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Abstract

This paper presents a formalism for considering the issues of learning in design. A foundation for machine learning in
design (MLInD) is defined so as to provide answers to basic questions on learning in design, such as, “What types of
knowledge can be learnt?”, “How does learning occur?”, and “When does learning occur?”. Five main elements of
MLInD are presented as the input knowledge, knowledge transformers, output knowledge, goals/reasons for learning,
and learning triggers. Using this foundation, published systems in MLinD were reviewed. The systematic review presents
a basis for validating the presented foundation. The paper concludes that there is considerable work to be carried out in
order to fully formalize the foundation of MLinD.

Keywords: Design Knowledge; Design Process Knowledge; Design Reuse; Knowledge Transformation/Change;
Learning in Design; Machine Learning Techniques

1. INTRODUCTION acquired using certain machine learning methods, there is

now a need for a systematic approach to formalizing learn-
Design experience provides a wealth of knowledge that dejg in design. Leith (1990) argues strongly for a formalism
signers can (re)-use to design better products within a shortgp arrive at the state of what “ought to be” in artificial in-
time-to-market period and at the same time be economige|ligence (Al) and computer science rather than what “is”
cally competitive. The research work in the area of maching;j e current state of these disciplines) so as to overcome
learning has contributed many methods that have been age ad hocbasis of software writing and the inefficient de-
plied to the acquisition of knowledge in design. This hasye|opment of software systems. Using the same argument
been evident from the body of work reported in the field of of | eith, given that machine learning in design is a special-
machine learning in design (MLInD) (Duffy, 1997). What jzed application of Al and computer science, there is there-
is evident from this work is the application of particular ma- fgre a need to put the study of MLinD research and the
chine learning methods to the acquisition of some Specm%ievelopment of the MLinD systems to support designers
design knowledge. In the area of MLInD, key questionsgn g formal basis.

raised by Persidis and Duffy (1991) are now being ad- To answer the questions raised in a structured basis, Sec-

dressed (Duffy, 1997): tion 2 presents basic elements of learning and a foundation
for learning using these elements. This foundation is pre-
e Whattype of knowledge is learned? sented here as a basis for the “dimensions of machine learn-
e How s learning taking place? ing” raised by Grecu and Brown (1996) and similarly by
e Whenis learning taking place? Persidis and Duffy (1991). Since the research work in MLinD

has resulted in the development of many published systems
Given that there is sufficient evidence from MLinD re- in support of knowledge acquisition in design, this founda-
search in which generalized past design knowledge can bigon has been used to analyze and evaluate these MLinD
systems. The five elements presented here are the input
_ o knowledge, the output knowledge, the knowledge trans-
Reprint requests to: Dr. A.H.B. Duffy, CAD Centre, University of Strath-

clyde, 75 Montrose Street, Glasgow G1 1XJ, Scotland, UK. Tie#4)141- fprmer, the leammg triggers, "’?nd the Iearnlng goal' Sec-
548-3134; Fax: £ 44)141-552-3148; E-mail: alex@cad.strath.ac.uk tion 3 presents the types of design knowledge learned (both
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product knowledge and design process knowledge) given
the input knowledge and the goal of learning as described
in the MLinD systems. Section 4 provides evidence of var-
ious knowledge transformers used to learn design knowl-
edge butimplemented in various machine learning methods Ik > » Ok

G, «—

and techniques. Evidence of the types of learning triggers ! g
and when learning occurs are described in Section 5. Sec-

tio.n 6 compares the fc.)undation. for chhine learning with ] «—1
“dimensions of machine learning” raised by Grecu and _ _
Brown (1996) and concludes that the paper presents a struc- Fig. 1. Elements of learning.

tured basis upon which to research and develop the field of
machine learning in design.

ticular domain. It is also necessary to define what triggers
2. DEFINING A FOUNDATION Iearping and when that trigger can occur. ' N
OF DESIGN LEARNING Given the above, the basic elements of a learning activity
may consist of:

It is proposed that a systematic approach to the study of
learning design knowledge can be based on analyzing the
knowledge change of design activities. This perspective is
based upon the hypothesis posited by Persidis and Duffy
that learning is inextricably linked to design. In this paper,
learning in design is viewed as a knowledge-gaining activ-
ity associated with the activity of design. . .
A foundation for learning in design must be able to ad_.These basic elements of learning may be related as shown

dress some of the key questions in learning that were raisefl IFlg;]J_ref'l. . dthat the i K ledae i
in Section 1. Since learning can be viewed as an activity, n this figure, it Is suggested that the input knowledge Is

any formalism must invariably consider what knowledge istransfprmed Into new OUtpL.Jt _knowlgdge, which then can feed
input into that activity, what is the output knowledge, and back into the learning aCF'V'ty as Input knowle_dge for yet
the knowledge change that transforms the input knowledgg]Ore new knowledge. This output knowledge n itself may
into output knowledge. Knowledge change involves thealso trigger or act as a reason or goal for a learning activity.
transformation of the existing knowledge into some new

knowledge. Since there are many possible ways ip which 1 Elements of a foundation for

knowledge can be transformed, it is necessary to define what
kind of knowledge can be learned. For example, given a
past design, one can learn about the composition of the prodising the above elements as a basis, we now can map
uct in terms of “part-of” hierarchy, or about the relation- Persidis and Duffy’s, and Grecu and Brown’s issues and
ships between attributes of components. Further, the learniriglimensions” as shown in Table 1. It can be noted from
activity often will have a specific goal, for example, gain Table 1 that Grecu and Brown go into far greater detail than
new knowledge of a product, explore and generalize a paPersidis and Duffy, possibly reflecting the evolution of our

existing knowledge as input knowledge; |
knowledge transformers, K

output knowledge, Q

learning goal or reason, |G

learning triggers, T(T,, and T,).

machine learning in design

Table 1. Elements of machine learning in design

Basic elements of learning Persidis and Duffy Grecu and Brown

I, (input knowledge) * Not explicitly addressed * What are the elements supporting learning?
« Availability of knowledge for learning

K, (knowledge transformer) * How is learning carried out? » Methods of learning
« Local vs. global learning

O, (output knowledge) * What knowledge is learned? * What might be learned?

T, (trigger) * What can trigger learning? » What can trigger learning?

* When is learning triggered?

G, (goal/reason) * Not explicitly addressed « Consequences of learning

https://doi.org/10.1017/50890060498122096 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060498122096

Foundation for machine learning in design 195

own understanding of the field. Having said this, the ap-tions under which knowledge change can be considered,

proaches seem complementary and would seem to reflectamely, acquisition, modification, and generation:

the basic elements identified above. Some issues associated

with the above are discussed further. ¢ Acquisition the process in which new knowledge, ei-

ther through direct input from the user or derived from
knowledge sources, is received.

2.2. Types of design knowledge learned « Modification the process of altering the existing struc-
ture of knowledge through either addition or deletion
of the knowledge component from the structure. The
modified knowledge structure remains the same type.

o Generation the process of creating completely new
knowledge from existing knowledge.

The types of design knowledge to be learned are dependent
on the activity of the design process, the types of input knowl-
edge, the goal of the learning process, and when learning
takes place. Persidis and Duffy (1991) state five main types
of design-related knowledge: design requirements, design

description, doma_un knc_)WIedge, case.hlstorles, and d_eS|gn While knowledge change through modification is explic-
management. Failures in design provide an opportunity to

: ; . itly described as the addition/deletion of knowledge com-
learn about the causes of the failure in order to avoid com- .

" : . ponent from the knowledge structure, the several ways in
mitting the same failure again. Knowledge learned from de-

sign failure could be in the form of types of failures and which knowledge change through generation is achieved are
conflicts (Grecu & Brown, 1996: Vancza, 1991), heuristicsdescrlbed below. The different processes by which knowl-

. . : edge change takes place are cakedwledge transform-
for failure recovery, and conflict resolution (Grecu & Brown, g g P 9

1996; Vancza, 1991). On the other hand, successful desigr(?srs'In the study of machine leaming in design systems, seven

and design processes (Grecu & Brown, 1996: Vancza, 199 nowledge transformers for knowledge ggr)era}tlon an_d one
. o : nowledge transformer for knowledge modification are iden-
also provide opportunities for learning about the character:

- . tified. Some of these transformers are similar to those de-
istics of the successful past designs and goals/plans of de-

sign processes. The review of MLInD systems in Section cribed by Michalski’s set of 11 knowledge transmutations

shows that indeed there are numerous types of design kno Michalski, 1993). O these 11, the knowledge transmuta-
edae that can be learned from past deyspi ns. It is ?hereforteizon of replication/destruction, sorting/unsorting, and se-
9 P gns. . |éction/generation are not considered here as knowledge

reasonable to conclude that there are many types of desqn .
ransformers because they are basically processes for reor-
knowledge that can be learned. , : S
ganizing knowledge bases. There is no learning in the form
of knowledge changper se.

