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BeiDou satellites transmit triple-frequency signals, which bring substantial benefits to carrier
phase Ambiguity Resolution (AR). The traditional geometry-free model Three-Carrier
Ambiguity Resolution (TCAR) method looks for a suitable combination of carrier phase
and code-range observables by searching and comparing in the integer range, which limits
the AR success probability. By analysing the error characteristics of the BeiDou triple-
frequency observables, we introduce a new procedure to select the optimal combination of
carrier phase and code observables to resolve the resolution of Extra-Wide-Lane (EWL)
and Wide-Lane (WL) ambiguity. We also investigate a geometry-free and ionosphere-
eliminated method for AR of the Medium-Lane (ML) and Narrow-Lane (NL) observables.
In order to evaluate the performance of the improved TCAR method, real BeiDou triple-
frequency observation data for different baseline cases were collected and processed epoch-
by-epoch. The results show that the improved geometry-free TCAR method increases the
single epoch AR success probability by up to 90% for short baseline and 80% for long baseline.
The A perfect (100%) AR success probability can also be effortlessly achieved by averaging the
float ambiguities over just tens of epochs.
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1. INTRODUCTION. The BeiDou Navigation Satellite System (BDS) has been
officially providing Positioning, Navigation and Timing (PNT) services for the Asia-
Pacific region since 27 December 2012 (Shi et al., 2013). By the end of 2014, the
system comprised 14 satellites available for services, all broadcasting triple-frequency
signals. The centre frequency values are 1,561·098 MHz (B1), 1,207·140 MHz (B2)
and 1,268·520 MHz (B3) (Yang et al., 2011; Li et al., 2015a). Multi-frequency
signals not only contribute more code and carrier phase observables, but also bring
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many benefits in terms of the efficiency and reliability of Ambiguity Resolution (AR),
which are crucial for real-time precise positioning applications (Li et al., 2013a;
2015b). Since the European Global Navigation Satellite System-2 (GNSS-2) (later
called Galileo) and American modernised Global Positioning System (GPS) were pro-
posed in the last century, there have been many significant research efforts into the
carrier phase AR using triple-frequency signals. The earlier studies, such as the
Three-Carrier Ambiguity Resolution (TCAR) method (Forssell et al., 1997; Vollath
et al., 1998) and the Cascade Integer Resolution (CIR) method (De Jonge et al.,
2000; Hatch et al., 2000), essentially used the same geometry-free model to estimate
the carrier phase ambiguity with three-step rounding procedures (Teunissen et al.,
2002). It is a requirement for reliable AR that the total noise level of the virtual
code and carrier phase must be distinctly smaller than the wavelength. This require-
ment can be easily satisfied for Extra-Wide-Lane (EWL, λ≥ 2·93 m) and Wide-Lane
(WL, 2·93 > λ≥ 0·75 m) combinations, but it is hardly complied with for the
Medium-Lane (ML, 0·75 > λ≥ 0·19 m) and Narrow-Lane (NL, λ< 0·19 m) combina-
tions, particularly in the long-range case (Li et al, 2010).
The classical TCAR method employs a geometry-free model to eliminate the geo-

metric-related terms, and then resolves the ambiguity by averaging and rounding
operations. The reliability of AR is biased mainly by the ionospheric delay (Jung
et al., 2000). Feng (2008) presented a general modelling strategy for AR to minimise
the effect of the ionospheric delay, which introduced ionosphere-reduced virtual
signals to eliminate the ionosphere parameters in the geometry-based observational
model for the long baseline case. The strategy outlined three major steps and utilised
a geometry-based estimator at steps 2 and 3 to improve the AR success probability.
The TCAR concept and algorithm were extended by Feng and Li (2008; 2009) in
recent studies for introducing both the geometry-based and geometry-free model for
AR. Li et al. (2010) identified that tropospheric delay effects were the key limitation
on the geometry-based model TCAR for long baselines, and employed a Geometry-
free and Ionosphere-Free (GIF) model to avoid the effect of tropospheric delay on
ML/NL observable AR in the long-range case.
Since there were insufficient triple-frequency GPS or Galileo satellites available for

earlier studies, performances were mainly validated by theoretical analysis or using a
semi-simulation method proposed by Li (2008) to generate the third frequency signal
based on the existing dual-frequency GPS measurements. For BDS, Tang, et al. (2014)
assumed that the standard deviation of the B3 code observation noise is significantly
smaller than that of B1 and B2, and introduced a geometry-based model stepwise AR
algorithm, which determined float ambiguities using the standard least-squares adjust-
ment and resolved the carrier phase integer ambiguities using the Least squares
Ambiguity Decorrelation Adjustment (LAMBDA) method for each step. Zhang
and He (2015) used real BeiDou observation data to test the performances of
LAMBDA, geometry-free TCAR, geometry-based TCAR and geometry-free and
ionospheric-free TCAR methods, and concluded that the geometry-based TCAR
and LAMBDA methods have good AR performance for short baselines. However,
the tropospheric delay effect, which cannot be eliminated by the geometry-based
TCAR and LAMBDA methods, is still the major problem for long-range cases.
Wang and Rothacher (2013) derived a geometry-free and ionosphere-free combination
for GPS, Galileo and COMPASSIII and analysed the characteristics of this combined
method. Zhao et al. (2015) employed a modified TCARmethod to eliminate or reduce
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the residual ionospheric delay in steps 2 and 3 of the classical TCAR, but it did not
take the different characteristics of triple-frequency code observation noises into con-
sideration, and did not show an encouraging improvement in WL and NL success
rates.
In this paper, we mainly focus on the geometry-free TCARmethod and introduce an

