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Combustion instability analysis in annular systems often relies on reduced-order models
that represent the complexity of combustion dynamics in a framework in which the flame
is represented by a ‘flame describing function’ (FDF), portraying its heat release rate
response to acoustic disturbances. However, in most cases, FDFs are only available for
a limited range of disturbance amplitudes, complicating the description of the saturation
process at high oscillation levels leading to the establishment of a limit cycle. This article
shows that this difficulty may be overcome using a novel experimental scheme, relying on
injector staging and in which the oscillation amplitude at limit cycle can be controlled,
enabling us to measure FDFs from simultaneous pressure and heat release rate recordings.
These data are then exploited to replace the standard modelling, in which the heat release
rate is expressed as a third-order polynomial of pressure fluctuations, by a function of
the modulation amplitude, allowing an easier adaptation to experimental data. The FDF
is then used in a dynamical framework to analyse a set of staging configurations in an
annular combustor, where two families of injectors are mixed and form different patterns.
The limit-cycle amplitudes and the coupling modes observed experimentally are suitably
retrieved. Finally, an expression for the growth rate is derived from the slow-flow variable
equations defining the modal amplitudes and phase functions, which is shown to exactly
agree with that obtained previously by using acoustic energy principles, providing a
theoretical link between growth rates and limit-cycle amplitudes.

Key words: combustion, acoustics

1. Introduction
Research on thermoacoustic instabilities has led to significant advances in the
understanding of the driving and coupling processes at stake. This effort, motivated by
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practical issues, has been aimed in particular at developing reduced-order models and
tools that allow the prediction of these undesired phenomena, enable the design of systems
free of instabilities or help reduce the amplitude of oscillations if they occur. In recent
years, research has been specifically directed at instabilities coupled by azimuthal modes
in annular combustors, a geometry that is found in many aeroengines and gas turbines
(O’Connor, Acharya & Lieuwen 2015; Poinsot 2017; Schuller, Poinsot & Candel 2020).
To describe combustion systems’ dynamics, one needs to characterize the flame response
to acoustic disturbances. This response is usually represented by a flame transfer or
describing function (FTF and FDF, respectively), which links, through a gain and a phase,
the relative heat release rate (HRR) fluctuations to an input, that may be relative volume
flow rate disturbances, relative equivalence ratio fluctuations or pressure fluctuations
(Dowling 1997; Noiray et al. 2008; Schuller et al. 2020). The describing function concept
is the nonlinear extension of the FTF and is used to capture the effects of the oscillation
amplitude on the flame response. It can suitably describe the saturation process of the
HRR fluctuations which takes place at high modulation amplitudes, reducing the flames’
response and explaining why oscillations reach a limit cycle after a phase of growth
(Dowling 1997; Lieuwen 2003; Balachandran et al. 2005; Noiray et al. 2008). Flame
describing function measurements are available in the literature, but they are often limited
to weakly nonlinear cases. Experiments and numerical simulations documenting the
nonlinear flame response at high modulation amplitudes, close to those observed during
limit-cycle oscillations (Wolf et al. 2012; Prieur et al. 2018), are less common, and this
lack of knowledge has been replaced by a modelling of the nonlinear behaviour of the
HRR fluctuations at high modulation amplitudes to allow an examination of the evolution
to limit cycles.

In the present article, we use recent experiments (Alhaffar et al. 2024) in the annular
combustor MICCA-Spray, which will be designated from here on as MICCA, to propose
an alternative representation of the HRR fluctuations in terms of the pressure oscillation
amplitude. This new formulation is employed in a generic problem to analyse the
evolution to limit cycle using slow-flow variable equations. This study then builds
upon the modelling framework proposed by Ghirardo, Juniper & Moeck (2016), which,
in combination with the recent flame response measurements obtained in MICCA, is
applied to predict the limit-cycle oscillation amplitudes for a set of staging configurations
investigated in Latour et al. (2024a). Exploiting the large experimental dataset collected
in MICCA together with dynamical equations, this work aims to address the following
issues:

(i) Can one define an alternative representation of the HRR nonlinearity as a function of
the level of oscillation that is more flexible and more easily adaptable to experimental
flame dynamics data than current models?

(ii) Using the slow variable equations in combination with the new representation of the
flame response, is it possible to predict the various limit-cycle amplitudes for the
different staging configurations and retrieve the experimental trends and data?