2.3. The learning goal
2.4.1. Knowledge transformers

Because of the variety of knowledge that can be learned, it gecause of the nature of design knowledge, which may
is sometimes necessary to specify a learning goal. The leargyist in symbolic or numerical form, knowledge change
ing goal influences what parts of the existing knowledgegperators or knowledge transformers consist of two types:
are relevant, what knowledge is to be acquired, in what formyp o symbolic type and/or the non/subsymbolic type. A
and how the learned knowledge is to be evaluated. SucRnowledge transformer is an operator that derives a piece

specific goal could be a subset of a more general goal. FQ§ knowledge.

example, learning about a particular technology may help

improve the quality of the product or speed up the design Group rationalization (or clustering)/decomposition (un-
process. Another example of a specific learning goal suclgroup). Group rationalization involves the grouping of past
as learning about constraint violation in design may resulflesigns according to their similarities when considering par-
in better conflict anticipation and resolution, which in turn ticular perspective(s) or criteria (Duffy & Kerr, 1993). The
may lead to a better design plan and hence a shorter desigfiouping may be based on single attributes and/or nested
cycle (Leith, 1990). Thus, specific learning goals may beattributes. Decomposition removes the groupings.

the stimulus for many of the unforeseen consequences of gjmilarity/dissimilarity comparisonSimilarity compar-

learning. ison derives new knowledge about a design on the basis
of similarity between the design and similar past design(s).
The similarity comparison is based on analogical inference.
Case-based design is a specific application of learning by
The design process is the vehicle that designers use to changieilarity comparison in which the source of past design
the state of the design through the application of scientifickknowledge is a set of similar design cases rather than gen-
and design knowledge. As the state of the design changesralized design rules. The opposite is dissimilarity compar-
there is a corresponding change of knowledge state of thison, which derives new knowledge on the basis of the lack
design. Persidis and Duffy presented three main classificasf similarity between two or more past designs.

2.4, Types of knowledge change
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Association/disassociatiorAssociation determinesade- e Provisional triggersare activated when there is a fore-
pendency between given entities or descriptions based on  seen event that is envisaged to require additional knowl-
some logical, causal, or statistical relationships. For exam-  edge. An example of a provisional trigger arises when
ple, two entities may be related together by a taxonomic  there is a need to learn heuristics that may lead to a

relationship (i.e., “kind-of”) or compositional relationship reduced search for a design solution. This learning is
(i.e., “part-of”). The opposite is disassociation, which as- to be done in anticipation of or provisionally for a fore-
serts a lack of dependency (e.g., “not part-of”). seen event.

o Retrospective triggerare activated after an event. That
is, learning is triggered by the need to learn from suc-
cessful design(s)/failed design(s) and/or processes in
hindsight.

Derivations (reformulation)/randomizatiorDerivations

are transformations that derive one piece of knowledge from
another piece of knowledge (based on some dependency be-
tween them). In contrast, randomization transforms one
knowledge segment into another by making random changes.
Because the dependency between knowledge componerbts
canrange fromlogical equivalence to arandom relationshipOu
derivations can be classified on the strength of dependency.

Generalization/specializationGeneralization generates ~  Novelty drivenwhen there is a new design problem,
a description that characterizes all of the designs based on a new technology, a new process, or a new design
a conjunction of all of the specializations of that concept. requirement.
Typically, the underlying inference is inductive. But gener- e Excellence drivencan the design be improved to
alization also can be deductive, when the more general de-  achieve better quality and reliability? Can the design
scription is deductively derived from the more specific one ~ process be more streamlined or time-efficient or re-
using domain knowledge or existing knowledge (e.g., asin  source-efficient? Can the design be market-competitive?
explanation-based generalization). Specialization increases » Failure avoidance drivencan failure(s) in the design
the specificity of the description. be avoided? Can design constraints be overcome?

Grecu and Brown (1996) identify several situations that
uld trigger learning. The reasons for learning are numer-
s but may occur due to the following:

Abstraction/detailing.Abstraction generates a New Ver- - The above examples serve to illustrate reasons that give
sion of the knowledge with less detail than the original ige 1o learning and are by no means exhaustive in cover-
through the use of representation of abstract concepts or 0gye For specific examples (gleaned from the study of MLinD
erators. As distinct from generalization, the underlying in-systems) of what triggers learning and when learning is trig-

ference is deductive in nature. Detailing is the opposite, irbered more details are given in Section 5 and Table 3.
which the new knowledge is generated with more details.

Explanation/discoveryExplanation derives additional
knowledge based on domain knowledge. Discovery derive

new knowledge without an underlying domain knowledge.There is now considerable effort in supporting computer-
The knowledge transformers described above are not sylhased learning in design. Such work can act as a basis upon
onymous with the machine learning methods that are useghich to discuss the above elements. The examination of

in machine learning systems. The knowledge transformergych systems can be broadly classified into two groups:
describe the cognitive learning process whereas the ma-

chine learning techniques describe how that process can bee systems that acquire knowledge opduct(i.e., de-
implemented as algorithms. For example, explanation-  sign concepts);

based generalization uses generalization and explanation of e systems that acquire knowledge of thesign process
domain knowledge to derive new knowledge. (i.e., procedural knowledge and control knowledge).

3.6. Current work of machine learning in design

It is difficult to ascertain the true nature of the goal or rea-
2.5. Learning triggers son for an associated MLInD system’s learning activity. Con-

sequently, the examination has concentrated on attempting
Persidis and Duffy (1991) posit the need to identify eventso identify:

that act as “triggers” for the self-activation of the learning
process. In this paper, it is suggested that these triggers cane the types of design knowledge acquired (Elemept O
be classified into three main categories: in situ, provisional,  and the associated learning goal (Elemept G
and retrospective. o the knowledge change as a result of the learning activ-
ity (Elements Q/I,);
¢ In situ triggersare activated when there is a need to e the knowledge transformers (Element)kand the
acquire new knowledge while the design is under focus  corresponding machine learning method(s) used in
of attention. implementation;
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o what triggers that learning activity and when (Elementedge, and NODES uses maximum conjunctive generaliza-
T). tion (MCG) to build the generalization of a new concept
into existing concept(s).

The knowledge input into NODES or BRIDGER con-
3. TYPES OF DESIGN KNOWLEDGE LEARNED sists of past design instances or abstractions in terms of tax-

Many MLinD systems have been developed to automate thenomic hierarchy (i.e., “kind-of” relationship and/or “part-
learning of design knowledge. The purpose of this sectio®f” relationship). Through the process of knowledge change
is to show the Variety of design know|edge that has beeﬁi.e., Clustering or generalization) the OUtpUt knowledge will
acquired through these MLinD systems. For the convebe a new taxonomic structure updated to reflect the changes
nience of description, the types of design knowledge learnegaused by the inclusion of the new design instance.

can be categorized into the following: ) o o
3.1.2. Learning empirical knowledge of quantitative

o product design knowledge; and qualitative relationships

e design process knowledge. The numerical relationships of attributes of design con-

cepts are important in defining the preliminary definition

This categorization is important because it was revealeaf the form or structure of the concept. The estimation of
through the examination of the MLinD systems that, in mostthese values has been achieved by scaling or interpolation
cases, the learning of meaningful product design knowl{BRIDGER; Reich, 1993), empirical network of associa-
edge occurs retrospectively. Similarly, certain types of detion (CONCEPTOR; Li, 1994), statistical approximation
sign knowledge are best learned while the design is ifNODES using Designer; Duffy et al., 1995), and neural
progress. networks (NETSYN, Ivezic & Garrett, 1994). Each of these
types of estimation of attribute values based on records of
past design cases is described below.

