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Because GPS is a radio navigation system which has a very low power level, it is vulnerable
to RFI. Excessive RFI could cause receiver performance degradation, such as degradation
of position accuracy, loss of lock and increased acquisition time. After GPS moderniz-
ation plans introduce dual-frequency civil signals to mitigate ionospheric errors, RFI will
remain as one of the dominant threats for differential GPS navigation systems. Examples
of safety-critical civil aviation and military missions threatened by RFI include the Local
Area Augmentation System (LAAS) and the Joint Precision Approach and Landing
System (JPALS). This paper focuses on RFI mitigation through integrity monitoring
for a DGPS system like LAAS or JPALS. The mitigation strategy consists of two parts.
First, the paper develops a new RFI detection method, using a raw divergence statistic.
Second, the paper investigates strategies for maintaining integrity in the case that RFI is
detected.

To validate the utility of the divergence-based RFI monitor, this paper takes an exper-
imental approach. The experiments assess the performance of the divergence metric and
compare it to existing alternatives for RFI detection, such as metrics for Automatic Gain
Control (AGC) and carrier-to-noise ratio (C/NO0). Generating a monitoring threshold for
these statistics proves challenging, because the threshold depends both on the type of RFI
threat (e.g. continuous wave, narrow band, wideband, pulsed) and on environmental con-
ditions, such as temperature. As experiments illustrate, the divergence statistic resolves these
limitations, as divergence directly estimates ranging source error, independent of the type
of RFI threat or the environmental conditions.
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I. INTRODUCTION. The Local Area Augmentation System (LAAS) and
the Joint Precision Approach and Landing System (JPALS) are aircraft landing
systems based on the Differential GPS (DGPS) concept. These systems consist of
a reference station, which provides accurate correction information with integrity,
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and users, who utilize the broadcast information to estimate their own positions
and navigation error bounds. To develop and evaluate these functions, the Stanford
GPS laboratory built an integrity monitor testbed (IMT) for LAAS. It monitors
the quality of the GPS signal, navigation data and measurements and generates
pseudorange corrections and standard deviations of the correction error suitable
for transmission to airborne users (Luo, 2000) (Pullen, 2000) (Xie, 2001) (Normark,
2001).

A significant threat for DGPS that can be investigated using the IMT is excessive
radio frequency interference (RFI). GPS has vulnerability to RFI because of its low
signal power. RFI causes increase of measurement noise, loss of lock, cycle slip or
false lock. Because RFI-induced measurement noise causes deterioration of GPS
performance, RFI detection and isolation is essential to GPS related applications,
especially safety-critical systems.

To detect the RFI effect on GPS signals, other researchers, such as Ndili (Ndili,
1998) and Luo (Luo, 2003), have focused primarily on automatic gain control (AGC)
and carrier to noise ratio (C/NO) statistics. This research has shown that AGC, in
particular, is very sensitive to RFI. In isolation, however, the AGC can encounter
two problems when used to detect RFI. First, because AGC outputs depend on the
nature of the RFI signal, as well as on receiver design and ambient temperature
(Bastide, 2003), it is difficult to predict AGC response and to design a threshold for
an AGC monitor. Second, AGC monitor outputs do not directly reflect navigation
error of the system. Even under weak RFI changes that do not degrade range
measurements severely, an AGC monitor may produce a significant response that
could affect the continuity performance of the system.

Because of these limitations, it is desirable to define a detection metric that esti-
mates the actual pseudorange error level experienced by the differential GPS ground
station. One candidate metric in the IMT is the B-value statistic, used to detect
hazardous range corrections or violations of the broadcast error variance bound
(Lee, 2001). Because the B-value is based on 100 second smoothing, however, the
detection time for RFI threats is too long.

The divergence statistic is a useful complement to other system parameters that
might be employed for RFI monitoring. In contrast with the AGC measurement,
the divergence statistic provides a direct indication of ranging errors. In this sense,
thresholds are more easily defined for a raw divergence monitor than for an AGC
monitor, since they are less dependent on the nature of the noise source or the
ambient RFI environment. In contrast with the B-value statistic, the raw divergence
statistic provides an independent sample from only two sequential epochs and,
consequentially, enables rapid detection of RFI threats.

