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Abstract

This paper presents a formalism for considering the issues of learning in design. A foundation for machine learning in
design (MLinD) is defined so as to provide answers to basic questions on learning in design, such as, “What types of
knowledge can be learnt?”, “How does learning occur?”, and “When does learning occur?”. Five main elements of
MLinD are presented as the input knowledge, knowledge transformers, output knowledge, goals/reasons for learning,
and learning triggers. Using this foundation, published systems in MLinD were reviewed. The systematic review presents
a basis for validating the presented foundation. The paper concludes that there is considerable work to be carried out in
order to fully formalize the foundation of MLinD.
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1. INTRODUCTION

Design experience provides a wealth of knowledge that de-
signers can (re)-use to design better products within a shorter
time-to-market period and at the same time be economi-
cally competitive. The research work in the area of machine
learning has contributed many methods that have been ap-
plied to the acquisition of knowledge in design. This has
been evident from the body of work reported in the field of
machine learning in design (MLinD) (Duffy, 1997). What
is evident from this work is the application of particular ma-
chine learning methods to the acquisition of some specific
design knowledge. In the area of MLinD, key questions
raised by Persidis and Duffy (1991) are now being ad-
dressed (Duffy, 1997):

• Whattype of knowledge is learned?

• How is learning taking place?

• Whenis learning taking place?

Given that there is sufficient evidence from MLinD re-
search in which generalized past design knowledge can be

acquired using certain machine learning methods, there is
now a need for a systematic approach to formalizing learn-
ing in design. Leith (1990) argues strongly for a formalism
to arrive at the state of what “ought to be” in artificial in-
telligence (AI) and computer science rather than what “is”
(i.e., current state of these disciplines) so as to overcome
thead hocbasis of software writing and the inefficient de-
velopment of software systems. Using the same argument
of Leith, given that machine learning in design is a special-
ized application of AI and computer science, there is there-
fore a need to put the study of MLinD research and the
development of the MLinD systems to support designers
on a formal basis.

To answer the questions raised in a structured basis, Sec-
tion 2 presents basic elements of learning and a foundation
for learning using these elements. This foundation is pre-
sented here as a basis for the “dimensions of machine learn-
ing” raised by Grecu and Brown (1996) and similarly by
Persidis and Duffy (1991). Since the research work in MLinD
has resulted in the development of many published systems
in support of knowledge acquisition in design, this founda-
tion has been used to analyze and evaluate these MLinD
systems. The five elements presented here are the input
knowledge, the output knowledge, the knowledge trans-
former, the learning triggers, and the learning goal. Sec-
tion 3 presents the types of design knowledge learned (both
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product knowledge and design process knowledge) given
the input knowledge and the goal of learning as described
in the MLinD systems. Section 4 provides evidence of var-
ious knowledge transformers used to learn design knowl-
edge but implemented in various machine learning methods
and techniques. Evidence of the types of learning triggers
and when learning occurs are described in Section 5. Sec-
tion 6 compares the foundation for machine learning with
“dimensions of machine learning” raised by Grecu and
Brown (1996) and concludes that the paper presents a struc-
tured basis upon which to research and develop the field of
machine learning in design.

2. DEFINING A FOUNDATION
OF DESIGN LEARNING

It is proposed that a systematic approach to the study of
learning design knowledge can be based on analyzing the
knowledge change of design activities. This perspective is
based upon the hypothesis posited by Persidis and Duffy
that learning is inextricably linked to design. In this paper,
learning in design is viewed as a knowledge-gaining activ-
ity associated with the activity of design.

A foundation for learning in design must be able to ad-
dress some of the key questions in learning that were raised
in Section 1. Since learning can be viewed as an activity,
any formalism must invariably consider what knowledge is
input into that activity, what is the output knowledge, and
the knowledge change that transforms the input knowledge
into output knowledge. Knowledge change involves the
transformation of the existing knowledge into some new
knowledge. Since there are many possible ways in which
knowledge can be transformed, it is necessary to define what
kind of knowledge can be learned. For example, given a
past design, one can learn about the composition of the prod-
uct in terms of “part-of” hierarchy, or about the relation-
ships between attributes of components. Further, the learning
activity often will have a specific goal, for example, gain
new knowledge of a product, explore and generalize a par-

ticular domain. It is also necessary to define what triggers
learning and when that trigger can occur.

Given the above, the basic elements of a learning activity
may consist of:

• existing knowledge as input knowledge, Ik;

• knowledge transformers, Kt;

• output knowledge, Ok;

• learning goal or reason, Gl ;

• learning triggers, Tl (Tlw and Tlt !.

These basic elements of learning may be related as shown
in Figure 1.

In this figure, it is suggested that the input knowledge is
transformed into new output knowledge, which then can feed
back into the learning activity as input knowledge for yet
more new knowledge. This output knowledge in itself may
also trigger or act as a reason or goal for a learning activity.

2.1. Elements of a foundation for
machine learning in design

Using the above elements as a basis, we now can map
Persidis and Duffy’s, and Grecu and Brown’s issues and
“dimensions” as shown in Table 1. It can be noted from
Table 1 that Grecu and Brown go into far greater detail than
Persidis and Duffy, possibly reflecting the evolution of our

Fig. 1. Elements of learning.

Table 1. Elements of machine learning in design

Basic elements of learning Persidis and Duffy Grecu and Brown

Ik (input knowledge) • Not explicitly addressed • What are the elements supporting learning?
• Availability of knowledge for learning

K t (knowledge transformer) • How is learning carried out? • Methods of learning
• Local vs. global learning

Ok (output knowledge) • What knowledge is learned? • What might be learned?

Tl (trigger) • What can trigger learning? • What can trigger learning?
• When is learning triggered?

Gl (goal/reason) • Not explicitly addressed • Consequences of learning
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own understanding of the field. Having said this, the ap-
proaches seem complementary and would seem to reflect
the basic elements identified above. Some issues associated
with the above are discussed further.

2.2. Types of design knowledge learned

The types of design knowledge to be learned are dependent
on the activity of the design process, the types of input knowl-
edge, the goal of the learning process, and when learning
takes place. Persidis and Duffy (1991) state five main types
of design-related knowledge: design requirements, design
description, domain knowledge, case histories, and design
management. Failures in design provide an opportunity to
learn about the causes of the failure in order to avoid com-
mitting the same failure again. Knowledge learned from de-
sign failure could be in the form of types of failures and
conflicts (Grecu & Brown, 1996; Vancza, 1991), heuristics
for failure recovery, and conflict resolution (Grecu & Brown,
1996; Vancza, 1991). On the other hand, successful designs
and design processes (Grecu & Brown, 1996; Vancza, 1991)
also provide opportunities for learning about the character-
istics of the successful past designs and goals/plans of de-
sign processes. The review of MLinD systems in Section 3
shows that indeed there are numerous types of design knowl-
edge that can be learned from past designs. It is therefore
reasonable to conclude that there are many types of design
knowledge that can be learned.

2.3. The learning goal

Because of the variety of knowledge that can be learned, it
is sometimes necessary to specify a learning goal. The learn-
ing goal influences what parts of the existing knowledge
are relevant, what knowledge is to be acquired, in what form,
and how the learned knowledge is to be evaluated. Such
goals, as in design, can be hierarchical in nature in that a
specific goal could be a subset of a more general goal. For
example, learning about a particular technology may help
improve the quality of the product or speed up the design
process. Another example of a specific learning goal such
as learning about constraint violation in design may result
in better conflict anticipation and resolution, which in turn
may lead to a better design plan and hence a shorter design
cycle (Leith, 1990). Thus, specific learning goals may be
the stimulus for many of the unforeseen consequences of
learning.

2.4. Types of knowledge change

The design process is the vehicle that designers use to change
the state of the design through the application of scientific
and design knowledge. As the state of the design changes,
there is a corresponding change of knowledge state of the
design. Persidis and Duffy presented three main classifica-

tions under which knowledge change can be considered,
namely, acquisition, modification, and generation:

• Acquisition: the process in which new knowledge, ei-
ther through direct input from the user or derived from
knowledge sources, is received.

• Modification: the process of altering the existing struc-
ture of knowledge through either addition or deletion
of the knowledge component from the structure. The
modified knowledge structure remains the same type.

• Generation: the process of creating completely new
knowledge from existing knowledge.

