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The transfer of internal energy fluctuation is numerically investigated for the stationary
compressible isotropic turbulence in vibrational non-equilibrium with large-scale thermal
forcing. We observe the spectra of velocity, solenoidal pressure component, density
and temperatures all exhibiting the k−5/3 scaling in the inertial range. The Helmholtz
decomposition results reveal that the solenoidal velocity component predominates over the
dilatational component. Fluctuations of the solenoidal velocity and pressure components
are nearly insensitive to the turbulent Mach number and vibrational relaxation, while
those of the dilatational velocity and pressure components are closely related to them.
In addition, the weak and strong acoustic equilibrium hypotheses are verified. On global
average, the dissipation of translational–rotational energy fluctuation stems mainly from
the thermal conduction and vibrational relaxation, while effects of the dilatation and
viscosity are negligible. For the vibrational energy fluctuation, the dilatation effect is
insignificant, while the dissipation due to the thermal conduction is roughly equivalent to
the production owing to the vibrational relaxation. The cascades of translational–rotational
and vibrational energy fluctuations are mainly dominated by the solenoidal component
of filtered velocity. The direct subgrid-scale (SGS) fluxes of translational–rotational and
vibrational energy fluctuations due to the dilatational component of filtered velocity in the
compression region are balanced by the reverse SGS fluxes in the expansion region. On
the other hand, the dependencies of the SGS fluxes due to the solenoidal component of
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filtered velocity on the local compressibility are closely related to the relaxation effect.
The sensibility gradually disappears as the relaxation effect weakens.

Key words: compressible turbulence, homogeneous turbulence

1. Introduction

The high-temperature compressible turbulence has been attracting interest from the
fluid dynamics community due to its fascinating physical phenomena and frequent
encounters in engineering applications (Anderson 2006; Bose 2014; Urzay 2018; Candler
2019; Colonna, Bonelli & Pascazio 2019). The elevated temperature in compressible
turbulence may result in many processes, such as vibrational and electronic energies
excitation, dissociation and ionization. Consequently, the high-temperature compressible
turbulence may have several modes of internal energy (including translational, rotational,
vibrational and electronic modes), and presents different gas properties when compared
with the compressible turbulence at room temperature (Josyula 2015). Any redistribution
of internal energy among different modes requires a number of molecular collisions
and, hence, a certain characteristic time (relaxation time), which relies closely on the
conditions of temperature and pressure. When the relaxation time is of the same order
as the time scale of fluid flow, the thermal non-equilibrium effects must be taken into
account. Generally, the relaxation time varies for different modes of internal energy.
The translational and rotational modes may only need order 10–100 collisions, while the
vibrational mode requires more than three orders of magnitude collisions to equilibrate
(Hirschfelder et al. 1964; Rich & Treanor 1970). It suggests that the vibrational mode
relaxes to equilibrium much slower than the translational and rotational modes. As a
result, in many situations, the translational and rotational modes can be assumed to
be in thermal equilibrium, while the vibrational mode is in thermal non-equilibrium
(i.e. two-temperature model). The two-temperature model is widely adopted to study
the thermal non-equilibrium issues, where the translational and rotational modes are
characterized by the translational–rotational temperature (Ttr) and the vibrational mode by
the vibrational temperature (Tv). The vibrational non-equilibrium thus indicates a delay
between Ttr and Tv .

The vibrational non-equilibrium can have profound impacts on the flow dynamics.
There are several studies that highlight the strong interaction between flow and vibrational
non-equilibirum (Bertolotti 1998; Nompelis, Candler & Holden 2003; Shi et al. 2017;
Fiévet & Raman 2018). In Knisely & Zhong (2020), for example, the impact of thermal
non-equilibirium on the second and supersonic modes on a Mach 5 cold-wall cone was
examined using direct numerical simulation. The thermochemical non-equilibrium and
frozen thermochemical models were adopted. It was found that the flow was in both
chemical non-equilibrium and thermal non-equilibrium in the nose region of the cone.
However, the chemical non-equilibrium effects weakened significantly downstream of the
nose, such that the flow was only considered to be in vibrational non-equilibrium. They
also mentioned that at high-hypersonic conditions, predicting the heat flux to the vehicle
was a critical design concern. Assuming a frozen thermochemical model and a thermal
equilibrium model could respectively result in the transition occurring earlier and later
than expected. In a worst-case scenario, the turbulent heat flux in an unexpected location
could cause the vehicle to fail.
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Nevertheless, the impact of turbulent fluctuation was ignored in most of the prior
literature about vibrational non-equilibrium. Only a small percentage of investigations
discussed the interaction between turbulent fluctuation and vibrational relaxation, as
pioneered by Donzis & Maqui (2016), Khurshid & Donzis (2019) and Zheng et al.
(2020) in compressible isotropic turbulence. As effects of the initial and boundary
conditions are excluded, the compressible isotropic turbulence is an excellent flow model
for studying the quantitative statistical properties of turbulence. This flow model is thus
widely employed (Samtaney, Pullin & Kosović 2001; Liao, Peng & Luo 2010; Aluie,
Li & Li 2012; Li, Zhang & He 2013; Ni 2015; Pan & Johnsen 2017; Sciacovelli,
Cinnella & Grasso 2017). Donzis & Maqui (2016) investigated the stationary compressible
isotropic turbulence in vibrational equilibrium and non-equilibrium. They found that
significant energy transfers between the translational–rotational and vibrational modes
arose due to the departure from equilibrium and finite-time vibrational relaxation. The
strong departures from thermal equilibrium were observed at small scales, and the
spectral behaviour of vibrational energy was described by the classical phenomenology
for passive scalars. Later, Khurshid & Donzis (2019) studied the interaction of decaying
compressible turbulence with vibrational non-equilibrium at low turbulent Mach numbers.
It was revealed that a larger initial vibrational energy resulted in a faster effective decay
of vibrational non-equilibrium. The relaxation towards equilibrium leads to increases
of the translational–rotational temperature and viscosity. The dissipation thus increases
temporarily and further results in a faster turbulence decay. Zheng et al. (2020) discussed
the effects of compressibility and vibrational relaxation on the statistical properties
of vibrational rate and dissipation/production of vibrational energy fluctuation, in the
stationary compressible isotropic turbulence with vibrational non-equilibrium. When
the relaxation time is small enough, on average, the internal energy transfers from
the translational–rotational to vibrational modes in the compression region and in the
inverse direction in the expansion region. The strength of internal energy exchange is
enhanced by the flow compressibility, and weakens as the relaxation time increases.
The dissipation/production of vibrational energy fluctuation results from the effects of
dilatation, thermal conduction and vibrational relaxation, and the effects are quit different
between the weakly and highly compressible turbulence.

There have been a number of investigations on the kinetic energy transfer in
compressible isotropic turbulence (Aluie 2011, 2013; Eyink & Drivas 2018; Wang et al.
2018; Schmidt & Grete 2019). It extends the traditional Richardson–Kolmogorov–Onsager
picture of kinetic energy cascade (Kolmogorov 1991; Frisch 1995; Cardy, Falkovich &
Gawedzki 2008; Sagaut & Cambon 2008; Alexakis & Biferale 2018) to the compressible
turbulence. However, the transfers of thermodynamic variables (such as temperature,
entropy, internal energy, etc.) are rarely investigated. Wang et al. (2019) numerically
investigated the cascades of temperature and entropy fluctuations in the stationary
compressible isotropic turbulence with the large-scale thermal forcing. The introduction
of large-scale thermal forcing was found to have significant impacts on the properties of
compressible turbulence, such as the flow compressibility and the transfers of temperature
and entropy. It was revealed that both temperature and entropy fluctuations cascaded
from large- to small-scale motions, and the effect of compressibility on the cascade of
temperature fluctuation was much stronger than that of entropy fluctuation.

The advent of vibrational non-equilibrium renders the energy exchange in compressible
turbulence more complicated. The energy exchanges between translational–rotational and
vibrational modes via vibrational relaxation. However, there is no direct exchange path
between the vibrational and kinetic energies. In present simulations, different from the
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previous works (Donzis & Maqui 2016; Khurshid & Donzis 2019; Zheng et al. 2020), both
large-scale momentum forcing and thermal forcing are adopted, to maintain the turbulence
in a statistically stationary state and to inject the large-scale temperature fluctuation.
We will mainly focus on the combined impact of vibrational relaxation and large-scale
thermal forcing on the statistical properties of turbulence and the transfer of internal energy
fluctuation.

The rest of paper is organized as follows. In § 2 we recapitulate the governing equations,
thermodynamic and transport properties of compressible turbulence, and give a brief
description of numerical methodology. The one-point statistics of present simulated flows
are given in § 3. We introduce the instantaneous isosurfaces, contours and probability
density functions of normalized dilatation, and the spectra of velocity, pressure, density
and temperatures in § 4. The strong acoustic equilibrium hypothesis is also verified in this
section. The effects of vibrational relaxation and flow compressibility on the dissipation,
production and transfer of the internal energy fluctuation are presented in §§ 5 and 6.
Finally, concluding remarks are provided in § 7.

2. Governing equations and numerical method

In present simulations we consider the non-reactive mono-species gases and Newtonian
fluids for which the dynamic viscosity depends only on temperature. The governing
equations for compressible turbulence in vibrational non-equilibrium can be written in
the dimensionless form as

∂ρ

∂t
+ ∂(ρuj)

∂xj
= 0, (2.1)

∂(ρui)

∂t
+ ∂[ρuiuj + pδij]

∂xj
= 1

Re
∂σij

∂xj
+ Fi, (2.2)

∂ε

∂t
+ ∂[(ε + p)uj]

∂xj
= 1

α

∂

∂xj

(
κtr

∂Ttr

∂xj
+ κv

∂Tv

∂xj

)
+ 1

Re
∂(σijui)

∂xj
− Λ + FI + Fjuj,

(2.3)

∂Ev

∂t
+ ∂(Evuj)

∂xj
= 1

α

∂

∂xj

(
κv

∂Tv

∂xj

)
+ E∗

v − Ev

τv

, (2.4)

p = ρTtr/(γrM2), (2.5)

where the dimensionless density, velocity components, pressure, translational–rotational
and vibrational temperatures are respectively denoted as ρ, ui, p, Ttr and Tv . The Fi
and FI are the large-scale forcings to the fluid momentum and translational–rotational
energy, respectively. The velocity field is decomposed into a solenoidal component and
a dilatational component. The large-scale forcing to the solenoidal velocity component
is employed to maintain the velocity fluctuation within the two lowest wavenumber
shells at prescribed levels, while the dilatational velocity component is left untouched.
The large-scale forcing to the translational–rotational temperature is similar, while the
prescribed levels are one percent of that for the solenoidal velocity component. The
detailed forcing strategy has been given in Appendix A. Furthermore, the uniform thermal
cooling function Λ is adopted to sustain the internal energy in a statistically steady state
(Passot, Vázquez-Semadeni & Pouquet 1995; Wang et al. 2010). The Ttr is employed in the
equation of state (2.5), because the pressure mainly stems from the translational motion of
molecules (Vincenti & Kruger 1965). The reference Reynolds number Re ≡ ρrUrLr/μr,
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Transfer of internal energy fluctuation

the reference Mach number M ≡ Ur/cr and the reference Prandtl number Pr ≡ μrCpr/κr
are three governing parameters. Here, ρr, Ur, Lr and μr are the reference density, velocity,
length and viscosity coefficients, respectively. The reference speed of sound is given
by cr = √

γrRTr, where R is the specific gas constant and Tr = 1200K is the reference
temperature. The γr ≡ Cpr/Cvr is the ratio of specific heat at constant pressure Cpr to that
at constant volume Cvr . The γr approximately equals 1.324 based on the specific heat ratio
of dry air at Tr = 1200 K (Vincenti & Kruger 1965; Anderson 2006). The dimensionless
parameter α is given as α ≡ PrRe(γr − 1)M2, where Pr is set to be 0.71.

The total energy per unit volume (ε), the vibrational energy per unit volume in thermal
equilibrium (E∗

v) and non-equilibrium (Ev), and the viscosity stress (σij) are respectively
given as

ε = ρ

(
etr + ev + 1

2
ujuj

)
= 5

2
p + Ev + 1

2
ρ(ujuj), (2.6)

E∗
v = ρe∗

v = ρθv

γrM2[exp(θv/Ttr) − 1]
, (2.7)

Ev = ρev = ρθv

γrM2[exp(θv/Tv) − 1]
, (2.8)

σij = μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 2

3
μθδij, (2.9)

where etr is the translational–rotational energy per unit mass, while e∗
v and ev are the

vibrational energy per unit mass in thermal equilibrium and non-equilibrium, respectively.
The θv is the characteristic vibrational temperature normalized by Tr, while θ =
∂uk/∂xk is the velocity divergence. The temperature-dependent viscosity (μ) and thermal
conductivity coefficients (κtr and κv) are specified by Sutherland’s and Eucken’s laws. For
their detailed expressions, please refer to our previous publication (Zheng et al. 2020).

