respect to (2.2), one can prove that the assumption (4.36) leads
to a contradiction. That implies w(t) � 0 for t ∈ [0, T ], i.e. (4.25) holds. �

5. Construction of upper and lower functions

Lemma 5.1. Let (H1)–(H3) be fulfilled. Then, for every ν ∈ R, the function α(·; ν)
constructed in Lemma 4.10 is a strict lower function to the equation (2.1) with
μ ∈ [−|ν|, |ν|].

Proof. Let ν ∈ R be arbitrary but fixed and let μ ∈ [−|ν|, |ν|]. Let, moreover, u be
an arbitrary T -periodic solution to (2.1). Then according to lemmas 4.9 and 4.10
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we have

α(t; ν) � α(t;μ) < u(t;μ) � ρ(μ) � max
{
ρ(ν), ρ(−ν)} for t ∈ [0, T ]. (5.1)

Consequently, in view of definition 2.2 it is sufficient to show that

α′′(t; ν) +
g(t)

αλ(t; ν)
� h(t, α(t; ν)) + μf(t) for a. e. t ∈ [0, T ]. (5.2)

Remind that α is a T -periodic solution to (4.28), i.e.,

α′′(t; ν) +
g(t)

21+λαλ(t; ν)
= ψ+

ρ(ν)(t) + ψ+
ρ(−ν)(t) + |νf(t)| for a. e. t ∈ [0, T ],

(5.3)
and note that, on account of (2.3) and (5.1), we have

h(t, α(t; ν)) � ψ+
ρ(ν)(t) + ψ+

ρ(−ν)(t) for a. e. t ∈ [0, T ].

Therefore, using the latter inequality in (5.3), on account of |μ| � |ν|, we get (5.2).
�

Lemma 5.2. Let (H1) hold. Then, for every μ sufficiently large, there exists a strict
upper function β(·;μ) to the equation (2.1). Moreover,

lim
μ→+∞β(t;μ) = +∞ uniformly on [0, T ]. (5.4)

Proof. Let μ > 0 and let w be a solution to the Dirichlet boundary value problem

w′′(t;μ) = −(g(t) + η(t, Bμ))
f

g + η(Bμ)
+ f(t) for a. e. t ∈ [0, T ], (5.5)

w(0;μ) = 0, w(T ;μ) = 0, (5.6)

where B = 1 + (T 2f+/4). Note that

w′(0;μ) = w′(T ;μ) for μ > 0, (5.7)

and therefore we can consider the T -periodic extension of w, i.e., w ∈ AC1
(
R/TZ

)
.

According to lemma 4.2 we have

Mw −mw � T 2f+
4

, (5.8)

where

Mw = max
{
w(t;μ) : t ∈ [0, T ]

}
, mw = min

{
w(t;μ) : t ∈ [0, T ]

}
.

Put

β(t;μ) def=
(
g + η(Bμ)

μf

)1/λ

+ μ

(
w(t;μ) −mw +

1
2

)
for t ∈ R, μ > 0. (5.9)
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Then, on account of (5.6) and (5.7) it can be easily verified that β(·;μ) ∈
AC1

(
R/TZ

)
for μ > 0, and from (5.9) it follows that

β(t;μ) �
(
g + η(Bμ)

μf

)1/λ

+
μ

2
for t ∈ [0, T ], μ > 0. (5.10)

Further, in view of (3.2) we have

lim
μ→+∞

g + η(Bμ)
μf

= 0. (5.11)

Finally, from (5.9) in view of (5.5) it follows that

β′′(t;μ) = −(g(t) + η(t, Bμ))
μf

g + η(Bμ)
+ μf(t) for a. e. t ∈ [0, T ]. (5.12)

Now, according to (5.11) there exists μ0 > 0 such that(
g + η(Bμ)

μf

)1/λ

� min
{μ

2
, 1
}

for μ � μ0. (5.13)

Consequently, from (5.9) with respect to (5.8) and (5.13) we obtain

β(t;μ) � μ

2
+ μ

(
T 2f+

4
+

1
2

)
= Bμ for t ∈ [0, T ], μ � μ0. (5.14)

