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The self-induced motion of a helical vortex
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Helical vortices have been studied for more than a century to understand basic aspects
of fluid motion. Helical vortices appear both in nature, e.g. as tornadoes, and in many
industrial applications associated with mixing and in wakes behind rotors. Owing to
the complexity of the equations governing the self-induced motion of helical vortices,
it has up to now not been possible to obtain closed-form solutions describing all
aspects of the motion. An important issue concerns the difference between the self-
induced motion of the helical structure and the movement of fluid particles located
on the helix. Here, we revisit the equations governing both the motion of the helical
vortex structure and the motion of material fluid elements on the axis of the helix,
and for both cases derive closed-form solutions for the resulting velocities. As a part
of the paper, we also devise potential applications of the achieved knowledge.

Key words: vortex dynamics

1. Introduction
Helical vortices constitute fundamental fluid mechanical objects such as point

vortices and vortex rings (Alekseenko, Kuibin & Okulov 2007). Helical vortices
are the oldest mathematical idealization of tip vortices in the wakes behind screws,
propellers or wind turbines (Joukowsky 1912; Kuibin, Okulov & Pylev 2006; Felli,
Camussi & Di Felice 2011; Sherry et al. 2013; Okulov, Sørensen & Wood 2015). For
a wind turbine, the kinematics and the geometrical form of a system of helical vortices
are of special interest, as they may be exploited to determine the optimum rotor
efficiency (Okulov & Sørensen 2010). When computing the shape and displacement
of a helix, only the binormal component of the velocity is required, as the tangential
component does not affect the equilibrium of the helix (e.g. Ricca 1994; Boersma
& Wood 1999; Okulov 2004, and references therein). This was already noted in
the pioneering work of Joukowsky (1912), who neglected the tangential component
along the helix axis and employed the angular velocity to determine the binormal
component. These geometrical particularities of the kinematics of helical vortices will
be considered in detail in the following.

Among all helical structures, the infinitely thin helical vortex filament of constant
pitch and radius constitutes a fundamental singular object of vortex dynamics.
Unfortunately, this mathematical abstraction cannot be exploited directly to determine
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the helix motion, because the induced velocity becomes infinite on the axis. A real
physical helical vortex, on the other hand, has a finite vortex core which can be
considered as a superposition of a set of singular helical vortex filaments, resulting
in the disappearance of the singularity due to the integration. However, there exist
no closed-form solutions taking into account arbitrary vorticity distributions of the
vortex core. In spite of this, it is possible to determine the motion of a finite-core
helical vortex using the solution for an infinitely thin vortex at some finite distance
from the centre of the vortex, and correct it for torsion and curvature effects. Indeed,
assuming the particular case of a vortex core with a constant distribution of vorticity,
Ricca (1994) determined a correlation between a finite and an infinite vortex core
numerically by combining a filament solution with an extended version of the
approximation of the Biot–Savart equations introduced by Moore & Saffman (1972).
The additional correction term was later analytically derived and proved by Boersma
& Wood (1999).

Unfortunately, it is complicated to use the above approach directly, because, in
contrast to the fundamental cases of a straight line (‘point’) vortex or a vortex ring,
the Biot–Savart integral for the flow induced by the helical filament does not have a
closed form. Thus, it cannot be represented as a simple pole, such as a point vortex,
or expressed as complete elliptic integrals, as for an infinitely thin vortex ring (see e.g.
Lamb 1932). There are various ways to determine approximate formulae, including
integration of the Biot–Savart law; Kawada–Hardin’s infinite series of the Kapteyn
type (Kawada 1936; Hardin 1982; Fukumoto, Okulov & Wood 2015), a special form
of Boersma & Wood’s W-integral with singularity separation (Boersma & Wood
1999), or different attempts of exploiting analytical evolutions. The Biot–Savart law
can be used in numerical simulations to determine the velocity field in points outside
the singular vortex filament. Initially, to simplify the numerical calculations, Kawada
(1936) derived an infinite series as a partial case to the Goldstein (1929) solution for
the helical vortex wake. Unaware of the pioneering work by Kawada, Hardin (1982)
derived a similar set of equations consisting of the Kapteyn series as an equivalent
form to the Biot–Savart law. Next, Ricca (1994) used this technique for numerical
estimations of the induced velocity of a helical filament to compare it with the
velocities of a vortex with a finite core. However, this series encountered a problem
in achieving accurate results for the flow in the azimuthal direction, owing to errors in
approximating the infinite series by a finite array of harmonic terms (see appendix A).
Later, Boersma & Wood (1999) used the investigation of Ricca (1994) to derive an
integral representation for the remainder, W, after separating the singularities on
the filament in the Kapteyn series to provide a correction for the finite vortex core
by integrating it around its cross-section. A general problem with both approaches,
however, is that they do not contain closed-form solutions of the equations, because
neither the Biot–Savart nor the W integrals can be integrated into a closed-form
solution, and the Kapteyn series cannot be summed for the infinity harmonics. As a
result, it was essentially necessary to develop special analytical approaches. Initially,
Kawada (1936) extracted the two main terms in the Kapteyn series, which, however,
were insufficient to arrive at an accurate solution. Independently from his contributions,
Okulov (2004) proposed a more accurate analytical approximation, which included
six key terms, resulting in a very fast decaying remainder of the series. In spite of
its generality, the result of Okulov (2004) was only applied as a basic solution to
study the stability of helical multiples in a moving coordinate system with additional
axial velocity (Okulov & Sørensen 2007). Furthermore, the analytical solution for
the motion of a single helix in an immobile (absolute) coordinate system was not
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FIGURE 1. (a) Sketch of the induced motion of a material fluid particle, with u (red
arrow) denoting the velocity without azimuthal displacement (1θ ), and ub (green arrow)
denoting the binormal translation of the helical vortex with azimuthal displacement.
(b) The helix displacement in cylindrical coordinates (θ , z) on the supporting cylinder of
radius R. The values (uSind)z and (uSind)θ denote the translation of the helix in the axial
and azimuthal directions.

considered in the previous works. However, a full analytical solution to the problem
will be given in the following.