In this paper, AGC, SNR and raw divergence statistics are experimentally
compared for various RFI sources. These results motivate an operational strategy
to detect and deal with RFI. For civil applications, like LAAS, if variance
violation is detected and exceeds our threshold, the system stops operation.
For military applications, like JPALS, which may require operation even under
hazardous RFI conditions, the detection of RFI results in inflation of thresholds
for all monitors and simultaneous inflation of broadcast sigmas, so that users can
decide whether or not to continue operating. This strategy can thus provide
continuous system operation under moderate RFI conditions without losing
integrity.
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2. DESIRABLE METRIC.

2.1.  Raw Divergence. Divergence is a desirable RFI metric. Divergence estimates
current error levels because it is a time difference of pseudorange minus carrier phase
as follows.

= 2[1)1(k) _In(k_ 1)] + [gn,p(k) - 811,¢(k) _5n,p(k_ 1) _5n,¢(k_ 1)]

Where,

dz: raw divergence; k: k" epoch; n: n satellite;

p: pseudorange; ¢ . carrier phase; I: ionosopheric delay ;
£y pseudorange measurement noise

g4 carrier phase measurement noise

Assuming the multipath effect is tightly correlated in one epoch difference, the raw
divergence reflects errors caused by ionospheric divergence and measurement noise
terms, as shown in the second line of Equation (1). If the ionospheric bias term
can be estimated, the raw divergence is dominated by contributions from thermal
noise and RFI. The raw divergence statistic is useful for RFI detection because
multiple independent measurements occur quickly, allowing for rapid detection.
Independent samples of raw divergence are available once every two epochs for
each channel. Assuming a LAAS or a JPALS reference station with at least three
GPS receivers and an average of six satellites in view, there are as many as 18
independent samples available per epoch. Assuming Gaussian statistics, a combi-
nation of the independent samples gives a decision variable which approximately
follows a 2 distribution. A monitor can be implemented based on a y2 Raw
divergence statistics can also be combined with AGC statistics to improve per-
formance.

2.2. Obtaining Zero Mean Raw Divergence. As described by the prior section,
Equation (1) includes ionospheric delay terms which should be eliminated if the RFI
and thermal noise levels are to be estimated. For the purposes of this work, nominal
divergence (such as that which results from the change in ionosphere obliquity factor
as GPS satellites rise through the sky) is assumed to change over an extended
duration. Rapid ionosphere changes, such as scintillation effects, are assumed to be
additional threats that the divergence metric would monitor. Scintillation effects
are not discussed in this paper, however. In order to remove low-frequency iono-
spheric changes from the raw divergence statistic, a Geometric Moving Average
(GMA) of the divergence is used (Xie, 2004).
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Figure 1. Sigma-estimation threshold. Figure 2. Sigma-estimation threshold vs.

DOF.

Removal of the estimated mean from the raw divergence makes the zero-mean
divergence (dZ), which has only noise components.

dz(k) = d=(k) — dz(k) 3)

It is this zero-mean divergence statistic which will be employed for RFI monitoring.

3. ZERO-MEAN DIVERGENCE MONITORS. In this paper, two
kinds of methods based on zero-mean divergence are used for RFI detection. They
are ‘Sigma-estimation’ and ‘CUSUM’ methods, which have previously been em-
ployed for detecting small and large sigma violations, respectively, in the Stanford
IMT (Pullen, 2003).

3.1. Sigma-Estimation. The sigma-estimation method (Lee, 2001) simply esti-
mates the standard deviation of normalized raw divergence in real time.

Lo dzi) 1
o= Z |t @

Where,

045 estimated sigma

A: number of independent samples

dz: zero-mean divergence

og4s: standard deviation of normalized raw divergence in nominal condition
/- inflation factor

el: elevation angle

The threshold for this monitor is determined by the false alarm rate and by the
number of available independent measurements, also called degrees of freedom.
Figure 1 shows the probability density function of a y* distribution to illustrate the
sensitivity of sigma-estimation to false alarm rate. Here, the false alarm rate is 10 7.
In this case, the threshold is set as a value which makes the probability beyond
the right tail equal to 10~7. The sensitivity of the sigma-estimation method to the
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degrees of freedom (DOF) of the y* distribution is illustrated in Figure 2. Here
the acronym DOF is used as an abbreviation that means “number of independent
samples.” If the monitor has more independent samples, it can detect smaller
violations.