Therefore, since η is nondecreasing with respect to the second variable, on account
of (5.13) and (5.14) we get

η(t, Bμ)
μf

g + η(Bμ)
� η(t, x) for a. e. t ∈ [0, T ],

x ∈
[
β(t;μ) − μ0

2
, β(t;μ)

]
, μ � μ0. (5.15)

On the other hand, from (5.10) it follows that

β(t;μ) − μ0

2
�
(
g + η(Bμ)

μf

)1/λ

for t ∈ [0, T ], μ � μ0, (5.16)

and so we have

μf

g + η(Bμ)
� 1
xλ

for x ∈
[
β(t;μ) − μ0

2
, β(t;μ)

]
, t ∈ [0, T ], μ � μ0. (5.17)

Now using (5.15) and (5.17) in (5.12) with respect to (3.4) we obtain

β′′(t;μ) � − g(t)
xλ

− η(t, x) + μf(t) � −g(t)
xλ

+ h(t, x) + μf(t) for a. e. t ∈ [0, T ],

x ∈
[
β(t;μ) − μ0

2
, β(t;μ)

]
, μ � μ0.

Moreover, (5.16) guarantees that β(·;μ) (μ � μ0) is not a T -periodic solution to
(2.1). Consequently, according to Proposition 2.4, β(·;μ) (μ � μ0) is a strict upper
function to the equation (2.1). Finally, (5.10) implies (5.4). �
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6. Proof of main results

6.1. Nonexistence of solutions

Lemma 6.1. Let (H1)–(H3) be fulfilled. Then there exists μ∗ � 0 such that the
equation (2.1) with μ < μ∗ has no T -periodic solution.

Proof. Assume on the contrary that there exist a sequence of parameters {μn}+∞
n=1 ⊂

R− such that

lim
n→+∞μn = −∞ (6.1)

and the corresponding sequence of T -periodic solutions un = u(·;μn) (n ∈ N) to
(2.1) with μ = μn. Then the integration of (2.1) from 0 to T results in∫ T

0

g(t)
uλ

n(t)
dt =

∫ T

0

h(t, un(t)) dt+ μn

∫ T

0

f(t) dt for n ∈ N,

whence in view of (2.2), (2.3) and (3.1) we get

0 <
∫ T

0

g(t)
uλ

n(t)
dt �

∫ T

0

[
ψ+

r (t) + h+(t, un(t))
]
dt− |μn|

∫ T

0

f(t) dt. (6.2)

According to lemma 4.8, from (6.2) it follows that

f <
ψ+

r

|μn| + 2A
h+(A(1 + |μn|))
A(1 + |μn|) for n � n0 (6.3)

where n0 ∈ N is such that |μn| � 1 for n � n0. Now passing to the limit as n tends
to +∞, with respect to lemma 4.3 and (6.1), the inequality (6.3) yields f � 0, a
contradiction to (2.2). �

6.2. Functional setting and multiplicity results

In order to prove our main results we rewrite the periodic problem for (2.1) as
an operator equation. For this purpose, let

Λ def=
{
u ∈ C

(
R/TZ

)
: u(t) > 0 for t ∈ [0, T ]

}
and, for every μ ∈ R, define an operator Ψμ : Λ → C

(
R/TZ

)
by

Ψμ[u](t) def=
∫ T

0

G(t, s)
[
− g(s)
uλ(s)

+ h(s, u(s)) + μf(s) − u(s)
]

ds for t ∈ R/TZ,

where G is the Green’s function to the periodic boundary value problem

u′′ − u = 0, u(0) = u(T ), u′(0) = u′(T ).

Obviously, Ψμ is a completely continuous operator and the problem of finding a
T -periodic solution to (2.1) is equivalent to the problem of finding a fixed point to
the operator equation

u = Ψμ[u], u ∈ Λ. (6.4)
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Lemma 6.2. Let (H1)–(H3) be fulfilled. Let, moreover, there exist ν, μ1 ∈ R and a
strict upper function β to (2.1) with μ = μ1 such that

α(t; ν) < β(t;μ1) for t ∈ [0, T ],

where |ν| � |μ1| and α is the function appearing in lemma 4.10. Then the equation
(2.1) with μ = μ1 has at least two T -periodic solutions.