The paper is organized as follows. In § 2, we give a description of the geometry and
kinematics of helical vortices, with the particular aim of describing the self-induced
motion of helical vortices. A discussion regarding the correlation between solutions of
vortex filaments of infinite thickness and vortex filaments of finite thickness is given
in § 3. In § 4, based on the earlier work by Okulov (2004), we derive a closed-form
solution for the binormal velocity, and hence for the induction and motion of a single
helical vortex. In § 5 we derive a similar set of equations to describe the full motion of
fluid particles along the axis of a helical vortex. Finally, in § 6, we conclude the work.

2. Kinematics of the helical vortices
We start by defining the geometry of a helical vortex of radius R (figure 1a).

The helical pitch, L = 2πl, is defined as the axial displacement during one turn of
the helix, and the helix angle is determined as tan φ = L/2πR, with corresponding
helix torsion τ = l/R. Furthermore, the absolute induced velocity u, is defined either
through the binormal velocity, ub, and the tangential velocity, ut, or through the axial
velocity, uz, and the azimuthal velocity, uθ (figure 1b). In accordance with remark to
equation (7.1.13) of Batchelor (1967) the contribution of the normal component un
does not lead to displacement of the vortex line and will not be considered here.

It should be mentioned that the binormal and the absolute velocity depict the same
spatial displacement of the helical vortex structure, as indicated by the blue line and
velocity vectors in figure 1(a). For simplicity, we also show the helix as a rectilinear
line by a horizontal projection of the cylindrical coordinates (θ , z) on a cylindrical
surface embedding the helix (figure 1b). From this, it is easily recognized that the
helix displacement takes place in the binormal direction and that the tangential
velocity does not contribute to the displacement, as it acts along the helix axis.
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883 A5-4 V. L. Okulov and J. N. Sørensen

Indeed, the definition of ub gives the shortest distance to the displaced helix structure
as well as defining the helix angle, φ (see figure 1b). The geometry of the helix
results in the following trigonometric relations (figure 1a):

tan φ = τ ; sin φ = τ/
√

1+ τ 2 and cos φ = 1/
√

1+ τ 2. (2.1a−c)

Looking at figure 1(b) it is clear that the velocity of a material fluid particle (red
arrow and dot) does not define the helix angle. First, when the tangential velocity is
subtracted from it, the pitch angle can be defined as the angle between the remaining
vector, which is the binormal component, and the z-direction. The reason is simply
that the tangential component acts along the helix axis, hence it will not contribute
to the displacement of the helical structure, but only influence the movement of
fluid particles along the helix axis. It is important to separate the helix displacement
(figure 1b – blue line) and the motion of material fluid particles (the red point on
the blue line). From figure 1(b) it is readily seen that all velocity vectors connecting
the original (black) vortex line and the displaced (blue) line may determine the
displacement of the vortex. However, the binormal component is the only one that
uniquely defines the helix displacement through the helix angle φ. In contrast to this,
the absolute velocity defines the motion of a material fluid particle on the helical
vortex, but not the displacement of the helical structure. It should also be mentioned
that the value of the tangential velocity depends on the vorticity distribution in the
core of the helical vortex, which also makes the definition of the helix position via
the absolute velocity u more difficult. It may seem obvious that the displacement
is dictated uniquely by the binormal velocity component. However, in some recent
publications, this has been questioned (see e.g. Fuentes 2018; Durán Venegas & Le
Dizès 2019), and this is partly the motivation for discussing this issue in the present
paper. In much earlier works by prominent fluid mechanical scientists, this issue was
not, and should not, be questioned. An example is the paper by Ricca (1994), where
on page 251 it is explicitly noted that ‘the relative displacement in the fluid is given
only by ub, while ut yields pure tangential motion along the axis’.

Another important reference is the pioneering work by Joukowsky (1912), which,
however, contains a somewhat different approach to determining the motion of a
helical vortex.

In figure 2 we have reproduced page 13 from the French translation by Margoulis
in 1929 of the paper by Joukowsky (1912). Here the starting point is also to neglect
the tangential component, but then he proceeds by determining the angular velocity of
the helix. As a basis for the analysis, the Biot–Savart law is employed to approximate
the solution of the total velocity v of all fluids particles, as this ‘velocity coincides
with the speed of the vortex ring’,

v =−
J

4πρ
log

ε

2ρ
, (2.2)

where J is the circulation of the vortex, ε is the core radius and ρ = R/sin2α,
with α being the slope angle of the helix. Further, on page 13, Joukowsky remarks
that ‘this result could be expected in advance. Let’s now decompose (figure 8 [of
Joukowsky 1912]) the velocity ν of the helical vortex filament, whose first component,
v · tgα is directed along the tangent to the axis of the vortex, and the other, ν/cosα,
follows the tangent to the circumference of the straight section of the cylinder. The
first component does not affect the equilibrium of our helical line. But the second
component communicates a rotation around the axis of the cylinder, with an angular

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

83
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.837


The self-induced motion of a helical vortex 883 A5-5

R

J

å

√√tang

ØR

FIGURE 2. The page from Joukowsky (1912) (left) and a reproduction of his figure 8
(right) in which it is shown that the tangential component vtang does not affect the helix
displacement.

velocity: Ω = v/R cos α’ (end of the translated quote; below, the symbols used in the
original paper are replaced by Γ ≡−J and φ ≡π/2− α).