3.2. CUSUM (Cumulative Sum) In contrast with the sigma-estimation monitor,
which examines the magnitude of divergence errors, a second monitor type, called
CUSUM, examines the rate at which divergence errors accumulate. The sigma
CUSUM takes squared normalized zero-mean divergence as the monitor input as
shown in Equation (5). This input is normalized by the nominal standard deviation
of the divergence, gy, which depends on the elevation angle of the corresponding
satellite. Note that this monitor uses all the measurements from all reference
receivers at one epoch, therefore M in Equation (5) is the number of all the
measurements. The rate at which the CUSUM allows errors to accumulate is called
the “failure slope,’ kygme. The failure slope term is a function of the nominal sigma,
0y, and the lower-bound faulted sigma, ;. This faulted sigma is also known as the
‘out-of-control’ sigma. In this paper, the monitor uses a particular variant of
CUSUM known as the FIR (Fast Initial Response) CUSUM, which has a ““head-
start” value of 3//4 for fast detection. The threshold / is determined to achieve
a fault-free alert rate of 107

C(0)= %
dz (k) \?
C(k)= max (o, Clk—1)+ Z </0[ie(l ()k))> M.kﬂgma) (5)
In(o1) — In(oo)
ks[gma =

20h) ' —(209) 7"
Where,

/> inflation factor

M : number of measurements at k-th epoch
0,y: nominal (in-control) sigma

0, target (out-of-control) sigma

h: threshold

3.3. Accounting For Non-Gaussian Statistics. Both monitors assume Gaussian
statistics for zero-mean divergence. In fact, divergence statistics typically display
heavier than Gaussian tails (Braff, 2005). In order to ensure continuity, given this
heavy tailed distribution, the actual divergence distribution can be modelled as a
Gaussian with an inflated sigma. The monitor threshold is defined conservatively, in
terms of this inflated sigma. As described in the following section, an appropriate
value of the sigma-inflation, £, for the experiments described in this paper is 2-45, at
low elevations below 20°, and 1-6 at higher elevations.

4. EXPERIMENTAL DATA.
4.1. Experimental Data Collection. The data used in this divergence monitor
validation study was previously collected by Luo (Luo, 2003). The data set includes
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Figure 3. Injected RFI power profile.

two kinds of RFI experiments — a single-channel bench test and a three receiver live
GPS test. In this paper, the saved data in those tests will be analyzed to show the raw
divergence is an appropriate metric for RFI detection.

4.1.1. Single-channel Bench Test Setup. A single-receiver, single-satellite bench
test demonstrated strong correlation between the divergence metric and RFI-induced
errors. In this test, a GPS simulator produced a synthetic single-satellite signal.
This simulated GPS signal was combined with an RFI signal and input to a NovAtel
GPS receiver. The RFI generator was tuned to produce different types and power
levels of RFI. For each type of RFI, the power level was increased by 1 dB every
hour. Five types of RFI were injected into the received GPS signal including (1)
wideband, (2) continuous wave at L1, (3) 10 MHz narrow band, (4) 30 MHz narrow
band, and (5) pulsed continuous wave at L1 with a 5% duty cycle. These five RFI
signals are abbreviated as WB, CW, NB10, NB30, and PULSE, respectively.

4.1.2. Three-Receiver Live GPS Test Setup. In order to assess the response time
and sensitivity of the sigma-estimation monitor and the CUSUM monitor based on
the divergence statistic, a multi-receiver experimental configuration was used. The
configuration consisted of three NovAtel GPS receivers installed in the Stanford
IMT. Two of them operated under nominal conditions, receiving live GPS signals
from roof-mounted antennas. The input to the third receiver was combined with a
signal from the RFI generator used in the prior experiment. The data from nominal
condition receivers were processed for threshold determination. The data from the
RFI-corrupted receiver were processed to evaluate monitor performance. In contrast
with the single-channel test, which employed five types of RFI, the three-receiver
test employed only a single type of RFI: wideband. The RFI generator was con-
figured to produce a wideband RFI condition with a time varying power level,
as shown in Figure 3. The nominal RFI power level is —110-5dBm/MHz. The
test included seven periods of elevated RFI power, above the nominal level. Each
of these seven periods of elevated power, numbered as shown in the figure, will be
referred to as a “section.’ Each section lasted one hour, with data collected at a 2 Hz
sample rate.