Although there is in BRIDGER a taxonomic structure gen-
Systems such as BRIDGER (Reich, 1993), NODES (Persierated from past design concepts in terms of attribute value
dis & Duffy, 1991; Duffy et al., 1995), CONCEPTOR (Li, pairs, the numerical relationships of these attributes are not
1994), PERSPECT (Duffy & Duffy, 1996), and NETSYN explicitly represented. Therefore, for a given design speci-
(Ivezic & Garrett, 1994) have addressed the issue of learnfication, BRIDGER derives appropriate values for the attri-
ing product knowledge from past design concepts. Théutes through the interpolation of suitable design cases.
knowledge learned can be discussed under the headings of:In the case of CONCEPTOR, the empirical relationships

of design attributes of a given design domain are repre-

e composition of the components/subsystems that consented as an empirical network. The empirical network cap-

stitute the product; tures both quantitative variables and qualitative variables

e constraints imposed on the attributes due to the physicas nodes, which can be linked by empirical formulas (for

of the problem, geometrical and spatial requirementsquantitative variables) or design patterns (for qualitative vari-
life-cycle issues, design requirements, and so on;  ables). The empirical formula represents proportional rela-

» decomposition of the components that constitute theionships among the quantitative variables. Design patterns

3.1. Product design knowledge

product; capture important associations among qualitative variables
¢ performance evaluation knowledge; on which the designer should focus his or her attention. Each
¢ dynamic learning of implicit knowledge. node represents a design feature, its default value, and range
value. Collectively, the empirical network of nodes linked
3.1.1. Learning knowledge of design composition either by empirical formula or design patterns represents the

Knowledge of the composition of past designs serves adescription attributes of a learned concept.
as a useful starting point to initiate the synthesis process of In NODES, the numerical relationship of attributes of the
design problems that have a similar design specificationdesign object is described by characteristics and formulas.
For example, BRIDGER was developed primarily for the Characteristics represent numerical attributes of concepts
synthesis of different concepts of cable-stayed bridgesand always are associated with a single object. They also
NODES also was developed primarily to support conceptre associated with formulas and together form a constraint
modeling operations during the early stages of design (Duffynetwork where the values of characteristics are constrained
et al., 1995). by the values of other characteristics appearing in the same

While BRIDGER expresses the design compositionformula.
knowledge as a taxonomic hierarchy (i.e., “kind-of” rela- Formulas represent mathematical equations that allow the
tionship), NODES expresses both the taxonomic relationvalues of characteristics to be calculated from other char-
ships as well as the compositional (“part-of”) relationshipsacteristics. Formulas, like characteristics, also are associ-
of a design object. BRIDGER uses the concept formatiorated with objects, but, unlike characteristics, they can be
capability of ECOBWEB to learn design composition knowl- associated with more than one object.
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3.1.3. Learning knowledge of design constraints object. The first type of interaction deals with explicit rela-
and design expectation tionships among the components, while the second type of
Both design constraints and design expectation play a crunteraction arises from the relationships between the object’s
cial role in controlling the design process. A design expec-attributes and the components’ attributes. The third type deals
tation is a designer’s prediction about a design attribute’svith interactions arising from the intercomponent relations
value. Expectations may consist of a default value, a rang@iving rise to interactions among the subcomponents.
of possible values, or a simple relation between design Representing the components and interactions as nodes
attribute values. Relationships between key design attributeznd links, respectively, in a graph, several pivotal nodes with
and dependent design attributes are expressed as expedtany links converging to them can be identified. Each piv-
tion rules by Chabot and Brown (1994). An expectation ruleotal node plus its connected nodes form a decomposition
may be triggered when a value for a key attribute has beef@ctor.
decided. These expectations and expectation rule(s) are anDesign cases in which there are specific design prob-
important source of design knowledge that can be learnetems, with their associated design solutions, can be another
from past design experiences and past design cases by iource for generating decomposition hypotheses. Given a
duction (Chabot & Brown, 1994). design problem, a set of relevant design cases can be re-
Design constraint knowledge provides the means for detrieved by using the object’s case index. A suitable case is
tecting design failures (Chabot & Brown, 1994). Although selected if every constraint of the current design problem
there are a large number of constraint types, Categorizing'latches the constraints of a design case to a predetermined
them into hard or soft constraints aids in detecting desigrfiegree; then the design case becomes a candidate for de-
failures. Hard constraints are either satisfied or violated. Icomposition factor seed. All of the selected cases are con-
a hard constraint is violated, then the design decision beverted into decomposition factors. If a selected case has a
comes unacceptable. Values for soft constraints are boundé@aatching quality above some limit, it can be used for gen-
by the degree of error tolerance that is acceptable or allowerating decomposition hypotheses.
able. Therefore, while expectation rules provide values to . )
progress a design, constraint(s) test the values and detestl->- Leaming knowledge for performance evaluation
any design failure. Performance evaluation of a design in the various stages
Since different constraints and different expectation rule®f the design process often determines if the design should
are called into play during a design process, Chabot anf€ progressed further. But performance evaluation is not an
Brown use the mechanism of constraint inheritance as thexact science. Multiple criteria that are conflicting in nature
machine learning method of knowledge compilation (Brown,are used to evaluate the performance of a design or designs.
1991) whereby new knowledge of constraints is incremenCurrent methods of evaluation often are either too simple

tally formed or updated. or too complex for configuration design decisions (Mur-
_ _ - doch & Ball, 1996). Several researchers (McLaughlin &
3.1.4. Learning design decomposition knowledge Gero, 1987; Murdoch & Ball, 1996) have posited that known

Liu and Brown (1992, 1994) posit that decomposition configuration solutions in terms of their topological or geo-
knowledge can be generated from design object knowledgenmetric layouts, components, and materials can be analyzed
functional knowledge, design cases, design heuristics, gerand evaluated in terms of their performance so that good
eral problem-solving knowledge, and domain knowledge aspects of these designs may be reused and poor ones
To extract knowledge that is appropriate for a given desigrchanged or discarded. That is, knowledge of performance
context, Liu and Brown introduce the concept of “decom-evaluation can be learned from past design configurations.
position factors.” Adecomposition factors a suggestion Several machine learning approaches (McLaughlin & Gero,
about how to partition an entity that may be a design object1987; Murdoch & Ball, 1996) have been developed to elicit
a component, or a set of attributes. the acquisition of design rules that map from the design so-

The learning mechanism used is that of knowledge comtution space (i.e., structure or form) to the design behavior
pilation (Brown, 1991). Knowledge compilation is a type space.
of learning in which existing knowledge is converted into McLaughlin and Gero (1987) formalize the relationship
new forms with the intent to improve problem-solving between decisions about values of design variables and their
efficiency. consequent performances as a mapping between a decision

The final decomposition knowledge is represented in aspace and a performance space. Design variables can be rep-
tree structure. Each node of the decomposition tree corresented as axes in a design (or decision) space, where each
tains a problem description and a list of possible alternativegyoint in the space will represent a particular combination of
competing decomposition hypotheses, as well as a set afesign decisions regarding the design variables. By identi-
links to subproblems, knowledge sources, interaction inforfying the bestfeasible point in the performance space and
mation among subproblems, and other relevant informatiormapping back to the decision space, the variables and their

From design object knowledge, Liu and Brown identi- values that resulted in this performance can be identified.
fied three types of interactions among the components of aRor performance space associated with multiple criteria,

https://doi.org/10.1017/50890060498122096 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060498122096