As exemplified in Joukowsky’s article, depending on the application, the
displacement of a helical vortex requires it to be analysed in different coordinate
directions, which do not necessarily coincide with the binormal direction.

Two main displacements of the vortex-core locations take place in the context
of an axial translation of the helix along the axis Oz or as an azimuthal rotation
around the same axis. This is shown in figure 1(b) where the translational velocity
is denoted as (uSind)z and the azimuthal as (uSind)θ . From the figure, it is readily
seen that they are not identical to the projections of the binormal velocity ub. The
displacement of the helix in the two orthogonal cross-sections (figure 3) plays an
important role in many applications of helical vortices (Alekseenko et al. 2007).
For example, in some applications, the appearance of helical structures in fixed
cross-sections are inherent in particle image velocimetry (PIV) measurements of
three-dimensional flows (see e.g. Okulov et al. 2014, 2019). The motion of a helix
in a meridional cross-section, θ = const. (figure 3a), looks similar to the self-induced
motion of vortex rings (Fukumoto & Moffatt 2000), and it can be referred to as
an axial self-induced motion with the velocity (uSind)z. The next major displacement
of the helix, located in the other orthogonal cross-section z = const. (figure 3b), is
recognized as the precession of a helical vortex core (Alekseenko et al. 1999). The
frequency ΩSind = (uSind)θ/R of the vortex core precession at z = const. corresponds
to the frequency of a concentrated vorticity filament, which e.g. is passing by a fixed
anemometer or a PIV laser sheet. As seen in the projections depicted in figure 1(b),
the self-induced translation (uSind)z and the self-induced rotation (uSind)θ are not
identical to the binormal projections (ub)z and (ub)θ . Instead, from figure 1(b) one
may deduce the following relationships between the various velocity vectors:

(uSind)z = ub/cosφ and (uSind)θ =−ub/sinφ, while
(ub)z = ub cos φ and (ub)θ =−ub sin φ.

}
(2.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

83
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.837


883 A5-6 V. L. Okulov and J. N. Sørensen

r r

zz(uSind)z
(uSind)œ

(uSind)z

Îœ

h = 2πl

(a) (b)

FIGURE 3. (a) The axial self-induced helix motion in a meridional cross-section, θ =
const.; (b) the helix precession or self-induced rotation in a fixed cross-section, z= const.
For both cross-sections the isolines of the streamfunction of the flow are reproduced from
the data in § 2.6.2 of Alekseenko et al. (2007).

These corrections constitute an inherent part of the interpretation of rotor wakes in
earlier works by Okulov & Sørensen (2010) and in analyses of helix precession
(Kuibin & Okulov 1998). It should also be noted that Prandtl (Betz 1919), in his
treatment of the screw propeller, based the velocity of the screw surface on the
projection of the axial self-induced velocity component, i.e. ub = (uSind)z cos φ, which
then was projected into an axial and an azimuthal component, defining the induced
velocities in the wake.

Although the two self-induced components describe the motion of spots of the
vorticity concentrations in the two orthogonal cross-sections, they do not coincide
with the corresponding projections on the axial and azimuthal directions of either the
induced velocity u of the fluid particles or of the binormal velocity ub (figure 1b).
From the definition of the helix angle, combining (2.1) and (2.3), we get

tan φ = (uSind)z/(uSind)θ = (ub)θ/(ub)z = l/R≡ τ . (2.4)

Other important applications of helix motion include additional global flows. In
figure 4 we depict two different situations of superposed flow, with figure 4(a)
showing the kinematics and velocity vectors when an axial flow component, U0, is
superposed on the helix motion, and figure 4(b) showing a similar picture when the
helix is subject to an additional rotation. For a forward propulsion of a propeller or
a wake of a wind turbine surrounded by an ambient axial wind field (figure 4a), an
additional axial flow velocity superposed on the helix motion needs to be included for
a correct definition of the helical pitch in the meridional cross-section (figure 3a). In
the investigation of the stability of helical vortex multiples (Okulov 2004), the motion
of a moving coordinate system with axial velocity U0 = ΓN/2πl was superposed in
order to obtain a vanishing induced velocity at the centre, i.e. at r= 0.

An additional angular rotation Ω0 (figure 4b) can occur in different ways, e.g.
by the influence of an additional root vortex (Okulov & Sørensen 2007, 2010), by
other vortices in a vortex multiple (Okulov 2004) or by the influence of a boundary
(Kuibin & Okulov 1998). It is important to note, as also evidenced on figure 4, that
an additional translation automatically implies an additional rotation, and, vice versa,
that an additional rotation causes an additional translation.