In vibrational energy governing equation (2.4), the widely used Landau–Teller
relaxation model is adopted for the vibrational rate Qv = (E∗

v − Ev)/τv . The
dimensionless local relaxation time (τv) depends closely on the local temperature and
pressure, and is calculated roughly by (Vincenti & Kruger 1965)

τv = (C/p)exp(K2/Ttr)
1/3, (2.10)

where C and K2 are the dimensionless constants relating to the molecular structure of
gases. Following the previous literature (Donzis & Maqui 2016; Khurshid & Donzis 2019;
Zheng et al. 2020), the dimensionless parameter 〈Kτ 〉 = 〈τv〉/τη is adopted to characterize
the time scale of the relaxation process. The 〈·〉 operator stands for spatial average. The
τη = [〈μ/(Reρ)〉/ε]1/2 is the Kolmogorov time scale, ε = 〈σijSij/Re〉/〈ρ〉 is the kinetic
energy dissipation rate per unit mass due to viscosity and Sij = (∂ui/∂xj + ∂uj/∂xi)/2 is
the strain rate tensor. The K2 is set to be 2000.0, close to that in real gases. For instance,
K2 is respectively about 2460 and 1590 for oxygen and nitrogen molecules (Vincenti &
Kruger 1965). Moreover, the constant C is adjusted to obtain a specific 〈Kτ 〉 value.

The governing equations of compressible turbulence are solved in conservative form
in a cubic box with the side length equaling 2π and a 5123 grid resolution. The
periodic boundary conditions in all three spatial directions are employed. The hybrid
compact-weighted essentially non-oscillatory (compact-WENO) scheme is applied in
present simulations. The hybrid scheme combines the eighth-order central compact
finite difference scheme in smooth regions and the seventh-order WENO scheme in
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Case Re Pr M θv 〈Kτ 〉 Reλ Mt η/Δx Lf /η Te/τη ε H θ ′

I1 400 0.71 0.099 1.0 0.16 155.53 0.22 1.04 114.40 18.11 0.72 3.39 0.91
I2 400 0.71 0.099 1.0 0.77 158.40 0.22 1.04 114.24 18.04 0.70 1.70 0.58
I3 400 0.71 0.099 1.0 4.00 155.90 0.22 1.04 114.78 18.19 0.71 1.36 0.56
I4 400 0.71 0.099 1.0 9.80 160.24 0.22 1.05 113.23 17.67 0.67 1.24 1.53

Table 1. Simulation parameters and resulting flow statistics for the weakly compressible turbulence.
Considering 〈Kτ 〉 effects. Here Mt ≈ 0.22.

Case Re Pr M θv 〈Kτ 〉 Reλ Mt η/Δx Lf /η Te/τη ε H θ ′

I2 400 0.71 0.099 1.0 0.77 158.40 0.22 1.04 114.24 18.04 0.70 1.70 0.58
I5 400 0.71 0.099 3.0 0.84 157.71 0.22 1.06 114.05 17.92 0.65 0.58 1.09
I6 400 0.71 0.099 5.0 0.82 158.12 0.22 1.06 113.23 17.71 0.66 0.08 1.78

Table 2. Simulation parameters and resulting flow statistics for the weakly compressible turbulence.
Considering θv effects. Here Mt ≈ 0.22.

Case Re Pr M θv 〈Kτ 〉 Reλ Mt η/Δx Lf /η Te/τη ε H θ ′

II1 400 0.71 0.296 1.0 0.19 153.36 0.68 1.01 114.34 18.26 0.80 1.07 2.50
II2 400 0.71 0.296 1.0 0.86 159.63 0.68 1.04 113.30 17.78 0.70 0.69 2.10
II3 400 0.71 0.296 1.0 4.27 160.64 0.66 1.06 112.46 17.65 0.66 0.32 1.67
II4 400 0.71 0.296 1.0 7.98 160.31 0.67 1.05 114.05 17.81 0.66 0.22 2.09

Table 3. Simulation parameters and resulting flow statistics for the highly compressible turbulence.
Considering 〈Kτ 〉 effects. Here Mt ≈ 0.68.

shock regions. The time derivative is approximated by the standard Runge–Kutta method.
For more details of the numerical method, please refer to Lele (1992), Gottlieb & Shu
(1998), Balsara & Shu (2000) and Wang et al. (2010). After the system reaches the
statistically stationary state, sixty-one flow fields, spanning the time period of 9.01 �
t/Te � 14.41, are employed to obtain the statistical averages of interested quantities. Here,
Te(=

√
3Lf /u′) is the large eddy turnover time and Lf is the integral length scale.

3. One-point statistics of compressible turbulence

The overall statistics of present simulations are summarized in tables 1–4. The reference
Reynolds number and Prandtl number are kept constant (Re = 400 and Pr = 0.71). The
reference Mach number (M) is set to be 0.099 and 0.296. For each Mach number,
we control the characteristic vibrational temperature (θv) and relaxation time (τv) to
investigate the vibrational non-equilibrium effect. In present simulations, three different
θv (θv = 1.0, 3.0 and 5.0) are employed. A lower θv suggests an easier excitation of the
vibrational mode. Meanwhile, the τv is normalized as 〈Kτ 〉. The 〈Kτ 〉 approximately equals
0.16–9.80 for the M = 0.099 cases, and 0.19–7.98 for the M = 0.296 cases. Here, cases
I1–I4 and cases II1–II4 (tables 1 and 3) are used to discuss the effect of 〈Kτ 〉, while cases
I2, I5, I6 and cases II2, II5, II6 (tables 2 and 4) are adopted to study the effect of θv .

The Taylor microscale Reynolds number (Reλ) and turbulent Mach number (Mt) are
respectively defined as

Reλ = Re
〈ρ〉u′λ√

3〈μ〉 and Mt = M
u′

〈√Ttr〉
, (3.1a,b)
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Case Re Pr M θv 〈Kτ 〉 Reλ Mt η/Δx Lf /η Te/τη ε H θ ′

II2 400 0.71 0.296 1.0 0.86 159.63 0.68 1.04 113.30 17.78 0.70 0.69 2.10
II5 400 0.71 0.296 3.0 0.97 153.98 0.68 1.01 114.40 18.17 0.78 0.16 2.57
II6 400 0.71 0.296 5.0 0.91 155.12 0.67 1.03 114.46 18.08 0.72 0.02 2.95

Table 4. Simulation parameters and resulting flow statistics for the highly compressible turbulence.
Considering θv effects. Here Mt ≈ 0.68.

where the root mean square (r.m.s.) value of velocity magnitude and the Taylor microscale
are respectively given by

u′ =
√

〈u2
1 + u2

2 + u2
3〉 (3.2)

and λ =
√

〈u2
1 + u2

2 + u2
3〉

〈(∂u1/∂x1)2 + (∂u2/∂x2)2 + (∂u3/∂x3)2〉 . (3.3)

Here, the Mt approximately equals 0.22 and 0.68 for M = 0.099 and 0.296 cases,
respectively. The Reλ is considered to be constant for all cases. The Reλ ≈ 157.5, with
the largest deviation at 2.0 % (tables 1–4).

The resolution parameter η/Δx is in the range of 1.01 � η/Δx � 1.06, where Δx is the
grid length in each direction (tables 1–4). The resolution parameter kmaxη is therefore in
3.17 � kmaxη � 3.33, where the largest wavenumber kmax is half of the number of grids
N in each direction (i.e. kmax = N/2). According to the previous grid refinement studies
(Wang et al. 2011), the grid resolutions kmaxη ≥ 2.77 are enough for the convergence
of flow statistics, including energy spectra at different wavenumbers, probability density
functions (PDFs) of normalized dilatation and vorticity, etc.

The integral length scale is calculated by

Lf = 3π

2(u′)2

∫ ∞

0

Eu(k)
k

dk, (3.4)

where Eu(k) is the spectrum of kinetic energy per unit mass. The ratios Lf /η and
Te/τη respectively represent the spatial and time scales in the simulated flows. The
η = [〈μ/(Reρ)〉3/ε]1/4 is the Kolmogorov length scale. Presently, Lf /η ≈ 113.8 and
Te/τη ≈ 17.9 (tables 1–4). The kinetic energy dissipation rate due to viscosity (ε) is about
0.70 for both the Mt ≈ 0.22 and 0.68 cases.

The vibrational rate represents the energy exchange rate between the translational–
rotational and vibrational modes. Its r.m.s. value (Qv,rms) can be employed to assess
the strength of energy exchange. However, the proportion of vibrational mode in the
internal energy should also be taken into account. The spatially averaged ratio of the
vibrational energy to the total internal energy (i.e. 〈E∗

v/[(5/2)p + E∗
v]〉) approximately

equals 18.88 %, 5.92 % and 1.34 % with θv = 1.0, 3.0 and 5.0, respectively. Here, the
parameter H(= 〈E∗

v/[(5/2)p + E∗
v]〉Qv,rms) is adopted, combining effects of θv and 〈Kτ 〉.

For the Mt ≈ 0.22 cases, H decreases from 3.39 to 1.24 as 〈Kτ 〉 increases from 0.16 to
9.80 (cases I1–I4, table 1), and decreases from 1.70 to 0.08 with θv varying from 1.0 to 5.0
(cases I2, I5 and I6, table 2). For the Mt ≈ 0.68 cases, H decreases from 1.07 to 0.22 as
〈Kτ 〉 increases from 0.19 to 7.98 (cases II1–II4, table 3), and decreases from 0.69 to 0.02
with θv varying from 1.0 to 5.0 (cases II2, II5 and II6, table 4). It reveals that the increase
of 〈Kτ 〉 and θv weakens the energy exchange among internal energy modes. In addition, H

919 A26-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

38
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.381


Q. Zheng and others

Case u′ uD
rms uS

rms uD
rms/uS

rms prms pD
rms pS

rms pD
rms/pS

rms χ D
I1 2.28 0.53 2.22 0.24 5.23 5.12 1.41 3.62 1.04 1.10
I2 2.28 0.40 2.24 0.18 4.00 3.82 1.47 2.59 1.06 0.83
I3 2.28 0.39 2.24 0.18 4.10 3.91 1.40 2.80 1.01 0.80
I4 2.28 0.58 2.20 0.26 6.00 5.92 1.47 4.02 0.97 1.22

Table 5. Statistics of weak acoustic equilibrium hypothesis and fluctuations of velocity and pressure
components. Considering 〈Kτ 〉 effects. Here Mt ≈ 0.22.

for the Mt ≈ 0.22 cases is much larger than its counterpart for the Mt ≈ 0.68 cases, which
is attributed to the large-scale thermal forcing.

The velocity divergence is always used to measure the local rate of compression (θ < 0)
or expansion (θ > 0). Its r.m.s. value (θ ′) represents the flow compressibility to some
extent. As shown in tables 1–4, for the Mt ≈ 0.22 cases, θ ′ (≈0.56–1.78) is smaller
than that for the Mt ≈ 0.68 cases (θ ′ ≈ 1.67–2.95). For the Mt ≈ 0.22 cases (table 1),
θ ′ decreases from 0.91 to 0.57 with 〈Kτ 〉 increasing from 0.16 to 0.77, keeps almost
constant in the range of 0.77 ≤ 〈Kτ 〉 ≤ 4.00, and jumps to 1.53 with 〈Kτ 〉 ≈ 9.80. For the
Mt ≈ 0.68 cases (table 3), θ ′ decreases from 2.50 to 1.67 as 〈Kτ 〉 increases from 0.19 to
4.27, and jumps to 2.09 with 〈Kτ 〉 ≈ 7.98. It suggests that the flow compressibility relates
closely to the relaxation time, particularly for the Mt ≈ 0.22 cases. With θv varying from
1.0 to 5.0, θ ′ grows from 0.58 to 1.78 (cases I2, I5 and I6, table 2) for the Mt ≈ 0.22 cases,
and from 2.10 to 2.95 (cases II2, II5 and II6, table 4) for the Mt ≈ 0.68 cases. That is, the
increase of θv enhances the flow compressibility.

The Helmholtz decomposition is employed to decompose the velocity field u into a
solenoidal component uS and a dilatational component uD as

u = uS + uD, (3.5)

where ∇ · uS = 0 and ∇ × uD = 0. Their r.m.s.values are respectively defined as uS
rms =√

〈(uS
1)

2 + (uS
2)

2 + (uS
3)

2〉 and uD
rms =

√
〈(uD

1 )2 + (uD
2 )2 + (uD

3 )2〉. The r.m.s. values of
velocity and its components for the Mt ≈ 0.22 and 0.68 cases are presented in tables 5–8.
Obviously, uS

rms is close to u′, while uD
rms is significantly smaller than u′. It implies that the

solenoidal velocity component is predominant over the dilatational velocity component.
For the Mt ≈ 0.22 cases, uD

rms/uS
rms dwindles from 0.24 for cases I1 to 0.18 for cases I2 and

I3, and jumps to 0.26 for cases I4 (table 5). Moreover, uD
rms/uS

rms increases from 0.18 to 0.31
with θv varying from 1.0 to 5.0 (table 6). Obviously, the variation of uD

rms/uS
rms is consistent

with that of θ ′. As will be illustrated in § 4, the instantaneous isosurfaces and contours of
θ/θ ′ for cases I1–I3 are significantly different from cases I4–I6. The vibrational relaxation
has a great impact on the compression and expansion motions for the Mt ≈ 0.22 cases. For
the Mt ≈ 0.68 cases (table 7), uD

rms/uS
rms ≈ 0.19 with 〈Kτ 〉 ≈ 0.19 and 0.86 (cases II1, II2),

and slightly decreases to 0.15 as 〈Kτ 〉 increases to 7.98 (cases II4). Moreover, uD
rms/uS

rms
keeps almost constant (≈0.20) with θv varying from 1.0 to 5.0 (cases II2, II5, II6, table 8).
It means that for the Mt ≈ 0.68 cases, the increase of 〈Kτ 〉 weakens the fluctuation of
dilatational velocity component, while θv does not affect significantly on it.