Foundation for machine learning in design 199

Pareto optimization is used to isolate the set of best solu-  quantify the relationship between these attributes to-
tions in terms of the criteria defining the performance space.  gether with a measure of the unreliability of these
The knowledge acquired either through the Pareto/ID3  equations.
(McLaughlin & Gero, 1987) or GA/Kohonen Feature Map e Multiple forms of implicit experiential knowledge
(Murdoch & Ball, 1996) is: through generalizations of past design information and
identifying the most suitable generalization of past de-
 Knowledge of the mapping between performance space  sign that supports theustomized viewpoinfer a new
(described by evaluation criteria) and the design de-  design.
cision space (described by design variables and their
values).
3.2. Design process knowledge
3.1.6. Learning function knowledge
and the causal models Learning about the design process provides just as an im-
Bhatta and Goel (1996) posit that generic teleologicalportant wealth of knowledge as learning from past designs.
mechanisms (GTMs) are one type of design abstraction thak design process usually consists of design decisions made
can be learned from past designs through cross-domain andhat results in design actions taken to progress the design.
ogies. Cross-domain analogy involves the recognition of simbesign actions clearly interact with the evolving design.
ilarity between two problems from two different domains Learning about the design process invariably involves learn-
and determining what knowledge to transfer and how tang about the decisions made, the rationale for the decisions
transfer between them. GTMs take as input the functions ofmade, and the effect of that decision on the evolving de-
a desired design and a known design and suggest patternsigin. Certain phases of the design process are exploratory
modifications to the structure of the known design that wouldin nature, and the use of control knowledge to manage the
result in the desired design. exploration is important.
Systems that capture design rationale (Gruber et al., 1991)
3.1.7. Dynamic learning of implicit design knowledge and design history thus provide vital sources of knowledge
So far, the systems that use machine learning methoder learning about the design process. While capturing de-
to acquire the design object knowledge for a given domairsign rationale usually involves recording successful design
have been based on a fixed viewpoint that is predeterminedecisions, the design history records both successful and
by the knowledge engineer. Since it is not possible to comfailed decision lines. Both successful decisions and failed
pletely predict designers’ knowledge requirements, becauséecision lines are objects of learning about the process.
each designer has different knowledge needs at different Knowledge of the design process can be captured in the
times and for different reasons, Kerr (1993) presents a neWorm of design plans or as a hierarchy of activations (con-
approach to utilize experiential knowledge cal@gstom-  dition and action pairs) on the blackboard of a blackboard
ized viewpoint. system (Erman et al., 1980; Hayes-Roth, 1985). In artificial
The key concept behind this flexible approach to knowl-intelligence (Al) parlance, a sequence of dependent actions
edge utilization is that it generalizes experiential knowl-is called gplan. As such, systems such as ADAM (Knapp &
edge directly from specific experiences, according toParker, 1991), BOGART (Mostow, 1989), ARGO (Huhns
designers’ knowledge needs, and subsequently utilizes thi Acosta,1992), and DONTE (Tong, 1992) have used the
knowledge in design. To illustrate the concept, Kerr devel-Al approach of planning to describe and capture the design
oped, tested, and evaluated the utility of the customized viewprocess, whereas only DDIS (Wang & Howard, 1994) has
point approach within the realm of numerical design.used the blackboard concept. Design plans usually do not
PERSPECT is supported by four subsystems, namely, DEcapture failed lines of design actions, whereas the black-
SIGNER, ECOBWEB, S-PLUS, and GRAPHER (Duffy & board approach usually captures both the successful as well
Duffy, 1996; Kerr, 1993). as the failed design actions, resulting in capturing the de-
PERSPECT uses ECOBWEB, a concept formation syssign history.
tem to generate and organize the generalization of a set of If the design plan is expanded to lower levels of abstrac-
past designs (described by attributes and values) into a cofion, it also defines the hierarchical decomposition of the
ceptual hierarchy. It classifies each example (past desigrgbstract actions into the primitive actions, the outcomes of
and incorporates it permanently into a hierarchy by increwhich change the states of the evolving design. The evolv-
mentally changing the hierarchy’s structure. The knowl-ing design is expressed initially in terms of functional re-
edge acquired by the approach is: qguirements and at its lowest level of abstraction as design
objects that collectively synthesize into a design configura-
o Multiple forms of experiential knowledge of a domain tion or structure. The design plan therefore captures not only
(described by name, meaning, and units of attributesjhe design history, design decisions (i.e., design intent and
in terms of empirical equations, numerical generaliza-alternatives and rationale), and design strategies but also de-
tion, and heuristics. For example, empirical equationssign object knowledge.
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The knowledge change of design plans can be acconplans and goals. These plans and goals can be posted di-
plished by the acquisition of new design plans, modifica-rectly on the control blackboard by case-dependent control
tions of existing plans through design re-use, and generatioactions during subsequent design sessions. These case-
of new plans or generalized plans from existing plans at thelependent actions compete with case-independent knowl-
end of one or more similar design processes. The review aédge sources at every design cycle to allow case-based
systems such as BOGART, ARGO, DONTE, CDA, andreasoning to influence domain-based reasoning, so that past

DDIS provides evidence of such knowledge change. design actions leading to dead-ends or failures are avoided.
DDIS therefore generates case-dependent design knowl-
3.2.1. Acquiring design plans edge after the completion of the design session. The knowl-

A knowledge change in a design plan can be Iearneé;"dge generated consists of the following:

through the process of acquisition. This simply involves be-
ing told by the designer or recording the series of actions
taken by the design, by inferring the design plan from a pre-
vious design case or solution (Duffy, 1997).

Both BOGART and ARGO record user inputs as a means
of acquiring new plans. BOGART uses VEXED to record
successive design steps in a tree-like design plan that con-
sists of nodes representing design modules. Each module
can be decomposed or refined into submodules by a catalog2 3 G lized desi |
of “if-then” refinement rules provided by VEXED. If = eneralized design plans
VEXED lacks any of these rules, it will learn the manual BOGART, ARGO, and DDIS also generate generalized
decomposition step by generalizing that step into a new ruleplans from several plans or by abstracting new plans. The
This learning facility within VEXED is provided by LEAP details of how the generalized plans are generated through
(Learning Apprentice). various knowledge transformers are given in Section 4.

ARGO acquires a plan as it solves a problem and is rep-
resented using an acyclic graph of dependencies among plan
steps (instantiated rules). If one plan step adds an assertioqh& Summary of the types of knowledge learned

that satisfies the condition part of a rule, the second SteRaple 2 gives a summary of the various types of design
becomes dependent on the first. The dependency graph m%owledge that can be learned from the MLinD systems.

contain independently solvable subproblems or dependeqthe table shows the knowledge inpyitthe product/process
subproblems with justifications maintained by the truth mam'knowledge learned O and the reason for learning that

tenance system. knowledae. G
INn ARGO, the design plans are represented as schemas of ge. &

corresponding preconditions and postconditions that are rep-

resented as a database of assertions stored as slots of frargrt.asKNOWLEDGE TRANSEORMERS

in a truth maintenance system. A module is represented as IN MLinD SYSTEMS

a collection of assertions describing its specification, com-

ponents, interconnections, and so forth, each with a beliefy this section, the purpose is to show the evidence of the
status of IN or OUT supported by a set of justifications. knowledge transformers considered in Section 2 that MLinD
The OUT status is caused by actions that fail, and the Corsystems use to transform input know|edge into new or mod-
responding rule instances are not included in the depenfied design knowledge. Although these knowledge trans-
dency graph for representing the design plan. Therefor&ormations are implemented in terms of various machine
ARGO does not learn plans that incorporate failed lines ofearning methods (either symbolic or subsymbolic), it is

e control knowledge of a particular session is also ab-
stracted to a global design plan and several redesign
plans so that they can be used separately in a flexible
manner according to new situations encountered;

e knowledge of constraint violations that can be applied
to new cases in order to focus early on critical con-
straints that are most likely to cause problems.

reasoning. the nature of the characteristics of each type of knowledge
transformation that makes their identification within the
3.2.2. Acquiring case-dependent design plans MLIinD systems possible. Each machine learning method

DDIS integrates both domain-based reasoning and cas&S€d may be either symbolic or subsymbolic in nature, de-
based reasoning in its strategy for solving design problemd?€nding on the nature of the representation of the input/
It uses case-dependent knowledge that it acquires from cuUtPut knowledge. In describing the various knowledge
rent design session(s) to supplement its domain-independelignsformers, no distinction is made as to whether the knowl-
knowledge for future design(s) or redesign(s). DDIS there £dge transformed is product design knowledge or design pro-
fore records all design actions as knowledge source activ&eSs knowledge.
tion records (KSARSs) and the design history (a sequence of
executed KSs and their bindings) onits deSign blackboard. 1This is usually inferred from the context of the design problem
By analyzing these records, DDIS abstracts case-dependeduscribed.
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Table 2. Relationships between input knowledge, output knowledge, and learning goal
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Input knowledge |

Output knowledge Q

Learning goal G

Instance(s) of past design(s) together
with existing taxonomic or
compositional knowledge

Records of past designs in terms of
attributes and attribute values

Knowledge of current design
constraints
Records of failed constraints

Past design cases of design problems
and corresponding solutions

Past design configurations and
performance evaluation criteria

Past design concepts described by
attributes and values

Records of design actions described
by preconditions and postconditions

» Taxonomic knowledge of design concepts
(e.g., BRIDGER)

» Compositional knowledge of design concepts
(e.g., NODES)