Proof. According to lemma 5.1, the function α(·; ν) is a strict lower function to
(2.1) with μ = μ1. We put

Ω1
def=
{
u ∈ C

(
R/TZ

)
: α(t; ν) < u(t) < β(t;μ1) for t ∈ [0, T ]

}
.

Obviously, Ω1 ⊂ Λ. According to [5, Theorem III-1.8] (see also [26, Theorem 2.4])
we have

deg(I − Ψμ1 ,Ω1) = 1, (6.5)

and, in particular, there exists a T -periodic solution to (2.1) with μ = μ1 in Ω1.
According to lemma 6.1 there exists μ2 < −|ν| such that (2.1) with μ = μ2 has no
T -periodic solution. Put

Ω def=
{
u ∈ C

(
R/TZ

)
:
α(t;μ2)

2
< u(t) < ρ(μ2) + ρ(−μ2) + β(t;μ1) for t ∈ [0, T ]

}
,

where the function ρ is given by (4.23) and α(·;μ2) is the function appearing in
lemma 4.10. Then Ω1 ⊂ Ω ⊂ Λ, and

deg(I − Ψμ2 ,Ω) = 0.

Moreover, according to lemmas 4.9 and 4.10, there is no fixed point to (6.4) on ∂Ω
for μ ∈ [μ2, μ1]. Therefore,

deg(I − Ψμ1 ,Ω) = 0. (6.6)

Now, let Ω2
def= Ω \ Ω1. Then, in view of (6.5) and (6.6) we find

deg(I − Ψμ1 ,Ω2) = deg(I − Ψμ1 ,Ω) − deg(I − Ψμ1 ,Ω1) = −1,

and, consequently, there is another T -periodic solution to (2.1) with μ = μ1 in
Ω2. �

6.3. Proof of theorem 3.2

According to lemmas 5.1 and 5.2, for every μ sufficently large there exist well-
ordered strict lower and upper functions α and β to (2.1). More precisely, there
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exists μ0 > 0 such that

α(t;μ) < β(t;μ) for t ∈ [0, T ], μ > μ0.

Therefore, according to lemma 6.2 the equation (2.1) has at least two T -periodic
solutions for every μ > μ0. Define a set of parameters S by

S
def=
{
τ ∈ R : equation (2.1) has at least two

T -periodic solutions for every μ > τ
}
. (6.7)

In view of the above-proven we have μ0 ∈ S, i.e., the set S is nonempty. Moreover,
according to lemma 6.1 there exists μ∗ ∈ R such that μ∗ � μ0 and the equation
(2.1) has no T -periodic solution provided μ < μ∗. Therefore, the set S is bounded
from below. Put

μ∗ def= inf S. (6.8)

Obvioulsy, μ∗ � μ∗ and the assertions (i) and (iii) hold. It remains to show that
(ii) is valid. Let, therefore, {μn}+∞

n=1 be a sequence of parameters such that

μn > μ∗ for n ∈ N, lim
n→+∞μn = μ∗. (6.9)

According to (6.7)–(6.9) there exists a sequence of T -periodic solutions un = u(·;μn)
(n ∈ N) to (2.1). Moreover, on account of (6.9) and lemmas 4.9 and 4.10 there exist
positive constants K1 and K2 such that

K1 � un(t) � K2 for t ∈ [0, T ], n ∈ N. (6.10)

Consequently, from (2.1) with respect to (6.9) and (6.10) we obtain

|u′n(t)| � K3 for t ∈ [0, T ], n ∈ N (6.11)

for a suitable constant K3. Therefore, the sequence {un}+∞
n=1 is uniformly bounded

and equicontinuous. Thus, according to Arzelà-Ascoli theorem without loss of
generality we can assume that there exists u0 ∈ C

(
R/TZ

)
such that

lim
n→+∞un(t) = u0(t) uniformly on [0, T ]. (6.12)

On the other hand, the solutions un satisfy

un = Ψμn
[un] for n ∈ N, (6.13)

and so, passing to the limit as n tends to +∞ in (6.13), in view of (6.9) and (6.12)
we obtain

u0 = Ψμ∗ [u0]. (6.14)

Therefore, u0 ∈ AC1
(
R/TZ

)
and it is a T -periodic solution to (2.1) with μ = μ∗.