Similar to the velocity field decomposition, the pressure fluctuation can be decomposed
into a solenoidal component pS and a dilatational component pD, i.e. p′ = pS +
pD. The solenoidal pressure component satisfies the incompressible pressure Poisson
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Transfer of internal energy fluctuation

Case u′ uD
rms uS

rms uD
rms/uS

rms prms pD
rms pS

rms pD
rms/pS

rms χ D
I2 2.28 0.40 2.24 0.18 4.00 3.82 1.47 2.59 1.06 0.83
I5 2.25 0.57 2.18 0.26 5.69 5.64 1.33 4.25 1.01 1.23
I6 2.27 0.67 2.16 0.31 6.86 6.83 1.42 4.82 0.99 1.48

Table 6. Statistics of weak acoustic equilibrium hypothesis and fluctuations of velocity and pressure
components. Considering θv effects. Here Mt ≈ 0.22.

Case u′ uD
rms uS

rms uD
rms/uS

rms prms pD
rms pS

rms pD
rms/pS

rms χ D
II1 2.33 0.42 2.29 0.18 1.73 1.33 1.28 1.04 1.06 0.27
II2 2.30 0.44 2.25 0.20 1.86 1.41 1.43 0.98 1.06 0.30
II3 2.27 0.37 2.24 0.16 1.58 1.18 1.24 0.95 1.04 0.25
II4 2.26 0.34 2.24 0.15 1.69 1.08 1.42 0.76 1.07 0.23

Table 7. Statistics of weak acoustic equilibrium hypothesis and fluctuations of velocity and pressure
components. Considering 〈Kτ 〉 effects. Here Mt ≈ 0.68.

Case u′ uD
rms uS

rms uD
rms/uS

rms prms pD
rms pS

rms pD
rms/pS

rms χ D
II2 2.30 0.44 2.25 0.20 1.86 1.41 1.43 0.98 1.06 0.30
II5 2.32 0.46 2.28 0.20 1.86 1.46 1.38 1.06 1.05 0.30
II6 2.29 0.44 2.24 0.20 1.88 1.44 1.40 1.03 1.03 0.30

Table 8. Statistics of weak acoustic equilibrium hypothesis and fluctuations of velocity and pressure
components. Considering θv effects. Here Mt ≈ 0.68.

equation as

∇2pS = −〈ρ〉∂uS
i

∂xj

∂uS
j

∂xi
. (3.6)

The statistics of pressure and its solenoidal and dilatational components for the presently
simulated flows are summarized in tables 5–8.

For the Mt ≈ 0.22 cases, the pressure fluctuation (prms ≈ 4.00–6.86) is much larger
than its counterpart (prms ≈ 1.58–1.88) for the Mt ≈ 0.68 cases. It is attributed to the
sharp increase of fluctuation of the dilatational pressure component (pD

rms). As will be
shown in § 4, the enhanced fluctuations are mainly located at low wavenumbers due to the
large-scale thermal forcing.

For the Mt ≈ 0.22 cases (tables 5 and 6), pD
rms/pS

rms ≈ 2.59–4.82. That is, the
dilatational component is predominant over the solenoidal component in pressure
fluctuation. With 〈Kτ 〉 ≈ 0.16, case I1 approaches the vibrational equilibrium state,
for which the injected temperature fluctuation instantly transfers to the vibrational
temperature, and the vibrational relaxation effect is relatively weaker. Consequently,
the large-scale thermal forcing enhancing the flow compressibility is expected.
As 〈Kτ 〉 increases, the vibrational relaxation effect gets stronger, and suppresses the flow
compressibility. Furthermore, it might be speculated that if 〈Kτ 〉 is large enough, the
exchange between the translational–rotational and vibrational energies would be extremely
weakened (i.e. frozen thermal model, Vincenti & Kruger (1965)). In this situation,
the translational–rotational and vibrational energies may be treated as two independent
components, and the flow compressibility would be enhanced again by the large-scale
thermal forcing. Consequently, as shown in table 5, pD

rms/pS
rms approximately equals 3.62
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for case I1, drops sharply to ≈2.70 for cases I2 and I3 as 〈Kτ 〉 increases from 0.16 to 4.00,
and jumps to 4.02 for case I4 with 〈Kτ 〉 ≈ 9.80. Moreover, with θv varying from 1.0 to 5.0,
the vibrational relaxation effect is attenuated. The pD

rms/pS
rms thus increases monotonously

from 2.59 to 4.82 (cases I2, I5 and I6, table 6).
For the Mt ≈ 0.68 cases (tables 7 and 8), pD

rms/pS
rms ≈ 0.76–1.06. It suggests that in

these cases, the dilatational component is comparable to the solenoidal component in
pressure fluctuation. For the Mt ≈ 0.68 cases, the fluctuation of translational–rotational
temperature at large-scale motions may be comparable to the large-scale thermal forcing
adopted in the presented simulations. This might be the reason why the effect of large-scale
thermal forcing on the flow compressibility is inconspicuous for the Mt ≈ 0.68 cases
(tables 3 and 4). Consequently, the variance of pD

rms/pS
rms for the Mt ≈ 0.68 cases is not as

obvious as that for the Mt ≈ 0.22 cases. As 〈Kτ 〉 increases from 0.86 to 7.98, pD
rms/pS

rms
dwindles from 1.04 to 0.76. It is expected that when 〈Kτ 〉 is large enough, pD

rms/pS
rms would

not increase, but approaches a constant. The pD
rms/pS

rms keeps approximately constant
(≈1.03) with θv varying from 1.0 to 5.0.

Note that, if the dilatational velocity component is dominated by acoustic waves, there
are equilibrium relations between the dilatational pressure and velocity components in
weak and strong forms (Sagaut & Cambon 2008; Jagannathan & Donzis 2016). The weak
and strong acoustic equilibrium hypotheses can be respectively expressed as

χ = 〈p〉γrMt(uD
rms/u′)/pD

rms ≈ 1.0 (3.7)

and EpD
(k) = 2.0γr〈ρ〉〈p〉EuD

(k). (3.8)

For the weak form, the equilibrium hypothesis between dilatational components of
pressure and velocity is expected to be valid in a global average sense. However, for the
strong form, the equilibrium hypothesis between dilatational components of pressure and
velocity is established for each wavenumber.

As mentioned in Jagannathan & Donzis (2016), for the stationary turbulence without
large-scale thermal forcing, pD

rms/pS
rms ≈ 0.12 and 0.22 with Mt ≈ 0.1 and 0.2, while

pD
rms/pS

rms ≈ 1.07, 1.16 and 1.19 with Mt ≈ 0.3, 0.4 and 0.6, respectively. The Reλ
is about 160. The χ approximately equals 0.65, 0.67, 1.06, 1.01 and 1.10 with Mt ≈
0.1, 0.2, 0.3, 0.4 and 0.6, respectively. Furthermore, for low Mt (≈ 0.1, 0.2) flows, the
spectra content of pD is smaller than that of uD at all scales with a stronger departure
at intermediate and high wavenumbers. Beyond the threshold Mt ≈ 0.3, the spectra of pD

and uD begin to overlap in an increasingly wider range of scales. That is, for the stationary
turbulence without large-scale thermal forcing, the weak and strong forms of acoustic
equilibrium hypotheses are valid only at high Mt (e.g. Mt ≥ 0.3). For the stationary
turbulence with large-scale thermal forcing, Wang et al. (2019) found uD

rms/uS
rms ≈ 0.37

and 0.24 with Mt ≈ 0.20 and 0.60, respectively, where Reλ is about 252. That is, the
large-scale thermal forcing enhances the flow compressibility of the low Mt turbulence.
Moreover, they mentioned that the weak and strong forms of acoustic equilibrium
hypotheses were valid for both the Mt ≈ 0.20 and 0.60 cases.

The statistics of weak acoustic equilibrium hypothesis are given in tables 5–8.
Interestingly, χ(= 〈p〉γrMt(uD

rms/u′)/pD
rms) is close to 1.0 for both the Mt ≈ 0.22 and 0.68

cases. It indicates that in a global average sense, the dilatational velocity component
is dominated by acoustic waves in the presently simulated flows. The weak acoustic
equilibrium hypothesis can be rewritten as

pD
rms/〈p〉 = γrMtuD

rms/u′. (3.9)
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Transfer of internal energy fluctuation

The above observations reveal that on spatial average, the fluctuation of the dilatational
pressure component in present simulations can collapse using Mt and uD

rms/u′.
Furthermore, the Mt is not enough to characterize the flow compressibility of turbulence
with large-scale thermal forcing. We need additional parameters (e.g. uD

rms/u′) to describe
the statistical state of compressible turbulence. Donzis & John (2020) introduced a
new parameter D ≡ δ

√
δ2 + 1/Mt, and suggested D as an appropriate parameter to

determine the level of pressure fluctuation and the statistical regime of turbulence. Here,
δ = uD

rms/uS
rms. They noted that at high D, the dilatational pressure dominated, and

p-equipartition was the main mechanism governing the dynamics of pressure fluctuation;
at low D, the pressure was dominated by its elliptic nature dictated by the incompressible
Navier–Stokes equations. The critical value Dcr approximately equals 0.5. The D values
for present simulations are also included in tables 5–8. The D ≈ 0.80–1.48 for the
Mt ≈ 0.22 cases, while D ≈ 0.23–0.30 for the Mt ≈ 0.68 cases. However, as mentioned
above, the flow compressibility of the Mt ≈ 0.68 cases is stronger than the Mt ≈ 0.22
cases, although the pD

rms/pS
rms values are smaller in the Mt ≈ 0.68 cases. There is an

excellent collapse of the data based on the parameter D (as illustrated in figure 1(c) of
Donzis & John (2020)); however, the parameter D may lead to some confusion about the
statistical state of turbulence.

The universal scaling laws in compressible turbulence are extremely important, and we
do appreciate the research works in Donzis & John (2020). However, as mentioned above,
we need further investigations on the topic. Furthermore, fluctuations of the dilatational
pressure and velocity components mainly come from large-scale motions, and, therefore,
the validity of the weak form of acoustic equilibrium hypothesis does not imply the
strong form. The validation of the strong form of acoustic equilibrium hypothesis will
be discussed in § 4.

4. Dilatation and spectra of velocity and thermodynamic variables

The PDFs of normalized dilatation (θ/θ ′) for the Mt ≈ 0.22 and 0.68 cases are shown in
figure 1. As presented in figure 1(a), the PDFs of θ/θ ′ for cases I1 and I2 are negatively
skewed. It indicates that in these two cases, the percentage of volume occupied by the
strong compression region (θ/θ ′ ≤ −2.0) is larger than its strong expansion counterpart
(θ/θ ′ ≥ 2.0). With the increase of 〈Kτ 〉, for case I3, the PDF of θ/θ ′ is almost symmetrical
about θ/θ ′ = 0.0. That is, the percentages of volume occupied by the strong compression
and expansion regions are close to each other. Interestingly, the percentages of volume
occupied by the strong compression and expansion regions are not monotonous with 〈Kτ 〉.
As 〈Kτ 〉 further increases to 9.80 (case I4), the PDF of θ/θ ′ is strongly skewed to the
negative side. Furthermore, for cases I5 and I6, the strongly skewed PDFs are enhanced
(figure 1a). For the Mt ≈ 0.68 cases with different 〈Kτ 〉 and θv values, all PDFs of θ/θ ′
overlap roughly one another, being strongly skewed to the negative side (figure 1b). That
is, for the Mt ≈ 0.68 cases, the percentage of volume occupied by the strong compression
region is larger than its strong expansion counterpart in despite of the vibrational relaxation
effect.

To illustrate the effects of large-scale thermal forcing and vibrational relaxation on the
compression and expansion motions in the presently simulated flows, the instantaneous
isosurfaces and contours of θ/θ ′ for the Mt ≈ 0.22 and 0.68 cases are illustrated
in figures 2, 3, 4 and 5. As shown in figure 2(a,b), for cases I2 and I3, both the
strong compression and expansion regions are fragmentized sheet-like structures. The
fragmentized sheet-like structures are more clear in the instantaneous contours of θ/θ ′
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Figure 1. Probability density functions of normalized dilatation for (a) Mt ≈ 0.22 and (b) Mt ≈ 0.68 cases.

(figure 3a,b). It is a distinctive compressible turbulent structure which is not reported in
the prior literature, and is attributed to the combined effects of large-scale thermal forcing
and vibrational relaxation. In our previous work on compressible isotropic turbulence in
vibrational non-equilibrium (Zheng et al. 2020), when the large-scale thermal forcing
is excluded, both the strong compression and expansion regions are blob-like structures
for the weakly compressible turbulence with Mt ≈ 0.44. For case I4 (figures 2c and
3c), as 〈Kτ 〉 increases to 9.80, the fragmentized sheet-like structures are replaced by the
blob-like structures. In this case, the strong compression region is larger in size. For case
I6 (figures 2d and 3d), the flow compressibility is further enhanced. The percentage of
volume occupied by the strong compression region is obviously larger than that by the
strong expansion region. The structures in the former region are relatively flat and larger in
size, while the latter region is characterized by the blob-like structures. For the Mt ≈ 0.68
cases with different 〈Kτ 〉 and θv values, the instantaneous isosurfaces and contours of θ/θ ′
are similar (figures 4 and 5). In these cases, the strong compression and expansion regions
are respectively populated by the ‘shocklets’ and blob-like structures.