improved TCARmethod that is suitable for BDS, which can overcome the ionospheric
and tropospheric effects to provide reliable AR. The characteristics of the BeiDou
triple-frequency code observation noises have been analysed and the limitations on
the geometry-free TCAR method for providing high reliability and probability of
AR have been taken into consideration, particularly for the long baseline case. The
performance of the improved TCAR method has been evaluated by real BeiDou ob-
servation data for one short baseline and two long baseline cases. The research findings
of this paper will be summarised in the final section.

2. GEOMETRY-FREE MODEL FOR TCAR
2.1. Fundamental observation equations and definitions. The centre frequencies of

the B1, B2 and B3 bands are set as f1, f2 and f3, respectively. Taking the impacts of the
satellite orbital error, the tropospheric delay and the first-order ionospheric delay into
consideration, the fundamental Double-Differenced (DD) code and carrier phase ob-
servation equations can be expressed as:

ΔPi ¼ Δρþ Δδorb þ Δδtro þ f 21
f 2i

ΔδI1 þ εΔPi ð1Þ

ΔΦi ¼ Δρþ Δδorb þ Δδtro � f 21
f 2i

ΔδI1 � λi � ΔNi þ εΔΦi ð2Þ

where the symbol “Δ” represents the DD operator product; ΔPi and ΔΦi are the DD
code and carrier phase measurements for frequency fi in metres; Δρ is the DD geomet-
ric distance between the satellite and the receiver; Δδorb denotes the DD orbital error;
Δδtro is the DD tropospheric delay; ΔδI1 represents the DD first-order ionospheric
delay for frequency f1; and εΔPi and εΔΦi are the DD code and carrier phase observa-
tion noises for frequency fi, respectively.
The combined triple-frequency DD carrier phase observation can be expressed as

(Feng, 2008):

ΔΦ i;j;kð Þ ¼ i � f1 � ΔΦ1 þ j � f2 � ΔΦ2 þ k � f3 � ΔΦ3

i � f1 þ j � f2 þ k � f3
¼ Δρþ Δδorb þ Δδtro � β i;j;kð Þ � ΔδI1 � λ i;j;kð Þ � ΔN i;j;kð Þ þ εΔΦ i;j;kð Þ

ð3Þ

where the combined coefficients i, j, k are all arbitrary integers. The combined wave-
length is defined as:

λ i;j;kð Þ ¼ c
i � f1 þ j � f2 þ k � f3 ¼

λ1 � λ2 � λ3
i � λ2 � λ3 þ j � λ1 � λ3 þ k � λ1 � λ2 ð4Þ

The combined integer ambiguity is:

ΔN i;j;kð Þ ¼ i � ΔN1 þ j � ΔN2 þ k � ΔN3 ð5Þ
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The combined first-order ionospheric scale factor is defined as:

β i;j;kð Þ ¼
f 21 i= f1 þ j= f2 þ k= f3ð Þ
i � f1 þ j � f2 þ k � f3 ð6Þ

In contrast with the definition of the carrier phase combination, we denote the com-
bined triple-frequency DD code observation as:

ΔP l;m;nð Þjl þmþ n ¼ 1 ¼ l � ΔP1 þm � ΔP2 þ n � ΔP3

¼ Δρþ Δδorb þ Δδtro þ β l;m;nð Þ � ΔδI1 þ εΔP l;m;nð Þ
ð7Þ

The combined first-order ionospheric scale factor for the code observation is:

β l;m;nð Þ ¼ l þ f 21
f 22

mþ f 21
f 23

n ¼ q1 � l þ q2 �mþ q3 � n ð8Þ

where qi = f1
2/fi

2 is the ratio of the ionospheric delay effects on frequency fi to that on
frequency f1.

2.2. General formation of the geometry-free TCAR model. The term “geometry-
free model” refers to an observational model for the ambiguity parameter that is
formed without any geometric-related term (Feng and Rizos, 2009), such as the geo-
metric distance from the satellite to the receiver, the orbital error or the tropospheric
delay, etc. For this type of model, the carrier phase integer ambiguity is generally esti-
mated by rounding the float value to its nearest integer. A general geometry-free ob-
servational model for a virtual integer parameter can be expressed as (Feng et al.,
2007):

ΔN i;j;kð Þ ¼
ΔP l;m;nð Þ � ΔΦ i;j;kð Þ

λ i;j;kð Þ
� β l;m;nð Þ þ β i;j;kð Þ

λ i;j;kð Þ
ΔδI1 �

εΔP l;m;nð Þ � εΔΦ i;j;kð Þ
λ i;j;kð Þ

ð9Þ

The accuracy of the geometry-free model ARwill be affected by two types of errors:
the first is the type of random errors, which includes the combined carrier phase
and the code observation noise, and generally obeys a normal distribution with a
zero mean parameter. The second is the type of systematic errors, which is generally
affected by the combined ionospheric delay. This type of error has a non-zero mean
value and cannot be eliminated or reduced by averaging over a long period of
epochs. The effects of these two types of errors for AR reliability are different and
should be distinguished. A weighted noise level in cycles is introduced to identify the
effects of different errors for AR purposes in the geometry-free model:

σWTC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ � β l;m;nð Þ þ β i;j;kð Þ
� �2

� ΔδI1ð Þ2þε2ΔP l;m;nð Þ þ ε2ΔΦ i;j;kð Þ

r
λ i;j;kð Þ

ð10Þ

where γ is the weighted factor for the first-order ionospheric delay. The value of γ is
correlated with the values of the wavelength, ionospheric delay and observation
noise, which is extraordinarily complicated and will be discussed in the following
section of this paper. Generally, the weighted factor meets the condition γ ≥1.

2.3. The real time estimation method of the BDS triple-frequency code observation
noise. Since the carrier phase noise is fairly small, usually considered to be 0·01 cycles
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for practical purposes, we can assume that the carrier phase noises for each of the three
frequencies are independent and have an identical standard deviation, i.e., εΔΦ1 = εΔΦ2
= εΔΦ3 ≡εΔΦ. The linearly combined carrier phase observation noise can be expressed
as (Li et al., 2010; Zhao et al., 2015):

ε2ΔΦ i;j;kð Þ ¼
i � f1ð Þ2þ j � f2ð Þ2þ k � f3ð Þ2
i � f1 þ j � f2 þ k � f3ð Þ2 � ε2ΔΦ ≡ μ2i;j;kð Þ � ε2ΔΦ ð11Þ

Since the code chipping rates, lock loop parameters, and multipath effects are distinctly
different for each of the BeiDou triple-frequency code observables, the code observa-
tion noise level for each frequency is diverse and requires a real-time estimation. The
noise levels and multipath effects for the carrier phase observable are much smaller
than those for the code observable and can be ignored (Wang et al., 2015).
Therefore, the code observation noise can be analysed using a combination of code
and carrier phase observables by eliminating the geometric-related terms and the
first-order ionospheric delay effects:

εΔPi ¼ ΔPi � c1i � ΔΦ1 þ c2i � ΔΦ2 þ c3i � ΔΦ3ð Þ ð12Þ
where cki (k= 1, 2, 3) represents the combined coefficient. The mathematical expres-
sion of the constraint condition is:

Min c21i þ c22i þ c23i
��c1i þ c2i þ c3i ¼ 1;

1
f 2i

þ c1i
f 21

þ c2i
f 22

þ c3i
f 23

¼ 0
� �

ð13Þ

By utilising the BDS triple-frequency values to solve the constraint functions, the code
observation noise series can be approximately extracted as follows:

εΔP1 ¼ ΔP1 � 4 � 1665 � ΔΦ1 � 2 � 3483 � ΔΦ2 � 0 � 8182 � ΔΦ3ð Þ
εΔP2 ¼ ΔP2 � 5 � 2424 � ΔΦ1 � 3 � 1010 � ΔΦ2 � 1 � 1414 � ΔΦ3ð Þ
εΔP3 ¼ ΔP3 � 4 � 9897 � ΔΦ1 � 2 � 9242 � ΔΦ2 � 1 � 0655 � ΔΦ3ð Þ

ð14Þ

The extracted noise series has constant bias terms, such as the unresolved carrier phase
integer ambiguities and the receiver hardware delays. Assuming that there are no cycle
slips over observing periods, the bias terms can be eliminated through averaging over a
long period of epochs. The standard deviation of DD code observation noise can be
estimated as follows in real time:

εΔPi Kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K � 1

XK
n¼1

εΔPi nð Þ �
PK
n¼1

εΔPi nð Þ
K

0
BBB@

1
CCCA

2
vuuuuuut ð15Þ

In order to illustrate the noise levels on DD code observables for each frequency, we
collected BDS three-day triple-frequency data from the Day of Year (DOY) 280 to
282, 2014 at two stations with 179 m distances in Changsha, China. The satellite
C03, which can be continuously visible and at higher elevation angle, was set as
pivot satellite, and the elevation cut-off angle was set to 15°. The standard deviations
of the DD code observation noise are shown in Table 1.
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Since the code chipping rates, the modulation recognition techniques of the signals
and the lock loop parameters of the receiver are different for each frequency, the stand-
ard deviations of the DD code observation noises are frequency-dependent and satellite-
dependent. As can be observed in Table 1, since the chipping rate on B3 is ten times
faster than that on B1 and B2, the standard deviation of ΔP3 is smaller than that for
ΔP1 and ΔP2. However this is inconsistent with the assumption proposed by Tang
et al. (2014) that the standard deviation of ΔP3 is practically 0·2 (theoretically it is
0·1) times than that of ΔP1 and ΔP2. So in practical application, it is reasonable and ne-
cessary to estimate the noise levels of the triple-frequency code observables in real time.

3. OPTIMAL COMBINATION OF CARRIER PHASE AND CODE
OBSERVABLES. The traditional TCAR method seeks to determine the suitable
combinations of carrier phase and code measurements by searching and comparing
operations within the integer range. Therefore this method cannot always achieve a
minimal total noise level, and also requires a large number of computations and com-
parisons, limiting the AR success probability.