3. A correlation between solutions for the vortex filament and the vortex of a
finite core
The next question we wish to address concerns the possibility of using the induction

of a concentrated singular vortex filament to describe the induction from a vortex

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

83
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.837


The self-induced motion of a helical vortex 883 A5-7

W

V

œ
œ

œ�

ƒ

ƒ ƒ
ƒ

z

s

z z�

Ø0R(uSind)œ
(uSind)œ

(uSind)Z (uSind)Z
ub

ub

U0

(a) (b)

FIGURE 4. The self-induced motions of a helix in two moving systems, (Oθ ′z) and (Oθz′),
on a supporting cylinder of radius R. (a) The total helix motion in the axial direction with
a supplementary velocity U0. (b) The total helix rotation with a supplementary angular
velocity Ω0.
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FIGURE 5. Correlations of azimuthal velocities uθ induced by an infinite thin vortex
filament (dotted lines) and a vortex with a finite core and a uniform vorticity distribution,
ωt (solid lines). (a) Rectilinear vortex and (b) helical filament with constant vorticity
(Boersma & Wood 1999).

filament of finite-core size and constant vorticity. For a simple two-dimensional
(2-D) vortex it is known that the induction outside the vortex core is the same for
a point vortex as for a vortex of finite size, provided that it has a constant vorticity
distribution. However, this is not the case for a similar filament of a helical vortex,
as the vortex, due to torsion and curvature, induces a non-symmetric velocity field
(see references in Kuibin & Okulov 1998). This difference between the induction
of a rectilinear (point) vortex and a helical vortex is illustrated in figure 5, which
compares the induced azimuthal velocity of a 2-D vortex (figure 5a) and a helical
vortex (figure 5b). For the 2-D vortex, it is clearly seen that a point representation of
the vortex and a similar vortex of finite-core size generates the same induced velocity
field outside the vortex core. In contrast to this, a helical vortex of finite-core size
and constant vorticity generates a velocity outside the core that is different from the
one generated by a singular vortex filament.

A simple way to estimate the velocity at the centre of the vortex is to take the value
between two diametrically opposed points on the vortex core, i.e. at (r, θ, z)= (R±
ε, 0, 0), and let the centre velocity be represented by the average of these two values
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883 A5-8 V. L. Okulov and J. N. Sørensen

(Ricca 1994; Boersma & Wood 1999; Okulov 2004, etc.). Although this procedure can
immediately be exploited for a 2-D vortex, it requires an additional correction for a
helical vortex, since, as discussed above, the induction is non-symmetric.

To determine this correction, consider first the vortex at some point O with the unit
vectors of the natural coordinate system directed along the tangent, and the principal
normal and the binormal directions in an orthogonal cross-section of the filament. In
this system, the velocity field induced by a curved vortex filament may, at a small
distance σ from the filament, be asymptotically represented as the sum of a pole, a
logarithmic singularity and a regular (non-singular) term (Batchelor 1967). The first of
these terms describes the circulatory motion around the vortex axis and does not cause
any displacement. The next two terms describe the motion of the vortex filament in the
binormal direction. In dimensionless form, scaled with Γ κ/4π, the binormal velocity
is given as,

ŵ(Asympt)
b =−

2 cos θ
κρ

+ ln
1
κρ
+C(Asympt), (3.1)

where ρ, θ are the polar coordinates of the natural system and κ is the vortex
curvature.

It is known (Ricca 1994; Kuibin & Okulov 1998) that the dimensionless
self-induced velocity of a helical vortex with a finite-core size of ε after integration
of (3.1) is described by the formula,

ŵ(Sind)
b = ln

1
κε
+C(Sind), (3.2)

where ε is the radius of the vortex core. This can be considered as an analogue to
(3.1) without the pole, which vanishes from the integral because of the symmetry
of the pole contribution. The disappearance of the pole and the logarithmic term
provides a basis for utilizing the velocity induced by a filament at a distance ρ= ε to
represent the flow field induced by a vortex of finite-core size, ε. However, it remains
to estimate the last term of the two equations to complete the interrelation between
the quantities. In (3.1) the quantity C(Asympt) only depends on the geometry of the
vortex filament, whereas the value of C(Sind) in (3.2), together with the same geometric
vortex parameters, also depends on the vorticity distribution inside the vortex core
(Batchelor 1967; Tung & Ting 1967; Ricca 1994; Kuibin & Okulov 1998; Boersma
& Wood 1999; Okulov 2004 etc.). This difference between the ‘C’ terms can take
different values, depending on the form of the core and the vorticity distribution of
the vortex. As an example, the value for a vortex ring with uniform vorticity of the
core was determined to be 3/4 by Tung & Ting (1967). For a helical vortex, the
difference is 1/4, as was analytically deduced by Boersma & Wood (1999), who
showed that

C(Sind)
=C(Asympt)

+
1
4 . (3.3)

Although (3.3) represents a simple way of establishing a finite-core vortex solution
from the solution of a similar vortex of zero thickness, the correction seems not to be
generally known. A recent example of this is the paper by Fuentes (2018), where the
integral representation of Boersma & Wood (1999) for the Kawada–Hardin solution
of the helical filament was used directly to compute the motion of the helical vortex
without using (3.3) to correct it for the finite-core vortex.
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4. The motion of a single helical vortex
As a basis for determining the motion of a single helical vortex, we employ the

Kapteyn series employed in Kawada–Hardin’s solution (Hardin 1982). This series was
originally written as