While knowledge change through modification is explic-
itly described as the addition/deletion of knowledge com-
ponent from the knowledge structure, the several ways in
which knowledge change through generation is achieved are
described below. The different processes by which knowl-
edge change takes place are calledknowledge transform-
ers.In the study of machine learning in design systems, seven
knowledge transformers for knowledge generation and one
knowledge transformer for knowledge modification are iden-
tified. Some of these transformers are similar to those de-
scribed by Michalski’s set of 11 knowledge transmutations
(Michalski, 1993). Of these 11, the knowledge transmuta-
tion of replication/destruction, sorting/unsorting, and se-
lection/generation are not considered here as knowledge
transformers because they are basically processes for reor-
ganizing knowledge bases. There is no learning in the form
of knowledge changeper se.

2.4.1. Knowledge transformers

Because of the nature of design knowledge, which may
exist in symbolic or numerical form, knowledge change
operators or knowledge transformers consist of two types:
the symbolic type and/or the non/subsymbolic type. A
knowledge transformer is an operator that derives a piece
of new knowledge from a given input or an existing piece
of knowledge.

Group rationalization (or clustering)/decomposition (un-
group). Group rationalization involves the grouping of past
designs according to their similarities when considering par-
ticular perspective(s) or criteria (Duffy & Kerr, 1993). The
grouping may be based on single attributes and/or nested
attributes. Decomposition removes the groupings.

Similarity/dissimilarity comparison.Similarity compar-
ison derives new knowledge about a design on the basis
of similarity between the design and similar past design(s).
The similarity comparison is based on analogical inference.
Case-based design is a specific application of learning by
similarity comparison in which the source of past design
knowledge is a set of similar design cases rather than gen-
eralized design rules. The opposite is dissimilarity compar-
ison, which derives new knowledge on the basis of the lack
of similarity between two or more past designs.
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Association/disassociation.Association determines a de-
pendency between given entities or descriptions based on
some logical, causal, or statistical relationships. For exam-
ple, two entities may be related together by a taxonomic
relationship (i.e., “kind-of”) or compositional relationship
(i.e., “part-of”). The opposite is disassociation, which as-
serts a lack of dependency (e.g., “not part-of”).

Derivations (reformulation)/randomization.Derivations
are transformations that derive one piece of knowledge from
another piece of knowledge (based on some dependency be-
tween them). In contrast, randomization transforms one
knowledge segment into another by making random changes.
Because the dependency between knowledge components
can range from logical equivalence to a random relationship,
derivations can be classified on the strength of dependency.

Generalization/specialization.Generalization generates
a description that characterizes all of the designs based on
a conjunction of all of the specializations of that concept.
Typically, the underlying inference is inductive. But gener-
alization also can be deductive, when the more general de-
scription is deductively derived from the more specific one
using domain knowledge or existing knowledge (e.g., as in
explanation-based generalization). Specialization increases
the specificity of the description.

Abstraction/detailing.Abstraction generates a new ver-
sion of the knowledge with less detail than the original
through the use of representation of abstract concepts or op-
erators. As distinct from generalization, the underlying in-
ference is deductive in nature. Detailing is the opposite, in
which the new knowledge is generated with more details.

Explanation/discovery.Explanation derives additional
knowledge based on domain knowledge. Discovery derives
new knowledge without an underlying domain knowledge.

The knowledge transformers described above are not syn-
onymous with the machine learning methods that are used
in machine learning systems. The knowledge transformers
describe the cognitive learning process whereas the ma-
chine learning techniques describe how that process can be
implemented as algorithms. For example, explanation-
based generalization uses generalization and explanation of
domain knowledge to derive new knowledge.

2.5. Learning triggers

Persidis and Duffy (1991) posit the need to identify events
that act as “triggers” for the self-activation of the learning
process. In this paper, it is suggested that these triggers can
be classified into three main categories: in situ, provisional,
and retrospective.

• In situ triggersare activated when there is a need to
acquire new knowledge while the design is under focus
of attention.

• Provisional triggersare activated when there is a fore-
seen event that is envisaged to require additional knowl-
edge. An example of a provisional trigger arises when
there is a need to learn heuristics that may lead to a
reduced search for a design solution. This learning is
to be done in anticipation of or provisionally for a fore-
seen event.

• Retrospective triggersare activated after an event. That
is, learning is triggered by the need to learn from suc-
cessful design(s)/failed design(s) and/or processes in
hindsight.

Grecu and Brown (1996) identify several situations that
could trigger learning. The reasons for learning are numer-
ous but may occur due to the following:

• Novelty driven: when there is a new design problem,
a new technology, a new process, or a new design
requirement.

• Excellence driven: can the design be improved to
achieve better quality and reliability? Can the design
process be more streamlined or time-efficient or re-
source-efficient? Can the design be market-competitive?

• Failure avoidance driven: can failure(s) in the design
be avoided? Can design constraints be overcome?

The above examples serve to illustrate reasons that give
rise to learning and are by no means exhaustive in cover-
age. For specific examples (gleaned from the study of MLinD
systems) of what triggers learning and when learning is trig-
gered, more details are given in Section 5 and Table 3.

2.6. Current work of machine learning in design

There is now considerable effort in supporting computer-
based learning in design. Such work can act as a basis upon
which to discuss the above elements. The examination of
such systems can be broadly classified into two groups:

• systems that acquire knowledge of aproduct(i.e., de-
sign concepts);

• systems that acquire knowledge of thedesign process
(i.e., procedural knowledge and control knowledge).

It is difficult to ascertain the true nature of the goal or rea-
son for an associated MLinD system’s learning activity. Con-
sequently, the examination has concentrated on attempting
to identify:

• the types of design knowledge acquired (Element Ok!
and the associated learning goal (Element Gl !;

• the knowledge change as a result of the learning activ-
ity (Elements Ok/Ik!;

• the knowledge transformers (Element Kt! and the
corresponding machine learning method(s) used in
implementation;
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• what triggers that learning activity and when (Element
Tl !.

3. TYPES OF DESIGN KNOWLEDGE LEARNED

Many MLinD systems have been developed to automate the
learning of design knowledge. The purpose of this section
is to show the variety of design knowledge that has been
acquired through these MLinD systems. For the conve-
nience of description, the types of design knowledge learned
can be categorized into the following:

• product design knowledge;

• design process knowledge.

This categorization is important because it was revealed
through the examination of the MLinD systems that, in most
cases, the learning of meaningful product design knowl-
edge occurs retrospectively. Similarly, certain types of de-
sign knowledge are best learned while the design is in
progress.

3.1. Product design knowledge

Systems such as BRIDGER (Reich, 1993), NODES (Persi-
dis & Duffy, 1991; Duffy et al., 1995), CONCEPTOR (Li,
1994), PERSPECT (Duffy & Duffy, 1996), and NETSYN
(Ivezic & Garrett, 1994) have addressed the issue of learn-
ing product knowledge from past design concepts. The
knowledge learned can be discussed under the headings of:

• composition of the components/subsystems that con-
stitute the product;

• constraints imposed on the attributes due to the physics
of the problem, geometrical and spatial requirements,
life-cycle issues, design requirements, and so on;

• decomposition of the components that constitute the
product;

• performance evaluation knowledge;

• dynamic learning of implicit knowledge.

3.1.1. Learning knowledge of design composition

Knowledge of the composition of past designs serves as
as a useful starting point to initiate the synthesis process of
design problems that have a similar design specification.
For example, BRIDGER was developed primarily for the
synthesis of different concepts of cable-stayed bridges.
NODES also was developed primarily to support concept
modeling operations during the early stages of design (Duffy
et al., 1995).

While BRIDGER expresses the design composition
knowledge as a taxonomic hierarchy (i.e., “kind-of” rela-
tionship), NODES expresses both the taxonomic relation-
ships as well as the compositional (“part-of”) relationships
of a design object. BRIDGER uses the concept formation
capability of ECOBWEB to learn design composition knowl-

edge, and NODES uses maximum conjunctive generaliza-
tion (MCG) to build the generalization of a new concept
into existing concept(s).

The knowledge input into NODES or BRIDGER con-
sists of past design instances or abstractions in terms of tax-
onomic hierarchy (i.e., “kind-of” relationship and/or “part-
of” relationship). Through the process of knowledge change
(i.e., clustering or generalization) the output knowledge will
be a new taxonomic structure updated to reflect the changes
caused by the inclusion of the new design instance.