» Empirical knowledge of quantitative
information (e.g., CONCEPTOR, NODES)

« Design patterns of qualitative relationships
(e.g., CONCEPTOR, NODES)

» Knowledge of new/updated design constraints
(e.g., Chabot & Brown, 1994)
» Knowledge of anticipated crucial constraints
(e.g., DDIS)

* Design decomposition knowledge in terms of
decomposition factors (e.g., Liu & Brown, 1992)

* Knowledge of mapping between performance
evaluation space and design decision space
(e.g., McLauglin & Gero, 1987;

Murdoch & Ball, 1996)

» Multiple forms of explicit design knowledge
(e.g., PERSPECT)

» Multiple forms of implicit design knowledge
(e.g., PERSPECT)

« Abstracted design plan (e.g., ARGO)
» Case-dependent design plan (e.g., DDIS)

» Expedite synthesis of preliminary design
concepts

 Expedite preliminary definition of form
and structure of design concept

« Streamline design process by detecting
and avoiding design failure

* By checking crucial constraints early in
the design, leading to shorter design cycle

« Streamline design process by focusing on
interrelated systems and/or components

« Excellence driven to achieve better design

« Excellence driven by utilizing knowledge
from multiple sources

« Streamline design process by replaying a
similar plan

It employs five operators to determine how best to incorpo-
rate an example into the hierarchy. Each resulting partition

BRIDGER and CONCEPTOR are examples of machine(CIaSSiﬁcation) is evaluated using a utility function to deter-
i st hteamcesignconcepsusing e ko 1 2000 Uy (Sl & Corer, 1969 wienls
edge transformer of group rationalization or clustering. While 8 y

CONCEPTOR uses the concept clustering system calleﬁ
COBWEB, BRIDGER uses ECOBWEB (Reich, 1993),

4.1. Group rationalization (or clustering)/
decomposition (ungroup)

f a partition. It selects the classification that results in the
ighest category utility value, incorporates the example per-
which is an extension of COBWEB. Both machine Ieamingmanentlymto@hg hlerarchy,_and genera_testhe appropriate con-
. . ceptual description that suits the new incorporated example.
systems for concept formation generate design concepts froEach partition is described as a conjunction of attribute—

the characteristics of similar past designs. Using past bridge . . o - i
) - . “value pairs, and each partition has a probability to indicate its
designs as training examples, each system generates h|er§1rr—

. L . equency of occurrence in the training examples. As a re-
chical classification structures that can be used to assist in . .
. o ) . sult, ahierarchy represents only one concept, while the nodes
the synthesis of similar bridge designs.

: in the hierarchy represent subsets of the concept.
C.ONCEPTOR not only learns design concepts from pasi Hence, in learning taxonomic-type design concept(s) from
designs through the I_mowledge transfor_mers of CIUSterInC1’)ast designs, the knowledge change involved is the cluster-
_(or concept aggregatpn—a ter_m us_ed " CONCEPTOR)ing of past designs into a hierarchical structure of concepts,
it also derives numerical relationships (or concept char-

acterization in CONCEPTOR’s terminology) among theeach node in the hierarchy representing subsets of a main

o ) . oo concept. Knowledge of the design artefact such as function-
guantitative design attributes of a concept. Derivation as &, o -
knowledge transformer is described in Section 4.4, ality, structure, or behavior is not explicitly represented. The

knowledge of the artefact’s decomposition structure or com-
COBWEB/ECOBWERBTo build the hierarchical struc- posite structure in terms of “part-of” links is not reflected

ture, COBWEB/ECOBWERB integrates the processes of clasin BRIDGER's/CONCEPTOR'’s classification hierarchy
sifying examples and incorporating them into a hierarchystructure.
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Another example where the knowledge transformer ofof configurations that contribute to high or low technical
clustering is used is in the context of learning design permerit?
formance evaluation knowledge. The design solution space
has to be categorized into different classes of solutions for
the purpose of mapping them with the performance evalug 2. Similarity/dissimilarity comparison
ation space. To elicit knowledge for performance evalua-
tion, meaningful mappings between the decision space ankdnowledge change of a design plan through similarity com-
the performance space modeled must be established. Whigarison is made possible if there exists an original target
McLaughlin and Gero (1987) concentrate on the solutiongjesign plan. The machine learning method used is learning
near the Pareto boundary as sources of knowledge in thigy analogy, which involves a transfer of information/knowl-
evaluation space, Murdoch and Ball (1996) suggest that thedge from a base domain/plan to a target domain/modified
entire solution set, from both the design space and the evaplan.
uation space, represents valuable design information that Having acquired the history of design decisions made in
must be analyzed for effective reuse. The entire evaluatioa previous design, BOGART (Mostow, 1989; Mostow
space and the design spaces must be analyzed to identigf al., 1992) uses the derivational analogy method by Car-
different classes of solutions and trends in design practicebonell (1983, 1986) to change the design plan by reasoning
Because of different areas of the design solution space arfgdom the previous plan. The derivational analogy method
the performance space considered for mapping, McLaughrepresents a problem-solving plan as a hierarchical goal struc-
lin and Gero (1987) chose ID3 to distinguish solutions thatture, showing how and why each goal was decomposed into
are Pareto-optimal (i.e., near the Pareto boundary) and thosgibgoals. It solves a new problem by replaying this plan
that are not, while Murdoch and Ball (1996) chose the clustop-down. When the subplan for a subgoal fails, the plan is
tering capability of the self-organizing neural network calledmodified by solving that subgoal from the user input of a
the Kohonen Feature Map to categorize the entire desighew solution. By this process of similarity/dissimilarity com-
solution space. parison, a new design plan is constructed.

ID3. The induction algorithm ID3 is used as a means of
inferring general statements about the nature of solutiong.3. Association/disassociation
that exhibit Pareto optimal performance in terms of a set of
performance criteria. The positive example set consists onlNODES learns/builds a model of the conceptual design
of decision and performance data of solutions that are Paretdinked by a compositional network of concepts through “part-
optimal in terms of the chosen criteria. The negative exameof” and “kind-of” associations and a numerical network of
ple setis generated by combinations of design decisions thaharacteristics through association between objects and for-
are inferior in performance. The heuristic rules that best repmulas. In the compositional network the nodes denote ob-
resent the concept to be learned are those with the most pojgcts or assemblies, and the arcs denote the directed relation
itive examples and the least negative examples. (or association) “part-of” between two nodes. In the numer-

ical network, nodes represent the characteristics of objects

Kohonen Feature MapThe Kohonen Feature Map is a or formulas, and arcs represent the link or association be-
neural network that can learn clustering patterns unsupetween two nodes, one of which is a characteristic and the
vised. That is, the mapping between criteria in the perfor-other of which is a formula in which the characteristic ap-
mance evaluation space and the configuration parametepears (Duffy & Duffy, 1996).
(i.e., component and materials) in the design space can be
clustered without precategorization of the design space.

Each solution consists of a set of parameterized compo4.4. Derivation/randomization
nents that can be applied as a training example to the net-
work. The network uses an unsupervised learning algorithnThe concept characterization phase of CONCEPTOR is an
to generate a mapping between the high-dimensional deexample of deriving new knowledge based on some depen-
sign space of component parameters and the neurons @fency between them. After concept aggregation, CONCEP-
the network. The map generated provides a topological OR derives two types of relationships within a concept:
(i.e., nearest neighbor) relationship among the componer@mpirical formulas among quantitative design attributes and
parameters. The network topology then can be inspectedesign patterns among qualitative attribute—value pairs that
to identify clusters or archetypes that span the original sefrequently appeared in past examples.
of design solutions. By decoding the nodes within each
cluster back to the performance evaluation space, a map- ,

ping .between the two spaces i§ achieved' The arCh.etygﬁndamental criteria: performance (duty index), reliability (reliability in-
solutions then are analyzed to identify the characteristicglex), and economy (cost).