HI,J(a, b, χ)=
∞∑

m=1

mI〈I〉m (ma)K〈J〉m (mb) · eimχ , (4.1)

where I〈0〉m (ma) and K〈0〉m (mb) are the modified Bessel functions, and I〈1〉m (ma) and
K〈1〉m (mb) are their respective derivatives; the parameter a denotes the dimensionless
radial distance to the point considered, and b denotes the dimensionless radius of the
vortex, both made dimensionless by the helical pitch l or something similar via helix
torsion τ = l/R. Okulov (2004) derived an accurate analytical approximation of the
Kapteyn series (4.1), which included six key terms with remainder terms that were
sufficiently small to be neglected. In spite of its potential generality, this result was
applied only to investigate the stability of helical multiples in a moving coordinate
system with an additional axial velocity (Okulov 2004; Okulov & Sørensen 2007). To
generalize and complete the equations of motion for a single helical vortex located
in a non-moving frame of reference, we here revisit the work by Okulov (2004) and
derive the missing equations.

In accordance with the procedure described by Okulov (2004), an analytical form
of the infinite series (4.1) (using appendix A), can be determined as follows:

(i) for the point R− σR< R inside of the helix:

H0,1

(
1− σ
τ

,
1
τ
, 0
)
=

1
4

τ 2

(1+ τ 2)1/2

(
−

2
σ

)
+

1
4

τ 2

(1+ τ 2)3/2

(
ln(σ )+ ln

(√
1+ τ 2

2

)
+ τ 2
− 1

)

+
1
4

τ 2

(1+ τ 2)9/2

[
27
8
+ 2τ 4

+
1
τ 2
−

(
τ 4
− 3τ 2

+
3
8

)
ς(3)

]
+ I1

(
1
τ

)
K ′1

(
1
τ

)
+

3τ
4
+ o(1), (4.2)

(ii) for the point R+ σR> R outside of the helix

H1,0

(
1
τ
,

1+ σ
τ

, 0
)
=

1
4

τ 2

(1+ τ 2)1/2

(
2
σ

)
+

1
4

τ 2

(1+ τ 2)3/2

(
ln(σ )+ ln

(√
1+ τ 2

2

)
+ τ 2
− 1

)

+
1
4

τ 2

(1+ τ 2)9/2

[
27
8
+ 2τ 4

+
1
τ 2
−

(
τ 4
− 3τ 2

+
3
8

)
ς(3)

]
+ I1

(
1
τ

)
K ′1

(
1
τ

)
+
τ

4
+ o(1), (4.3)

where σ = ε/R, ζ (·) is the Riemann zeta function, and o(1) is the remainder of
the approximation.
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FIGURE 6. (a) Correlations of the Kapteyn series (3.2) with 70 harmonics (dots) and
the analytical equivalent (3.3)–(4.1) (solid lines). (b) Azimuthal velocities uθ computed
symmetrically around the helix axis at external positions, r/R = 1 + σ , and at internal
positions, r/R= 1− σ , using (4.2) combined with (3.2) and (3.3)–(4.1). (All simulations
in the plots hereinafter were undertaken with Γ = 4π and σ = 0.1.)

As demonstrated by the excellent agreement between (4.2) and (4.3) and the
Kapetyn series in figure 6(a), the remainder is clearly seen to be negligibly small. In
cylindrical coordinates (r, θ , z), according to the Kawada–Hardin solution, the axial
and azimuthal velocity components induced by the helical vortex outside of the core
are given as

uθ(r, R, χ)=
Γ

2πr

{
0
1

}
+
Γ a
πrl

{
H0,1(r/l, R/l, χ)
H1,0(R/l, r/l, χ)

}
, uz(r, R,χ)=

Γ

2πl
−

r
l
uθ(r, R,χ),

(4.4a,b)

where χ = θ − z/l, and the upper expression in braces corresponds to the case r< R,
and the lower one to r > R. Figure 6(b) also shows an excellent agreement between
the simulations of uθ using the Kapteyn series (4.1) and the analytical forms of (4.2)
and (4.3) with Γ = 4π, χ = 0 and σ = 0.1.

The new form of the solution (4.4) by (4.2) and (4.3) with the pole and logarithmic
singularities is fully in line with the asymptotic development (3.1) for the velocity
field induced by any curved infinite thin vortex filament (Batchelor 1967). The
development (4.2) and (4.3) predicts an infinite speed on the helical filament, and
the induction velocity (4.4) cannot be directly applied to estimate the translation of a
helical vortex with finite core or the motion of fluid particles along the helical axis.
For this purpose, the non-singular term in (3.2) needs to be determined. A way to do
this was proposed by Ricca (1994), who used the half-sum of the filament velocities
(4.4) at two points diametrically placed at σ =±ε/R from the filament. As discussed
in § 3, the asymptotic singular term needs to be further corrected by a constant in
order to represent the value at the vortex centre. By subtracting the pole 1/σ and the
logarithm pole ln(1/σ) from the original Kapteyn series (4.1), Ricca (1994) predicted
numerically that the correction in (3.3) should be approximately 1/4. This was later
confirmed analytically by Boersma & Wood (1999), who separated both singularities
by an analytical reorganization of the equations, resulting in the representation of the
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remainder by an integral,