3.1.2. Learning empirical knowledge of quantitative
and qualitative relationships

The numerical relationships of attributes of design con-
cepts are important in defining the preliminary definition
of the form or structure of the concept. The estimation of
these values has been achieved by scaling or interpolation
(BRIDGER; Reich, 1993), empirical network of associa-
tion (CONCEPTOR; Li, 1994), statistical approximation
(NODES using Designer; Duffy et al., 1995), and neural
networks (NETSYN, Ivezic & Garrett, 1994). Each of these
types of estimation of attribute values based on records of
past design cases is described below.

Although there is in BRIDGER a taxonomic structure gen-
erated from past design concepts in terms of attribute value
pairs, the numerical relationships of these attributes are not
explicitly represented. Therefore, for a given design speci-
fication, BRIDGER derives appropriate values for the attri-
butes through the interpolation of suitable design cases.

In the case of CONCEPTOR, the empirical relationships
of design attributes of a given design domain are repre-
sented as an empirical network. The empirical network cap-
tures both quantitative variables and qualitative variables
as nodes, which can be linked by empirical formulas (for
quantitative variables) or design patterns (for qualitative vari-
ables). The empirical formula represents proportional rela-
tionships among the quantitative variables. Design patterns
capture important associations among qualitative variables
on which the designer should focus his or her attention. Each
node represents a design feature, its default value, and range
value. Collectively, the empirical network of nodes linked
either by empirical formula or design patterns represents the
description attributes of a learned concept.

In NODES, the numerical relationship of attributes of the
design object is described by characteristics and formulas.
Characteristics represent numerical attributes of concepts
and always are associated with a single object. They also
are associated with formulas and together form a constraint
network where the values of characteristics are constrained
by the values of other characteristics appearing in the same
formula.

Formulas represent mathematical equations that allow the
values of characteristics to be calculated from other char-
acteristics. Formulas, like characteristics, also are associ-
ated with objects, but, unlike characteristics, they can be
associated with more than one object.
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3.1.3. Learning knowledge of design constraints
and design expectation

Both design constraints and design expectation play a cru-
cial role in controlling the design process. A design expec-
tation is a designer’s prediction about a design attribute’s
value. Expectations may consist of a default value, a range
of possible values, or a simple relation between design
attribute values. Relationships between key design attributes
and dependent design attributes are expressed as expecta-
tion rules by Chabot and Brown (1994). An expectation rule
may be triggered when a value for a key attribute has been
decided. These expectations and expectation rule(s) are an
important source of design knowledge that can be learned
from past design experiences and past design cases by in-
duction (Chabot & Brown, 1994).

Design constraint knowledge provides the means for de-
tecting design failures (Chabot & Brown, 1994). Although
there are a large number of constraint types, categorizing
them into hard or soft constraints aids in detecting design
failures. Hard constraints are either satisfied or violated. If
a hard constraint is violated, then the design decision be-
comes unacceptable. Values for soft constraints are bounded
by the degree of error tolerance that is acceptable or allow-
able. Therefore, while expectation rules provide values to
progress a design, constraint(s) test the values and detect
any design failure.

Since different constraints and different expectation rules
are called into play during a design process, Chabot and
Brown use the mechanism of constraint inheritance as the
machine learning method of knowledge compilation (Brown,
1991) whereby new knowledge of constraints is incremen-
tally formed or updated.

3.1.4. Learning design decomposition knowledge
Liu and Brown (1992, 1994) posit that decomposition

knowledge can be generated from design object knowledge,
functional knowledge, design cases, design heuristics, gen-
eral problem-solving knowledge, and domain knowledge.
To extract knowledge that is appropriate for a given design
context, Liu and Brown introduce the concept of “decom-
position factors.” Adecomposition factoris a suggestion
about how to partition an entity that may be a design object,
a component, or a set of attributes.

The learning mechanism used is that of knowledge com-
pilation (Brown, 1991). Knowledge compilation is a type
of learning in which existing knowledge is converted into
new forms with the intent to improve problem-solving
efficiency.

The final decomposition knowledge is represented in a
tree structure. Each node of the decomposition tree con-
tains a problem description and a list of possible alternatives,
competing decomposition hypotheses, as well as a set of
links to subproblems, knowledge sources, interaction infor-
mation among subproblems, and other relevant information.

From design object knowledge, Liu and Brown identi-
fied three types of interactions among the components of an

object. The first type of interaction deals with explicit rela-
tionships among the components, while the second type of
interaction arises from the relationships between the object’s
attributes and the components’ attributes. The third type deals
with interactions arising from the intercomponent relations
giving rise to interactions among the subcomponents.

Representing the components and interactions as nodes
and links, respectively, in a graph, several pivotal nodes with
many links converging to them can be identified. Each piv-
otal node plus its connected nodes form a decomposition
factor.

Design cases in which there are specific design prob-
lems, with their associated design solutions, can be another
source for generating decomposition hypotheses. Given a
design problem, a set of relevant design cases can be re-
trieved by using the object’s case index. A suitable case is
selected if every constraint of the current design problem
matches the constraints of a design case to a predetermined
degree; then the design case becomes a candidate for de-
composition factor seed. All of the selected cases are con-
verted into decomposition factors. If a selected case has a
matching quality above some limit, it can be used for gen-
erating decomposition hypotheses.

3.1.5. Learning knowledge for performance evaluation

Performance evaluation of a design in the various stages
of the design process often determines if the design should
be progressed further. But performance evaluation is not an
exact science. Multiple criteria that are conflicting in nature
are used to evaluate the performance of a design or designs.
Current methods of evaluation often are either too simple
or too complex for configuration design decisions (Mur-
doch & Ball, 1996). Several researchers (McLaughlin &
Gero, 1987; Murdoch & Ball, 1996) have posited that known
configuration solutions in terms of their topological or geo-
metric layouts, components, and materials can be analyzed
and evaluated in terms of their performance so that good
aspects of these designs may be reused and poor ones
changed or discarded. That is, knowledge of performance
evaluation can be learned from past design configurations.
Several machine learning approaches (McLaughlin & Gero,
1987; Murdoch & Ball, 1996) have been developed to elicit
the acquisition of design rules that map from the design so-
lution space (i.e., structure or form) to the design behavior
space.

McLaughlin and Gero (1987) formalize the relationship
between decisions about values of design variables and their
consequent performances as a mapping between a decision
space and a performance space. Design variables can be rep-
resented as axes in a design (or decision) space, where each
point in the space will represent a particular combination of
design decisions regarding the design variables. By identi-
fying the bestfeasible point in the performance space and
mapping back to the decision space, the variables and their
values that resulted in this performance can be identified.
For performance space associated with multiple criteria,
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Pareto optimization is used to isolate the set of best solu-
tions in terms of the criteria defining the performance space.

The knowledge acquired either through the Pareto/ID3
(McLaughlin & Gero, 1987) or GA/Kohonen Feature Map
(Murdoch & Ball, 1996) is:

• Knowledge of the mapping between performance space
(described by evaluation criteria) and the design de-
cision space (described by design variables and their
values).

3.1.6. Learning function knowledge
and the causal models

Bhatta and Goel (1996) posit that generic teleological
mechanisms (GTMs) are one type of design abstraction that
can be learned from past designs through cross-domain anal-
ogies. Cross-domain analogy involves the recognition of sim-
ilarity between two problems from two different domains
and determining what knowledge to transfer and how to
transfer between them. GTMs take as input the functions of
a desired design and a known design and suggest patterned
modifications to the structure of the known design that would
result in the desired design.

3.1.7. Dynamic learning of implicit design knowledge

So far, the systems that use machine learning methods
to acquire the design object knowledge for a given domain
have been based on a fixed viewpoint that is predetermined
by the knowledge engineer. Since it is not possible to com-
pletely predict designers’ knowledge requirements, because
each designer has different knowledge needs at different
times and for different reasons, Kerr (1993) presents a new
approach to utilize experiential knowledge calledcustom-
ized viewpoint.