As shown in figures 4 and 5, the strong compression structures in these cases are
relatively thicker, compared with our previous results for Mt ≈ 1.0 (Zheng et al. 2020).
There is some literature about the estimation of shock thickness, such as Samtaney et al.
(2001) and Donzis (2012). For example, Donzis (2012) mentioned that under laminar
conditions, the normalized shock thickness could be written as

δl

η
≈ Mt

Re1/2
λ ΔM

, (4.1)

where ΔM = M − 1 and η is the Kolmogorov scale. Under turbulent conditions, the shock
thickness is essentially a random variable. The mean shock thickness can be given as

〈δl〉
η

≈ Mt

Re1/2
λ ΔM

[
1 + 1

3
M2

t

ΔM2 + · · ·
]

. (4.2)

However, the present observations reveal that for the compressible turbulence in
vibrational non-equilibrium, the shock thickness is closely related to the vibrational
relaxation. The approximate relationship between the shock thickness and other
parameters (e.g. Mt, Reλ and 〈Kτ 〉) is still not clear, and further investigations on the topic
are required.
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Case I4 Case I6

y x

z

y

(b)(a)

(c) (d )

Figure 2. Instantaneous isosurfaces of normalized dilatation. (a) Case I2, (b) case I3, (c) case I4 and (d)
case I6. Here Mt ≈ 0.22.

Figure 6 illustrates the compensated velocity spectrum Eu(k)ε−2/3k5/3 for the Mt ≈
0.22 and 0.68 cases, where the velocity spectrum Eu(k) satisfies

∫ ∞
0 Eu(k) dk = 〈u2〉/2.

An inertial range of the velocity spectrum is observed in the range of 0.05 � kη � 0.2
with a plateau about 2.0, which is larger than the widely accepted Kolmogorov constant of
approximately 1.6. This deviation may result from the ‘bottleneck effect’ due to the limited
Reλ (Gotoh & Fukayama 2001; Dobler et al. 2003). As mentioned in Donzis & Sreenivasan
(2010), the spectral bump decreases slowly with Reλ and became negligible only for Reλ
greater than O(105). Furthermore, the compensated spectra of density and temperatures
(i.e. Eρ(k)k5/3/(ρ)2

rms, ETtr(k)k5/3/(Ttr)
2
rms and ETv (k)k5/3/(Tv)

2
rms) are shown in figure 7,

where Eρ(k), ETtr(k) and ETv (k) satisfy
∫ ∞

0 Eρ(k) dk = (ρ)2
rms,

∫ ∞
0 ETtr(k) dk = (Ttr)

2
rms

and
∫ ∞

0 ETv (k) dk = (Tv)
2
rms, respectively. The spectra of ρ, Ttr and Tv exhibit the k−5/3

scaling for both the Mt ≈ 0.22 and 0.68 cases; a plateau at intermediate wavenumbers
is apparent. For the stationary compressible isotropic turbulence without vibrational
excitation and large-scale thermal forcing (Donzis & Jagannathan 2013; Wang, Gotoh &
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Figure 3. Instantaneous contours of normalized dilatation. (a) Case I2, (b) case I3, (c) case I4 and (d) case I6.
Here Mt ≈ 0.22.
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Figure 4. Instantaneous isosurfaces of normalized dilatation. (a) Case II2, (b) case II6. Here Mt ≈ 0.68.
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Figure 5. Instantaneous contours of normalized dilatation. (a) Case II2, (b) case II6. Here Mt ≈ 0.68.

10–4

10–2 10–1

kη
100

10–3

E
u (

k)
k5

/3
ε–

2
/3

10–2

10–1

100

101

Case I1
Case I2
Case I3
Case I4
Case I5
Case I6

Mt ≈ 0.22

1.6

10–4

10–2 10–1

kη
100

10–3

10–2

10–1

100

101

Case II1
Case II2
Case II3
Case II4
Case II5
Case II6

Mt ≈ 0.68

1.6

(b)(a)

Figure 6. Compensated spectra of velocity for (a) Mt ≈ 0.22 and (b) Mt ≈ 0.68 cases.

Watanabe 2017), the pressure, density and temperature spectra follow a scale of k−5/3 in a
range of Mt. In addition, the fluctuations at high wavenumbers for the weakly compressible
turbulence (Mt ≈ 0.1) are much smaller than those for the highly compressible turbulence
(Mt ≈ 0.6), especially in the spectra of pressure and density. However, in the presently
simulated flows the compensated spectra of density and temperature for the Mt ≈ 0.22 and
0.68 cases are close to each other (figure 7), which suggests that the Mt effect is negligible.
The difference with the observations by Donzis & Jagannathan (2013) and Wang et al.
(2017) could be attributed to the fact that the large-scale thermal forcing enhances the flow
compressibility and fluctuation of thermodynamic variables at high wavenumbers.

To reveal the effects of Mt, large-scale thermal forcing and vibrational relaxation on
the pressure fluctuation, figure 8 presents the compensated spectra of pressure and its
solenoidal and dilatational components. For both the Mt ≈ 0.22 and 0.68 cases, the
spectra of solenoidal pressure component overlap roughly each other, and exhibit a
k−5/3 scaling at intermediate wavenumbers. In other words, the fluctuation of solenoidal
pressure component is almost insensitive to the effects of Mt, large-scale thermal
forcing and vibrational relaxation. Note that, the k−5/3 scaling for the spectrum of the
solenoidal (incompressible) pressure component was observed in a large number of
previous studies, such as Vedula & Yeung (1999), Gotoh & Rogallo (1999), Donzis
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Figure 7. Compensated spectra of (a,d) density, (b,e) translational–rotational temperature and
(c, f ) vibrational temperature. Here, (a–c) Mt ≈ 0.22 and (d–f ) Mt ≈ 0.68.

& Jagannathan (2013) and Wang et al. (2017). However, according to Kolmogorov’s
theory, the pressure spectrum in an incompressible turbulence should follow the k−7/3

scaling. Gotoh & Fukayama (2001) suggested the k−7/3 scaling with Reλ ≥ 284 in the
numerical simulations of statistically steady homogeneous turbulence, while Tsuji &
Ishihara (2003) found the k−7/3 scaling with Reλ ≥ 600 in the experimental results of
pressure fluctuation in a turbulent jet. Meldi & Sagaut (2013) further revealed that the
k−7/3 scaling could be observed only with Reλ = O(104) in the numerical simulations of
freely decaying homogeneous isotropic turbulence. Wang et al. (2017) found the k−7/3

scaling in the pressure spectrum at the beginning of the inertial range for the weakly
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Figure 8. Compensated spectra of pressure and its solenoidal and dilatational components. Here, (a–c)

Mt ≈ 0.22 and (d–f ) Mt ≈ 0.68.

compressible isotropic turbulence with Mt ≤ 0.3 and Reλ ≈ 350. Essentially, the exact
threshold value of Reλ for the k−7/3 scaling is not confirmed, rather dependent on specific
turbulence. The present k−5/3 scaling for the spectra of solenoidal pressure component
should be attributed to the finite-Reynolds-number effect (Reλ ≈ 157.5 for the present
simulations).

For the Mt ≈ 0.22 cases, because of the large-scale thermal forcing, the fluctuations
of pressure and its dilatational component at low wavenumbers are much larger than
their counterparts for the Mt ≈ 0.68 cases (figure 8). For cases I1–I3, the fluctuations
of pressure and its dilatational component do not differ much at low wavenumbers,
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while the fluctuation of dilatational pressure component decreases sharply with increasing
wavenumbers. The spectra of pressure and its solenoidal component overlap approximately
in the range of kη ≥ 0.1. In these cases, the fluctuation of pressure at intermediate and
high wavenumbers is dominated by the solenoidal component (figure 8a,b). For cases
I4 (〈Kτ 〉 = 9.80), the fluctuation of pressure at full wavenumbers is largely dominated
by the dilatational component, with a slight departure in the range of 0.1 ≤ k/η ≤ 0.7.
Furthermore, the fluctuation of pressure at high wavenumbers in this case is much larger
than that in the former three cases (figure 8b). Similar observations are made for cases I5
and I6 (figure 8c). With the increase of θv , the fluctuations of pressure and its dilatational
component at full wavenumbers increase, and the departure at intermediate wavenumbers
shrinks. The above observations agree well with results in table 6, where pD

rms/pS
rms

increases from 2.59 to 4.82 with θv varying from 1.0 to 5.0 (cases I2, I5, I6). For the
Mt ≈ 0.68 cases, the large-scale thermal forcing does not increase the fluctuation of
pressure or its dilatational component at low wavenumbers. At intermediate wavenumbers,
the spectra of pressure and its dilatational component exhibit roughly the k−5/3 scaling.
The fluctuation of dilatational pressure component is comparable with the solenoidal
component for case II1 (figure 8d). As 〈Kτ 〉 increases from 0.19 to 7.98, the fluctuation
of dilatational pressure component decreases gradually, which agrees well with the
observation in table 7, where pD

rms/pS
rms decreases from 1.04 to 0.76 (cases II1–II4). For

cases II5 and II6, the spectra of solenoidal and dilatational components overlap roughly
each other at low and intermediate wavenumbers (figure 8f ). Furthermore, different from
the Mt ≈ 0.22 cases, the fluctuation of pressure at high wavenumbers (kη ≥ 0.8) is mainly
dominated by the dilatational component for the Mt ≈ 0.68 cases.

As mentioned in § 3, χ(= 〈p〉γrMt(uD
rms/u′)/pD

rms) is close to 1.0 for both the Mt ≈
0.22 and 0.68 cases (tables 5–8), i.e. satisfying the weak form of acoustic equilibrium
hypothesis. But how about the strong form of acoustic equilibrium hypothesis? Figure 9
presents the compensated spectra of dilatational velocity and pressure components (i.e.
2.0γr〈ρ〉〈p〉EuD

(k)k−5/3 and EpD
(k)k−5/3) for the Mt ≈ 0.22 and 0.68 cases. Obviously,

the compensated spectra of dilatational velocity component are closely related to the
vibrational relaxation for the Mt ≈ 0.22 cases. For cases I1–I3, the two compensated
spectra overlap at low wavenumbers, and begin to deviate at intermediate and high
wavenumbers (kη ≥ 0.1) (figure 9a). For cases I4–I6, although the two compensated
spectra do not overlap exactly at intermediate and high wavenumbers, they are close to
each other and their trends are consistent (figure 9b). It reveals that for the Mt ≈ 0.22
cases, the strong acoustic equilibrium hypothesis is valid only at low wavenumbers when
the vibrational relaxation effect is significant. When the vibrational relaxation effect
weakens (〈Kτ 〉 or θv is large enough), the strong acoustic equilibrium hypothesis is
approximately valid at all wavenumbers. For the Mt ≈ 0.68 cases with different 〈Kτ 〉 and
θv values, the two compensated spectra almost collapse at all wavenumbers (figure 9c,d).
The observations suggest that the strong acoustic equilibrium hypothesis is valid for the
Mt ≈ 0.68 cases in despite of the vibrational relaxation.

5. Dissipation of internal energy fluctuations

From (2.2) and (2.3), the governing equations for internal energy and its
translational–rotational component per unit mass (e and etr) can be derived as

∂ρe
∂t

+ ∂ρeuj

∂xj
= 1

α

∂

∂xj

(
κtr

∂Ttr

∂xj
+ κv

∂Tv

∂xj

)
+ 1

Re
σij

∂ui

∂xj
− pθ + FW , (5.1)
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Figure 9. Compensated spectra of dilatational velocity and pressure components. Note that, H[EuD

(k)] =
2.0γr〈ρ〉〈p〉EuD

(k)k−5/3, F[EpD
(k)] = EpD

(k)k−5/3. Here, (a,b) Mt ≈ 0.22 and (c,d) Mt ≈ 0.68.

∂ρetr

∂t
+ ∂ρetruj

∂xj
= 1

α

∂

∂xj

(
κtr

∂Ttr

∂xj

)
+ 1

Re
σij

∂ui

∂xj
− pθ + FW − E∗

v − Ev

τv

, (5.2)

where FW = −Λ + FI represents effects of the cooling function and the large-scale
thermal forcing.

The translational–rotational energy can be decomposed into a spatially averaged
component etr0(= 〈etr〉) and a fluctuation component etr1 , i.e. etr = etr0 + etr1 . The
governing equation for the variance of translational–rotational energy (〈e2

tr1
〉) can be

derived by taking a dot product of the translational–rotational energy governing equation
(5.2) with etr1 and spatially averaging, as

∂〈e2
tr1

〉
∂t

=
〈
(e2

tr1
− 4

5
etretr1)θ

〉
−

〈
κtr

∂Ttr

∂xj

∂

∂xj

(
2etr1

ρα

)〉
+

〈
2etr1

Reρ
σij

∂ui

∂xj

〉
−

〈
2etr1

ρ

E∗
v − Ev

τv

〉
+

〈
2etr1

ρ
FW

〉
= −〈Cetr〉 + 〈Cinj

etr
〉. (5.3)

Here, the total change rate of translational–rotational energy fluctuation can be
decomposed as 〈Cetr〉 = 〈Cθ

etr
〉 + 〈Cκ

etr
〉 + 〈Cμ

etr〉 + 〈Cτ
etr

〉. The change rates due to the effects
of dilatation, thermal conduction, viscosity and vibrational relaxation are respectively

919 A26-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

38
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.381


Q. Zheng and others

Case 〈Cθ
etr

〉/〈Cetr 〉 〈Cκ
etr

〉/〈Cetr 〉 〈Cμ
etr 〉/〈Cetr 〉 〈Cτ

etr
〉/〈Cetr 〉 〈Cθ

ev
〉/〈−Cτ

ev
〉 〈Cκ

ev
〉/〈−Cτ

ev
〉

I1 0.013 0.779 0.002 0.205 0.019 0.947
I2 0.006 0.790 −0.004 0.208 −0.001 0.980
I3 0.002 0.773 0.001 0.224 −0.030 1.015
I4 0.006 0.763 0.000 0.232 −0.053 1.069

Table 9. The ratio of dissipation rates for translational–rotational and vibrational energy fluctuations.
Considering 〈Kτ 〉 effects. Here Mt ≈ 0.22.