Technical merit combines in one generic measure of design merit three
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For some design problems there is a need to apply the Generalized design conceptlODES generalizes knowl-
probability estimation function to acquire the probability es-edge from the most comprehensive concepts within a con-
timate of each value of each unassigned design property (e.g:ept library to the less specific. Numerical parameter ranges
estimates of loading, the material behavioral properties arand compositional knowledge are generalized to all of the

statistical in nature). associated superclasses to ensure that there is no contradic-
Ivezic and Garrett (1994) developed a system calledion between a particular concept and its specializations. The
NETSYN to learn the Bayesiaa posteriori probabili-  generalization mechanism that is responsible for the updat-

ties of design properties. NETSYN uses the feed-forwardng of knowledge is invoked automatically whenever a new

backpropagation neural network as the machine learningoncept is saved in the concept library.

technique to acquire and represent the probability estima- When a design has been completed, the evolved model in
tion function. The probability estimation function is ac- NODES is used to increase its knowledge by acquiring the
quired through inductive learning using past designs taelevant knowledge of the new design. The mechanism in-
train the neural network to estimate the desired probabilivolved is the decomposition of the design into its constitu-
ties. The trained network estimates Bayesaaposteriori  ent concepts (or specializations), along with appropriate
probabilities. constituent and connective relations, and merging each con

To use conventional classifiers, one has to estimate theept with its corresponding library.
conditional probabilitie$(D|H;) for each design property NODES uses a machine learning technique catheci-
and thea priori class probabilities. The main difficulty lies mal conjunctive generalizatiofMCG) (Dietterich &
in the elicitation of conditional probabilitieB(D|H;) that ~ Michalski, 1983). MCG ensures that no item of knowledge
reflect the actual design knowledge. This is estimated bys associated with a concept unless it is associated with all
assuming some idealized probability distribution (e.g.,of the concepts that are a specialization of that concept. In
Gaussian distribution). The neural network approach estiterms of set theory, this means that the set of items of knowl-
mates the Bayesian probabilities in a direct way, offering aredge associated with a concept is the intersection of the sets
approach where prior assumptions on probability distribu-associated with the specialization of that concept.
tions need not be made.

The computational model estimates the probability for Generalized design plan8OGART uses VEXED's abil-
each value of each property being used in a given desigity (Steinberg, 1992) to interactively record decisions in terms
context. Each design context involves several design propaf general rules that can be easily replayed in a new con-
erties for which values have to be assigned. Therefore, theext, rather than specific operations that cannot be general-
construction of NETSYN architecture is modular, that is,ized. In BOGART, a design plan contains a node for each
for each design property a neural network structure is asmodule. When the module is refined, the node is annotated
signed to act as a probability estimation function for thatwith the name of the decomposition rule and the values of
property. its parameters, and connected to a new child node for each

submodule.

4.5. Generalization/specialization Generalized design ruleBOGART uses LEAP (Mitch-

Knowledge derived through generalization has a greateell et al., 1990) to learn new design object knowledge. In
problem-solving scope. This is because generalized rules @he domain of circuit design, the training example consists
knowledge generally can be applied to a wider range of probef a description of the function to be implemented, a de-
lems for a given domain or complex problem. Different typesscription of the known characteristics of the input signals,
of knowledge related to the design product/process can band a circuit provided by the user to implement the given
derived through the process of generalization. For exampldunction for the given input signals. LEAP generalizes the
NODES enriches its design knowledge base, calledtime  specific example into a new refinement rule. By using a vari-
cept library, by progressively accumulating solutions of ant of explanation-based learning (callestification-based
problems defined within a particular domain. It uses generiearning), LEAP computes a refinement rule precondition
alization as a knowledge transformer so that new concept§.e., the left-hand side) by using its theory of circuits to
are reflected in all of the concepts that are generalizationanalyze the single training example. LEAP explains (veri-
of that concept. By integrating with the DESIGNER sys- fies) for itself that the circuit does in fact work. It general-
tem, numerical aspects of the concept (i.e., characteristidgzes from the example by retaining only those features of
and associated formulas) can be analyzed. Both BOGARThe signals that characterized this class of input signal. LEAP
(Mostow, 1989) and ARGO (Huhns & Acosta, 1992) ac- generalizes the right-hand side by verifying that the circuit
quire generalized design plans from several plan instancesorrectly implements the desired function. The verification
or by abstracting new plans. Design actions interact withinvolves determining the general class of circuits and func-
the evolving design. The interaction between design actiotional specifications to which the same verification steps will
and the design could be generalized into useful design rulespply.
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Specialized (compiled) design constraint knowledge- If the domain model is too complex (i.e., described by
sign constraint knowledge is the primary method of detecttoo many empirical equations), designers can delete un-
ing design failure (Chabot & Brown, 1994). Past designwanted variables from empirical equations to generate sim-
knowledge can be expressed as design expectation rules thér equations, which then can be used to estimate values of
relate the key design attribute with the dependent desigthe design model. PERSPECT achieves this capability by
attributes. When the key design attribute’s value is decidedthe process odbstraction.Abstractions of empirical equa-
the design expectation rule is triggered. This results in théions mean that dependent attributes can be assigned with
numerical or symbolic computation of the expected valuesewer required attributes. DESIGNER can be used to deter-
of dependent design attributes. The expected values of emine the least influential input variable of the equation and
ther type (expected value range or expected symbolic valueuggest the variable as most suitable for deleting from the
are compared with the corresponding design attribute valempirical equation.
ues. Anexpectation violatiorfChabot & Brown, 1994) oc-
curs when an inconsistency is noticed between the two sets Design plan abstractionBoth ARGO and DDIS use the
of values, resulting in the creation of a DSPéxpectation ~ knowledge transformation of abstraction to generate design
violation structure. The information in the expectation vio- plans. In ARGO, this task is accomplished by computing
lation structure is used by the Generic Object Knowledgemacrorules for increasingly abstract versions of the plan and
Base (GOKB) Reasoner to transform the relevant constrainnserting these rules into a partial order according to some
ing knowledge in the GOKB into a DSPL constraint. The abstraction relation. Macrorules, consisting of relevant pre-
knowledge compilation process consists of four sequentia¢onditions and postconditions, are computed for each plan
subprocesses of Reasoner, Transformer, Inheritor, and Exand stored in a partial order according to an abstraction
ecutor. The Reasoner analyzes the role descriptors of trecheme. These macrorules are built by compiling through
dependent (target) attribute into either potential numeric valthe instances rules of the plan using a variant of explanation-
ues or a member of a list of symbolic values and the strucbased generalization (EBG) (Mitchell et al., 1986; DeJong
tural descriptors of the design attributes. Constraints aré& Mooney, 1986). The abstraction is accomplished by in-
inherited from the GOKB when a relevant explanation hascrementally merging each set of edge macrorules into a set
been found by the Reasoner. The Transformer compone@f cumulative macrorules for previously merged rules. The
supervises the transformation of the relevant GOKB knowl{lan abstraction scheme consists of deleting all of its leaf
edge into a DSPL constraint structure. The newly inheritedules that have no outgoing dependency edges, since these
constraint is tested by the Executor component. A “succesdeaf rules are those that deal with design details.
ful” test ensures that the new design attribute is valid and Atthe end of each design session, DDIS abstracts the con-
the newly inherited constraint knowledge is learned as drol knowledge recorded on the control blackboard to one glo-
DSPL entity for future use. bal design plan and several redesign plans. The processes the

Chabot and Brown therefore view constraint inheritanceDDIS uses to abstract design plans are as follows:
as a form of failure-driven learning that transforms a less
efficient generalized deep object knowledge into surface e All knowledge source activation records (KSARSs) that
knowledge that is highly specialized, tuned, and effective ~ modified the solution blackboard are identified and un-
for the given design problem. necessary design steps that led to unsuccessful alter-

natives or that did not contribute directly to the design

process are filtered or removed.
e For each identified major action (KSAR), a case-

Abstraction in empirical equationsAbstraction in em- dependent goal is created to prefer the same knowl-
pirical equations may become necessary in the event that edge source or same type of action in the future.
no useful empirical equations exist or because not enough ¢ The major design actions are classified into design and
attribute values are known. PERSPECT can be used to es-  redesign actions. Design actions are those that lead di-
timate the values of the unknown attributes. Using theirown  rectly to the eventual solution. Redesign actions are
or PERSPECT's knowledge of design attribute depen-  those that are executed when a constraint violation is
dency, designers using PERSPECT can define a perspec- present on the blackboard. The goals corresponding to
tive consisting of unknown attributes and related attributes,  design actions are grouped into the design plan, while
generate a viewpoint of experiential knowledge that can be  the redesign goals are grouped into redesign plans cor-
used to find a past design or group of designs similar to the  responding to each backtracking episode that resulted
current design, and use associated similar attributes as val- from constraint violations.
ues for the uninstantiated attributes in the current design. e The intentions of a global plan and case-dependent re-

design plan are stated. The intention of a global plan is

B . . _ to generate design values for all of the design attributes

Design Specialists and Plans Language (DSPL) is a domain-

independent expert system building language for expressing routine de- and' to satisfy all 'Of the applicable constraints Pf the
sign knowledge. design. The intention of a case-dependent redesign plan