3.1. Optimal combined coefficients of code observables. Given a group of definite
combined coefficients i, j, k for the carrier phase observables, and since the combined
wavelength λ(i, j, k) is positive, the constraint condition to minimise the weighted noise
level σWTC can be expressed as follows:

Min F l;m; nð Þ ¼ γ � β l;m;nð Þ þ β i;j;kð Þ
� �2

� ΔδI1ð Þ2þε2ΔP l;m;nð Þ þ ε2ΔΦ i;j;kð Þjl þmþ n ¼ 1
��

ð16Þ
This problem is therefore equivalent to finding the minimum value in the constraint
function. We introduce the Lagrange function f (l, m, n, θ) as follows:

f l;m; n; θð Þ ¼ γ � β l;m;nð Þ þ β i;j;kð Þ
� �2

� ΔδI1ð Þ2 þ l2 � ε2ΔP1 þm2 � ε2ΔP2 þ n2 � ε2ΔP3
þ μ2i;j;kð Þ � ε2ΔΦ þ θ l þmþ n� 1ð Þ

ð17Þ

Table 1. Standard deviations of the BDS DD code observation noise.

Satellite pairs

St. dev of the DD code measurements error (m)

εΔP1 εΔP2 εΔP3

C01-C03 0·37 0·48 0·27
C02-C03 0·41 0·49 0·26
C04-C03 0·49 0·68 0·32
C05-C03 0·51 0·74 0·31
C06-C03 0·35 0·52 0·24
C07-C03 0·38 0·56 0·26
C08-C03 0·37 0·54 0·29
C09-C03 0·42 0·54 0·31
C010-C03 0·36 0·57 0·29
C011-C03 0·44 0·63 0·31
C012-C03 0·49 0·65 0·32
Average 0·42 0·58 0·29
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Calculating the first-order partial derivative of the independent variables and setting
them to zero gives:

∂f l;m; n; θð Þ
∂l

¼ 2q1 � γ � q1 � l þ q2 �mþ q3 � nþ β i;j;kð Þ
� �

� ΔδI1ð Þ2þ 2l � ε2ΔP1 þ θ ¼ 0

∂f l;m; n; θð Þ
∂m

¼ 2q2 � γ � q1 � l þ q2 �mþ q3 � nþ β i;j;kð Þ
� �

� ΔδI1ð Þ2þ 2m � ε2ΔP2 þ θ ¼ 0

∂f l;m; n; θð Þ
∂n

¼ 2q3 � γ � q1 � l þ q2 �mþ q3 � nþ β i;j;kð Þ
� �

� ΔδI1ð Þ2þ 2n � ε2ΔP3 þ θ ¼ 0

∂f l;m; n; θð Þ
∂θ

¼ l þmþ n� 1 ¼ 0

ð18Þ

Solving the equations, the optimal combined coefficients l, m, n for the code observa-
bles can be calculated through the following equations:

l ¼

ε2ΔP2 � ε2ΔP3 þ γ q23 � q1q3 þ q3 � q1ð Þ � β i;j;kð Þ
� �

ΔδI1ð Þ2 � ε2ΔP2
þ γ q22 � q1q2 þ q2 � q1ð Þ � β i;j;kð Þ
� �

ΔδI1ð Þ2 � ε2ΔP3
ε2ΔP1 � ε2ΔP2 þ ε2ΔP1 � ε2ΔP3 þ ε2ΔP2 � ε2ΔP3

þ γ � q2 � q3ð Þ2ε2ΔP1 þ q1 � q3ð Þ2ε2ΔP2 þ q1 � q2ð Þ2ε2ΔP3
� �

� ΔδI1ð Þ2

m ¼

ε2ΔP1 � ε2ΔP3 þ γ q23 � q2q3 þ q3 � q2ð Þ � β i;j;kð Þ
� �

ΔδI1ð Þ2 � ε2ΔP1 þ γ q21 � q1q2 þ q1 � q2ð Þ � β i;j;kð Þ
� �

ΔδI1ð Þ2 � ε2ΔP3
ε2ΔP1 � ε2ΔP2 þ ε2ΔP1 � ε2ΔP3 þ ε2ΔP2 � ε2ΔP3

þ γ � q2 � q3ð Þ2ε2ΔP1 þ q1 � q3ð Þ2ε2ΔP2 þ q1 � q2ð Þ2ε2ΔP3
� �

� ΔδI1ð Þ2

n ¼

ε2ΔP1 � ε2ΔP2 þ γ q22 � q2q3 þ q2 � q3ð Þ � β i;j;kð Þ
� �

ΔδI1ð Þ2 � ε2ΔP1 þ γ q21 � q1q3 þ q1 � q3ð Þ � β i;j;kð Þ
� �

ΔδI1ð Þ2 � ε2ΔP2
ε2ΔP1 � ε2ΔP2 þ ε2ΔP1 � ε2ΔP3 þ ε2ΔP2 � ε2ΔP3

þ γ � q2 � q3ð Þ2ε2ΔP1 þ q1 � q3ð Þ2ε2ΔP2 þ q1 � q2ð Þ2ε2ΔP3
� �

� ΔδI1ð Þ2

ð19Þ

For BDS, the ratios q1, q2 and q3 have values of 1, 1·67 and 1·51, respectively.
Therefore, given a group of combined coefficients for the carrier phase observables,
the optimal combined coefficients for the code observables are mainly affected by
the following factors: the code observation noise for each frequency, the weighted
factor and the first-order ionospheric delay. Since we have already introduced a real
time estimation method for the BDS triple-frequency code observation noise, the
other two factors will be discussed in the following sections.