Case 〈Cθ
etr

〉/〈Cetr 〉 〈Cκ
etr

〉/〈Cetr 〉 〈Cμ
etr 〉/〈Cetr 〉 〈Cτ

etr
〉/〈Cetr 〉 〈Cθ

ev
〉/〈−Cτ

ev
〉 〈Cκ

ev
〉/〈−Cτ

ev
〉

I2 0.006 0.790 −0.004 0.208 −0.001 0.980
I5 −0.011 0.870 0.001 0.141 0.009 1.035
I6 −0.036 0.962 0.001 0.072 −0.057 0.936

Table 10. The ratio of dissipation rates for translational–rotational and vibrational energy fluctuations.
Considering θv effects. Here Mt ≈ 0.22.

denoted as

〈Cθ
etr

〉 = −
〈
(e2

tr1
− 4

5
etretr1)θ

〉
, 〈Cκ

etr
〉 =

〈
κtr

∂Ttr

∂xj

∂

∂xj

(
2etr1

ρα

)〉
, (5.4a,b)

〈Cμ
etr

〉 = −
〈

2etr1

Reρ
σij

∂ui

∂xj

〉
and 〈Cτ

etr
〉 =

〈
2etr1

ρ

E∗
v − Ev

τv

〉
. (5.5a,b)

The 〈Cinj
etr 〉 = 〈(2etr1/ρ)FW〉 represents the injection of translational–rotational energy

fluctuation by the cooling function and large-scale thermal forcing.
Similarly, the governing equation for the variance of vibrational energy is derived as

∂〈e2
v1

〉
∂t

= 〈e2
v1

θ〉 −
〈
κv

∂Tv

∂xj

∂

∂xj

(
2ev1

ρα

)〉
+

〈
2ev1

ρ

E∗
v − Ev

τv

〉
= −〈Cev 〉, (5.6)

where ev1 = ev − ev0 and ev0 = 〈ev〉. The total change rate of vibrational energy
fluctuation is decomposed as 〈Cev 〉 = 〈Cθ

ev
〉 + 〈Cκ

ev
〉 + 〈Cτ

ev
〉. The change rates due

to the effects of dilatation, thermal conduction and vibrational relaxation are
respectively

〈Cθ
ev

〉 = −〈e2
v1

θ〉, 〈Cκ
ev

〉 =
〈
κv

∂Tv

∂xj

∂

∂xj

(
2ev1

ρα

)〉
and 〈Cτ

ev
〉 = −

〈
2ev1

ρ

E∗
v − Ev

τv

〉
.

(5.7a–c)

The change rates of the translational–rotational and vibrational energy fluctuations
are given in tables 9 and 10 for the Mt ≈ 0.22 cases, and in tables 11 and 12 for the
Mt ≈ 0.68 cases. The total change rates of the translational–rotational and vibrational
energy fluctuations for the Mt ≈ 0.22 and 0.68 cases are given in table 13. For the
translational–rotational energy fluctuation, from (5.3), the total change rate 〈Cetr〉 is
positive. As shown in tables 9–12, 〈Cθ

etr
〉/〈Cetr〉 and 〈Cμ

etr〉/〈Cetr〉 are negligibly small, while
〈Cκ

etr
〉/〈Cetr〉 is larger than 〈Cτ

etr
〉/〈Cetr〉. It suggests that for both the Mt ≈ 0.22 and 0.68

cases, on spatial average, the change rates of translational–rotational energy fluctuation
due to the dilatation and viscosity are negligible; the dissipation mainly comes from the
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Case 〈Cθ
etr

〉/〈Cetr 〉 〈Cκ
etr

〉/〈Cetr 〉 〈Cμ
etr 〉/〈Cetr 〉 〈Cτ

etr
〉/〈Cetr 〉 〈Cθ

ev
〉/〈−Cτ

ev
〉 〈Cκ

ev
〉/〈−Cτ

ev
〉

II1 −0.028 0.757 −0.007 0.277 0.117 0.874
II2 −0.083 0.751 −0.017 0.349 0.097 0.891
II3 −0.081 0.788 −0.020 0.314 −0.013 1.001
II4 0.024 0.706 −0.011 0.280 −0.075 1.062

Table 11. The ratio of dissipation rates for translational–rotational and vibrational energy fluctuations.
Considering 〈Kτ 〉 effects. Here Mt ≈ 0.68.

Case 〈Cθ
etr

〉/〈Cetr 〉 〈Cκ
etr

〉/〈Cetr 〉 〈Cμ
etr 〉/〈Cetr 〉 〈Cτ

etr
〉/〈Cetr 〉 〈Cθ

ev
〉/〈−Cτ

ev
〉 〈Cκ

ev
〉/〈−Cτ

ev
〉

II2 −0.083 0.751 −0.017 0.349 0.097 0.891
II5 0.054 0.735 0.003 0.207 0.060 0.882
II6 0.105 0.790 0.016 0.089 −0.048 1.056

Table 12. The ratio of dissipation rates for translational–rotational and vibrational energy fluctuations.
Considering θv effects. Here Mt ≈ 0.68.

Case 〈Cetr 〉 〈Cτ
ev

〉 Case 〈Cetr 〉 〈Cτ
ev

〉
I1 1117.00 −79.09 II1 13.05 −0.95
I2 994.24 −69.69 II2 10.88 −0.76
I3 1035.40 −65.55 II3 11.66 −0.71
I4 1073.70 −58.27 II4 11.86 −0.62
I5 913.20 −20.56 II5 12.18 −0.25
I6 829.71 −3.11 II6 11.67 −0.04

Table 13. Total change rates of translational–rotational and change rate of vibrational energy fluctuations due
to vibrational relaxation for the Mt ≈ 0.22 and 0.68 cases.

effects of thermal conduction and vibrational relaxation, while the former plays a major
role. As shown in table 13, 〈Cetr〉 and 〈Cev 〉 for the Mt ≈ 0.22 cases are much larger
than their counterparts for the Mt ≈ 0.68 cases. It implies that the large-scale thermal
forcing has more significant impacts for the Mt ≈ 0.22 cases, which agrees well with the
observations in § 4.

For the Mt ≈ 0.22 cases, 〈Cκ
etr

〉/〈Cetr〉 keeps almost constant (≈ 0.776, table 9) for
cases I1–I4, and increases from 0.790 to 0.962 with θv varying from 1.0 to 5.0 (cases
I2, I5, I6, table 10). Furthermore, 〈Cτ

etr
〉/〈Cetr〉 increases slightly from 0.205 to 0.232 as

〈Kτ 〉 increases from 0.16 to 9.80, while decreasing sharply from 0.208 to 0.072 with
θv varying from 1.0 to 5.0. For the Mt ≈ 0.68 cases, 〈Cκ

etr
〉/〈Cetr〉 ≈ 0.739 for different

cases (tables 11 and 12). The 〈Cτ
etr

〉/〈Cetr〉 ≈ 0.277 with 〈Kτ 〉 ≈ 0.19. The 〈Cτ
etr

〉/〈Cetr〉
wanes from 0.349 to 0.280 as 〈Kτ 〉 increases from 0.86 to 7.98 (table 11), and declines
sharply from 0.349 to 0.089 with θv varying from 1.0 to 5.0 (table 12). Note that, for
the Mt ≈ 0.68 cases, the dilatation term also plays a considerable role with increasing
θv; for instance, 〈Cθ

etr
〉/〈Cetr〉 is about 0.105 for case II6. The observations indicate that

the variation of 〈Cκ
etr

〉/〈Cetr〉 depends mainly on θv for the Mt ≈ 0.22 cases, and is almost
insensitive to 〈Kτ 〉 and θv for the Mt ≈ 0.68 cases. Furthermore, for both the Mt ≈ 0.22
and 0.68 cases, 〈Cτ

etr
〉/〈Cetr〉 has a limited connection with 〈Kτ 〉, while highly depends on

θv . As θv increases, the dissipation of translational–rotational energy fluctuation due to the
vibrational relaxation loses its significance rapidly.
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For the vibrational energy fluctuation (5.6), the total change rate 〈Cev 〉 approximately
equals zero. Because of the equilibrium departure, an exchange between the
translational–rotational and vibrational energies takes place via vibrational relaxation.
Consequently, the change rate due to the vibrational relaxation (〈Cτ

ev
〉) is negative

(table 13). That is, the vibrational relaxation enhances essentially the vibrational energy
fluctuation. From tables 9–12, 〈Cθ

ev
〉/(−〈Cτ

ev
〉) roughly equals 0.0, while 〈Cκ

ev
〉/(−〈Cτ

ev
〉) is

close to 1.0. It suggests that the change rate of vibrational energy fluctuation due to the
dilatation is nearly negligible, while the dissipation of vibrational energy fluctuation due
to the thermal conduction is roughly equivalent to the production owing to the vibrational
relaxation.

To investigate the effect of flow compressibility on the change rate of internal energy
fluctuations, we define the parameters

Cθ
etr

= −
(

e2
tr1

− 4
5

etretr1

)
θ, Cκ

etr
= κtr

∂Ttr

∂xj

∂

∂xj

(
2etr1

ρα

)
, (5.8a,b)

Cμ
etr

= −2etr1

Reρ
σij

∂ui

∂xj
and Cτ

etr
= 2etr1

ρ

E∗
v − Ev

τv

, (5.9a,b)

for the translational–rotational energy fluctuation, and

Cθ
ev

= −e2
v1

θ, Cκ
ev

= κv

∂Tv

∂xj

∂

∂xj

(
2ev1

ρα

)
and Cτ

ev
= −2ev1

ρ

E∗
v − Ev

τv

, (5.10a–c)

for the vibrational energy fluctuation. The spatially averaged (Cθ
etr

− 〈Cθ
etr

〉)/〈Cetr〉,
(Cκ

etr
− 〈Cκ

etr
〉)/〈Cetr〉, (Cμ

etr − 〈Cμ
etr〉)/〈Cetr〉, (Cτ

etr
− 〈Cτ

etr
〉)/〈Cetr〉, (Cθ

ev
− 〈Cθ

ev
〉)/(−〈Cτ

ev
〉),

(Cκ
ev

− 〈Cκ
ev

〉)/(−〈Cτ
ev

〉) and (Cτ
ev

− 〈Cτ
ev

〉)/(−〈Cτ
ev

〉) conditioned on θ/θ ′ are presented in
figure 10. Here, only the Mt ≈ 0.68 cases are considered owing to their notable flow
compressibility.

For the fluctuation of translational–rotational energy, as shown in figure 10(a), the
〈(Cθ

etr
− 〈Cθ

etr
〉)/〈Cetr〉|θ/θ ′〉 is positive and increases rapidly in the compression region,

while it is negative and decreases sharply in the expansion region. Note that in the
range of |θ/θ ′| ≤ 0.65, the changes of 〈(Cθ

etr
− 〈Cθ

etr
〉)/〈Cetr〉|θ/θ ′〉 are relatively small.

Compared with the dilatation term, the dependence of other terms on θ/θ ′ is much
weaker. The 〈(Cκ

etr
− 〈Cκ

etr
〉)/〈Cetr〉|θ/θ ′〉 rises with the increase of θ/θ ′ magnitude in

the compression and expansion regions (figure 10b). In the strong compression region
(θ/θ ′ ≤ −2.0), it is insensitive to 〈Kτ 〉, but enlarges with the increase of θv . Beyond the
strong compression region, the vibrational relaxation effect is negligibly small. For the
〈(Cμ

etr − 〈Cμ
etr〉)/〈Cetr〉|θ/θ ′〉, the effects of flow compressibility and vibrational relaxation

are weak. The 〈(Cμ
etr − 〈Cμ

etr〉)/〈Cetr〉|θ/θ ′〉 for different cases roughly overlap each other
and keep almost constant in the compression and expansion regions (figure 10b).
Here, to distinguish the thermal conduction term from the viscosity term, the solid
lines representing 〈(Cμ

etr − 〈Cμ
etr〉)/〈Cetr〉|θ/θ ′〉 are offset by −1.0. For the 〈(Cτ

etr
−

〈Cτ
etr

〉)/〈Cetr〉|θ/θ ′〉, their variances in the compression region are closely related to the
vibrational relaxation. The 〈(Cτ

etr
− 〈Cτ

etr
〉)/〈Cetr〉|θ/θ ′〉 are close for cases II1 and II2, being

positive and enlarging with the increase of θ/θ ′ magnitude in the compression region. The
magnitude of 〈(Cτ

etr
− 〈Cτ

etr
〉)/〈Cetr〉|θ/θ ′〉 is significantly suppressed with the increase of

〈Kτ 〉 and θv (figure 10c). For example, for cases II3 and II4, the 〈(Cτ
etr

− 〈Cτ
etr

〉)/〈Cetr〉|θ/θ ′〉
is almost insensitive to θ/θ ′. In the expansion region, however, no obvious dependence on
the flow compressibility and vibrational relaxation is observed.
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Figure 10. Spatially averaged (a) (Cθ
etr

− 〈Cθ
etr

〉)/〈Cetr 〉, (b) (Cκ
etr

− 〈Cκ
etr

〉)/〈Cetr 〉 (with symbol), (Cμ
etr −

〈Cμ
etr 〉)/〈Cetr 〉 (solid line), (c) (Cτ

etr
− 〈Cτ

etr
〉)/〈Cetr 〉, (d) (Cθ

ev
− 〈Cθ

ev
〉)/(−〈Cτ

ev
〉), (e) (Cκ

ev
− 〈Cκ

ev
〉)/(−〈Cτ

ev
〉) and

( f ) (Cτ
ev

− 〈Cτ
ev

〉)/(−〈Cτ
ev

〉) conditioned on θ/θ ′. Mt ≈ 0.68.