W(τ )=
∫
∞

0

{
sin2 t

[τ 2t2 + sin2 t]3/2
−

1
[τ 2 + 1]3/2

T(1/2− t)
t

}
dt, (4.5)

where T(·) denotes the unit step function. The integral remainder (4.5) describes
the main effect of vortex torsion. The expression is regular and permits us to prove
analytically the 1/4-term in (3.3). However, it cannot be integrated into a closed
form, just as the Biot–Savart law for the helical vortex filament, and instead it was
numerically determined to an accuracy of six significant figures and tabulated for 21
values of the pitch τ . Based on this analysis, Boersma & Wood (1999) for the first
time derived a realistic formula for the binormal velocity ubB&W of a helical vortex
with finite core,

4πR
Γ

ubB&W =
1

1+ τ 2

×

[
ln
(

2
σ

)
−

1
4
+ 2τ 2

− 2τ
√

1+ τ 2 − ln
√

1+ τ 2 + (1+ τ 2)3/2W(τ )
]
. (4.6)

As an alternative to the semi-analytical equation (4.6), the analytical representation of
the series, equations (4.2) and (4.3), may be exploited in a similar way as in Ricca
(1994). After some manipulations, we arrive at the following closed analytical form
for the velocity of the binormal translation of the axis of a helical vortex of finite-core
radius, σ = ε/R,

4πR
Γ

ub =
1

1+ τ 2

[
ln

1
σ
−

1
4
−

3
2

ln
τ

1+ τ 2
+ 2+ τ 2

−

√
1+ τ 2(1+ 3τ 2)

τ

]

+
τ 2

(1+ τ 2)4

[(
τ 4
− 3τ 2

+
3
8

)
ς(3)−

27
8
+ 2τ 4

+
1
τ 2

]
+ 4

√
1+ τ 2

τ 2
I1

(
1
τ

)
K ′1

(
1
τ

)
+ o(1). (4.7)

In figure 7(a), the binormal velocity is computed as a function of torsion using
the new analytical expression (4.7) (solid line) and compared to the solution of
Boersma & Wood (1999), using the W-integral formulation (4.6), and to that of
Ricca (1994), using a Kapteyn series with 70 terms. As seen, there is an excellent
agreement between the three methods. In figure 7(b) the angular self-induced
velocity is compared to direct Navier–Stokes simulations of Selçuk, Delbende &
Rossi (2017). The comparison is seen to be excellent, verifying both the validity of
(4.7) and the explanations and equations derived in § 2 (equations (2.1)–(2.4) and
figures 1b and 3b).

Thus, for the first time, a closed-form solution, equation (4.7), has been established
to describe the displacement of a helical vortex with a uniform vorticity distribution
of the vortex core.

5. The motion of fluid particles along the axis of a helical vortex
In some cases, it is preferable to consider the absolute motion of material fluid

elements on the helical axis. However, it is important to emphasize that this motion
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FIGURE 7. (a) Correlations of the non-dimensional binormal velocity of a helical vortex
calculated by different methods. Points indicate values of Ricca’s approach via Kapteyn
series with 70 harmonics (3.2); squares are ubB&W of Boersma & Wood’s formula (4.4a,b);
solid line is the current analytical expression (4.5). (b) Comparison of angular velocity
ΩSind = (−ub/sinφ)/R in a fixed cross-section (figures 1b and 3b). Solid line: calculation
using (4.5); square dots: angular velocity obtained from Navier–Stokes simulations of helix
development (Selçuk et al. 2017).

0 1 2 z/R0

Vortex core motion

Absolute motion
of the fluid particle

in the helix core

FIGURE 8. Different nature of the absolute motion of the fluid particles along the helical
axis and the motion of the helical vortex of the rotor wake in the meridional cross-section
is illustrated by a recent example with dye visualization of Quaranta, Bolnot & Leweke
(2015).

does not correspond to the motion of the helical structure, and one has to be cautious
when trying to derive the displacement of a helical structure from the absolute velocity
of the material fluid elements located on the helix axis (figure 8).

As an example, in figures 1(a) and 3(a) it is shown that an axial translation
of a helix in a fixed axial cross-section is associated with an additional rotation
of the helix. This effect cannot be included when considering the helix motion to
be determined purely by the motion of the material fluid particles along the helix
axis. The incompatibility between the movement of fluid particles and of the helix
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The self-induced motion of a helical vortex 883 A5-13

is illustrated in the visualization of Quaranta et al. (2015) (figure 8), where fluid
particles are seen to move along the helix axis towards the rotor blade at the same
time as the helical wake moves downstream from the rotor.

On the other hand, the absolute velocity u may play a key role when analysing
disturbances and instabilities (Widnall 1972; Hattori & Fukumoto 2009), or the
expansion of the original helical vortex. In these cases, it is necessary to know
the absolute velocity components (4.4). As done previously, the analytical form
of the Kapteyn series, equations (4.2) and (4.3), combined with (4.4), will be
used to derive the analytical expressions for the velocities. Furthermore, we will
apply the same approach as the one used to derive the binormal components in
the previous section. As before, we utilize the assumption that the velocity on the
helix axis can be represented by the sum of the induced velocities at opposite
points of the filament, corrected by the non-singularity term (1/4). However, the
correction using the 1/4-term should only be applied for the binormal component,
as a uniform distribution of vorticity does not affect the tangential motion of the
fluid particles along the helical axis. Hence, the 1/4-term only contributes indirectly
to the expression for uθ and uz through the corrected binormal velocity, which
subsequently is projected onto the azimuthal and axial directions by multiplication
of −sinφ =−τ/