4.6. Abstraction/detailing
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is to satisfy all of the unsatisfied constraints that trig- ical principles can be acquired for future use in design. Dis-
gered the redesign process. covering physical principles from abstract design models
¢ The critical constraints that were violated and causedf physical devices is implemented as a learning component
backtracking are recorded so that they can be considsf IDEAL (Integrated DEsign by Analogy and Learning).
ered early in future designs. The models of specific devices (SBF models) provide both
the content and constraints for learning the models of phys-

Detailing to reconstruct design historyuniike BOG- ical principles (BF models) by incremental generalization

ART and ARGO, which rely on records of past design de- ; . .
- ) . , over design experiences. In particular, Bhatta and Goel show
cisions in the form of a design plan, CDA first reconstructs . . . )
o ) ? . . that the function of a device determines what to generalize
from a similar solution a design plan using predefined rUIeSfrom its SBE model. the SBE model suaaests how far to
(Britt & Glagowski, 1996). So while BOGART uses a der- . ' uggests
A : eneralize, and the topology of functions indicates what
ivational analogy to solve a new design problem, CDA use 22 :
. L . method to use for generalization. By using content and con-
a reconstructive derivational analogy (RDA) algorithm to . : g :
: : straints of the model, IDEAL is able to discover physical
automatically reconstruct design plan(s) from a large col-

. . . . rinciples using fewer examples.
Iecupn O.f past. working QeS|gn(s). Usmg the kr)owledge bas® Table 3 gives a classification of MLinD systems in terms
of circuit design domain rules and information about the

. , . : of the knowledge transformers used to generate new design
new circuit problem, CDA'’s reconstruction expert finds ap- knowledge and implementation of that knowledge change

plicable ruIe;, a_nd selgcts anq applies the preferreq rule t&roughthe machine learning methods supplemented by other
the current circuit, adding design components each time un-

. ! S . X i methods (e.g., Pareto optimization), which results in cer-
til the final circuit meets the design requirement. In this pro-, _.
cess of detailing CDA reconstructs the design plan anéaIn types of knowledge structures.
acquires the rules for the composition of the design.
5. TYPES OF TRIGGERS FOR

_ _ MACHINE LEARNING
4.7. Explanation/discovery

The purpose of this section is to show evidence of what can
DONTE illustrates the learning of control knowledge to ex- trigger learning and when that trigger is likely to occur.
plore the design space through the process of discovery aboknowing what these triggers are and when these triggers
the design space. Through the process of discovery, IDEAlnitiate the learning process are important questions that must
(Bhatta & Goel, 1994) demonstrates learning physical prinbe answered if machine learning capability is to be incor-
ciples of a “concept” description from examples without porated into design support systems. To discuss these trig-
knowing the target conceptpriori. The process of discov- gers by themselves and not relate them to the context of the
ery is generally considered to consist of two distinct phasesknowledge learned and the knowledge transformer in-
hypothesis formation and hypothesis testing. volved would not show the relationship between these ele-

Learning design control knowledge in DONTEhe dis- ments o_f Iearnmg. Sections 5.1 to 5.3.g|ve some examples
. S : . _of learning design knowledge under different types of trig-
covery learning task is initiated by hypothesis formation in . o . .
. . : . rs: namely, the retrospective situ, and provisional trig-
which a current hypothesis on the design space is represent

as a set of subproblems that are presumed to be independe%?.rS that are implemented/implied in the MLInD systems

Through design decisions made on these independerﬁ?wewec" Since these examples do not represent exhaus-

subproblems guided by control heuristics, interactions of su tively the range of the types of triggers and their related

) : : triggering events, Table 4 gives a summary of what can trig-
problems are discovered and these interactions are aggre- : . . .
. ; . er learning and when these triggers occur in relation to
gated into what is referred to as a macrodecision. Th .
S ; o o he knowledge learned and the knowledge transformer in-
objective of a design decision is to minimize a cost evalu-

. . . . . volved in the MLInD systems reviewed.
ation function that favors certain design solutions (e.qg.,
NAND gates are preferred over other gates). The current
hypothesis is updated by the formation of the macrodecib.1. Retrospective triggers
sion, resulting in a new hypothesis about the design searcﬁ . : . .
: : ; etrospective triggers for learning design knowledge can

space. Through this process of hypothesis formation of the .

) . : L ccur at the end of a design process. The sources of knowl-
design search space, information assimilation through each

design decision made, and updating the hypothesis, DONTEdge for_retrospectlvg triggers are past desugns and_thew cor
. . responding past design processes. So, while learning about
learns control knowledge to optimally search the deS|gr[ . o -
he design process may ocdursitu, provisionally or ret-
space. . . . .
rospectively by analyzing the recorded design plan/design
Learning models of physical principles in IDEALIsing  history, learning from past designs is triggered only retro-
hypothesis formation on past designs’ structure-behaviorspectively (i.e., at the end of the design process). Examples
function (SBF) models of physical devices, Bhatta and Goebf product knowledge learned in retrospect were described
(1994) show how behavior-function (BF) models of phys-in Section 3.1.
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Table 3. Knowledge transformers used in various MLinD systems and the related machine learning or other methods

Knowledge transformer MLinD systems involved Machine learning/Other methods Design knowledge represented
Group rationalization/ * BRIDGER * ECOBWEB/EPROTOS « Hierarchical structure of concept/
decomposition subconcept
* CONCEPTOR « COBWEB » Decision tree of rules for Pareto
optimum design
e McLaughlin & Gero « ID3/Pareto ¢ Clusters or archetypes of design
(1987) solution mapped to performance

evaluation space
e Murdoch & Ball (1996)  « Kohonen neural network/GA

Similarity/dissimilarity * BOGART « Derivational analogy « Design plan as a hierarchical goal
comparison structure
*DDIS » Case-based reasoning « Design plan/history
Association/disassociation * NODES » Semantic links in network » Compositional network of concepts

* Numerical network of characteristics

Derivation/randomization * CONCEPTOR « Concept aggregation * Empirical formula among quantitative
attributes. Design patterns among
qualitative attributes

* NETSYN * Modular backpropagation neural network » Bayesigiosteriorprobabilities of
design properties represented as
network of weights in neural
network structure

Generalization/specialization ~ + NODES * Maximal conjunctive generalization (MCG)  « Generalized rules of design concepts
* BOGART/LEAP » Generalization using EBL generalization » Generalized design rules
* DSPL * Knowledge compilation through constraint « Generalized design plan. Constraint
inheritance rules
Abstraction/detailing * PERSPECT « ECOBWEB/DESIGNER » Abstracted empirical equations
* ARGO » Merging edge macrorules into cumulative e« Abstract plan of macrorules
macro by removing leaf rules
* DDIS « |dentify, classify all activated KSARs into  * A global design plan and several
two types of design plans redesign plans
* CDA * Reconstructive derivational analogy « Detailed design plan built bottom-up
Explanation/discovery * DONTE » Hypothesis formation/hypothesis testing « Discovery of macrodecision rule to
reduce search
* IDEAL * Hypothesis formation/hypothesis testing « Discovery of physical principles from

abstract design models

5.2. In situ triggers ing takes placeén situ as the design adaptation processes.
Goel and Stroulia identify three types of diagnosis in de-

In situ trlggers of .Ie.arnlng oceur durmg the de.5|.gn processﬁgn adaptation that could trigger the learning process dur-
when design decisions are made. Design decisions are maIng design:

in relation to the design object and/or design process. These
design decisions may lead to a successful design action or
to a failure. Learning can occur under such design decisions
and actions. Some examplesiositutriggers implemented

in MLinD systems are discussed below.

e The design does not achieve the desired function of
the device. The device fails to achieve the desired func-
tion because of incorrect specifications of one/more of
the components.