�
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6.4. Proof of theorem 3.4

Lemma 6.3. Let all the assumptions of theorem 3.4 be fulfilled. Let, moreover, there
exist a T -periodic solution u to (2.1) with μ = μ0. Then μ0 > 0 and for every μ1 >
μ0 the function β given by

β(t;μ1)
def=

μ1

μ0
u(t;μ0) for t ∈ [0, T ] (6.15)

is a strict upper function to (2.1) with μ = μ1.

Proof. First we show that μ0 > 0. Assume on the contrary that μ0 � 0. According
to lemma 4.4, the inequality (4.6) holds. Therefore, the integration of (2.1) with
μ = μ0 over [0, T ], in view of (2.2) and (4.6) results in

0 <
∫ T

0

g(t)
uλ(t;μ0)

dt =
∫ T

0

h(t, u(t;μ0)) dt+ μ0

∫ T

0

f(t) dt � 0,

a contradiction.
Now let μ1 > μ0 be arbitrary but fixed and define β by (6.15). Then there exists

ε > 0 such that (
μ1

μ0

)1+λ

�
(

β(t;μ1)
β(t;μ1) − ε

)λ

for t ∈ [0, T ] (6.16)

and, according to lemma 4.4,

μ1

μ0
h(t, u(t;μ0)) � h(t, y) for a. e. t ∈ [0, T ], y ∈ [β(t;μ1) − ε, β(t;μ1)]. (6.17)

In view of (6.16) we have

μ1g(t)
μ0uλ(t;μ0)

=
(
μ1

μ0

)1+λ
g(t)

βλ(t;μ1)
� g(t)

(β(t;μ1) − ε)λ
� g(t)

yλ
for a. e. t ∈ [0, T ],

y ∈[β(t;μ1) − ε, β(t;μ1)]. (6.18)

On the other hand,

β′′(t;μ1) +
μ1g(t)

μ0uλ(t;μ0)
=
μ1

μ0
h(t, u(t;μ0)) + μ1f(t),

whence, in view of (6.17) and (6.18) we obtain that β is not a T -periodic solution
to (2.1) with μ = μ1 and

β′′(t;μ1) +
g(t)
yλ

� h(t, y) + μ1f(t) for a. e. t ∈ [0, T ], y ∈ [β(t;μ1) − ε, β(t;μ1)].

Thus, according to Proposition 2.4, β is a strict upper function to (2.1) with
μ = μ1. �
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Proof of theorem 3.4. Let S be defined by (6.7) and put

μ†
def= inf S. (6.19)

Then, according to theorem 3.2, the items (ii) and (iii) are fulfilled, and conse-
quently, in view of lemma 6.3 we have μ† > 0.

It remains to show that (i) holds. Let μ0 ∈ R be such that the equation (2.1)
with μ = μ0 has a T -periodic solution u. Let, moreover, μ1 > μ0 be arbitrary but
fixed. Then, according to lemma 6.3, μ0 > 0 and the function β given by (6.15) is
a strict upper function to (2.1) with μ = μ1. Moreover, in view of lemma 4.10 we
have

α(t;μ1) � α(t;μ0) < u(t;μ0) <
μ1

μ0
u(t;μ0) = β(t;μ1) for t ∈ [0, T ].

Therefore, on account of lemma 5.1, the functions α(·;μ1) and β(·;μ1) are respec-
tively strict lower and upper functions to (2.1) with μ = μ1 that are well-ordered.
According to lemma 6.2 there exist at least two T -periodic solutions to (2.1) with
μ = μ1. However, since μ1 was chosen arbitrarily, we obtain μ0 ∈ S. Consequently,
in view of (6.19) we have μ† � μ0 and so the item (i) holds. �

6.5. Proof of theorem 3.6

Lemma 6.4. Let all the assumptions of theorem 3.6 be fulfilled. Let, moreover, there
exist a T -periodic solution u to (2.1) with μ = μ0. Then for every μ1 > μ0 there
exists ε > 0 such that the function β given by

β(t;μ1)
def= u(t;μ0) + ε for t ∈ [0, T ] (6.20)

is a strict upper function to (2.1) with μ = μ1.