The key concept behind this flexible approach to knowl-
edge utilization is that it generalizes experiential knowl-
edge directly from specific experiences, according to
designers’ knowledge needs, and subsequently utilizes this
knowledge in design. To illustrate the concept, Kerr devel-
oped, tested, and evaluated the utility of the customized view-
point approach within the realm of numerical design.
PERSPECT is supported by four subsystems, namely, DE-
SIGNER, ECOBWEB, S-PLUS, and GRAPHER (Duffy &
Duffy, 1996; Kerr, 1993).

PERSPECT uses ECOBWEB, a concept formation sys-
tem to generate and organize the generalization of a set of
past designs (described by attributes and values) into a con-
ceptual hierarchy. It classifies each example (past design)
and incorporates it permanently into a hierarchy by incre-
mentally changing the hierarchy’s structure. The knowl-
edge acquired by the approach is:

• Multiple forms of experiential knowledge of a domain
(described by name, meaning, and units of attributes)
in terms of empirical equations, numerical generaliza-
tion, and heuristics. For example, empirical equations

quantify the relationship between these attributes to-
gether with a measure of the unreliability of these
equations.

• Multiple forms of implicit experiential knowledge
through generalizations of past design information and
identifying the most suitable generalization of past de-
sign that supports thecustomized viewpointsfor a new
design.

3.2. Design process knowledge

Learning about the design process provides just as an im-
portant wealth of knowledge as learning from past designs.
A design process usually consists of design decisions made
that results in design actions taken to progress the design.
Design actions clearly interact with the evolving design.
Learning about the design process invariably involves learn-
ing about the decisions made, the rationale for the decisions
made, and the effect of that decision on the evolving de-
sign. Certain phases of the design process are exploratory
in nature, and the use of control knowledge to manage the
exploration is important.

Systems that capture design rationale (Gruber et al., 1991)
and design history thus provide vital sources of knowledge
for learning about the design process. While capturing de-
sign rationale usually involves recording successful design
decisions, the design history records both successful and
failed decision lines. Both successful decisions and failed
decision lines are objects of learning about the process.

Knowledge of the design process can be captured in the
form of design plans or as a hierarchy of activations (con-
dition and action pairs) on the blackboard of a blackboard
system (Erman et al., 1980; Hayes-Roth, 1985). In artificial
intelligence (AI) parlance, a sequence of dependent actions
is called aplan.As such, systems such as ADAM (Knapp &
Parker, 1991), BOGART (Mostow, 1989), ARGO (Huhns
& Acosta,1992), and DONTE (Tong, 1992) have used the
AI approach of planning to describe and capture the design
process, whereas only DDIS (Wang & Howard, 1994) has
used the blackboard concept. Design plans usually do not
capture failed lines of design actions, whereas the black-
board approach usually captures both the successful as well
as the failed design actions, resulting in capturing the de-
sign history.

If the design plan is expanded to lower levels of abstrac-
tion, it also defines the hierarchical decomposition of the
abstract actions into the primitive actions, the outcomes of
which change the states of the evolving design. The evolv-
ing design is expressed initially in terms of functional re-
quirements and at its lowest level of abstraction as design
objects that collectively synthesize into a design configura-
tion or structure. The design plan therefore captures not only
the design history, design decisions (i.e., design intent and
alternatives and rationale), and design strategies but also de-
sign object knowledge.
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The knowledge change of design plans can be accom-
plished by the acquisition of new design plans, modifica-
tions of existing plans through design re-use, and generation
of new plans or generalized plans from existing plans at the
end of one or more similar design processes. The review of
systems such as BOGART, ARGO, DONTE, CDA, and
DDIS provides evidence of such knowledge change.

3.2.1. Acquiring design plans

A knowledge change in a design plan can be learned
through the process of acquisition. This simply involves be-
ing told by the designer or recording the series of actions
taken by the design, by inferring the design plan from a pre-
vious design case or solution (Duffy, 1997).

Both BOGART and ARGO record user inputs as a means
of acquiring new plans. BOGART uses VEXED to record
successive design steps in a tree-like design plan that con-
sists of nodes representing design modules. Each module
can be decomposed or refined into submodules by a catalog
of “if-then” refinement rules provided by VEXED. If
VEXED lacks any of these rules, it will learn the manual
decomposition step by generalizing that step into a new rule.
This learning facility within VEXED is provided by LEAP
(Learning Apprentice).

ARGO acquires a plan as it solves a problem and is rep-
resented using an acyclic graph of dependencies among plan
steps (instantiated rules). If one plan step adds an assertion
that satisfies the condition part of a rule, the second step
becomes dependent on the first. The dependency graph may
contain independently solvable subproblems or dependent
subproblems with justifications maintained by the truth main-
tenance system.

In ARGO, the design plans are represented as schemas of
corresponding preconditions and postconditions that are rep-
resented as a database of assertions stored as slots of frames
in a truth maintenance system. A module is represented as
a collection of assertions describing its specification, com-
ponents, interconnections, and so forth, each with a belief
status of IN or OUT supported by a set of justifications.
The OUT status is caused by actions that fail, and the cor-
responding rule instances are not included in the depen-
dency graph for representing the design plan. Therefore,
ARGO does not learn plans that incorporate failed lines of
reasoning.

3.2.2. Acquiring case-dependent design plans

DDIS integrates both domain-based reasoning and case-
based reasoning in its strategy for solving design problems.
It uses case-dependent knowledge that it acquires from cur-
rent design session(s) to supplement its domain-independent
knowledge for future design(s) or redesign(s). DDIS there-
fore records all design actions as knowledge source activa-
tion records (KSARs) and the design history (a sequence of
executed KSs and their bindings) on its design blackboard.
By analyzing these records, DDIS abstracts case-dependent

plans and goals. These plans and goals can be posted di-
rectly on the control blackboard by case-dependent control
actions during subsequent design sessions. These case-
dependent actions compete with case-independent knowl-
edge sources at every design cycle to allow case-based
reasoning to influence domain-based reasoning, so that past
design actions leading to dead-ends or failures are avoided.

DDIS therefore generates case-dependent design knowl-
edge after the completion of the design session. The knowl-
edge generated consists of the following:

• control knowledge of a particular session is also ab-
stracted to a global design plan and several redesign
plans so that they can be used separately in a flexible
manner according to new situations encountered;

• knowledge of constraint violations that can be applied
to new cases in order to focus early on critical con-
straints that are most likely to cause problems.

3.2.3. Generalized design plans

BOGART, ARGO, and DDIS also generate generalized
plans from several plans or by abstracting new plans. The
details of how the generalized plans are generated through
various knowledge transformers are given in Section 4.

3.3. Summary of the types of knowledge learned

Table 2 gives a summary of the various types of design
knowledge that can be learned from the MLinD systems.
The table shows the knowledge input Ik, the product/process
knowledge learned Ok, and the reason for learning that
knowledge, Gl .

1

4. KNOWLEDGE TRANSFORMERS
IN MLinD SYSTEMS

In this section, the purpose is to show the evidence of the
knowledge transformers considered in Section 2 that MLinD
systems use to transform input knowledge into new or mod-
ified design knowledge. Although these knowledge trans-
formations are implemented in terms of various machine
learning methods (either symbolic or subsymbolic), it is
the nature of the characteristics of each type of knowledge
transformation that makes their identification within the
MLinD systems possible. Each machine learning method
used may be either symbolic or subsymbolic in nature, de-
pending on the nature of the representation of the input/
output knowledge. In describing the various knowledge
transformers, no distinction is made as to whether the knowl-
edge transformed is product design knowledge or design pro-
cess knowledge.

1This is usually inferred from the context of the design problem
described.
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4.1. Group rationalization (or clustering)/
decomposition (ungroup)

BRIDGER and CONCEPTOR are examples of machine
learning systems that learn design concepts using the knowl-
edge transformer of group rationalization or clustering. While
CONCEPTOR uses the concept clustering system called
COBWEB, BRIDGER uses ECOBWEB (Reich, 1993),
which is an extension of COBWEB. Both machine learning
systems for concept formation generate design concepts from
the characteristics of similar past designs. Using past bridge
designs as training examples, each system generates hierar-
chical classification structures that can be used to assist in
the synthesis of similar bridge designs.

CONCEPTOR not only learns design concepts from past
designs through the knowledge transformers of clustering
(or concept aggregation—a term used in CONCEPTOR),
it also derives numerical relationships (or concept char-
acterization in CONCEPTOR’s terminology) among the
quantitative design attributes of a concept. Derivation as a
knowledge transformer is described in Section 4.4.