4.2. Pre-Processing Of Experimental Data. This section provides an overview
of the pre-processing steps employed in both the single-channel and three-receiver
tests. An overview of the analysis for each test provides a context for the pre-
processing required in each case.

The single-channel test enables a comparison of the divergence statistic to AGC
and C/NO as estimates of RFI induced error. To assess the correlation between
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Figure 4. Data analysis overview.

these metrics and actual error levels, the raw divergence, AGC and C/NO metrics
are compared with an offline estimate of the pseudorange noise. The comparison
is repeated under various types of excessive RFI, including continuous wave,
narrowband and wideband threats. In each case, the raw data files include AGC and
C/NO statistics. Pre-processing is required, however, to transform the carrier and code
measurements stored in the data file into zero-mean divergence and pseudorange
noise estimate statistics.

The three-receiver live-GPS test enables an assessment of RFI detection per-
formance possible using two monitor methods based on the zero-mean diver-
gence statistic: ‘Sigma-estimation’ and ‘CUSUM’, which were described previously.
The result is compared with the offline estimate of actual pseudorange noise to
show that the monitor can successfully detect severe RFI threats within a reason-
able time-to-alert. Again, pre-processing is required to generate the zero-mean
divergence and psuedorange noise estimate. Additionally, pre-processing determines
the inflation factor, f. This inflation factor is used in defining monitor thresholds
in order to prevent frequent false alarms due to heavy tails in the divergence
distribution.

Figure 4 summarizes these pre-processing steps for both the single-channel and
the three-receiver tests. The procedures for determining the zero-mean divergence
inflation factor and the offline estimate of pseudorange noise are described in the
subsequent sections.

4.3. Determining Heavy-Tail Inflation Factor. As described previously, the
divergence monitors presume Gaussian statistics. To provide a conservative bound
for actual, heavy-tailed statistics, a sigma-inflation factor is used. The sigma-inflation
factor is selected so that the inflated Gaussian provides a conservative approximation
of the actual heavy-tailed error distribution.

The following figures illustrate the determination of the sigma-inflation factor
for the data used in the experiment. The dots in Figure 5 depict the normalized
probability density function for the zero-mean divergence measurements. The figure
illustrates data for satellites whose elevation angles were between 10 and 20°. The
line 1 illustrates the normal distribution with standard deviation equal to that of
the raw divergence measurements. The other lines are the inflated distributions
with inflation factors of 1-6, 2-0, and 2-45. Theoretically, if the divergence metric were
Gaussian, line 1 would overlay the dots. However, in the real case, the theoretical

https://doi.org/10.1017/50373463306003882 Published online by Cambridge University Press


https://doi.org/10.1017/S0373463306003882

410 YOUNGSUN YUN AND OTHERS VOL. 59

Figure 5. Inflation factor (El: 10~20°). Figure 6. Inflation factor (El: 50 ~60°).

standard deviation does not bound all the measurements, especially near tail. For
low elevation angles (10-20°), the inflation factor should be at least 2-45 (the widest
line) to bound the measurements. For elevation angles above 20°, an inflation factor
of 1-6 is sufficient to bound the data. As an illustration, Figure 6 plots the data in the
elevation bin between 50 and 60°.