√
1+ τ 2 and cos φ = 1/

√
1+ τ 2, respectively. Finally, the analytical

formulae for the azimuthal and axial components take the form

4πR
Γ

uθ =
−τ

(
√

1+ τ 2)3

[
ln

1
σ
−

1
4
+ ln

τ
√

1+ τ 2
+ 2−

2
τ
(
√

1+ τ 2)3
]

+
4
τ

I1

(
1
τ

)
K ′1

(
1
τ

)
+ 1−

τ
√

1+ τ 2

−
τ 3

(
√

1+ τ 2)9

[(
τ 4
− 3τ 2

+
3
8

)
ς(3)−

27
8
+ 2τ 4

+
1
τ 2

]
+ o(1), (5.1)

4πR
Γ

uz =
1

(
√

1+ τ 2)3

[
ln

1
σ
−

1
4
+ ln

τ
√

1+ τ 2
− 2τ 2

]
−

1
τ

(
4
τ

I1

(
1
τ

)
K ′1

(
1
τ

)
+ 1−

τ
√

1+ τ 2

−
τ 3

(
√

1+ τ 2)9

[(
τ 4
− 3τ 2

+
3
8

)
ς(3)−

27
8
+ 2τ 4

+
1
τ 2

])
+ o(1). (5.2)

To verify these simple analytical expressions, the resulting velocities are compared
to similar results obtained using a Kapteyn series with 70 harmonics. The outcome
of this is depicted in figure 9, which compares the absolute velocities at the helix
axis as a function of torsion. It may be argued that replacing the standard Kapteyn
solution by a closed-form analytical solution is of minor importance. However, it may
become important when investigating the stability properties of a helix in the vicinity
of a stable state or when using particle tracking of a large number of fluid particles.

Finally, to demonstrate that the tangential velocity of the helix does not depend on
the 1/4-term of the correction in (3.3), we substitute the expression (5.1) and (5.2)
for uθ and uz into the expression for the tangential velocity, ut = (uθ + τuz)/

√
1+ τ 2,

derived by Ricca (1994). After some trivial, albeit tedious, transformations, we arrive
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FIGURE 9. Absolute velocities of the motion of fluid particles along a helical axis with
vortex core of radius ε. Solid lines: equations (4.6) and (4.7); points: solution of vortex
filament (4.2) using Kapteyn series (3.2) with 70 harmonics (points).

at the dimensionless formula

ut = 2

√
1+ τ 2 − τ

1+ τ 2
, (5.3)

which clearly is seen not to contain the 1/4-term.
Thus, the analytical solutions, equations (5.1) and (5.2), for the motion of fluid

particles along the helical axis differ from the binormal displacement of the helical
vortex, equation (4.7), and the tangential velocity (5.3) does not affect this motion.
Furthermore, ut does not contribute to the correction, equation (3.3), when considering
a uniform vorticity distribution in the vortex core.

6. Conclusions
In this paper, we have derived a set of analytical equations for the motion of

helical vortices. We have demonstrated that the kinematics of a helical vortex moving
due to self-induction is fundamentally different from the motion of the material fluid
elements forming the vortex. In particular, we show that the motion of the vortex is
governed solely by the binormal component of the induced velocity. Furthermore, we
have derived a set of closed-form equations describing both the binormal component
of the velocity, constituting the movement of the helical vortex structure, and the
velocity components describing the motion of a material fluid particle located at the
centre of the vortex. The analysis was restricted to vortices with a constant vorticity
distribution in the vortex core. Solutions for other typical distributions of vorticity of
the vortex core will be the subject for future investigations.

Appendix A. A correct evolution of the Kapteyn series
In this appendix we assess the accuracy of the proposed analytical formulae and

demonstrate the advantage of employing an analytical form of the equations.
The Kapteyn series (4.1) consists of the harmonic terms along the azimuthal

direction,

him(x, χ)=mI〈0〉m (m · a)K
〈1〉
m (m · ax) · eimχ , when x 6 1; (A 1a)

hem(x, χ)=mI〈1〉m (m · a)K
〈0〉
m (m · ax) · eimχ , when x> 1. (A 1b)
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FIGURE 10. Examples of the harmonic terms him and hem of the Kapteyn series (A 1a,b)
along the radial (χ = 0) and azimuthal (x= 1) directions for a= 1.
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FIGURE 11. Examples of the sums HiM and HeM for a direct simulation (A 2a,b) of the
Kapteyn series along the radial (χ = 0) and azimuthal (x= 1) directions for a= 1.

The behaviour of these functions is shown in figure 10 for different m-values, with
a= R/l= 1/τ and x= r/R, in agreement with (4.2)–(4.4).

Unfortunately, when carrying out simulations, only finite sums of the harmonics of
(A 1) can be utilized,

HiM(x, χ)=
M∑

m=1

him(x, χ) or HeM(x, χ)=
M∑

m=1

hem(x, χ). (A 2a,b)

Figure 11 demonstrates that finite sums of (A 2) cannot describe the singularities of
the solution (4.4) at x = 1 and χ = 0. Here, the sums (A 2) predict finite values at
χ = 0 and x = 1, which depend on the number of modes M. In fact, in order to
reach the correct result that the Kapteyn series tends to infinity at x = 1 and χ = 0,
it is required that M→∞, which makes it inconvenient to use directly the series.
Furthermore, in all regular points, χ 6= 0, the curves parasitically oscillate, because a
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regular solution in these points only can be achieved by summing an infinite number
of terms from the positive and negative harmonics of the Kapteyn series.