COBWEB/ECOBWEB.To build the hierarchical struc-
ture, COBWEB/ECOBWEB integrates the processes of clas-
sifying examples and incorporating them into a hierarchy.

It employs five operators to determine how best to incorpo-
rate an example into the hierarchy. Each resulting partition
(classification) is evaluated using a utility function to deter-
mine the category utility (Gluck & Corter, 1985), which is
a measure that quantifies the similarity between members
of a partition. It selects the classification that results in the
highest category utility value, incorporates the example per-
manently into thehierarchy,andgenerates theappropriatecon-
ceptual description that suits the new incorporated example.
Each partition is described as a conjunction of attribute–
value pairs, and each partition has a probability to indicate its
frequency of occurrence in the training examples. As a re-
sult, a hierarchy represents only one concept, while the nodes
in the hierarchy represent subsets of the concept.

Hence, in learning taxonomic-type design concept(s) from
past designs, the knowledge change involved is the cluster-
ing of past designs into a hierarchical structure of concepts,
each node in the hierarchy representing subsets of a main
concept. Knowledge of the design artefact such as function-
ality, structure, or behavior is not explicitly represented. The
knowledge of the artefact’s decomposition structure or com-
posite structure in terms of “part-of” links is not reflected
in BRIDGER’s/CONCEPTOR’s classification hierarchy
structure.

Table 2. Relationships between input knowledge, output knowledge, and learning goal

Input knowledge Ik Output knowledge Ok Learning goal Gl

Instance(s) of past design(s) together
with existing taxonomic or
compositional knowledge

• Taxonomic knowledge of design concepts
(e.g., BRIDGER)

• Compositional knowledge of design concepts
(e.g., NODES)

• Expedite synthesis of preliminary design
concepts

Records of past designs in terms of
attributes and attribute values

• Empirical knowledge of quantitative
information (e.g., CONCEPTOR, NODES)

• Design patterns of qualitative relationships
(e.g., CONCEPTOR, NODES)

• Expedite preliminary definition of form
and structure of design concept

Knowledge of current design
constraints

• Knowledge of new/updated design constraints
(e.g., Chabot & Brown, 1994)

• Streamline design process by detecting
and avoiding design failure

Records of failed constraints • Knowledge of anticipated crucial constraints
(e.g., DDIS)

• By checking crucial constraints early in
the design, leading to shorter design cycle

Past design cases of design problems
and corresponding solutions

• Design decomposition knowledge in terms of
decomposition factors (e.g., Liu & Brown, 1992)

• Streamline design process by focusing on
interrelated systems and/or components

Past design configurations and
performance evaluation criteria

• Knowledge of mapping between performance
evaluation space and design decision space
(e.g., McLauglin & Gero, 1987;
Murdoch & Ball, 1996)

• Excellence driven to achieve better design

Past design concepts described by
attributes and values

• Multiple forms of explicit design knowledge
(e.g., PERSPECT)

• Multiple forms of implicit design knowledge
(e.g., PERSPECT)

• Excellence driven by utilizing knowledge
from multiple sources

Records of design actions described
by preconditions and postconditions

• Abstracted design plan (e.g., ARGO)
• Case-dependent design plan (e.g., DDIS)

• Streamline design process by replaying a
similar plan
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Another example where the knowledge transformer of
clustering is used is in the context of learning design per-
formance evaluation knowledge. The design solution space
has to be categorized into different classes of solutions for
the purpose of mapping them with the performance evalu-
ation space. To elicit knowledge for performance evalua-
tion, meaningful mappings between the decision space and
the performance space modeled must be established. While
McLaughlin and Gero (1987) concentrate on the solutions
near the Pareto boundary as sources of knowledge in the
evaluation space, Murdoch and Ball (1996) suggest that the
entire solution set, from both the design space and the eval-
uation space, represents valuable design information that
must be analyzed for effective reuse. The entire evaluation
space and the design spaces must be analyzed to identify
different classes of solutions and trends in design practice.
Because of different areas of the design solution space and
the performance space considered for mapping, McLaugh-
lin and Gero (1987) chose ID3 to distinguish solutions that
are Pareto-optimal (i.e., near the Pareto boundary) and those
that are not, while Murdoch and Ball (1996) chose the clus-
tering capability of the self-organizing neural network called
the Kohonen Feature Map to categorize the entire design
solution space.

ID3. The induction algorithm ID3 is used as a means of
inferring general statements about the nature of solutions
that exhibit Pareto optimal performance in terms of a set of
performance criteria. The positive example set consists only
of decision and performance data of solutions that are Pareto-
optimal in terms of the chosen criteria. The negative exam-
ple set is generated by combinations of design decisions that
are inferior in performance. The heuristic rules that best rep-
resent the concept to be learned are those with the most pos-
itive examples and the least negative examples.

Kohonen Feature Map.The Kohonen Feature Map is a
neural network that can learn clustering patterns unsuper-
vised. That is, the mapping between criteria in the perfor-
mance evaluation space and the configuration parameters
(i.e., component and materials) in the design space can be
clustered without precategorization of the design space.

Each solution consists of a set of parameterized compo-
nents that can be applied as a training example to the net-
work. The network uses an unsupervised learning algorithm
to generate a mapping between the high-dimensional de-
sign space of component parameters and the neurons in
the network. The map generated provides a topological
(i.e., nearest neighbor) relationship among the component
parameters. The network topology then can be inspected
to identify clusters or archetypes that span the original set
of design solutions. By decoding the nodes within each
cluster back to the performance evaluation space, a map-
ping between the two spaces is achieved. The archetype
solutions then are analyzed to identify the characteristics

of configurations that contribute to high or low technical
merit.2

4.2. Similarity/dissimilarity comparison

Knowledge change of a design plan through similarity com-
parison is made possible if there exists an original target
design plan. The machine learning method used is learning
by analogy, which involves a transfer of information/knowl-
edge from a base domain/plan to a target domain/modified
plan.

Having acquired the history of design decisions made in
a previous design, BOGART (Mostow, 1989; Mostow
et al., 1992) uses the derivational analogy method by Car-
bonell (1983, 1986) to change the design plan by reasoning
from the previous plan. The derivational analogy method
represents a problem-solving plan as a hierarchical goal struc-
ture, showing how and why each goal was decomposed into
subgoals. It solves a new problem by replaying this plan
top-down. When the subplan for a subgoal fails, the plan is
modified by solving that subgoal from the user input of a
new solution. By this process of similarity/dissimilarity com-
parison, a new design plan is constructed.

4.3. Association/disassociation

NODES learns/builds a model of the conceptual design
linked by a compositional network of concepts through “part-
of” and “kind-of” associations and a numerical network of
characteristics through association between objects and for-
mulas. In the compositional network the nodes denote ob-
jects or assemblies, and the arcs denote the directed relation
(or association) “part-of” between two nodes. In the numer-
ical network, nodes represent the characteristics of objects
or formulas, and arcs represent the link or association be-
tween two nodes, one of which is a characteristic and the
other of which is a formula in which the characteristic ap-
pears (Duffy & Duffy, 1996).

4.4. Derivation/randomization

The concept characterization phase of CONCEPTOR is an
example of deriving new knowledge based on some depen-
dency between them. After concept aggregation, CONCEP-
TOR derives two types of relationships within a concept:
empirical formulas among quantitative design attributes and
design patterns among qualitative attribute–value pairs that
frequently appeared in past examples.

2Technical merit combines in one generic measure of design merit three
fundamental criteria: performance (duty index), reliability (reliability in-
dex), and economy (cost).
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For some design problems there is a need to apply the
probability estimation function to acquire the probability es-
timate of each value of each unassigned design property (e.g.,
estimates of loading, the material behavioral properties are
statistical in nature).

Ivezic and Garrett (1994) developed a system called
NETSYN to learn the Bayesiana posteriori probabili-
ties of design properties. NETSYN uses the feed-forward
backpropagation neural network as the machine learning
technique to acquire and represent the probability estima-
tion function. The probability estimation function is ac-
quired through inductive learning using past designs to
train the neural network to estimate the desired probabili-
ties. The trained network estimates Bayesiana posteriori
probabilities.