4.4. Estimating Actual Pseudorange Noise. In order to evaluate the relation-
ship between the divergence metric and the actual error levels induced by RFI,
it is necessary to provide a “truth” measurement that describes the RFI noise
contribution to pseudorange measurements. For this work, noise contributions
were estimated by an offline procedure. The offline procedure permits a batch
analysis of the entire dataset available. The offline procedure bases its error esti-
mate on a code-minus-carrier statistic. The primary error sources in the code-
minus-carrier signal are the ionosphere, the carrier-phase integer ambiguity, the
multipath error and the thermal/RFI noise contribution as shown in the third
line of Equation (6).

p=d+dR—b+I1+T+B+M,+¢,
¢p=d+dR—b—I+T+B+AN+M,+¢, (6)
p—¢=21—AN+M,—My+e,—¢e4

Where,

d: true distance from satellite to receiver; dR . ephemeris error;

b: satellite clock bias; T': tropospheric delay; B; receiver clock bias;
M, : pseudorange multipath: My : carrier phase multipath;

A wavelength of L1 signal,; N: integer ambiguity

For the single-channel bench test, ionosphere and multipath errors are not present.
The offline pseudorange error estimate is established by subtracting the mean value
from the code-minus-carrier statistic, in order to remove the integer ambiguity.

For the three-channel live GPS test, ionosphere divergence, integer ambiguity and
multipath errors are present. In order to estimate the RFI-induced error component
in the code-minus-carrier signal, the ionosphere delay, integer ambiguity and
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Figure 7. Estimating actual pseudorange noise.

multipath noise terms must be removed. As a first step, the ionospheric delay and
integer ambiguity terms are eliminated by a second-order fitting for all epochs in the
data set. In effect, this process acts as a very low frequency filter. As a second step, the
instantaneous multipath is estimated by a second order fitting over a 10 second
window. In effect, this process acts as a low frequency filter to eliminate multipath
(since the time-constant for multipath is generally significantly longer than this
10 second window). The pseudorange error estimate consists of the remaining high-
frequency noise. Figure 7 depicts this estimation process.

5. EXPERIMENTAL RESULTS.

5.1. Test 1: Single-Channel Bench Test. The single-channel bench test enables
a comparison of the correlation between the estimated ““true’ value of the pseudo-
range noise and each of the possible monitor inputs — divergence, AGC and C/NO.
Results show that the divergence metric, in contrast with the other test statistics,
correlates strongly with pseudorange noise, independent of the nature of the RFI
threat.

Plots of pre-processed data clearly show the correlation between each detection
metric and the magnitude of the offline error estimate. The experimental data are
plotted in Figures 8-10. Measurements were collected once every minute. The x-axis
indicates the offline estimates for the pseudorange noise sigma, computed as the
standard deviation of the error estimate over each one hour “section’ during which
the RFI noise level is constant. The y-axis represents values of the test statistic. The
test statistic is the standard deviation of the divergence for Figure 8, the mean AGC
for Figure 9, and the mean C/NO for Figure 10. Note that the standard deviation of
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the divergence should get larger as the pseudorange noise increases while the mean
AGC and the mean C/NO should get smaller.

In order to establish correlation, the test statistic estimates should vary linearly
with the offline pseudorange error estimate. Ideally, the correlation should become
increasingly apparent as more independent samples are used. This convergence to
a linear relationship occurs because the increased number of independent samples
reduces random measurement noise. If, however, the correlation is weak, the detec-
tion statistic will not display linear variation with the error estimate, even when the
number of independent samples is high.

Figures 8 through 10 indicate strong correlation for the divergence metric but not
for the AGC or C/NO metrics. For each figure, plots are shown for two cases with
varying independent samples used in computing the detection metric (DOF of 5 and
30). The number of estimates plotted is inversely proportional to the DOF, since data
was compiled for each RFI case over a 60 minute interval.

In general, an integrity monitoring system does not have prior knowledge of the
type of RFI that might corrupt its measurements. For this reason, it is necessary to
consider the correlation between the detection metric and the estimated error across
a wide range of RFI conditions (wideband, continuous wave, narrowband and
pulsed). For each individual RFI condition, AGC and C/NO metrics display a
roughly linear trend as a function of estimated error. As shown in Figures 9 and 10,
however, the correlation breaks down when AGC and C/NO data for a variety of
different RFI conditions are lumped together.

By comparison, the divergence metric is proportional to the estimated error
regardless of the classification of the RFI source. This linear trend is clearly evident
in the 30 DOF plot of Figure 8. The slope of the proportionality for the line
is approximately v/2. This slope is explained by noting that the divergence error is
dominated by the difference of two pseudoranges and that the sigma for a difference
of two independent, identically distributed Gaussian random variables is v/2 larger
than the sigma of either individual random variable.