3.2. Estimation of the ionospheric delay. The ionospheric delay effect is a major
error source that limits the AR success rates of the geometry-free model. In particular,
for the long baseline case, as well as the reduction on spatial correlation, the DD
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ionospheric delay significantly increases, by up to several metres, and seriously jeopar-
dises precise positioning applications (Li et al., 2011; 2013b).
Assuming that the two EWL/WL observables ΔΦ(i1,j1,k1) and ΔΦ(i2,j2,k2) have been

obtained and their integer ambiguities ΔN(i1,j1,k1) and ΔN(i2,j2,k2) have been resolved,
a simple method of estimation of DD ionospheric delay can be expressed as follows
(Feng and Rizos, 2005):

ΔδÎ1 ¼
ΔΦ i1;j1;k1ð Þ � ΔΦ i2;j2;k2ð Þ � λ i1;j1;k1ð Þ � ΔN i1;j1;k1ð Þ
þλ i2;j2;k2ð Þ � ΔN i2;j2;k2ð Þ � εΔΦ i1;j1;k1ð Þ þ εΔΦ i2;j2;k2ð Þ

β i2;j2;k2ð Þ � β i1;j1;k1ð Þ
ð20Þ

However, the observation noises are amplified by the combination operation, this es-
timation method for ionospheric delay is extremely noisy and the standard deviation of
this estimator is over 60εΔΦ. A smoothing operation can improve the estimated accur-
acy, but will lose the specific variation between consecutive epochs. To overcome this
problem, Hatch filtering is employed:

Δδ�I1 tð Þ ¼ 1� ωð Þ � Δδ�I1 t� 1ð Þ þ Δδ~I 1 t; t� 1ð Þ� 	þ ω � Δδ�I1 tð Þ ð21Þ

where Δδ�I 1(t) is the estimated value of the first order ionospheric delay after Hatch fil-
tering at time t; and the symbol ω is the smoothing factor and can be set as the 1/n,
where n is the epoch number that requires smoothing. Δδ~I1(t,t-1) is the variation of
the ionospheric delay over the observation interval, and can be accurately calculated
by obtaining the difference between the B1 and B3 DD carrier phase observables
over two consecutive epochs to eliminate the geometric-related terms and carrier
phase integer ambiguities as follows:

Δδ~I1 t; t� 1ð Þ ¼

ΔΦ1 tð Þ � ΔΦ1 t� 1ð Þ � ΔΦ3 tð Þ � ΔΦ3 t� 1ð Þð Þ
þ ΔεΦ1 t; t� 1ð Þ � ΔεΦ3 t; t� 1ð Þ

q3 � 1
ð22Þ

The standard deviation of the estimation for Δδ~I1(t,t-1) is 3·9εΔΦ. So the standard de-
viation of the Hatch filtering ionospheric delay estimator will be approximately less
than 6εΔΦ, which indicates that the estimation accuracy of the ionospheric delay has
been significantly improved.

3.3. Discussion on the preferences of the weighted factor. The estimation methods
for the code observation noise and ionospheric delay have been introduced in the pre-
vious sections. In this section, we will discuss the preferences of the weighted factor for
ionospheric delay.
As discussed in the previous analysis, the accuracy of the geometry-free model AR is

affected by two types of errors. Both types of errors can be normalised based on the
wavelength. The random error is presumed to obey a normal distribution N1 (0, σ1

2).
Its bias term is zero, and the variance σ1

2 is equal to the variance of the combined
code and carrier phase observation noises. The systematic error can also be considered
to have a normal distribution N2 (μ2, σ2

2). Its bias term μ2 is determined by the estima-
tion of ionospheric delay, and the variance σ2

2 is equal to the estimated variance. Since
the weighted total noise level is the cumulative effect of these two types of errors, it also
obeys a normal distribution.
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To obtain the geometry-free model integer ambiguity solutions from Equation (9),
the direct method is to round the float ambiguity value to its nearest integer value. The
success rate can be computed through the integral of normal probability density func-
tion (Feng, 2008):

P �0 � 5< x< 0 � 5ð Þ ¼ ∫
0�5

�0�5
1

σ
ffiffiffiffiffiffi
2π

p exp � x� biasð Þ2
2σ2

 !
dx ð23Þ

Figure 1 illustrates the estimated probability of AR when the float ambiguity value
obeys a normal distribution. The bias term is mainly determined by the estimated
value of ionospheric delay. Since the variance of combined code observation noise is
much larger than that of the combined carrier phase observation noise and the esti-
mated variance for the ionospheric delay, the variance σ2 is mostly determined by
the combined code observation noise.
It is obvious that when the absolute value of the bias term is smaller than 0·2 cycles,

the effect of the bias term for the estimated probability is approximately equivalent to
the variance. However, when it is larger than 0·2 cycles, and in particular larger than
0·5 cycles, the effect of the bias term on the estimated probability significantly
increases. In this paper, we present a simple method for the preferences of the weighted
factor:

γ ¼ 1 ; biasj j � 0 � 2 cycles

γ ¼ round
biasj j
0 � 2


 �
; biasj j> 0 � 2 cycles

8<
: ð24Þ

It should be noted that this method is only a representative example, and there are
many other methods that can be used to obtain the preferences of the weighted
factor, which can be investigated in future research.
Since the methods of estimation and preferences for the parameters in Equation (19)

have been discussed, Table 2 presents pairs of EWL/WL observables and their
weighted total noise levels for different baseline cases. Based on the approximate
average values in Table 1, we assume that the standard deviations of the BDS triple-
frequency code observation noises are: εΔP1 = 0·45 m, εΔP2 = 0·60 m and εΔP3 =
0·30 m; the carrier phase measurement noises for BDS three frequencies are identical
and are set as 0·005 m; the DD ionospheric delays are 0·1, 0·4 and 1 m for short,
medium and long distances, respectively (Feng, 2008); and the weighted factor γ is
determined by Equation (21). The signal ΔP3, the high precision code measurement
on B3 (Tang et al., 2014), is involved for comparison.
It is obvious that the weighted total noise level is significantly reduced by using the

optimal combination. This can be particularly seen for the medium and long range
cases, where the weighted total noise level was reduced by approximately 30% for
most combinations shown in Table 2. It can also be seen that the first EWL signal
ΔΦ(0,−1,1) has the lowest noise level for all baseline cases, which indicates that this ob-
servable can be regarded as the optimal combination signal for AR. The other EWL
ΔΦ(−1,−5,6) signal has the longest wavelength and good AR performance for the short
baseline case, but performs poorly as the length of baseline increases. The WL ΔΦ(1,1,−2)
signal has a lower weighted total noise level in long baseline case, and can be selected
as the other combination signal for AR in long distances cases.
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3.4. Geometry-free and ionosphere-eliminated method for reliable AR of ML/NL
observables. In order to compute the basic ambiguities, a minimum of three linearly
independent combined observables are required. Therefore, the third combination
should be chosen from a new category, which is linearly independent of the previous
two EWL/WL observables. The problem is that there are no such EWL/WL candidates
in the new category that will allow the ambiguities to be fixed as easily as the previous
two observables using the virtual code measurements. Feng and Rizos (2005) simply
chose the carrier phase measurement ΔΦ(1,0,0) as the third candidate, and smoothed
the float values over multiple epochs to fix the ambiguity. Li et al. (2010) formed a
GIF combination as the new category candidate as follows:

ΔN i;j;kð Þ ¼
α1Δ~Φ i1;j1;k1ð Þ þ α2Δ~Φ i2;j2;k2ð Þ � ΔΦ i;j;kð Þ

λ i;j;kð Þ

� α1εΔ~Φ i1;j1;k1ð Þ þ α2εΔ~Φ i2;j2;k2ð Þ � εΔΦ i;j;kð Þ
λ i;j;kð Þ

ð25Þ

Figure 1. Estimated probability of AR success rate for normal distribution.

Table 2. The weighted noise level for several EWL/WL observables.

Weighted total noise level σWTN (cycles)

εΔΦ= 0·005 m, εΔP1 = 0·45 m, εΔP2 = 0·60 m, εΔP3 = 0·30 m

Short baseline Medium baseline Long baseline
(0∼10 km) (10∼100 km) (>100 km)
ΔδI1 = 0·1 m ΔδI1 = 0·4 m ΔδI1 = 1 m

(i, j, k) λ(i, j, k) (m) ΔP3 ΔPopt ΔP3 ΔPopt ΔP3 ΔPopt

(0, −1, 1) 4·884 0·068 0·054 0·068 0·056 0·070 0·061
(1, 0, −1) 1·025 0·296 0·221 0·334 0·230 0·686 0·248
(1, −1, 0) 0·846 0·357 0·265 0·385 0·269 0·732 0·277
(−1, −5, 6) 20·932 0·169 0·168 0·217 0·211 0·392 0·288
(1, 1, −2) 1·297 0·232 0·181 0·289 0·200 0·631 0·232
(1, 3, −4) 2·765 0·160 0·137 0·200 0·167 0·483 0·242
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where Δ~Φ i1;j1;k1ð Þ and Δ~Φ i2;j2;k2ð Þ are two EWL/WL observables, and their ambiguities
have been fixed. Keeping within the constraints of being both geometry-free and iono-
sphere-free, the combined coefficients a1 and a2 are determined by:

α1β i1;j1;k1ð Þ þ α2β i2;j2;k2ð Þ � β i;j;kð Þ ¼ 0
α1 þ α2 ¼ 1

�
ð26Þ

The standard deviation in cycles of the ML/NL observable obtained using the GIF
method can be expressed as:

σ ΔN i;j;kð Þ
� 	 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α21ε

2
Δ~Φ i1;j1;k1ð Þ þ α22ε

2
Δ~Φ i2;j2;k2ð Þ þ ε2ΔΦ i;j;kð Þ

q
λ i;j;kð Þ

ð27Þ

Although the GIF method is free of the ionospheric and tropospheric effects and can
be used without a constraint on distance, it is very noisy for AR on single epoch mea-
surements. Since we have introduced an accurate unbiased estimator for the ionospher-
ic delay, the new category candidates can be found by eliminating the ionospheric delay
with the estimated value Δδ�I1. We investigate an optimal combination which is
Geometry-Free and Ionosphere-Eliminated (GFIE) for the new category candidate
AR:

ΔN i;j;kð Þ ¼
α1Δ~Φ i1;j1;k1ð Þ þ α2Δ~Φ i2;j2;k2ð Þ � ΔΦ i;j;kð Þ

λ i;j;kð Þ

þ α1β i1;j1;k1ð Þ þ α2β i2;j2;k2ð Þ � β i;j;kð Þ
λ i;j;kð Þ

Δδ�I1 tð Þ� α1εΔ~Φ i1;j1;k1ð Þ þ α2εΔ~Φ i2;j2;k2ð Þ � εΔΦ i;j;kð Þ
λ i;j;kð Þ

ð28Þ
The constraint conditions for GFIE are such that the combination is free of geometric-
related terms and the combined noise is minimised:

Min
n
α21ε

2
Δ~Φ i1;j1;k1ð Þ þ α22ε

2
Δ~Φ i2;j2;k2ð Þ þ ε2ΔΦ i;j;kð Þ þ ðα1βði1;j1;k1Þ

þα2β i2;j2;k2ð Þ � β i;j;kð ÞÞ2σ2 Δδ�I 1
� 	o

a1 þ a2 ¼ 1

9>>>=
>>>;

ð29Þ

The Lagrange function can be set up to find the optimal coefficients for the GFIE com-
bination:

f α1; α2; θð Þ ¼ α21ε
2
Δ~Φ i1;j1;k1ð Þ þ α22ε

2
Δ~Φ i2;j2;k2ð Þ þ ε2ΔΦ i;j;kð Þ

þðα1β i1;j1;k1ð Þ þ α2β i2;j2;k2ð Þ � β i; j; kð ÞÞ2σ2 Δδð�I1Þ
� 	þ θ a1 þ a2 � 1ð Þ

ð30Þ
From the previous analysis, it is known that the standard deviation of the estimation
for ionospheric delay is less than 6εΔΦ, Table 3 shows the standard deviations in cycles
of the GIF and GFIE methods for reliable AR of the new category of ML/NL obser-
vables. The carrier phase noise is assumed to be 0·005 m, and the two basic EWL/WL
observables are Δ~Φ 0;�1;1ð Þ and Δ~Φ 1;1;�2ð Þ.
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It is obvious that the GFIE method not only eliminates the effects of the ionospheric
delay and tropospheric delay, but also improves the estimated accuracy for the reliable
AR of the new category of ML/NL observables. This makes it possible to achieve a
high single epoch AR success rate in geometry-free model without the distance
constraint.

4. EXPERIMENTANDANALYSIS. In this section, we evaluate the performance
of the improved TCAR method for BDS. A short baseline experiment with 179 m dis-
tances was carried out in Changsha, China from DOY 280 to 281, 2014. Observation
data were collected at 30 s sampling interval by two BeiDou triple-frequency receivers
manufactured by the Satellite Navigation R&D Center. The choke-ring BDS antennas
were located on the roofs of buildings to reduce the multipath effects. The long baseline
performance was analysed with the observation data collected from DOY 143 to 144,
2015 at Xi’an, Kunming andWuhan stations. Both code and carrier phase observation
data were available for three frequencies with 30 s sampling interval, and the receivers
were manufactured by the 20th Institute of China Electronics Technology Group
Corporation (CETC). The Xi’an station was taken as the master station, and the base-
line distances were 654 km and 1,205 km to the rover stations ofWuhan and Kunming,
respectively.
Figure 2 shows the ambiguity residuals of combination signals ΔN(0,−1,1), ΔN(−1,−5,6)

and ΔN(1,1,−2) for the satellite pair C01-C03 in the short baseline case with 179 m dis-
tance (left), and for the satellite pair C07-C03 in the long baseline case with 1,205
km distance (right). Compared with the classical code observable ΔP3, the optimal
combination decreases the standard deviation of float ambiguities, especially for the
long range case. Since the optimal combination reduces the ionospheric delay
effects, the float ambiguities are closer to the integer value with less bias components,
which is more conducive to the geometry-free model AR. It can also be found that the
EWL signal ΔN(−1,−5,6) shows good performance for the short baseline case, however
the float ambiguities can be observed to follow the ionospheric delay changes for the
long-range case. The WL signal ΔN(1,1,−2) shows good performance for both short and
long baseline conditions, especially for long distance; the bias component is mitigated
by using the optimal combination. Although the standard deviations are still large to
achieve perfect (100%) AR success probability for single epoch measurements, they
benefit from the distribution of float ambiguities, and a perfect success probability

Table 3. Performances of GIF and GFIE methods for reliable AR of the new category of ML/NL
observables.