Failure in achieving behavioral specification®esign ad- e The design results in undesirable behavior. The un-
aptation is a common practice in conceptual functional de-  desirable behavior is due to the under/overspecifica-
sign. Design adaptation usually occurs in several phases: in  tion of the attribute of the component that influences
adapting a design retrieved from past design cases to satisfy its behavior.
the new behavioral specification, and in diagnosing and re- e The specified structural component in the design has
designing a failed design to achieve the desired behavior.  poor behavior. The component fails because of the over-
Thus, Goel and Stroulia consider the design adaptation task  specification of another component whose behavior has
as learning (Ashok & Stroulia, 1996). This process of learn- an adverse effect on the specified component.
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Table 4. Learning triggers in relation to knowledge learned and knowledge transformer involved

When is learning

Knowledge transformer, K Knowledge learned, P What triggers learning, ., triggered, T;
Group rationalization/decomposition  « Taxonomic knowledge of design concepts * New concept * Retrospective
« Clusters of design configuration map to ¢ Performance trends in new design * Retrospective
performance evaluation space
Similarity/dissimilarity comparison » Knowledge of design plan * New but similar design In sttu
* Knowledge of case-based design plan * New design case In situ
Association/disassociation « Compositional knowledge of design * New design configuration n situ
concepts
Derivation/randomization * Empirical formula among quantitative ~ * New/updating empirical * Retrospective
design attributes relationship(s)
 Design patterns among qualitative * New/updating design patterns * Retrospective
attribute—value pairs
« Posterior probabilities of design properties  « New knowledga pbsterior * Retrospective
probabilities
Generalization/specialization * Generalized design concepts * New concept saved In situe
» Generalized design plans * Module(s) in plan refined In situretrospective
* Generalized design rules * No existing design rules In gitu
» Specialized design constraint knowledge « Constraint violation In situ
Abstraction/detailing « Abstracted empirical equations * Nonexistence of useful empiricale In situfprovisional

equation or insufficient knowledge
of attribute values

 Abstracted design plan by removing * New abstracted design process « Retrospective
leaf nodes from plan

 Abstracted from session control « Past design cases to improve design ¢ Retrospective
knowledge of the following: process of similar design(s)

4 global design plan

¢ related redesign plans « Crucial constraints that triggered * Provisional

4 constraint violations redesign process

« Detailed design plan reconstructed » No similar design plan existed « Provisional
bottom-up

Explanation/discovery « Search control knowledge « Optimal design solution * Provisional
* Models of physical principles « Functional-driven design » Retrospective

They attributed the design failure in the three types of Violation of design expectation§:-he DSPL system with
diagnosis to structural causes. Therefore, while knowledgeonstraint inheritance implemented by Chabot and Brown
of function to structure (F~ S) mapping is useful for new (1994) is an example of situtriggers that occur when de-
conceptual designs that may be learned retrospectivelgign expectations are violated. Whenever design expecta-
knowledge of structure-behavior-function (SBF) models cartion violations occur, constraint inheritance as a form of
be learnedn situduring design adaptation. Each of the threefailure-driven learning is activated. When an inconsistency
different diagnosis tasks requires different schemes fois detected in the evaluation of design expectation rules, the
accessing the internal behaviors that result in the device funcelevant design object knowledge is identified for knowl-
tions. In particular, task (1) requires the use of design funcedge compilation into new constraint surface knowledge
tions as indices into the internal behaviors that result in thehrough the constraint inheritance learning mechanism. The
device functions; task (2) requires indices from the primarynew constraint knowledge then is used to test the value of
behaviors of the device; and task (3) requires the use of stru¢he design attribute for which there is an expectation. The
tural components of the device as indices into the internaaddition of the new constraint knowledge to the existing de-
behaviors in which they play a functional role. KRITIK2's sign constraint knowledge base leads to expectation-failure—
SBF models (Ashok & Stroulia, 1996) support all three kindsdriven learning (Chabot & Brown, 1994).
of indexing schemes. This enables the system to flexibly
access the internal behaviors relevant to the current diagno- Customized viewpointsThe concept of customized view-
sis task and to thereby localize the diagnostic search.  points is an example of learning design knowleduysitu.
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Depending on the design perspective that best suits the de- For example, Table 2 shows clearly the relationship be-
signer’s current problem-solving situation, PERSPECT cariween the type of input knowledge required and the type of
generatein situ multiple forms of implicit experiential design knowledge learned and the reason for learning that
knowledge through generalizations of past design informaknowledge, that is, given a particular type of input knowl-
tion and identifying the most suitable generalization of aedge, what new design knowledge can be learned, and why
past design that supports the curremstomized viewpoints that knowledge is learned. In this manner, Table 2 not only
for the design. exemplifies the answers to the questions of what are/is the
“elements supporting learning,” “availability of knowledge
for learning,” and the “consequences of learning,” but it
shows that it is just as important to state what the dimen-
Control knowledge To explore the design space, DONTE sjons of learning are and also to know and understand the
learns by gathering and assimilating information and genrelationships between Grecu’s and Brown’s dimensions.
eralization during its use. The control knowledge to search Taple 3 shows that the methods of learning in Grecu’s
the design space is learned provisionally in anticipation ofand Brown's dimensions can be categorized into various
reducing the complexity of the search. This is achieved bynowledge transformers, as presented in this paper. These
examining a small portion of the design space and generaknowledge transformers represent the basic types of knowl-
izing and applying the information gained to control the edge change and provide a basis of classifying the various
search of the entire design space. DONTE achieves this biyachine learning methods implemented in MLinD systems.
aggregating primitive fine-grained subproblems into larger Taple 4 not only illustrates examples of what can trigger
macrodecisions when evidence gathered during the desigaarning, but it also classifies these triggers into retrospec-
exploration suggests that these subproblems interact.  tjye, in situ, and provisional triggers to provide answers to

Failed constraints anticipated in redesigDIS uses the e question of “What can trigger learning?” and “When does

blackboard framework to integrate case-based reasoning atfgMing occur?” These questions are not answered in iso-
domain-based reasoning. Of the knowledge modules/sourcédlion, butin the context of what is learned (i.e., the knowl-
in the case-based reasoner, a module cdlddre antici- ~ €dge output) and how it is learned (i.e., the knowledge
pator checks for potential failures (i.e., violation of design transformer involved). . .
constraints) and avoids them in the new design, either by TNhus far, several answers to these basic questions, and
recognizing paths leading to unsatisfactory results or postfUPPOrting documentation for the foundation for machine
ing information about constraints that were critical in a pre-'€@rming in design (MLInD), have been derived from a re-
vious design. When appropriate, DDIS checks for desigrY!€W Of published systems in MLinD. To complete the study,
constraints during the design process. Whenever constraifft€ foundation should be derived and further substantiated
violations are found, DDIS’s failure anticipator marks them PY @nalyzing knowledge change during generic design ac-
as the major constraints to be checked in a new design byvities. This is part of the authors’ ongoing work.

placing them as goals on the blackboard. All other con-

straints are deactivated at this time. This action assures thdt CONCLUSIONS

the constraints most likely to be critical are checked as Soofh, summary, the paper has attempted to provide a founda-

5.3. Provisional triggers

as they become checkable. tion upon which to base the work of machine learning in
design. Five key elements to the learning process have been
6. DISCUSSION presented: input knowledge,f| knowledge transformers

“Dimensions Of(Kt), output knowledge (Q, goals/reason for learning (5

Prompted by Grecu and Brown’s (1996) s ; . .
Machine Learning in Design,” this paper has intended tc®nd riggers of learning (J. Anumber of machine learning

act as a stimulus for discussion and future work. Their pa!n design (MLInD) systems have been reviewed with a view
per raises issues regarding machine learning in design in éﬂ the above elements. From this it can be seen that there is

unstructured manner. These issues relate to “What might b onsiderable work being carried out in MLinD research and

learned?”, “What are the methods of learning?”, and “Whathat the foundation presented in this paper provides a struc-

can trigger learning?”, amongst other issues. This paper iplure upon which to base, analyze, and build on that work.

troduced and provided evidence for a foundation of Iearn-Thus’ in response.to Grecu qnd Brown (1996)’ this paper
ing in design in terms of five elements: input and output Ofpregents a foundation of Ie'arnlng asa I'oglcall and structured
knowledge, knowledge transformers, goals/reasons for learfaSis for the study of machine learning in design and a struc-

ing, and triggers in learning. Although it cannot be claimegture upon which to base fundamental questions (as raised

that the number of MLinD systems reviewed was exhausPY Grécu and Brown) to progress the field.

tive, the foundation presented here shows that issues in ma-
chine learning in design can be studied in a systematic an@EFERENCES
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