Proof. Let μ1 > μ0 be arbitrary but fixed. Since ϕ is continuous and satisfies (3.6),
there exists ε > 0 such that

ϕ(x, y) � μ1 − μ0

c
for m � x � M, x � y � x+ ε, (6.21)

where m and M are given by (4.1). Thus, from (3.7) with respect to (3.6), (3.8),
and (6.21) we have

h(t, x) − h(t, y) � (μ1 − μ0)f(t) for a. e. t ∈ [0, T ], m � x � M, x � y � x+ ε,

whence, on account of (6.20), we get

h(t, u(t;μ0)) − h(t, y) �(μ1 − μ0)f(t) for a. e. t ∈ [0, T ],

y ∈[β(t;μ1) − ε, β(t;μ1)]. (6.22)

On the other hand, on account of (6.20) we have

β′′(t;μ1) +
g(t)

uλ(t;μ0)
= h(t, u(t;μ0)) + μ0f(t) for a. e. t ∈ [0, T ]. (6.23)
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Using (6.22) in (6.23) we obtain

β′′(t;μ1) +
g(t)
yλ

� h(t, y) + μ1f(t) for a. e. t ∈ [0, T ],

y ∈ [β(t;μ1) − ε, β(t;μ1)].

Obviously, β is not a T -periodic solution to (2.1) with μ = μ1. Thus, according to
proposition 2.4, β is a strict upper function to (2.1) with μ = μ1. �

Proof of theorem 3.6. Let S be defined by (6.7) and define μ† by (6.19). Then,
according to theorem 3.2, the items (ii) and (iii) are fulfilled.

It remains to show that (i) holds. Let μ0 ∈ R be such that the equation (2.1) with
μ = μ0 has a T -periodic solution u. Let, moreover, μ1 > μ0 be arbitrary but fixed.
Then, according to lemma 6.4, there exists ε > 0 such that the function β given
by (6.20) is a strict upper function to (2.1) with μ = μ1. Let ν def= max{|μ0|, |μ1|}.
Then, in view of lemma 4.10 we have

α(t; ν) � α(t;μ0) < u(t;μ0) < u(t;μ0) + ε = β(t;μ1) for t ∈ [0, T ].

Therefore, on account of lemma 5.1, the functions α(·; ν) and β(·;μ1) are respec-
tively strict lower and upper functions to (2.1) with μ = μ1 that are well-ordered.
According to lemma 6.2 there exist at least two T -periodic solutions to (2.1) with
μ = μ1. However, since μ1 was chosen arbitrarily, we obtain μ0 ∈ S. Consequently,
in view of (6.19) we have μ† � μ0 and so the item (i) holds. �

6.6. Proofs of theorems 3.8–3.10

Lemma 6.5. Let the assumptions of theorem 3.8 be fulfilled. Then (H1)–(H3) hold
with

h(t, x) def=
n∑

i=1

[
hi(t)xδi +

ki(t)
(ci + x)λi

]
+ q(t) for a. e. t ∈ [0, T ], x ∈ R+.

(6.24)

Proof. Put

η(t, x) def=
n∑

i=1

(
[hi]−(t)xδi +

[ki]−(t)
cλi
i

)
+ [q]−(t) for a. e. t ∈ [0, T ], x ∈ R+,

h+(t, x) def=
n∑

i=1

(
[hi]+(t)xδi +

[ki]+(t)
cλi
i

)
+ [q]+(t) for a. e. t ∈ [0, T ], x ∈ R+,

h−(t, x) def=
n∑

i=1

[hi]−(t)xδi + [q]−(t) for a. e. t ∈ [0, T ], x ∈ R+,

and, on account of h1 < 0, choose ζ ∈ (0, 1) such that∫ T

0

[h1]+(t)dt < (1 − ζ)δ1

∫ T

0

[h1]−(t) dt.