The strong linearity of the divergence metric data, in comparison to the AGC and
C/NO data, is further emphasized by computing the residuals of the data relative to a
linear regression. The relationship between the linear regression residuals and the
DOF is shown for each metric in Figure 11. The regression is computed over a data
set that combines all RFI types evaluated in the single-channel test. While the mean
AGC and the mean C/NO residuals are not reduced as DOF increases, the standard
deviation of the divergence does converge toward zero as DOF increases. This data
clearly demonstrates the direct linear relationship between the divergence metric and
the estimated error, independent of the type of RFI present. This is a highly desirable
characteristic for the RFI monitor statistic.

5.2. Test 2: Three-Receiver Live GPS Test. The three-receiver live GPS test
enables performance assessment of RFI monitors based on the zero-mean divergence
statistic. In this test, wideband RFI of varying power levels is injected into the live
GPS signal. The sigma-estimation and CUSUM monitors process this data to detect
integrity violations caused by the injected RFI.

5.2.1. RFI Mask. Not all RFI is considered harmful to the operation of a
differential augmentation system. In fact, systems like LAAS and JPALS are
designed to operate with full integrity even under slightly elevated RFI conditions.
The maximum level of RFI in which an augmentation can safely operate is called
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the RFI mask. The threshold for RFI monitoring must be defined in terms of the
RFI mask. Previous research efforts in RFI monitoring and detection for GPS
augmentation systems have not focused, however, on the challenge of defining an
appropriate monitoring threshold based on the RFI mask. For instance, Luo showed
that an AGC monitor could be designed to detect all of the elevated RFI sections
in Figure 3 and that a C/NO monitor detected sections 5 and 6 (Luo, 2003). This
analysis focused only on whether RFI conditions were more severe than nominal.
For operational system integrity, it would be necessary to extend this analysis to
distinguish between RFI conditions more severe than nominal but nonetheless below
the RFI mask. To reflect the impact of the mask on an operational system, this work
derives the thresholds for the divergence-based sigma-estimation and CUSUM
monitors using the RFI mask.

Augmentation systems automatically account for the noise level at the RFI mask
in their broadcast error bounds. In LAAS, for example, the RFI mask is embedded
in the broadcast parameter, 0,, o,; Which represents the error level of the pseud-
orange correction measured at the ground station. If the true correction error is
not bounded by 0, 4,4, an integrity violation occurs. The LAAS 0, 4,4 values are
generally described as a function of elevation using Ground Accuracy Designator
(GAD) curves. GAD curves represent the performance of the reference receivers
and antennas at three levels of quality, labelled A, B and C. The Stanford IMT
antennas, for example, support a GAD-B curve for 0, 4, For analysis of IMT
data, the level of RFI noise at the RFI mask can thus be derived from the GAD-B
standard.

The RFI noise contribution is only one component of the GAD-B curve. The
GAD-B curve, modelled by Equation (7), has both a RFI/thermal noise contribution
and a multipath contribution as shown in Table 1 (McGraw, 2000).

opR(6)=a0+ale*9/0“ (7)

The RFI noise level defined in the GAD-B model assumes 100 second smoothing
for data acquired at 2 Hz. In order to compare this smoothed pseudorange sigma
at the RFI mask to the estimated actual pseudorange noise sigma, the smoothed
values must be scaled by a factor of approximately 19, because the smoothed pseudo-
range sigma is about 20 times that of a raw pseudorange sigma (McGraw, 2000) and
the estimated actual pseudorange sigma is about 1-05 times of that due to the low-
frequency filter. When the estimated actual pseudorange data from the IMT are
normalized by the scaled sigma at the GAD-B RFI mask, the data can be plotted
as shown in Figure 12 (dots). For nominal operating conditions, the normalized
distribution is tighter than the GAD-B level representing the noise at the RFI mask.
In the figure, the GAD-B limiting error is plotted as a Gaussian curve with unity
(normalized) sigma.