To use conventional classifiers, one has to estimate the
conditional probabilitiesP~D6Hi ! for each design property
and thea priori class probabilities. The main difficulty lies
in the elicitation of conditional probabilitiesP~D6Hi ! that
reflect the actual design knowledge. This is estimated by
assuming some idealized probability distribution (e.g.,
Gaussian distribution). The neural network approach esti-
mates the Bayesian probabilities in a direct way, offering an
approach where prior assumptions on probability distribu-
tions need not be made.

The computational model estimates the probability for
each value of each property being used in a given design
context. Each design context involves several design prop-
erties for which values have to be assigned. Therefore, the
construction of NETSYN architecture is modular, that is,
for each design property a neural network structure is as-
signed to act as a probability estimation function for that
property.

4.5. Generalization/specialization

Knowledge derived through generalization has a greater
problem-solving scope. This is because generalized rules or
knowledge generally can be applied to a wider range of prob-
lems for a given domain or complex problem. Different types
of knowledge related to the design product/process can be
derived through the process of generalization. For example,
NODES enriches its design knowledge base, called thecon-
cept library, by progressively accumulating solutions of
problems defined within a particular domain. It uses gener-
alization as a knowledge transformer so that new concepts
are reflected in all of the concepts that are generalizations
of that concept. By integrating with the DESIGNER sys-
tem, numerical aspects of the concept (i.e., characteristics
and associated formulas) can be analyzed. Both BOGART
(Mostow, 1989) and ARGO (Huhns & Acosta, 1992) ac-
quire generalized design plans from several plan instances
or by abstracting new plans. Design actions interact with
the evolving design. The interaction between design action
and the design could be generalized into useful design rules.

Generalized design concepts.NODES generalizes knowl-
edge from the most comprehensive concepts within a con-
cept library to the less specific. Numerical parameter ranges
and compositional knowledge are generalized to all of the
associated superclasses to ensure that there is no contradic-
tion between a particular concept and its specializations. The
generalization mechanism that is responsible for the updat-
ing of knowledge is invoked automatically whenever a new
concept is saved in the concept library.

When a design has been completed, the evolved model in
NODES is used to increase its knowledge by acquiring the
relevant knowledge of the new design. The mechanism in-
volved is the decomposition of the design into its constitu-
ent concepts (or specializations), along with appropriate
constituent and connective relations, and merging each con-
cept with its corresponding library.

NODES uses a machine learning technique calledmaxi-
mal conjunctive generalization(MCG) (Dietterich &
Michalski, 1983). MCG ensures that no item of knowledge
is associated with a concept unless it is associated with all
of the concepts that are a specialization of that concept. In
terms of set theory, this means that the set of items of knowl-
edge associated with a concept is the intersection of the sets
associated with the specialization of that concept.

Generalized design plans.BOGART uses VEXED’s abil-
ity (Steinberg, 1992) to interactively record decisions in terms
of general rules that can be easily replayed in a new con-
text, rather than specific operations that cannot be general-
ized. In BOGART, a design plan contains a node for each
module. When the module is refined, the node is annotated
with the name of the decomposition rule and the values of
its parameters, and connected to a new child node for each
submodule.

Generalized design rules.BOGART uses LEAP (Mitch-
ell et al., 1990) to learn new design object knowledge. In
the domain of circuit design, the training example consists
of a description of the function to be implemented, a de-
scription of the known characteristics of the input signals,
and a circuit provided by the user to implement the given
function for the given input signals. LEAP generalizes the
specific example into a new refinement rule. By using a vari-
ant of explanation-based learning (calledverification-based
learning), LEAP computes a refinement rule precondition
(i.e., the left-hand side) by using its theory of circuits to
analyze the single training example. LEAP explains (veri-
fies) for itself that the circuit does in fact work. It general-
izes from the example by retaining only those features of
the signals that characterized this class of input signal. LEAP
generalizes the right-hand side by verifying that the circuit
correctly implements the desired function. The verification
involves determining the general class of circuits and func-
tional specifications to which the same verification steps will
apply.
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Specialized (compiled) design constraint knowledge.De-
sign constraint knowledge is the primary method of detect-
ing design failure (Chabot & Brown, 1994). Past design
knowledge can be expressed as design expectation rules that
relate the key design attribute with the dependent design
attributes. When the key design attribute’s value is decided,
the design expectation rule is triggered. This results in the
numerical or symbolic computation of the expected values
of dependent design attributes. The expected values of ei-
ther type (expected value range or expected symbolic value)
are compared with the corresponding design attribute val-
ues. Anexpectation violation(Chabot & Brown, 1994) oc-
curs when an inconsistency is noticed between the two sets
of values, resulting in the creation of a DSPL3 expectation
violation structure. The information in the expectation vio-
lation structure is used by the Generic Object Knowledge
Base (GOKB) Reasoner to transform the relevant constrain-
ing knowledge in the GOKB into a DSPL constraint. The
knowledge compilation process consists of four sequential
subprocesses of Reasoner, Transformer, Inheritor, and Ex-
ecutor. The Reasoner analyzes the role descriptors of the
dependent (target) attribute into either potential numeric val-
ues or a member of a list of symbolic values and the struc-
tural descriptors of the design attributes. Constraints are
inherited from the GOKB when a relevant explanation has
been found by the Reasoner. The Transformer component
supervises the transformation of the relevant GOKB knowl-
edge into a DSPL constraint structure. The newly inherited
constraint is tested by the Executor component. A “success-
ful” test ensures that the new design attribute is valid and
the newly inherited constraint knowledge is learned as a
DSPL entity for future use.

Chabot and Brown therefore view constraint inheritance
as a form of failure-driven learning that transforms a less
efficient generalized deep object knowledge into surface
knowledge that is highly specialized, tuned, and effective
for the given design problem.

4.6. Abstraction/detailing

Abstraction in empirical equations.Abstraction in em-
pirical equations may become necessary in the event that
no useful empirical equations exist or because not enough
attribute values are known. PERSPECT can be used to es-
timate the values of the unknown attributes. Using their own
or PERSPECT’s knowledge of design attribute depen-
dency, designers using PERSPECT can define a perspec-
tive consisting of unknown attributes and related attributes,
generate a viewpoint of experiential knowledge that can be
used to find a past design or group of designs similar to the
current design, and use associated similar attributes as val-
ues for the uninstantiated attributes in the current design.

If the domain model is too complex (i.e., described by
too many empirical equations), designers can delete un-
wanted variables from empirical equations to generate sim-
pler equations, which then can be used to estimate values of
the design model. PERSPECT achieves this capability by
the process ofabstraction.Abstractions of empirical equa-
tions mean that dependent attributes can be assigned with
fewer required attributes. DESIGNER can be used to deter-
mine the least influential input variable of the equation and
suggest the variable as most suitable for deleting from the
empirical equation.

Design plan abstraction.Both ARGO and DDIS use the
knowledge transformation of abstraction to generate design
plans. In ARGO, this task is accomplished by computing
macrorules for increasingly abstract versions of the plan and
inserting these rules into a partial order according to some
abstraction relation. Macrorules, consisting of relevant pre-
conditions and postconditions, are computed for each plan
and stored in a partial order according to an abstraction
scheme. These macrorules are built by compiling through
the instances rules of the plan using a variant of explanation-
based generalization (EBG) (Mitchell et al., 1986; DeJong
& Mooney, 1986). The abstraction is accomplished by in-
crementally merging each set of edge macrorules into a set
of cumulative macrorules for previously merged rules. The
plan abstraction scheme consists of deleting all of its leaf
rules that have no outgoing dependency edges, since these
leaf rules are those that deal with design details.

At the end of each design session, DDIS abstracts the con-
trol knowledge recorded on the control blackboard to one glo-
bal design plan and several redesign plans. The processes the
DDIS uses to abstract design plans are as follows:

• All knowledge source activation records (KSARs) that
modified the solution blackboard are identified and un-
necessary design steps that led to unsuccessful alter-
natives or that did not contribute directly to the design
process are filtered or removed.

• For each identified major action (KSAR), a case-
dependent goal is created to prefer the same knowl-
edge source or same type of action in the future.

• The major design actions are classified into design and
redesign actions. Design actions are those that lead di-
rectly to the eventual solution. Redesign actions are
those that are executed when a constraint violation is
present on the blackboard. The goals corresponding to
design actions are grouped into the design plan, while
the redesign goals are grouped into redesign plans cor-
responding to each backtracking episode that resulted
from constraint violations.