Then it can be easily verified that (H1) is fulfilled.
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Now we will show that (H2) and (H3) hold. First assume that p > 1 and γ > 0.
Put

g0(t)
def=

{
c0(ti+1 − t)αi+1(t− ti)βi for t ∈ [ti, ti+1), i = 1, . . . ,m− 1,
c0(t1 + T − t)α1(t− tm)βm for t ∈ [tm, t1 + T ),

g0(t)
def= g0(t− kT ) for t ∈ [t1 + kT, t1 + (k + 1)T ), k ∈ Z \ {0}

and

ϕr(t)
def=
(
h+(t, r) + 2|f(t)|)g(1−q)/q

0 (t) for a. e. t ∈ [0, T ]

where 1 � q < (1 + γ)p/(1 + γp) is such that

λ � (1 + γ0)p
(2p− 1)q

. (6.25)

Using the Hölder’s inequality we obtain

∫ T

0

ϕq
r(t) dt =

∫ T

0

(
h+(t, r) + 2|f(t)|)qg1−q

0 (t) dt

� ‖h+(·, r) + |f |‖q
p

(∫ T

0

g
p(1−q)

p−q

0 (t) dt

) p−q
p

< +∞,

i.e., ϕr ∈ Lq
(
R/TZ

)
. Moreover,

h+(t, r) + 2|f(t)| � ϕr(t)g
q−1

q (t) for a. e. t ∈ [0, T ],

and thus (H2) is fulfilled with ψ+
r = h+(·, r) + |f | (the condition (2.2) implies (2.4)

also in the case when h+(r) = 0). The validity of the assumption (H3) follows
immediately from (3.11), (3.12), (3.14), and (6.25).

If p = 1 or γ = 0 then we put q def= p,

ϕr(t)
def=
(
h+(t, r) + 2|f(t)|)c(1−p)/p

0 for a. e. t ∈ [0, T ],

and it can be easily verified that (H2) and (H3) are fulfilled with ψ+
r = h+(·, r) +

|f |. �

Proof of theorem 3.8. The assertion immediately follows from lemma 6.5 and
theorem 3.2. �

Proof of theorem 3.9. From lemma 6.5 it follows that the assumptions (H1)–(H3)
are fulfilled. Moreover, it can be easily verified that (3.5) holds with h defined by
(6.24). Thus the assertion follows from theorem 3.4. �
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Proof of theorem 3.10. From lemma 6.5 it follows that the assumptions (H1)–(H3)
are fulfilled. Moreover, it can be easily verified that (3.6)–(3.8) hold with

h0(t)
def=

n∑
i=1

([hi]−(t) + [ki]+(t)) for a. e. t ∈ [0, T ],

ϕ(x, y) def=
n∑

i=1

[
yδi − xδi +

1
(ci + x)λi

− 1
(ci + y)λi

]
for 0 � x � y,

and h defined by (6.24). Thus the assertion follows from theorem 3.6. �

7. Open problems

Example 3.12 shows that the numbers μ∗ and μ∗ guaranteed by theorem 3.2 do not
coincide, in general, and that there may exist other T -periodic solutions to (2.1)
for μ ∈ ]μ∗, μ∗[ that are not connected to the set of T -periodic solutions to (2.1) for
μ � μ∗.

Open Problem 7.1. Let the assumptions of theorem 3.2 be fulfilled. Find con-
ditions guaranteeing μ∗ < μ∗. Describe sets of T -periodic solutions to (2.1) for
μ ∈ [μ∗, μ∗[ .

The assumptions of both theorems 3.4 and 3.6 guarantee that μ∗ = μ∗. Moreover,
it can be easily verified that the hypotheses of theorem 3.4 do not imply the ones
of theorem 3.6 and vice versa. Maybe there exists a weaker assumption in order to
get the validity of both theorems 3.4 and 3.6 at the same time.

Open Problem 7.2. Let the assumptions of theorem 3.2 be fulfilled. Find other
conditions guaranteeing μ∗ = μ∗.
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