ΔΦ(i, j, k) λ(i, j, k) (m)

σ(ΔN(i, j, k)) (cycles)

GIF Method GFIE Method

ΔΦ(1, 0, 0) 0·1920 5·4615 0·3890
ΔΦ(0, 1, 0) 0·2483 5·4149 0·3453
ΔΦ(0, 0, 1) 0·2363 5·3959 0·3887
ΔΦ(−2, 0, 3) 0·4387 5·2703 0·3133
ΔΦ(−3, 4, 0) 2·0637 5·2916 0·3296
ΔΦ(−1, −1, 3) 0·3786 5·3908 0·3327
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can be efficiently achieved by averaging the AR results over several epochs in the time
domain.
A statistical analysis algorithm is used to evaluate the improved TCAR perform-

ance, and the AR success probability can be defined as the percentage of the correctly
solved epoch number to the total epoch number:

P sð Þ ¼ Nsuc

Nall
× 100% ð31Þ

where P(s) is the AR success probability, Nsuc is the epoch number for successful reso-
lution and Nall is the total number of epochs. The settings for the statistical algorithm
are listed as follows: the elevation angles of visible satellites should be higher than 15°
and the C03 is set as the pivot satellite. Table 4 shows the success probability of several
EWL/WL observables in different range cases for the BDS service. The classical code
measurement ΔP3 is involved for comparison. The results show that both the optimal

Figure 2. Geometry-free model TCAR performances of the optimal code combination (blue point)
and the classical combination ΔP3 (red plus sign) for the AR of the EWL observables ΔN(0,−1,1)

(top), ΔN(−1,−5,6) (middle) and the WL observable ΔN(1,1,−2) (bottom) for the satellite pair C01-
C03 for the short baseline case with 179 m distance (left), and for the satellite pair C07-C03 for
the long baseline case with 1,205 km distance (right).
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and classical code combinations display a good performance for the ARof EWL/WL
observables for a short baseline. When the length of baseline increases, the AR success
probability significantly decreases for the classical combination, whereas in contrast,
the optimal combination still displays good performance. The success probabilities in-
crease by at least 10% for most EWL/WL signals by using the optimal combination.
The efficiencies of the GIF and GFIE AR methods will now be assessed for a new

category of ML/NL candidates. As illustrated in Figure 3, the GFIE method has re-
markably reduced the standard deviation of the float ambiguities for the ML/NL
observables, in both short and long baseline cases. Thus, it becomes efficient to fix
the integer ambiguities by using the rounding operation.

Table 4. Success probability of geometry-free model AR for several EWL/WL observables.

Ambiguities

Success probability (%)

179 m 654 km 1205 km

ΔP3 ΔPopt ΔP3 ΔPopt ΔP3 ΔPopt

ΔN(0,−1,1) 100·0 100·0 100·0 100·0 100·0 100·0
ΔN(1,0,−1) 93·8 96·7 81·5 92·9 68·9 90·8
ΔN(1,−1, 0) 90·1 96·2 80·4 93·7 74·1 91·4
ΔN(−1,−5, 6) 99·6 99·8 82·2 92·3 74·4 87·6
ΔN(1,2,−3) 99·8 100·0 81·3 95·4 67·5 91·7
ΔN(1,1,−2) 98·0 99·6 85·4 96·4 72·3 92·3
ΔN(1,3,−4) 99·8 100·0 84·5 94·8 78·4 91·5

Figure 3. The performance of GIFmethod (red plus sign) andGFIEmethod (blue point) forΔN(2,0,−3)

(top) and ΔN(0,0,1) (bottom) AR for the satellite pair C01-C03 in the short baseline case with 179 m
distance (left), and for the satellite pair C07-C03 in the long baseline case with 1,205 km distance
(right).
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Table 5 lists the single epoch AR success probability for the new category of ML/NL
observables. Compared with the GIF method, the GFIE method significantly
improves the single epoch AR success probability from below 24% to above 80%.
Since the GFIE method is also free of both ionospheric delay and geometric-related
effects, the success probability can be further improved by obtaining an average over
several epochs.

5. CONLUSION AND OUTLOOK. In this paper, we have analysed the limita-
tions of the geometry-free TCAR method. Since the noise levels of BDS triple-
frequency code observables are distinctly different, and the ionospheric delay
majorly impacts the geometry-free model AR, we have introduced estimation
methods for the noise level of code observable and DD ionospheric delay in real
time, and have proposed an improved strategy for the geometry-free TCAR method
which is suitable for BDS service. This strategy introduces a method for finding the
optimal combination of code observables to minimise the total noise level, and also
investigates the GFIE method to obtain high AR success probability for the third
method linearly independent of ML/NL observables.
To verify and demonstrate the proposed strategy, both short and long baseline

BeiDou triple-frequency observation data have been collected and processed to
analyse the performance of the improve geometry-free TCAR method. Compared
with the traditional geometry-free TCAR method, the improved TCAR method exhi-
bits stable and reliable performance for all baselines. The optimal combination reduces
the total noise level and increases the AR success probability by more than 10% for
most EWL/WL combinations in the long-range case. The AR success probability
for the new category of ML/NL observables is also significantly improved by using
the GFIE method, and the single epoch AR success probability is even above 80%
for the long baseline case. This result is very promising for long baseline real-time kine-
matic applications.
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