(iii) Finally, can one derive an expression for the growth rate from the slow-flow variables’
dynamical equations and does this expression match with another previously
obtained from acoustic energy balance principles (Latour et al. 2024a)?

At this point, it is natural to review the literature, but for brevity, we only consider
investigations dealing with the modelling of HRR fluctuations in terms of pressure
fluctuations and that are specifically aimed at analysing the behaviour of annular
combustors. In a seminal investigation, Noiray, Bothien & Schuermans (2011) propose
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an expression for the HRR fluctuations, Q̇′, in the form of a third-order polynomial
of the pressure disturbances p: Q̇′(p)= βp − κp3, with β and κ , the linear and
saturation coefficients, respectively. When this expression is injected in the wave equation
representing the system dynamics and the pressure field is projected on the normal modes,
it is found that the modal amplitudes satisfy second-order differential equations that behave
like coupled Van der Pol oscillators and feature a finite amplitude limit cycle. This is
then used to analyse various issues, like the nature of the coupling mode and symmetry
breaking. One difficulty with this kind of modelling is that the polynomial expression
matches experimental data when the amplitudes of oscillation are small, but diverges
from the measurements when the amplitude takes large values, as indicated in the same
article, by making use of data from Balachandran et al. (2005). This difficulty was also
pointed out by Prieur et al. (2018), using signals from strong instability bursts in an annular
combustor, where the relation between the relative HRR and the pressure amplitude was
found to be quasi-linear. Using the same flame response model but introducing a stochastic
forcing term, Noiray & Schuermans (2013) were then able to account for turbulence
effects, inherent to high-power combustors, and in particular for the switching between
spinning and standing modes observed in experiments and numerical simulations, which
could not be retrieved with a purely deterministic approach. Another extension of this
model by Ghirardo & Juniper (2013) was meant to account for the HRR dependence
on the azimuthal velocity, v′

θ , acting on the flame in the transverse direction. Using
Q̇′(p, v′

θ )= (βp − κp3)μ(v′
θ ), where μ is a function of the azimuthal velocity, it was

shown that stable standing mode solutions existed in rotationally symmetric annular
configurations. Effects of a time lag were investigated at a later stage by Ghirardo,
Juniper & Bothien (2018), by writing the HRR as a third-order polynomial of the pressure
delayed by a time lag τ , p(t − τ). It was shown that large delays corresponding to
steep phase changes with respect to frequency promoted the occurrence of instabilities.
This was complemented by Bonciolini et al. (2021), who considered effects of random
turbulence-induced perturbations of the flame phase.

Although much of the work, including the present study, consider oscillations associated
with two degenerate modes, there are cases where the coupling involves multiple modes
(Moeck & Paschereit 2012). This was exemplified in Moeck et al. (2019) where two
degenerate azimuthal modes and an axial mode were included together with the third-
order polynomial expression of the HRR to explain the ‘slanted mode’ observed in the
annular configuration MICCA equipped with matrix injectors. Results indicated that
synchronized oscillations were generic features of annular combustors. This analysis was
pursued by Orchini & Moeck (2024) in the case of can-annular combustors by representing
this geometry by N coupled oscillators to identify conditions leading to mode locking
at a common frequency. Here too, the HRR model relied on a third-order polynomial
q̇ ′

j (x, t)= [βp(x, t)− κp(x, t)3]δ(x f j ), where δ(x f j ) is the Dirac function representing
the j th flame as a point source.