For the vibrational energy fluctuation, the 〈(Cθ
ev

− 〈Cθ
ev

〉)/(−〈Cτ
ev

〉)|θ/θ ′〉 for different
cases are positive and negative in the compression and expansion regions, respectively
(figure 10d). Their magnitudes are amplified with the increase of θ/θ ′ magnitude.
The 〈(Cκ

ev
− 〈Cκ

ev
〉)/(−〈Cτ

ev
〉)|θ/θ ′〉 for different cases are insensitive to θ/θ ′ and

vibrational relaxation, keeping constant in the compression region except case II1, while
increasing slightly in the expansion region (figure 10e). As shown in figure 10( f ), the
〈(Cτ

ev
− 〈Cτ

ev
〉)/(−〈Cτ

ev
〉)|θ/θ ′〉 are close for cases II1 and II2, being negative in the
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Q. Zheng and others

compression region and positive in the expansion region. The dependence of 〈(Cτ
ev

−
〈Cτ

ev
〉)/(−〈Cτ

ev
〉)|θ/θ ′〉 on the flow compressibility reduces greatly as 〈Kτ 〉 increases. For

instance, the 〈(Cτ
ev

− 〈Cτ
ev

〉)/(−〈Cτ
ev

〉)|θ/θ ′〉 is almost insensitive to the compressibility for
cases II3 and II4. Note that, the dependency of 〈(Cτ

ev
− 〈Cτ

ev
〉)/(−〈Cτ

ev
〉)|θ/θ ′〉 is enhanced

sharply for case II6, because the value of (−〈Cτ
ev

〉) for case II6 is much smaller than other
cases (table 13).

6. Transfer of internal energy fluctuation

The Favre filtering approach is employed to study the transfers of translational–rotational
and vibrational energy fluctuations. The classically filtered field f̄ is defined as f̄ (x) ≡∫

d3rGl(r)f (x + r). The Gl(r) ≡ l−3G(r/l) is the filter function, where G(r) is a
normalized window function and l is the filter width. The Favre filtered field f̃ is defined as
f̃ ≡ ρf /ρ̄. In the present study a top-hat filter is adopted, which is calculated by (Martin,
Piomelli & Candler 2000)

f̄i = 1
4n

⎛⎝fi−n + 2
i+n−1∑

j=i−n+1

fj + fi+n

⎞⎠ , (6.1)

where the filter width l = 2nΔx.
The governing equation for the variance of filtered translational–rotational energy can

be derived from (5.2) as

∂〈ẽ2
tr1

〉
∂t

=
〈
ẽ2

tr1
θl − 2ẽtr1

ρ̄
pθ

〉
−

〈
κtr

∂Ttr

∂xj

∂

∂xj

(
2ẽtr1

ρ̄α

)〉
+

〈
2ẽtr1

Reρ̄
σij

∂ui

∂xj

〉

−
〈

2ẽtr1

ρ̄

E∗
v − Ev

τv

〉
+

〈
ρ̄(ẽtr1uj − ẽtr1 ũj)

∂

∂xj
(
2ẽtr1

ρ̄
)

〉
+

〈
2ẽtr1

ρ̄
F̄W

〉
= −〈Φetr

l + Detr
l + Γ

etr
l + Π

etr
l 〉 + 〈Fetr

l 〉, (6.2)

where θl(= ∂ ũj/∂xj) is the filtered velocity divergence. The dilatation term Φ
etr
l , thermal

conduction and viscosity term Detr
l , vibrational relaxation term Γ

etr
l , subgrid-scale (SGS)

flux term Π
etr
l , and effects of large-scale thermal forcing and cooling function Fetr

l can be
respectively presented as

Φ
etr
l = −ẽ2

tr1
θl + 2ẽtr1

ρ̄
pθ, Detr

l = κtr
∂Ttr

∂xj

∂

∂xj

(
2ẽtr1

ρ̄α

)
− 2ẽtr1

Reρ̄
σij

∂ui

∂xj
, (6.3a,b)

Γ
etr

l = 2ẽtr1

ρ̄

E∗
v − Ev

τv

, Π
etr
l = −ρ̄(ẽtr1uj − ẽtr1 ũj)

∂

∂xj

(
2ẽtr1

ρ̄

)
(6.4a,b)

and Fetr
l = 2ẽtr1

ρ̄
F̄W . (6.5)
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Case II2

〈Φl
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〈Φl
etr + Dl

etr + Γ l
etr + Πl

etr〉/〈Cetr〉

〈Dl
etr〉/〈Cetr〉〈Γ l
etr〉/〈Cetr〉〈Πl
etr〉/〈Cetr〉

(b)(a)

Figure 11. Dependence on l/η of 〈Φetr
l 〉/〈Cetr 〉, 〈Detr

l 〉/〈Cetr 〉, 〈Γ etr
l 〉/〈Cetr 〉, 〈Πetr

l 〉/〈Cetr 〉 and
〈Φetr

l + Detr
l + Γ

etr
l + Π

etr
l 〉/〈Cetr 〉. (a) Case I2, (b) case II2.

Similarly, the governing equation for the variance of filtered vibrational energy can be
derived from (2.4) as

∂〈ẽ2
v1

〉
∂t

= 〈ẽ2
v1

θl〉 −
〈
κv

∂Tv

∂xj

∂

∂xj

(
2ẽv1

ρ̄α

)〉
+

〈
2ẽv1

ρ̄

E∗
v − Ev

τv

〉

+
〈
ρ̄(ẽv1uj − ẽv1 ũj)

∂

∂xj

(
2ẽv1

ρ̄

)〉
= −〈Φev

l + Dev

l + Γ
ev

l + Π
ev

l 〉. (6.6)

The dilatation term Φ
ev

l , thermal conduction term Dev

l , vibrational relaxation term Γ
ev

l
and SGS flux term Π

ev

l can be respectively denoted as

Φ
ev

l = −ẽ2
v1

θl, Dev

l = κv

∂Tv

∂xj

∂

∂xj

(
2ẽv1

ρ̄α

)
, (6.7a,b)

Γ
ev

l = −2ẽv1

ρ̄

E∗
v − Ev

τv

and Π
ev

l = −ρ̄(ẽv1uj − ẽv1 ũj)
∂

∂xj

(
2ẽv1

ρ̄

)
. (6.8a,b)

6.1. Transfer of internal energy fluctuation
The dependence of 〈Φetr

l + Detr
l + Γ

etr
l + Π

etr
l 〉/〈Cetr〉, 〈Φetr

l 〉/〈Cetr〉, 〈Detr
l 〉/〈Cetr〉,

〈Γ etr
l 〉/〈Cetr〉 and 〈Πetr

l 〉/〈Cetr〉 on l/η are similar among the Mt ≈ 0.22 cases. So are
the Mt ≈ 0.68 cases. Here, as shown in figure 11, the cases I2 and II2 are taken to be
examples. The 〈Φetr

l + Detr
l + Γ

etr
l + Π

etr
l 〉/〈Cetr〉 approximately equals 1.0 in the range of

l/η ≤ 50.0 (figure 11a,b). It indicates that the effect of large-scale forcing on the transfer
of translational–rotational energy fluctuation is mainly localized in large-scale motions.
The 〈Φetr

l 〉/〈Cetr〉 increases in the range of l/η ≤ 50.0 and decreases in l/η > 50.0 for
case I2. Similarly, 〈Φetr

l 〉/〈Cetr〉 increases in l/η ≤ 70.0 and decreases in l/η > 70.0 for
case II2. The observation suggests that on spatial average, the dilatation effect weakens
the translational–rotational energy fluctuation in large-scale motions, and enhances it in
small- and intermediate-scale motions. The 〈Detr

l 〉/〈Cetr〉 approximately equals 0.7 and
0.65 at l/η ≈ 1.92 for cases I2 and II2, respectively, and decreases monotonously with
l/η. The 〈Detr

l 〉/〈Cetr〉 approaches 0.0 in l/η ≥ 60.0 (figure 11a,b). That is, the thermal
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conduction and viscosity effects weaken the translational–rotational energy fluctuation,
and mainly act on small- and intermediate-scale motions. The 〈Γ etr

l 〉/〈Cetr〉 keeps constant
(≈0.2) in l/η ≤ 60.0 for case I2, and ≈0.35 in l/η ≤ 7.0 for case II2 (figure 11a,b), and
reduces with l/η beyond these ranges. It implies that the vibrational relaxation weakens the
translational–rotational energy fluctuation, and acts mainly on large-scale motions for the
Mt ≈ 0.22 cases. The affected range is extended to intermediate- and large-scale motions
for the Mt ≈ 0.68 cases. Furthermore, the vibrational relaxation effect on the dissipation
of translational–rotational energy fluctuation is stronger in the Mt ≈ 0.68 cases. This
observation is consistent with the results in tables 9–12, where 〈Cτ

etr
〉/〈Cetr〉 values for

the Mt ≈ 0.22 cases are always smaller than their counterparts for the Mt ≈ 0.68 cases.
As shown in figure 11(a,b), 〈Πetr

l 〉/〈Cetr〉 ≈ 0.5 in 20 ≤ l/η ≤ 80 for cases I2 and II2,
suggesting that about half of the translational–rotational energy fluctuations cascade from
large- to small-scale motions in this range. Obviously, in this range (20 ≤ l/η ≤ 80),
the dilatation and vibrational relaxation terms (i.e. 〈Φetr

l 〉/〈Cetr〉 and 〈Πetr
l 〉/〈Cetr〉) also

play a significant role, and dissipate another half of the translational–rotational energy
fluctuation. These observations are different from the previous results about cascades of
thermal parameters in the compressible isotropic turbulence without vibrational excitation.
Wang et al. (2019) investigated the cascades of temperature and entropy fluctuations of
the stationary compressible isotropic turbulence with large-scale thermal forcing in the
absence of vibrational relaxation. They found that 〈ΠT

l 〉/εT ≈ 1.0 and 〈Π s
l 〉/εs ≈ 1.0

in 30 ≤ l/η ≤ 100 for both the Mt ≈ 0.2 and 0.6 cases. That is, all of the temperature
and entropy fluctuations cascade approximately from large- to small-scale motions in this
range, while the dilatation term plays a negligible role in dissipating the temperature and
entropy fluctuations.

Figure 12 shows the dependence on l/η of 〈Φev

l + Dev

l + Γ
ev

l + Π
ev

l 〉/(−〈Cτ
ev

〉),
〈Φev

l 〉/(−〈Cτ
ev

〉), 〈Dev

l 〉/(−〈Cτ
ev

〉), 〈Γ ev

l 〉/(−〈Cτ
ev

〉) and 〈Πev

l 〉/(−〈Cτ
ev

〉) for cases I2 and II2.
As mentioned in § 5, for the vibrational energy fluctuation, the vibrational relaxation would
be a production term, i.e. 〈Cτ

ev
〉 < 0.0 (table 13). In figure 12, (−〈Cτ

ev
〉) is thus selected to

be the denominator. The 〈Γ ev

l 〉/(−〈Cτ
ev

〉) ≈ −1.0 in l/η ≤ 60.0 suggests that the effect of
vibrational relaxation is mainly localized in large-scale motions, enhancing the vibrational
energy fluctuation. From (6.6), 〈Φev

l + Dev

l + Γ
ev

l + Π
ev

l 〉/(−〈Cτ
ev

〉) ≈ 0.0 is expected
(figure 12a,b). Furthermore, different from the transfer of translational–rotational energy
fluctuation, the dilatation effect on the vibrational energy fluctuation in different scale
motions is insignificant. The 〈Φev

l 〉/(−〈Cτ
ev

〉) ≈ 0.0 with different l/η values for cases
I2 and II2. The 〈Dev

l 〉/(−〈Cτ
ev

〉) approximately equals 0.87 and 0.79 at l/η ≈ 1.92 for
cases I2 and II2, respectively. The 〈Dev

l 〉/(−〈Cτ
ev

〉) dwindles monotonously with l/η, and
approaches 0.0 at l/η ≈ 60.0 (figure 12a,b). That is, the thermal conduction effect weakens
the vibrational energy fluctuation, and acts mainly on small- and intermediate-scale
motions. For cases I2 and II2, 〈Πev

l 〉/(−〈Cτ
ev

〉) ≈ 1.0 in 20 ≤ l/η ≤ 80 suggests that most
of the vibrational energy fluctuations cascade from large- to small-scale motions in this
range.