• The intentions of a global plan and case-dependent re-
design plan are stated. The intention of a global plan is
to generate design values for all of the design attributes
and to satisfy all of the applicable constraints of the
design. The intention of a case-dependent redesign plan

3Design Specialists and Plans Language (DSPL) is a domain-
independent expert system building language for expressing routine de-
sign knowledge.
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is to satisfy all of the unsatisfied constraints that trig-
gered the redesign process.

• The critical constraints that were violated and caused
backtracking are recorded so that they can be consid-
ered early in future designs.

Detailing to reconstruct design history.Unlike BOG-
ART and ARGO, which rely on records of past design de-
cisions in the form of a design plan, CDA first reconstructs
from a similar solution a design plan using predefined rules
(Britt & Glagowski, 1996). So while BOGART uses a der-
ivational analogy to solve a new design problem, CDA uses
a reconstructive derivational analogy (RDA) algorithm to
automatically reconstruct design plan(s) from a large col-
lection of past working design(s). Using the knowledge base
of circuit design domain rules and information about the
new circuit problem, CDA’s reconstruction expert finds ap-
plicable rules, and selects and applies the preferred rule to
the current circuit, adding design components each time un-
til the final circuit meets the design requirement. In this pro-
cess of detailing CDA reconstructs the design plan and
acquires the rules for the composition of the design.

4.7. Explanation/discovery

DONTE illustrates the learning of control knowledge to ex-
plore the design space through the process of discovery about
the design space. Through the process of discovery, IDEAL
(Bhatta & Goel, 1994) demonstrates learning physical prin-
ciples of a “concept” description from examples without
knowing the target concepta priori. The process of discov-
ery is generally considered to consist of two distinct phases:
hypothesis formation and hypothesis testing.

Learning design control knowledge in DONTE.The dis-
covery learning task is initiated by hypothesis formation in
which a current hypothesis on the design space is represented
as a set of subproblems that are presumed to be independent.
Through design decisions made on these independent
subproblems guided by control heuristics, interactions of sub-
problems are discovered and these interactions are aggre-
gated into what is referred to as a macrodecision. The
objective of a design decision is to minimize a cost evalu-
ation function that favors certain design solutions (e.g.,
NAND gates are preferred over other gates). The current
hypothesis is updated by the formation of the macrodeci-
sion, resulting in a new hypothesis about the design search
space. Through this process of hypothesis formation of the
design search space, information assimilation through each
design decision made, and updating the hypothesis, DONTE
learns control knowledge to optimally search the design
space.

Learning models of physical principles in IDEAL.Using
hypothesis formation on past designs’ structure-behavior-
function (SBF) models of physical devices, Bhatta and Goel
(1994) show how behavior-function (BF) models of phys-

ical principles can be acquired for future use in design. Dis-
covering physical principles from abstract design models
of physical devices is implemented as a learning component
of IDEAL (Integrated DEsign by Analogy and Learning).

The models of specific devices (SBF models) provide both
the content and constraints for learning the models of phys-
ical principles (BF models) by incremental generalization
over design experiences. In particular, Bhatta and Goel show
that the function of a device determines what to generalize
from its SBF model, the SBF model suggests how far to
generalize, and the topology of functions indicates what
method to use for generalization. By using content and con-
straints of the model, IDEAL is able to discover physical
principles using fewer examples.

Table 3 gives a classification of MLinD systems in terms
of the knowledge transformers used to generate new design
knowledge and implementation of that knowledge change
through the machine learning methods supplemented by other
methods (e.g., Pareto optimization), which results in cer-
tain types of knowledge structures.

5. TYPES OF TRIGGERS FOR
MACHINE LEARNING

The purpose of this section is to show evidence of what can
trigger learning and when that trigger is likely to occur.
Knowing what these triggers are and when these triggers
initiate the learning process are important questions that must
be answered if machine learning capability is to be incor-
porated into design support systems. To discuss these trig-
gers by themselves and not relate them to the context of the
knowledge learned and the knowledge transformer in-
volved would not show the relationship between these ele-
ments of learning. Sections 5.1 to 5.3 give some examples
of learning design knowledge under different types of trig-
gers: namely, the retrospective,in situ, and provisional trig-
gers that are implemented/implied in the MLinD systems
reviewed. Since these examples do not represent exhaus-
tively the range of the types of triggers and their related
triggering events, Table 4 gives a summary of what can trig-
ger learning and when these triggers occur in relation to
the knowledge learned and the knowledge transformer in-
volved in the MLinD systems reviewed.

5.1. Retrospective triggers

Retrospective triggers for learning design knowledge can
occur at the end of a design process. The sources of knowl-
edge for retrospective triggers are past designs and their cor-
responding past design processes. So, while learning about
the design process may occurin situ, provisionally or ret-
rospectively by analyzing the recorded design plan/design
history, learning from past designs is triggered only retro-
spectively (i.e., at the end of the design process). Examples
of product knowledge learned in retrospect were described
in Section 3.1.
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5.2. In situ triggers

In situ triggers of learning occur during the design process,
when design decisions are made. Design decisions are made
in relation to the design object and/or design process. These
design decisions may lead to a successful design action or
to a failure. Learning can occur under such design decisions
and actions. Some examples ofin situ triggers implemented
in MLinD systems are discussed below.

Failure in achieving behavioral specifications.Design ad-
aptation is a common practice in conceptual functional de-
sign. Design adaptation usually occurs in several phases: in
adapting a design retrieved from past design cases to satisfy
the new behavioral specification, and in diagnosing and re-
designing a failed design to achieve the desired behavior.
Thus, Goel and Stroulia consider the design adaptation task
as learning (Ashok & Stroulia, 1996). This process of learn-

ing takes placein situ as the design adaptation processes.
Goel and Stroulia identify three types of diagnosis in de-
sign adaptation that could trigger the learning process dur-
ing design:

• The design does not achieve the desired function of
the device. The device fails to achieve the desired func-
tion because of incorrect specifications of one/more of
the components.

• The design results in undesirable behavior. The un-
desirable behavior is due to the under/overspecifica-
tion of the attribute of the component that influences
its behavior.

• The specified structural component in the design has
poor behavior. The component fails because of the over-
specification of another component whose behavior has
an adverse effect on the specified component.

Table 3. Knowledge transformers used in various MLinD systems and the related machine learning or other methods

Knowledge transformer MLinD systems involved Machine learning/Other methods Design knowledge represented

Group rationalization/
decomposition

• BRIDGER • ECOBWEB/EPROTOS • Hierarchical structure of concept/
subconcept

• CONCEPTOR • COBWEB • Decision tree of rules for Pareto
optimum design

• McLaughlin & Gero
(1987)

• ID3/Pareto • Clusters or archetypes of design
solution mapped to performance
evaluation space

• Murdoch & Ball (1996) • Kohonen neural network/GA

Similarity/dissimilarity
comparison

• BOGART • Derivational analogy • Design plan as a hierarchical goal
structure

• DDIS • Case-based reasoning • Design plan/history

Association/disassociation • NODES • Semantic links in network • Compositional network of concepts
• Numerical network of characteristics

Derivation/randomization • CONCEPTOR • Concept aggregation • Empirical formula among quantitative
attributes. Design patterns among
qualitative attributes

• NETSYN • Modular backpropagation neural network • Bayesiana posteriorprobabilities of
design properties represented as
network of weights in neural
network structure

Generalization/specialization • NODES • Maximal conjunctive generalization (MCG) • Generalized rules of design concepts
• BOGART/LEAP • Generalization using EBL generalization • Generalized design rules
• DSPL • Knowledge compilation through constraint

inheritance
• Generalized design plan. Constraint

rules

Abstraction/detailing • PERSPECT • ECOBWEB/DESIGNER • Abstracted empirical equations
• ARGO • Merging edge macrorules into cumulative

macro by removing leaf rules
• Abstract plan of macrorules

• DDIS • Identify, classify all activated KSARs into
two types of design plans

• A global design plan and several
redesign plans

• CDA • Reconstructive derivational analogy • Detailed design plan built bottom-up

Explanation/discovery • DONTE • Hypothesis formation/hypothesis testing • Discovery of macrodecision rule to
reduce search

• IDEAL • Hypothesis formation/hypothesis testing • Discovery of physical principles from
abstract design models
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They attributed the design failure in the three types of
diagnosis to structural causes. Therefore, while knowledge
of function to structure (Fr S) mapping is useful for new
conceptual designs that may be learned retrospectively,
knowledge of structure-behavior-function (SBF) models can
be learnedin situduring design adaptation. Each of the three
different diagnosis tasks requires different schemes for
accessing the internal behaviors that result in the device func-
tions. In particular, task (1) requires the use of design func-
tions as indices into the internal behaviors that result in the
device functions; task (2) requires indices from the primary
behaviors of the device; and task (3) requires the use of struc-
tural components of the device as indices into the internal
behaviors in which they play a functional role. KRITIK2’s
SBF models (Ashok & Stroulia, 1996) support all three kinds
of indexing schemes. This enables the system to flexibly
access the internal behaviors relevant to the current diagno-
sis task and to thereby localize the diagnostic search.