The investigation of thermoacoustic systems can be carried out in the time domain or
frequency domain. Most time domain studies use the cubic polynomial formulation for
the HRR. Kashinath, Waugh & Juniper (2014) proposed an alternative approach where
the flame is modelled using the G-equation, but this solution is difficult to extend to
turbulent flames. In the frequency domain, the HRR operator is commonly represented
in the form of a FDF, characterizing the flame response to an input signal at a given
frequency and amplitude. This was exemplified in the pioneering nonlinear analysis of an
unstable ducted flame by Dowling (1997). The application of the FDF to the prediction
of limit-cycle amplitude, mode switching, instability triggering and frequency shifting
during growth to the limit cycle was demonstrated by Noiray et al. (2008). The FDF
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concept is now widely used in reduced-order combustor models to derive dispersion
relations D(ω, a)= 0 depending on frequency and amplitude and giving access to the
evolution of the growth rate with the oscillation level, ωi =ωi (a) (Paliès et al. 2011;
Schuller et al. 2020; Rajendram Soundararajan et al. 2022a). These investigations often
rely on an acoustic network of the combustor or a Helmholtz solver if the geometry is
complex, as in Laera et al. (2017), to determine the system trajectory in the frequency-
growth rate plane as a function of the oscillation amplitude. The use of measured FDFs
combined with a reduced-order acoustic network model exploited by Orchini, Mensah &
Moeck (2019) allowed them, for example, to retrieve experimental data from MICCA.
However, approaches based on FDFs are only valid if the system oscillations are dominated
by a single frequency (Stow & Dowling 2009). To deal with non-periodic oscillation
cases, the concept of the ‘flame double input describing function’ was, for example,
introduced by Orchini & Juniper (2016), where the flame response is sought for a forcing
signal composed of two amplitudes and two frequencies. Higher harmonics can also be
included in the FDF formulation (see Haeringer, Merk & Polifke 2019). When the flame
nonlinearity is expressed in the time domain, it is interesting to link it to a frequency
domain representation, a point discussed by Ghirardo et al. (2015) and Ghirardo et al.
(2018). Conversely, Stow & Dowling (2009) give an example of how a describing function
can be translated in the time domain for thermoacoustic investigations.

On the experimental level, much effort has been made to determine describing
functions in the frequency domain, usually in single-sector configurations (Rajendram
Soundararajan et al. 2022b; Schuller et al. 2022; Wiseman, Gruber & Dawson 2023).
However, some recent studies carried out by Nygård et al. (2019) and Nygård, Ghirardo
& Worth (2021) under external modulation in an annular combustor indicate that
the HRR response of the flames to azimuthal waves spinning in clockwise (CW) or
counterclockwise (CCW) directions may be different, leading Nygård, Ghirardo & Worth
(2023) to derive a multiple input single output flame response model in which the HRR
depends on the ‘nature’ angle χ , that represents the relative amplitudes of CW and CCW
waves in the quaternion framework. In this azimuthal FDF framework, the nature angle of
the acoustic mode and that of the HRR distribution may not be the same.

The description of azimuthal pressure fields and their evolution in time generally
relies on two kinds of formulations, the first using the quaternion concept (Ghirardo &
Bothien 2018) in which the slow-flow variables are the amplitude A, the nature angle χ ,
the orientation angle θ0 and a phase ϕ. The second option is based on state variables
comprising the amplitudes A1 and A2 and the phases ϕ1 and ϕ2 of the two waves
composing the field in the system. The quaternion variables were exploited, for example,
by Faure-Beaulieu & Noiray (2020), Faure-Beaulieu et al. (2021), Indlekofer et al. (2022)
and Faure-Beaulieu, Pedergnana & Noiray (2023) to examine the nature of the unstable
oscillations or symmetry breaking induced by asymmetries in the HRR distribution and
by the mean swirl flow. The second option employed, for example, by Ghirardo et al.
(2016) and Ghirardo, Boudy & Bothien (2018), together with a flame response in the form
of an operator depending on the local pressure, enabled the authors to obtain dynamical
equations derived for the slow-flow amplitude and phase variables, which were used
to investigate the stability of standing and spinning solutions and, by perturbing the
flame responses, Ghirardo et al. (2021) examined symmetry-breaking effects. However,
to the authors’ knowledge, this framework has not been used to analyse injector staging
experiments of the kind reported in the present article.

The goal of the present investigation is to revisit the question of flame modelling in
light of recent experiments in which the flames’ HRR response to pressure fluctuations is
experimentally determined in the MICCA annular set-up for a wide range of limit-cycle
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oscillation levels (Alhaffar et al. 2024). The limit-cycle amplitude is controlled by making
use of various injector arrangements, mixing two kinds of units designated as ‘U’ and ‘S’
(Latour et al. 2024a). Experiments indicate that, when the annular combustor is equipped
with U-injectors, the regimes of operation may be stable or unstable. In contrast, when
the system is equipped with S-injectors, it only features stable regimes (Rajendram
Soundararajan et al. 2022b). Mixing the two types of injectors enables a standing mode
with a controlled nodal line position to be favoured and gives access to limit cycles with
a wide range of amplitude levels. The data gathered are used to determine pressure-based
FDFs, linking the flames’ HRR response to pressure disturbances. This FDF is then used as
an input in a dynamical model of the type proposed by Ghirardo et al. (2016) to calculate
the limit cycles corresponding to the different staging patterns tested in MICCA. The
slow-flow variable equations then enable us to examine the evolution towards the limit
cycle, discuss the modal nature corresponding to different staging patterns and compare
results of calculations with experimental data. An expression for the growth rate is finally
derived from the slow variables’ dynamical equations and compared with that deduced
from acoustic energy balance principles by Latour et al. (2024a).