6.2. Components of the SGS flux term
The SGS fluxes of translational–rotational energy fluctuation based on the solenoidal and
dilatational velocity components can be respectively derived as

Π
etr,S
l = −ρ̄( ˜etr1uS

j − ẽtr1 ũS
j )

∂

∂xj

(
2ẽtr1

ρ̄

)
(6.9)

919 A26-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

38
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.381


Transfer of internal energy fluctuation

(b)(a)

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

100 101 102 103
–1.5

–1.0

–0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

100 101 102 103

Mt ≈ 0.22

Case I2

Mt ≈ 0.68

Case II2

〈Φl
ev〉/( – 〈Cτ

ev
〉)

〈Dl
ev〉/( – 〈Cτ

ev
〉)

〈Γ l
ev〉/( – 〈Cτ

ev
〉)

〈Πl
ev〉/( – 〈Cτ

ev
〉)

〈Φl
ev + Dl

ev + Γ l
ev + Πl

ev〉/( – 〈Cτ
ev
〉

l/η l/η
Figure 12. Dependence on l/η of 〈Φev

l 〉/(−〈Cτ
ev

〉), 〈Dev

l 〉/(−〈Cτ
ev

〉), 〈Γ ev

l 〉/(−〈Cτ
ev

〉), 〈Πev

l 〉/(−〈Cτ
ev

〉) and
〈Φev

l + Dev

l + Γ
ev

l + Π
ev

l 〉/(−〈Cτ
ev

〉). (a) Case I2, (b) case II2.
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Figure 13. Spatially averaged SGS fluxes (including dilatational and solenoidal components) of
(a) translational–rotational energy fluctuation and (b) vibrational energy fluctuation.

and

Π
etr,D
l = −ρ̄(˜etr1uD

j − ẽtr1 ũD
j )

∂

∂xj

(
2ẽtr1

ρ̄

)
. (6.10)

Similarly, the SGS fluxes of vibrational energy fluctuation based on the solenoidal and
dilatational velocity components are respectively

Π
ev,S
l = −ρ̄(˜ev1uS

j − ẽv1 ũS
j )

∂

∂xj

(
2ẽv1

ρ̄

)
(6.11)

and

Π
ev,D
l = −ρ̄( ˜ev1uD

j − ẽv1 ũD
j )

∂

∂xj

(
2ẽv1

ρ̄

)
. (6.12)

Note that, ũD and ũS are the dilatational and solenoidal components of filtered
velocity ũ, respectively. Figure 13 illustrates the spatially averaged SGS fluxes of
translational–rotational and vibrational energy fluctuations based on the solenoidal
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Case 〈Πetr
l 〉∗ 〈Πetr,S

l 〉∗ 〈Πev

l 〉† 〈Πev,S
l 〉† Case 〈Πetr

l 〉∗ 〈Πetr,S
l 〉∗ 〈Πev

l 〉† 〈Πev,S
l 〉†

I1 0.429 0.438 0.815 0.829 II1 0.426 0.436 0.788 0.806
I2 0.437 0.443 0.833 0.840 II2 0.413 0.414 0.787 0.799
I3 0.431 0.442 0.817 0.827 II3 0.440 0.460 0.829 0.857
I4 0.421 0.427 0.800 0.794 II4 0.384 0.379 0.835 0.847

Table 14. Spatially averaged SGS fluxes of translational–rotational and vibrational energy fluctuations at
l/η ≈ 15.37. Here 〈·〉∗ = 〈·〉/〈Cetr 〉 and 〈·〉†/ = 〈·〉/(−〈Cτ

ev
〉). Considering 〈Kτ 〉 effects.

Case 〈Πetr
l 〉∗ 〈Πetr,S

l 〉∗ 〈Πev

l 〉† 〈Πev,S
l 〉† Case 〈Πetr

l 〉∗ 〈Πetr,S
l 〉∗ 〈Πev

l 〉† 〈Πev,S
l 〉†

I2 0.437 0.443 0.833 0.840 II2 0.413 0.414 0.787 0.799
I5 0.468 0.480 0.825 0.822 II5 0.408 0.406 0.775 0.777
I6 0.525 0.547 0.732 0.728 II6 0.423 0.405 0.872 0.839

Table 15. Spatially averaged SGS fluxes of translational–rotational and vibrational energy fluctuations at
l/η ≈ 15.37. Here 〈·〉∗ = 〈·〉/〈Cetr 〉 and 〈·〉†/ = 〈·〉/(−〈Cτ

ev
〉). Considering θv effects.

and dilatational velocity components for cases I2 and II2. Interestingly, it is found
that 〈Πetr,D

l 〉/〈Cetr〉 ≈ 0.0, 〈Πev,D
l 〉/(−〈Cτ

ev
〉) ≈ 0.0, 〈Πetr,S

l 〉/〈Cetr〉 ≈ 〈Πetr
l 〉/〈Cetr〉 and

〈Πev,S
l 〉/(−〈Cτ

ev
〉) ≈ 〈Πev

l 〉/(−〈Cτ
ev

〉) with different l/η values for cases I2 and II2
(figure 13). The observation suggests that the spatially averaged SGS fluxes of
translational–rotational and vibrational energy fluctuations are mainly dominated by the
solenoidal velocity component.

To discuss the effects of Mt and vibrational relaxation on the transfer of internal
energy fluctuation, the spatially averaged SGS fluxes at l/η ≈ 15.37 are presented in
tables 14 and 15 for both the Mt ≈ 0.22 and 0.68 cases. The spatially averaged SGS
fluxes are normalized by 〈Cetr〉 for the translational–rotational energy fluctuation, and by
−〈Cτ

ev
〉 for the vibrational energy fluctuation. Here, 〈Πetr,D

l 〉/〈Cetr〉 and 〈Πev,D
l 〉/(−〈Cτ

ev
〉)

approximately equal 0.0, and are not presented in tables 14 and 15 for brevity.
Obviously, the results agree well with the observations of figure 13: 〈Πetr

l 〉/〈Cetr〉
and 〈Πev

l 〉/(−〈Cτ
ev

〉) are respectively close to 〈Πetr,S
l 〉/〈Cetr〉 and 〈Πev,S

l 〉/(−〈Cτ
ev

〉) for
all cases. For the Mt ≈ 0.22 cases, 〈Πetr

l 〉/〈Cetr〉 is insensitive to 〈Kτ 〉, but depends
on θv . The 〈Πetr

l 〉/〈Cetr〉 is about 0.430 as 〈Kτ 〉 increases from 0.16 to 9.80, and
enlarges slightly from 0.437 to 0.525 with θv varying from 1.0 to 5.0. For the
Mt ≈ 0.68 cases, 〈Πetr

l 〉/〈Cetr〉 is insensitive to both 〈Kτ 〉 and θv , approximately
equaling 0.416. Furthermore, for the Mt ≈ 0.22 cases, 〈Πev

l 〉/(−〈Cτ
ev

〉) is about 0.816
as 〈Kτ 〉 increases from 0.16 to 9.80, and reduces slightly from 0.833 to 0.732
with θv varying from 1.0 to 5.0. For the Mt ≈ 0.68 cases, 〈Πev

l 〉/(−〈Cτ
ev

〉) is
about 0.815.

Figures 14 and 15 show the PDFs of SGS fluxes for the translational–rotational and
vibrational energy fluctuations based on the dilatational and solenoidal components of
filtered velocity (i.e. Π

etr,D
l , Π

etr,S
l , Π

ev,D
l and Π

ev,S
l ) with l/η ≈ 15.37. The PDFs

of Π
etr,D
l and Π

ev,D
l are almost symmetrical about Π

etr,D
l = 0.0 and Π

ev,D
l = 0.0

(figures 14a,c and 15a,c). Obviously, the effect of vibrational relaxation on the fluctuations
of Π

etr,D
l is much weaker than that of Π

ev,D
l . The fluctuations of Π

ev,D
l decrease slightly
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Figure 14. Probability density functions of SGS fluxes of translational–rotational energy fluctuation due to
dilatational and solenoidal components of filtered velocity for l/η ≈ 15.37. Here, (a,b) Mt ≈ 0.22 and (c,d)
Mt ≈ 0.68.

with the increase of 〈Kτ 〉, and reduce significantly as θv increases. Meanwhile, the PDFs
of Π

etr,S
l and Π

ev,S
l exhibit a significant skewness toward the positive side. As shown in

figure 14(b,d), the PDFs of Π
etr,S
l of different cases roughly overlap each other. It means

that the fluctuations of Π
etr,S
l are almost insensitive to the vibrational relaxation. The fluct-

uations of Π
ev,S
l are insensitive to 〈Kτ 〉 but are closely related to θv . With the increase of θv ,

the fluctuations of Π
ev,S
l diminish significantly (figure 15b,d). As shown in figure 14, the

left tails of the PDFs of Π
etr,D
l and Π

etr,S
l are similar to each other, while the right tails

of the PDFs of Π
etr,S
l are significantly longer than that of Π

etr,D
l . This observation

suggests that the contribution of dilatational velocity component to the direct SGS
flux of translational–rotational energy fluctuation is much smaller than that of the
solenoidal velocity component, while their contributions to the reverse SGS flux of
translational–rotational energy fluctuation are similar. Consequently, the average SGS flux
of translational–rotational energy fluctuation stems mainly from the solenoidal velocity
component, which agrees well with the results in figure 13. Similar observations can be
made in figure 15 for the SGS flux of vibrational energy fluctuation, from the PDFs of
Π

ev,D
l and Π

ev,S
l .
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Figure 15. Probability density functions of SGS fluxes of vibrational energy fluctuation due to dilatational
and solenoidal components of filtered velocity for l/η ≈ 15.37. Here, (a,b) Mt ≈ 0.22 and (c,d) Mt ≈ 0.68.

To study the impact of local compressibility on the transfers of translational–rotational
and vibrational energy fluctuations, the spatially averaged (Π

etr,D
l − 〈Πetr,D

l 〉), (Π
etr,S
l −

〈Πetr,S
l 〉), (Π

ev,D
l − 〈Πev,D

l 〉) and (Π
ev,S
l − 〈Πev,S

l 〉) conditioned on θl/θ
′
l with l/η ≈

15.37 are presented in figures 16 and 17 for the Mt ≈ 0.22 and 0.68 cases. Here, θ ′
l =√

〈θ2
l 〉 is the r.m.s. value of filtered velocity divergence. As shown in figures 16(a,c)

and 17(a,c), 〈Πetr,D
l − 〈Πetr,D

l 〉|θl/θ
′
l 〉 and 〈Πev,D

l − 〈Πev,D
l 〉|θl/θ

′
l 〉 are positive in the

compression region and negative in the expansion region, and their magnitudes enlarge
with the increase of θl/θ

′
l magnitude. Obviously, the vibrational relaxation has a great

impact on the variation of 〈Πetr,D
l − 〈Πetr,D

l 〉|θl/θ
′
l 〉 and 〈Πev,D

l − 〈Πev,D
l 〉|θl/θ

′
l 〉. Taking

the Mt ≈ 0.68 cases as an example, with the increase of θv , the vibrational relaxation effect
weakens, and 〈Πetr,D

l − 〈Πetr,D
l 〉|θl/θ

′
l 〉 is greatly enhanced in the strong compression

region (i.e. θ/θ ′ ≤ −2.0), while 〈Πev,D
l − 〈Πev,D

l 〉|θl/θ
′
l 〉 is significantly suppressed in the

full flow field. As shown in figure 13, 〈Πetr,D
l 〉/〈Cetr〉 ≈ 0.0 and 〈Πev,D

l 〉/(−〈Cτ
ev

〉) ≈ 0.0
with different l/η values. That is, the direct SGS fluxes of translational–rotational and
vibrational energy fluctuations in the compression region are balanced by the reverse
SGS fluxes in the expansion region. For the Mt ≈ 0.22 cases, the variations of 〈Πetr,S

l −
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Figure 16. Spatial average of (Π
etr,D
l − 〈Πetr,D

l 〉) and (Π
etr,S
l − 〈Πetr,S

l 〉) conditioned on θl/θ
′
l . Here, (a,b)

Mt ≈ 0.22 and (c,d) Mt ≈ 0.68.

〈Πetr,S
l 〉|θl/θ

′
l 〉 and 〈Πev,S

l − 〈Πev,S
l 〉|θl/θ

′
l 〉 are closely related to the vibrational relaxation

(figures 16b and 17b). When the relaxation effect is significant, particularly for cases I2 and
II3, both 〈Πetr,S

l − 〈Πetr,S
l 〉|θl/θ

′
l 〉 and 〈Πev,S

l − 〈Πev,S
l 〉|θl/θ

′
l 〉 approach 0.0 in the range of

|θl/θ
′
l | ≤ 1.6, and increase sharply beyond this range. When the relaxation effect weakens,

for instance, cases I4 and I6, 〈Πetr,S
l − 〈Πetr,S

l 〉|θl/θ
′
l 〉 and 〈Πev,S

l − 〈Πev,S
l 〉|θl/θ

′
l 〉 are

almost insensitive to θl/θ
′
l . Here, the sharp increase in the range of |θl/θ

′
l | ≤ 1.6 for

cases I2 and I3 may result from the distinctive turbulent structure (fragmentized sheet-like
structures) in the strong compression and expansion regions (figure 2).