As the RFI power level increases, the pseudorange error distribution eventually
grows wider than the GAD-B error bound which is about three times wider than
the nominal distribution. Therefore, the target out-of-control sigma of the divergence
monitors is set to 3-0. Figure 13 compares the pseudorange error distribution to the
bounding GAD-B curve for the four different power levels associated with sections
3 ~6. The third and the fourth sections’ pseudorange error distribution are bounded,
despite RFI injection, so the monitor need not issue an alert to protect integrity.
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In sections 5 and 6, however, the GAD-B curve does not bound the pseudorange
noise. Consequently, RFI in the sections 5 and 6 must be detected. Therefore the
set of ““target” sections, for which RFI exceeds the allowed level, consists of sections
5 and 6 (Figure 14). Section 7 is discounted, since the receiver did not track the
GPS signals in this section. Because, from the actual pseudorange noise esti-
mation, the estimated noise has an independent sample every 21 epochs (see 4.4), we
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Table 1. GAD-B curve model.

Contribution ay (m) a, (m) Oc (deg)
Multipath 0-15 1-06 15
RFI/noise 0-029 0-081 164
Total 0-16 1-07 155
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Figure 11. Linear regression residuals for Figure 12. PDF of PR noise under
each metric. nominal condition.
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Figure 13. PDF of PR noise in each section (3.4,5,6).
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can have 20 different probability density functions (PDF) for a section. The plots
in Figure 13 show the multiple PDFs for each section together. The two monitor
methods, sigma-estimation and CUSUM, need only detect RFI in the target sections.
Within these sections, moreover, it is desirable that the monitors respond with a
rapid time-to-alert.

5.2.2. Sigma-Estimation Result. The sigma-estimation monitor can be designed
either to respond rapidly to major anomalies, or to detect minor anomalies with
a slower alert time. The key parameter that establishes the tradeoff between
detection sensitivity and detection time is the number of epochs (DOFs) used in
the sigma-estimation. Figure 15 represents the relationship between sigma-
estimation DOFs and detectable out-of-control sigmas when the false alarms
rate is 1077 and a probability of missed detections is 10 3. Because the target out-
of-control sigma is set to 3-0 in the previous paragraph, the sigma-estimation
monitor needs at least 25 independent samples to detect the RFI effect over the
mask.

A larger number of DOFs slows the monitor response, but also improves sensi-
tivity by lowering the monitor threshold (given a fixed probability of false alarms,
107", See Figure 2). Five test cases of varying DOF were investigated in this study:
25, 50, 100, 150 and 200.

Figures 16-18 display the results of this comparison. In each figure, the left plot
depicts the estimated sigma (dot) and the threshold (line). The right upper plot shows
the alarm flag issued by the monitor. The right lower plot depicts the injected
RFI power profile. This last plot indicates the times at which the excessive RFI signal
switched on and off.

Because the sigma-estimation collects only as many DOFs as there are visible
satellites at any given epoch, the time to first detection is delayed as the number
of DOFs grows. This time to first detection is called ‘detection time’. When the
RFI condition disappears, this latency effect delays the switching of the monitor
flag back to its neutral (zero) state. In this paper, the elapsed time between the
end of the section and time when the monitor flag returns to zero is referred to as
‘reset time’. A long reset time is less harmful than a long detection time, since
the reset time only impacts system availability, whereas the detection time impacts
integrity.

The 25-DOF sigma-estimation detects the sigma violation in sections 5 and 6
within 7 and 2 seconds, respectively. The reset times for the sections are 0 and 1 second
in this case. In section 5, because the estimated sigma is noisy and not large enough
to exceed the threshold consistently, the monitor does not remain flagged through-
out the entire section. After the first detection in section 5, the sigma-estimation
monitor with 25 DOFs flags only 15:56% of the time, as compared to 93-56% in
section 6.

In order to increase the likelihood of detecting the RFI event in section 5, the
threshold must be decreased by considering a larger number of DOFs. Accordingly,
the number of DOFs was changed to 50, 100, 150 and 200. Figure 17 and 18 are
the results of 100 and 200 DOFs cases. As the DOFs increase, the estimated sigma
becomes better resolved and the detection probability for test section 5 increases to
53-33%, 93-23%, 98-:85%, and 100% as shown in Figure 19. However with a larger
number of DOFs, the monitor needs more time to collect independent samples, so the
detection and the reset times grow.
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Figure 20 summarizes the response-time results for the different DOF cases. The
upper two lines are the reset times versus DOF and the lower two are the detection
times. The figure implies that the detection time is proportional to the DOF. Section 5
has lower RFI power, therefore it has longer detection time and shorter reset time
than section 6. The figure suggests that a sigma-estimation monitor based on the
divergence statistic can detect the target sections within 20 seconds. Because this test
used only one GPS receiver under RFI conditions, a reference station that had three
or four reference receivers might detect RFI about three or four times faster than
these results.