This article begins with a brief description of the MICCA experimental set-up (§ 2).
The pressure-based FDFs measured for the flames formed by injectors U and S are
discussed in § 3 and a model linking the flames’ HRR response to the amplitude of pressure
disturbances is proposed. Two HRR formulations and their impact on the dynamics of
slow-flow variables are then examined in § 4 by considering a generic problem in which the
system features a single non-degenerate mode. This is used as a testbed to analyse different
nonlinear expressions of the HRR in the simplest possible situation. The experimentally
determined pressure-based FDFs are next used as an input in a dynamical model in § 5,
and the model’s limit-cycle amplitudes and nature predictions are compared with the
experimental observations for various staging patterns in MICCA. It is finally shown, in
§ 6, that the growth rate extracted from the slow-flow variable differential equations yields
an expression that can be compared with that previously derived from acoustic energy
considerations. Systematic calculations relying on the slow-flow variable equations and
the growth rate expression are then used to pursue the comparison between predictions
and experimental data for the whole set of staging patterns tested in MICCA.

2. Experimental configuration and modal identification

2.1. The MICCA annular combustor and injectors’ characteristics
The laboratory-scale annular combustor MICCA, shown in figure 1(a), is used to
investigate thermoacoustic instabilities coupled by azimuthal modes. The combustion
chamber is formed by two cylindrical quartz walls of height l = 400 mm, of outer diameter
300 mm for the inner quartz and inner diameter 400 mm for the outer quartz. The
backplane comprises 16 regularly spaced injection units delivering liquid heptane in the
form of a hollow cone spray of droplets. The air flow rate is controlled with two Bronkhorst
EL-FLOW flow meters and the fuel flow rate with a Bronkhorst CORI-FLOW controller.
Eight Brüel & Kjær microphones are mounted on waveguides and plugged on the chamber
backplane to record the pressure fluctuations at a sampling rate fs = 32 768 Hz. An array
of 8 photomultipliers equipped with an OH∗ filter centred at 310 nm records the light
emitted by eight adjacent flames (see figure 1b). A mask is placed in front of each flame
to ensure that each PM only records the light emitted by one flame. A cylindrical mask is
also placed inside the inner cylindrical quartz to hide the flames in the background, as can
be seen in figure 1(c), showing the MICCA combustor under operation.
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Injector SN 
p (kPa) σ

Injector S (stable in MICCA-spray) 0.60 3.65 3.33
Injector U (unstable in MICCA-spray) 0.74 5.70 5.20

Table 1. Injectors’ characteristics: swirl number (SN ), pressure drop (
p) and pressure drop coefficient (σ ),
obtained from measurements under cold flow conditions for an air mass flow rate of 2.3 g s−1 (Vignat et al.
2021).
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(a) (b) (c)

Figure 1. (a) The MICCA annular combustor with an array of eight photomultipliers. (b) Microphones
(labelled ‘MX’) and photomultiplier positions (labelled ‘PMX’). (c) View of the MICCA combustor under
operation.

dsc

AirAir

(a)

(b)

Injector outlet

Swirler

Liquid fuel

atomizer

Air

distributor

14.5 mm

24 mm

2R0,sc

Terminal plate

Figure 2. Exploded view of an injection unit, showing its main components (a). A top view of the swirler
appears in (b).

The injectors, for which an exploded view is presented in figure 2(a), comprise four
main elements: an air distributor, an atomizer, a swirler and a terminal plate. Changing the
swirler (tangential channels’ radius and orientation figure 2b) modifies the pressure drop
and the swirl number of the units. Two types of injectors are used in this work: a low-
swirl low-pressure drop and a high-swirl high-pressure drop, designated respectively as
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‘injector S’ and ‘injector U’. The characteristics of the two injectors are gathered in table 1.
Additional information on the dynamics of the flames formed by these two injectors is
given by Rajendram Soundararajan et al. (2022b) and Latour et al. (2024a).