For the Mt ≈ 0.68 cases, 〈Πetr,S
l − 〈Πetr,S

l 〉|θl/θ
′
l 〉 is about 0.0 (figure 16d). For these

cases, the spatially averaged SGS fluxes of translational–rotational energy fluctuation
due to the solenoidal velocity component are insensitive to the local compressibility in
despite of the vibrational relaxation effect. However, 〈Πev,S

l − 〈Πev,S
l 〉|θl/θ

′
l 〉 is negative

in the compression region, and positive in the expansion region (figure 17d), although
their dependence on the local compressibility is not as strong as that of 〈Πev,D

l −
〈Πev,D

l 〉|θl/θ
′
l 〉. It suggests that the direct SGS flux of vibrational energy fluctuation due

to the solenoidal velocity component weakens in the compression region, and enhances in
the expansion region. The magnitude of 〈Πev,S

l − 〈Πev,S
l 〉|θl/θ

′
l 〉 reduces as θv increases;

for example, for case II6, 〈Πev,S
l − 〈Πev,S

l 〉|θl/θ
′
l 〉 approaches 0.0.
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Figure 17. Spatial average of (Π
ev,D
l − 〈Πev,D

l 〉) and (Π
ev,S
l − 〈Πev,S

l 〉) conditioned on θl/θ
′
l . Here,

(a,b) Mt ≈ 0.22 and (c,d) Mt ≈ 0.68.

The geometrical variables for the SGS fluxes of translational–rotational and vibrational
energy fluctuations are respectively defined as

φ
etr
l = Qetr · Getr/(|Qetr ||Getr |) (6.13)

and

ϕ
ev

l = Qev · Gev /(|Qev ||Gev |), (6.14)

where Qetr
j = ρ̄(ẽtr1uj − ẽtr1 ũj), Getr

j = (∂/∂xj)(2ẽtr1/ρ̄) and Qev

j = ρ̄(ẽv1uj − ẽv1 ũj),
Gev

j = (∂/∂xj)(2ẽv1/ρ̄).
Furthermore, the geometrical variables for SGS fluxes based on the solenoidal and

dilatational components of filtered velocity can be defined as

φ
etr,X
l = Qetr,X · Getr/(|Qetr,X||Getr |) (6.15)

and

ϕ
ev,X
l = Qev,X · Gev /(|Qev,X||Gev |), (6.16)

where Qetr,X
j = ρ̄(˜etr1uX

j − ẽtr1 ũX
j ), Getr

j = (∂/∂xj)(2ẽtr1/ρ̄) and Qev,X
j = ρ̄( ˜ev1uX

j −
ẽv1 ũX

j ), Gev

j = (∂/∂xj)(2ẽv1/ρ̄). Here, X represents S or D.
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Figure 18. Probability density functions of geometrical variables for SGS fluxes of the
translational–rotational energy fluctuation φ

etr
l . (a) Case I2, (b) case II2.

Figure 18 presents the PDFs of φ
etr
l for cases I2 and II2 with different l/η values.

It is found that the variations of PDFs with l/η are similar for cases I2 and II2. With
l/η ≈ 122.94 and 42.26, φ

etr
l has a tendency to be −1.0, which implies that the direct

cascades of translational–rotational energy fluctuation are prominent in intermediate- and
large-scale motions. With decreasing l/η (e.g. l/η ≈ 15.37 and 5.76), peaks of the PDFs
are approaching φ

etr
l = 0.0, suggesting that in small-scale motions the direct cascades

of translational–rotational energy fluctuation diminish. These observations are consistent
with the results in figure 11, where 〈Πetr

l 〉/〈Cetr〉 increases gradually in l/η ≤ 20, and
remains roughly invariant in 20 ≤ l/η ≤ 80.

The PDFs of φ
etr,D
l and φ

etr,S
l for the Mt ≈ 0.22 and 0.68 cases with l/η ≈ 15.37 are

presented in figure 19. Interestingly, the PDFs of φ
etr,D
l and φ

etr,S
l with different 〈Kτ 〉 and

θv values collapse. Furthermore, the PDFs of φ
etr,D
l and φ

etr,S
l for the Mt ≈ 0.22 and

0.68 cases are close to each other. The PDFs of φ
etr,D
l are approximately symmetrical

about φ
etr,D
l = 0.0 (figure 19a,c), while the PDFs of φ

etr,S
l almost overlap with those

of φ
etr
l (figure 19b,d). The observation is consistent with the results in figure 13, i.e.

the cascade of translational–rotational energy fluctuation is mainly dominated by the
solenoidal component of filtered velocity. Furthermore, the effects of Mt and vibrational
relaxation on the statistics of geometrical variables φ

etr,D
l and φ

etr,S
l are negligible. Note

that the PDFs of ϕ
ev

l and ϕ
ev,X
l are extremely close to those of φ

etr
l and φ

etr,X
l for both

the Mt ≈ 0.22 and 0.68 cases. For sake of simplicity, the PDFs of ϕ
ev

l and ϕ
ev,X
l are not

presented.

7. Summary and conclusions

In this paper the statistically steady compressible isotropic turbulence in vibrational
non-equilibrium is numerically investigated. Both the large-scale momentum forcing and
thermal forcing are employed to maintain the turbulence in a statistically stationary state
and to inject the large-scale temperature fluctuation. The turbulent Mach number (Mt)
approximately equals 0.22 and 0.68, while the Taylor Reynolds number (Reλ) is about
157.5. It is found that the large-scale thermal forcing enhances the flow compressibility,
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Figure 19. Probability density functions of geometrical variables for SGS fluxes of translational–rotational
energy fluctuation. (a,c) Dilatational component φ

etr,D
l . (b,d) Solenoidal component φ

etr,S
l .

while the vibrational relaxation weakens it. The combined effects of large-scale thermal
forcing and vibrational relaxation are significant in the Mt ≈ 0.22 cases, and the effects
diminish as Mt increases.

The velocity and pressure are decomposed into the solenoidal and dilatational
components. The solenoidal velocity component is found to predominate over the
dilatational component for both the Mt ≈ 0.22 and 0.68 cases. The effects of Mt and
vibrational relaxation on the fluctuations of solenoidal velocity and pressure components
are insignificant. However, the fluctuations of their dilatational components are closely
related on the Mt and vibrational relaxation. For both the Mt ≈ 0.22 and 0.68 cases, the
spectra of velocity, solenoidal pressure component, density and temperatures exhibit a
k−5/3 scaling at intermediate wavenumbers. The present k−5/3 scaling for the spectrum of
solenoidal pressure component should be attributed to the finite-Reynolds-number effect.
For the Mt ≈ 0.22 cases, because of the large-scale thermal forcing, the fluctuations
of pressure and its dilatational component at low wavenumbers are much larger than
their counterparts for the Mt ≈ 0.68 cases. When the relaxation effect is significant,
the fluctuation of pressure is mainly dominated by the dilatational component at low
wavenumbers, and by the solenoidal component at intermediate and high wavenumbers.
When the relaxation effect weakens, the fluctuation of pressure at full wavenumbers is
largely dominated by the dilatational component. For the Mt ≈ 0.68 cases, the large-scale
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thermal forcing does not increase the fluctuations of pressure and its dilatational
component at low wavenumbers. The spectra of pressure and its dilatational component
exhibit approximately the k−5/3 scaling at the intermediate wavenumbers. The fluctuation
of dilatational pressure component is comparable to that of the solenoidal component at
low and intermediate wavenumbers, while the pressure fluctuation is dominated by the
dilatational component at high wavenumbers.

The weak form of acoustic equilibrium hypothesis is validated for both the Mt ≈
0.22 and 0.68 cases, i.e. χ = 〈p〉γrMt(uD

rms/u′)/pD
rms ≈ 1.0. However, for the Mt ≈ 0.22

cases, the strong acoustic equilibrium hypothesis (EpD
(k) = 2.0γr〈ρ〉〈p〉EuD

(k)) is valid
only at low wavenumbers when the vibrational relaxation effect is significant, and it
is approximately valid at all wavenumbers as the vibrational relaxation effect weakens.
For the Mt ≈ 0.68 cases, the strong acoustic equilibrium hypothesis is valid at all
wavenumbers in despite of the vibrational relaxation.

On global average, the change rates of translational–rotational energy fluctuation due
to the dilatation and viscosity are negligible for both the Mt ≈ 0.22 and 0.68 cases.
The dissipation rate of translational–rotational energy fluctuation stems mainly from the
thermal conduction and vibrational relaxation, while the former plays a major role. For
both the Mt ≈ 0.22 and 0.68 cases, the change rate of vibrational energy fluctuation
due to the dilatation effect is negligible, while the dissipation rate of vibrational energy
fluctuation due to the thermal conduction is comparable to the production rate owing to
the vibrational relaxation.

The Favre filtering approach is adopted to investigate the transfers of translational–
rotational and vibrational energy fluctuations. The SGS flux terms are further decomposed
into the solenoidal and dilatational components. For both the Mt ≈ 0.22 and 0.68 cases,
the cascades of translational–rotational and vibrational energy fluctuations exist in the
range of 20 ≤ l/η ≤ 80. The spatially averaged SGS fluxes of translational–rotational
and vibrational energy fluctuations are mainly dominated by the solenoidal component
of filtered velocity. The spatially averaged SGS fluxes due to the dilatational component
of filtered velocity depends closely on the local compressibility, Mt and vibrational
relaxation. The direct SGS fluxes in the compression region is balanced by the
reverse SGS fluxes in the expansion region. Furthermore, for the Mt ≈ 0.22 cases,
the spatially averaged SGS fluxes of translational–rotational and vibrational energy
fluctuations based on the solenoidal component of filtered velocity increase sharply with
the compressibility in the strong compression and expansion regions. The sensibility to
the local compressibility gradually disappears as the relaxation effect weakens. However,
for the Mt ≈ 0.68 cases, the spatially averaged SGS flux of translational–rotational energy
fluctuation due to the solenoidal component of filtered velocity is almost insensitive to
the local compressibility, while that of the vibrational energy fluctuation has a weak
connection with the local compressibility.
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Appendix A. Forcing strategy

In present simulations, the large-scale momentum forcing is only applied to the
solenoidal component of the velocity field. Such a forcing strategy is wildly employed
in homogeneous isotropic turbulence (Donzis & John 2020). The velocity field u(x, t) is
transformed into the Fourier space to yield û(k, t), which is further decomposed into a
solenoidal field (ûS(k, t)) and a dilatational field (ûD(k, t)). Here, k is a wave vector in
Fourier space. Similarly, the kinetic energy per unit mass for each wave vector can be
decomposed as

|û(k, t)|2
2

= |ûS(k, t)|2
2

+ |ûD(k, t)|2
2

. (A1)

The kinetic energy in each of the first two wavenumber shells can be calculated as

Eu(0.5 ≤ k < 1.5) =
∑

0.5≤|k|<1.5

( |û(k, t)|2
2

)
(A2)

and Eu(1.5 ≤ k < 2.5) =
∑

1.5≤|k|<2.5

( |û(k, t)|2
2

)
. (A3)

Similarly, the kinetic energy in the first two wavenumber shells can be decomposed as

Eu(0.5 ≤ k < 1.5) = Eu,S(0.5 ≤ k < 1.5) + Eu,D(0.5 ≤ k < 1.5), (A4)

and Eu(1.5 ≤ k < 2.5) = Eu,S(1.5 ≤ k < 2.5) + Eu,D(1.5 ≤ k < 2.5). (A5)

To maintain the total kinetic energy in the first two shells to the prescribed levels Eu(1)

and Eu(2), respectively, the solenoidal velocity field (ûS(k, t)) is amplified, while the
dilatational velocity field (ûD(k, t)) is left untouched. The forced velocity field û f (k, t)
is given as

û f (k, t) = αûS(k, t) + ûD(k, t), (A6)

where α for all modes in each wavenumber shell is set to be

α(0.5 ≤ k < 1.5) =
√

Eu(1) − Eu,D(0.5 ≤ k < 1.5)

Eu,S(0.5 ≤ k < 1.5)
(A7)

and α(1.5 ≤ k < 2.5) =
√

Eu(2) − Eu,D(1.5 ≤ k < 2.5)

Eu,S(1.5 ≤ k < 2.5)
. (A8)

Here, Eu(1) = 1.242477 and Eu(2) = 0.391356.
The large-scale thermal forcing for the translational–rotational temperature (Ttr) field is

similar to that for the solenoidal velocity field. The translational–rotational temperature
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Figure 20. Time evolution of spatially averaged (a) kinetic energy (Ek = 〈u2〉/2) and
(b) translational–rotational temperature (〈Ttr〉).

field Ttr(x, t) is transformed into the Fourier space to yield T̂tr(k, t). Similarly,

ETtr(0.5 ≤ k < 1.5) =
∑

0.5≤|k|<1.5

(|T̂tr(k, t)|2) (A9)

and ETtr(1.5 ≤ k < 2.5) =
∑

1.5≤|k|<2.5

(|T̂tr(k, t)|2). (A10)

The forced translational–rotational temperature is given as

T̂ f
tr(k, t) = βT̂tr(k, t), (A11)

where β for all modes in each wavenumber shell is set to be

β(0.5 ≤ k < 1.5) =
√

ETtr(1)

ETtr(0.5 ≤ k < 1.5)
(A12)

and β(1.5 ≤ k < 2.5) =
√

ETtr(2)

ETtr(1.5 ≤ k < 2.5)
. (A13)

Here, ETtr(1) = Eu(1)/100 and ETtr(2) = Eu(2)/100.
Figure 20 shows the time evolution of spatially averaged kinetic energy (Ek = 〈u2〉/2)

and translational–rotational temperature (〈Ttr〉) in the sampling period for cases I2 and II2.
The values of Ek = 〈u2〉/2 and 〈Ttr〉 keep almost constant with a slight fluctuation. The
Ek ≈ 1.61 and 〈Ttr〉 ≈ 1.03. It reveals that the present simulated flows are in a statistically
stationary state in the sampling period.
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