5.2.3. CUSUM Result. In statistical process control, the CUSUM monitor
is frequently used because it tends to respond to faults more quickly than the
sigma-estimation monitor. A significant parameter in the design of a CUSUM
monitor is the out-of-control sigma, o;, which is set to 3-0 in the test, or 3 times
of a nominal standard deviation. To compare the performance of the CUSUM
monitor with the sigma-estimation, the 25 DOF result was selected because in
Figure 2, a 25 DOF sigma-estimation monitor can detect about 3-0 times of a
nominal standard deviation. The left plot of Figure 21 depicts the calculated
CUSUM values and thresholds, which shows the CUSUM values quickly exceed
their thresholds in sections 5 and 6. The detection times in sections 5 and 6 are
4 seconds and 1 second, respectively. As such, this monitor detects the violation
much faster than the sigma-estimation monitor whose detection times were 7 and
2 seconds. Again, the detection times could get shorter if the monitor used three
or four reference receivers.

In the CUSUM method, the CUSUM value, C, is reset to the start value (3//4
in this case) after it exceeds the threshold. Thus, there is no delay associated with
reset because the CUSUM monitor resets the output value to the start value im-
mediately following detection. Also, the fraction of time the monitor remains
flagged after the first detection (as illustrated for the sigma-estimation method in
Figure 19) is not relevant for the CUSUM monitor. The CUSUM monitor would
remain flagged 100% of the time if it were not reset to the start value following each
detection.

6. CONCLUSION AND FUTURE WORK. This paper developed
divergence-based monitors that directly detect the RFI contribution to the
navigation error. A single-channel bench test showed that the zero-mean divergence
metric is directly proportional to high-frequency pseudorange errors. For the
divergence metric, unlike AGC or C/N,, this proportionality is insensitive to RFI
type. A three-receiver live GPS test showed that monitors based on the zero-mean
divergence metric can detect RFI threats within a reasonable time. Two monitors
were tested: a sigma-estimation method and a CUSUM method. Of the two moni-
tors, the CUSUM method detects hazardous RFI much faster than the sigma-
estimation method.

Future work will integrate the new divergence-based monitor with previously
proposed RFI detection methods to provide more robust ground-based integrity
monitoring. The AGC monitor is of particular interest because of its fast response.
This fast response means that the AGC monitor may play a useful role in detecting
RFI for an augmentation system. However, because the AGC does not provide
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Figure 16. Sigma-estimation result (DOF =25).

enough information to determine the navigation error level caused by an arbitrary
RFT threat, the divergence-based monitor serves as a useful complement.

Figure 22 illustrates a recommended strategy to deal with RFI threats using
these complementary monitors. The proposed strategy uses a combination of
AGC and zero-mean divergence monitors for detection of RFI above the mask
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Figure 17. Sigma-estimation result (DOF =100).
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Figure 18. Sigma-estimation result (DOF =200).

level. The divergence monitor, most likely a CUSUM monitor on account of the
CUSUM’s rapid performance, determines whether the system is operational or
not. If the system needs to keep operating in spite of the RFI threat, it may
continue to operate normally by adjusting the integrity monitor thresholds and the
broadcast sigma based on the RFI level detected by the divergence-based monitor.
By incorporating both AGC and divergence-based RFI monitoring, a civilian
differential augmentation system, such as LAAS, can provide better availability
and continuity performance under low power RFI conditions, since the system
will only shut itself down under truly threatening high-RFI conditions. Likewise, a
military system, such as JPALS, could justify continued operations under elevated
RFI conditions without loss of integrity by broadcasting scaled sigma error
bounds.
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Figure 22. RFI detection strategy.
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