In the present study, the annular combustor is operated at a thermal power P = 118 kW
and a global equivalence ratio φ = 0.9. Under these operating conditions, MICCA is stable
when equipped with S-injectors and unstable when 16 U-injectors are mounted on the
backplane.

2.2. Modal structure and oscillation frequency
An acoustic analysis of the MICCA combustor has to be carried out to identify
the eigenmodes susceptible to being involved in the combustion/acoustics coupling.
As discussed in Latour et al. (2024a), the combustion chamber in MICCA is decoupled
from the plenum by the injectors that are weakly transparent to acoustic waves and
introduce an important area change between the chamber and the plenum. The coupling
of the injector ports’ acoustics with the combustion chamber acoustics can also be
neglected, as shown in the acoustic analysis of MICCA presented in the supplementary
material avilable at https://doi.org/10.1017/jfm.2025.10. One can hence assume that the
modes that need to be considered are those of the chamber, where the backplane can be
assimilated to a rigid wall and the outlet can be modelled as being open to the atmosphere.
Experiments indicate that the first azimuthal–first longitudinal (1A1L) mode is involved
in the combustion/acoustics coupling in MICCA (Latour et al. 2024a). Neglecting the
radial dependence, the pressure field can then be cast in the form

p(x, θ, t)1A1L = [A+ exp(iθ − iωt + iφ+)+ A− exp(−iθ − iωt + iφ−)]ψ1L(x), (2.1)

where A+ exp(iφ+) and A− exp(iφ−) correspond to the complex amplitudes of the CCW
and CW spinning waves respectively, θ designates the azimuthal coordinate considered
positive in the CCW direction and ω is the angular frequency. In the previous expression,
ψ1L(x)= cos[πx/(2l ′)] is the axial wave function satisfying the boundary conditions on
the chamber backplane and at its exhaust, with l ′ = l + δa , l being the chamber length
and δa the end correction. For MICCA, pressure measurements near the chamber exhaust
indicate that δa � 0.044 m so that l ′ � 0.44 m (Laera et al. 2017).

The eigenfrequency corresponding to the 1A1L mode is

f1A1L =
[(

c

Pa

)2

+
( c

4l ′
)2

]1/2

, (2.2)

where Pa = 2πR is the mean perimeter of the system and c the speed of sound. In the
MICCA experiments, the perimeter is Pa � 1.1 m. Assuming an average temperature
in the chamber of T � 1400 K (estimated from exhaust gas temperature measurements
carried out by Vignat (2020) with a thermocouple in the single-sector counterpart of the
MICCA annular set-up), defining a speed of sound c = 754 m s−1, the eigenfrequency of
the 1A1L mode is f1A1L � 808 Hz.

The complex wave amplitudes A+ exp(iφ+) and A− exp(iφ−)may be retrieved from the
eight microphone signals by solving an over-determined system of linear equations using
a least squares algorithm. One may then deduce the instability amplitude, defined as

A = [
A2+ + A2−

]1/2
. (2.3)

It is worth noting that A is equal to the quaternion formulation amplitude divided by
√

2.
Finally, the frequency of the instability, f , is experimentally determined from the power
spectral density of the pressure signals, calculated using Welch’s method applied to 63

1007 A66-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10
https://doi.org/10.1017/jfm.2025.10


V. Latour, D. Durox, A. Renaud and S. Candel

blocks of 8192 samples and a Hamming window weighting with a 50 % overlap. The
frequency resolution for these conditions is 
 f = 4 Hz.

At this point it is worth recalling that the frequency of oscillation of a thermoacoustic
system (‘closed-loop’ case) is close to the eigenfrequency of the mode (the ‘open-loop’
frequency) but does not coincide with it because of the shift introduced by the presence
of the flames. This shift depends on the flame dynamical characteristics (FDF) and on the
set of parameters that also govern the growth rate (Schuller et al. 2020). One may show
(see Schuller et al. 2020 or § 4) that the relative frequency shift, 
ω/ω0, is linked to the
growth rate,ωi , by
ω/ω0 � −(ωi/ω0) tan ϕp, where ϕp represents the phase between the
pressure and the HRR signals. Since ωi/ω0 < 1 and ϕp � 0 in an unstable situation, one
deduces that |
ω/ω0|<< 1. The previous argument indicates why the shift in frequency is
in most cases below 5 % of the modal eigenfrequency, as can be seen in the data compiled
by Ghirardo et al. (2018) or in figures showing the evolution of thermoacoustic systems in
the frequency/growth rate plane reported by Noiray et al. (2008), Paliès et al. (2011) and
Laera et al. (2017) and confirmed by experimental results obtained in MICCA (Rajendram
Soundararajan et al. 2022b; Latour et al. 2024a).