Violation of design expectations.The DSPL system with
constraint inheritance implemented by Chabot and Brown
(1994) is an example ofin situ triggers that occur when de-
sign expectations are violated. Whenever design expecta-
tion violations occur, constraint inheritance as a form of
failure-driven learning is activated. When an inconsistency
is detected in the evaluation of design expectation rules, the
relevant design object knowledge is identified for knowl-
edge compilation into new constraint surface knowledge
through the constraint inheritance learning mechanism. The
new constraint knowledge then is used to test the value of
the design attribute for which there is an expectation. The
addition of the new constraint knowledge to the existing de-
sign constraint knowledge base leads to expectation-failure–
driven learning (Chabot & Brown, 1994).

Customized viewpoints.The concept of customized view-
points is an example of learning design knowledgein situ.

Table 4. Learning triggers in relation to knowledge learned and knowledge transformer involved

Knowledge transformer, Kt Knowledge learned, Ok What triggers learning, Tlw

When is learning
triggered, Tlt

Group rationalization/decomposition • Taxonomic knowledge of design concepts • New concept • Retrospective
• Clusters of design configuration map to

performance evaluation space
• Performance trends in new design • Retrospective

Similarity/dissimilarity comparison • Knowledge of design plan • New but similar design •In situ
• Knowledge of case-based design plan • New design case •In situ

Association/disassociation • Compositional knowledge of design
concepts

• New design configuration •In situ

Derivation/randomization • Empirical formula among quantitative
design attributes

• New/updating empirical
relationship(s)

• Retrospective

• Design patterns among qualitative
attribute–value pairs

• New/updating design patterns • Retrospective

• Posterior probabilities of design properties • New knowledge ofa posterior
probabilities

• Retrospective

Generalization/specialization • Generalized design concepts • New concept saved •In situ
• Generalized design plans • Module(s) in plan refined •In situ/retrospective
• Generalized design rules • No existing design rules •In situ
• Specialized design constraint knowledge • Constraint violation •In situ

Abstraction/detailing • Abstracted empirical equations • Nonexistence of useful empirical
equation or insufficient knowledge
of attribute values

• In situ/provisional

• Abstracted design plan by removing
leaf nodes from plan

• New abstracted design process • Retrospective

• Abstracted from session control • Past design cases to improve design • Retrospective
knowledge of the following: process of similar design(s)

l global design plan
l related redesign plans • Crucial constraints that triggered • Provisional
l constraint violations redesign process
• Detailed design plan reconstructed • No similar design plan existed • Provisional

bottom-up

Explanation/discovery • Search control knowledge • Optimal design solution • Provisional
• Models of physical principles • Functional-driven design • Retrospective
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Depending on the design perspective that best suits the de-
signer’s current problem-solving situation, PERSPECT can
generatein situ multiple forms of implicit experiential
knowledge through generalizations of past design informa-
tion and identifying the most suitable generalization of a
past design that supports the currentcustomized viewpoints
for the design.

5.3. Provisional triggers

Control knowledge.To explore the design space, DONTE
learns by gathering and assimilating information and gen-
eralization during its use. The control knowledge to search
the design space is learned provisionally in anticipation of
reducing the complexity of the search. This is achieved by
examining a small portion of the design space and general-
izing and applying the information gained to control the
search of the entire design space. DONTE achieves this by
aggregating primitive fine-grained subproblems into larger
macrodecisions when evidence gathered during the design
exploration suggests that these subproblems interact.

Failed constraints anticipated in redesign.DDIS uses the
blackboard framework to integrate case-based reasoning and
domain-based reasoning. Of the knowledge modules/sources
in the case-based reasoner, a module calledfailure antici-
pator checks for potential failures (i.e., violation of design
constraints) and avoids them in the new design, either by
recognizing paths leading to unsatisfactory results or post-
ing information about constraints that were critical in a pre-
vious design. When appropriate, DDIS checks for design
constraints during the design process. Whenever constraint
violations are found, DDIS’s failure anticipator marks them
as the major constraints to be checked in a new design by
placing them as goals on the blackboard. All other con-
straints are deactivated at this time. This action assures that
the constraints most likely to be critical are checked as soon
as they become checkable.

6. DISCUSSION

Prompted by Grecu and Brown’s (1996) “Dimensions of
Machine Learning in Design,” this paper has intended to
act as a stimulus for discussion and future work. Their pa-
per raises issues regarding machine learning in design in an
unstructured manner. These issues relate to “What might be
learned?”, “What are the methods of learning?”, and “What
can trigger learning?”, amongst other issues. This paper in-
troduced and provided evidence for a foundation of learn-
ing in design in terms of five elements: input and output of
knowledge, knowledge transformers, goals/reasons for learn-
ing, and triggers in learning. Although it cannot be claimed
that the number of MLinD systems reviewed was exhaus-
tive, the foundation presented here shows that issues in ma-
chine learning in design can be studied in a systematic and
structured manner that was not apparent in Grecu and
Brown’s “Dimensions of Machine Learning in Design.”

For example, Table 2 shows clearly the relationship be-
tween the type of input knowledge required and the type of
design knowledge learned and the reason for learning that
knowledge, that is, given a particular type of input knowl-
edge, what new design knowledge can be learned, and why
that knowledge is learned. In this manner, Table 2 not only
exemplifies the answers to the questions of what are/is the
“elements supporting learning,” “availability of knowledge
for learning,” and the “consequences of learning,” but it
shows that it is just as important to state what the dimen-
sions of learning are and also to know and understand the
relationships between Grecu’s and Brown’s dimensions.

Table 3 shows that the methods of learning in Grecu’s
and Brown’s dimensions can be categorized into various
knowledge transformers, as presented in this paper. These
knowledge transformers represent the basic types of knowl-
edge change and provide a basis of classifying the various
machine learning methods implemented in MLinD systems.

Table 4 not only illustrates examples of what can trigger
learning, but it also classifies these triggers into retrospec-
tive, in situ, and provisional triggers to provide answers to
the question of “What can trigger learning?” and “When does
learning occur?” These questions are not answered in iso-
lation, but in the context of what is learned (i.e., the knowl-
edge output) and how it is learned (i.e., the knowledge
transformer involved).

Thus far, several answers to these basic questions, and
supporting documentation for the foundation for machine
learning in design (MLinD), have been derived from a re-
view of published systems in MLinD. To complete the study,
the foundation should be derived and further substantiated
by analyzing knowledge change during generic design ac-
tivities. This is part of the authors’ ongoing work.

7. CONCLUSIONS

In summary, the paper has attempted to provide a founda-
tion upon which to base the work of machine learning in
design. Five key elements to the learning process have been
presented: input knowledge (Ik!, knowledge transformers
(Kt!, output knowledge (Ok!, goals/reason for learning (Gl !,
and triggers of learning (Tl !. A number of machine learning
in design (MLinD) systems have been reviewed with a view
to the above elements. From this it can be seen that there is
considerable work being carried out in MLinD research and
that the foundation presented in this paper provides a struc-
ture upon which to base, analyze, and build on that work.
Thus, in response to Grecu and Brown (1996), this paper
presents a foundation of learning as a logical and structured
basis for the study of machine learning in design and a struc-
ture upon which to base fundamental questions (as raised
by Grecu and Brown) to progress the field.
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