The problem with the simulation of the Kapteyn series is known as ‘problem
97-18’ (Boersma & Yakubovich 1998). Boersma & Wood (1999) separated a simple
pole of 1/x type to provide a correction for the velocity field around the helical
filament. After the separation they employed an integral form (4.5) for the remainder,
which was derived in the paper by Boersma & Yakubovich (1998). The integral
remainder W describes the main effect of vortex torsion and is regular, but cannot be
integrated in a closed form, just as the Biot–Savart law for the helical vortex filament.
Nevertheless, it was numerically calculated with high accuracy to six significant
figures and tabulated in table 1 of Boersma & Wood (1999) for 21 values of the
pitch τ . We have used these values as a basis to test our analytical representations
(see e.g. the squares in figure 7a).

A special analytical approach in which the main singular terms were directly
extracted in the Kapteyn series was developed by Kawada (1936) for the two first
terms and independently by Okulov (2004), who proposed a general algorithm to
separate key terms from the series,

H0,1(ax, a, χ)= S+k (x, χ)+
∞∑

m=1

ri〈k〉m (x) · e
imχ , (A 3a)

H1,0(a, ax, χ)= S−k (x, χ)+
∞∑

m=1

re〈k〉m (x) · e
imχ , (A 3b)

where Sk refers to the main k terms representing the series and the sums represent
the remainder terms of the series. In accordance with the procedure described by
Okulov (2004) the main analytical form of the Kapteyn series can be determined
by a development of (4.1) via k terms consisting of two singularities and (k − 2)
polylogarithms. Figure 5 in Okulov (2004) shows a very good correlation of S4, which
consist of a pole, a logarithm, plus the first and second polylogarithms, with the
integral solution of Boersma & Wood (1999). However, representing the series only
with a pole and a logarithm and keeping the main regular remainders, constitutes a
simple and accurate solution to the problem. In this way, we now consider the main
analytical part of the solution described only by the two first functions,

S±2 (x, χ)= λ(x)Re
[
±eiχ

e∓ξ − eiχ
+ α(x) ln(1− eξ+iχ)

]
, (A 4)

where

eξ = x
e
√

1+xa2
(1+
√

1+ a2)

e
√

1+a2
(1+
√

1+ xa2)
; λ(x)=

1
2a

4
√

1+ a2

4
√

1+ xa2
;

α(x)=
1
24

(
3(xa)2 − 2
(1+ (xa)2)3/2

+
9a2
+ 2

(1+ a2)3/2

)
.

 (A 5)

Next, we reduce further the error of (A 4) (see also figure 5 in Okulov (2004))
taking into consideration a few terms of the regular remainders ri〈2〉m and re〈2〉m ,

ri〈2〉m (x, χ)=m[I〈0〉m (m · xa)K〈1〉m (m · a)+ λ(x)e
m·ξ (1+ α(ax, a))]eim·χ

; (A 6a)
re〈2〉m (x, χ)=m[I〈1〉m (m · a)K

〈0〉
m (m · ax)− λ(x)e−m·ξ (1− α(xa, a))]eim·χ . (A 6b)
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FIGURE 12. Example of first terms of regular remainders ri〈2〉m and re〈2〉m (A 6) for the
presentation of Kapteyn series with the singularity separation of the pole and logarithm
(A 3) along the radial (χ = 0) and azimuthal (x= 1) directions for a= 1.
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FIGURE 13. Examples of the sums Ri〈2〉M and Re〈2〉M of the remainders (A 7a,b) along the
radial (χ = 0) and azimuthal (x= 1) directions for a= 1.

Figure 12 illustrate the behaviour of the first terms of the remainders, showing that
they decay very fast as compared to the original harmonics (A 1) of the Kapteyn series
seen in figure 10.

Figure 13 shows the behaviour of the sums,

Ri〈2〉M (x, χ)=
M∑

n=1

ri〈2〉m (x) · e
imχ and Re〈2〉M (x, χ)=

M∑
n=1

re〈2〉m (x) · e
imχ . (A 7a,b)

The presented data, together with figure 5 in Okulov (2004), makes it clear that, in
order to reduce the error down to 0.2 %, it is sufficient to add in (A 3) only the first
term (m = 1) of (A 6). The result of the correct simulation is shown in figure 14.
Setting χ = 0 and inserting the values a = 1/τ and x = 1 ± σ in (A 3), (A 4) and
(A 6), we get (4.2)–(4.3), which together with (4.4), in a simple and compact way,
describes the induced velocity field.
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FIGURE 14. Solid lines indicate a correct evolution of the Kapteyn series by (A 3);
squares indicate evolution of the partial case (3.3) and (4.1) at χ = 0 along the radial
(χ = 0) and azimuthal (x= 1) directions for a= 1.

Thus, the evolution of the flow induced by helical vortex filaments reduces to
calculating the main part (A 4) of the Kapteyn series, represented by elementary
functions. A correction of the representations down to approximately 0.2 % errors can
be made by adding only the first term of the remainder (A 7), which was expressed
by a multiplication of two modified Bessel functions. Moreover, the information
on vortex torsion expressly includes the singularities and their coefficients in (A 4).
Therefore, equations (4.2) and (4.3) of the Kapteyn series represent a solution of the
helical vortex problem, that is simpler and more effective than the approaches by
Ricca (1994), Boersma & Wood (1999).
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