As pointed out by one reviewer, other aspects of the system, like the temperature
distribution linked to the presence of the flames, may also intervene, and affect the
modal structure of the azimuthal mode, a phenomenon not accounted for in (2.2),
used to determine the frequency of the 1A1L mode of the combustion chamber in
MICCA. The temperature distribution can, for example, be easily taken into account by
making use of a Helmholtz solver to obtain the modal distributions and eigenfrequencies,
as done in previous works (Bourgouin et al. 2013; Laera et al. 2017). It was found
that the obtained eigenfrequencies were not very different from those calculated using
theoretical expressions if the mean speed of sound c, and hence the temperature in the
combustion chamber, are suitably determined, for example, from exhaust gas temperature
measurements, as proposed in this work from results reported by Vignat (2020). The
shift in frequency being estimated to be less than a few per cent of the open-loop
frequency (obtained from self-sustained oscillation measurements in MICCA), and the
calculated value of the open-loop frequency (808 Hz) from the burnt gas temperature
estimate falling in the range of frequencies corresponding to observed oscillations (around
800 Hz), one can have confidence in the estimated value. It is, however, interesting to
determine the effect of an error in the estimation of the temperature on the calculated
frequency of oscillation. To that end, one may consider, for instance, an error
T = 100 K.
The variation in modal frequency is then given by 
 f/ f �
c/c = (1/2)
T/T . Taking
T = 1400 K, one finds that 
 f/ f � 3.5 % and for a frequency f = 800 Hz this would
induce a variation 
 f � 28 Hz.

3. Pressure-based FDF measurements in MICCA
MICCA is now used to collect experimental data on the flames’ HRR responses to pressure
oscillations of various amplitudes, which will be presented in the form of a describing
function, expressed in the frequency domain. Mixing U- and S-injectors enables us to con-
trol the level of limit-cycle pressure fluctuations and favour a standing mode with a fixed
nodal line position, as described in Latour et al. (2024a). Simultaneous pressure and pho-
tomultiplier recordings at different flame positions with respect to the nodal line location
may then be used to determine a ‘pressure-based FDF’ (Alhaffar et al. 2024), defined as

Fp( f, Π j )=
̂̇Q j/Q̇

p̂ j/ρU 2
b

= G p( f, Π j )e
iϕ( f,Π j ), (3.1)
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Figure 3. Staging configurations used for pressure-based FDF measurements showing the placement of the
injectors U and S and the photomultiplier positions. The nodal lines observed experimentally are represented
by black solid lines.

where the index j designates the flame number, f the frequency, ̂̇Q j/Q̇ the relative
HRR fluctuations and p̂ j/ρU 2

b the dimensionless pressure fluctuations. The reduced
amplitude of the pressure fluctuations at the position of the j th flame is defined by Π j =
(prms) j/(ρU 2

b ), with ρ the density, taken at the fresh gas temperature, and Ub the bulk
velocity at the injector outlet, equal to 46 m s−1 for the investigated operating conditions.
It is worth mentioning that the pressure-based FDF defined in this way may be linked to
the velocity-based FDF, commonly determined in thermoacoustic investigations (see, for
example, Noiray et al. 2008), through an effective impedance, as discussed in Appendix A.

Seven staging patterns, shown in figure 3, are used for the pressure-based FDF
measurements. These injector configurations were selected because they lead to a well-
defined standing mode with a controlled nodal line position (Latour et al. 2024a,b) and
pressure fluctuation levels enabling a good signal-to-noise ratio for the pressure and
photomultiplier recordings. The self-sustained oscillation amplitudes obtained in this way
vary between 300 and 1400 Pa, and the instability frequencies lie in the [774, 802] Hz
range. Additional information on the determination of pressure-based FDFs can be found
in Alhaffar et al. (2024), together with a comparison with data from experiments on a
linear array of injectors modulated in the transverse direction.

At this point, it is important to stress that, contrary to an externally forced situation,
the procedure used in this work to collect the pressure-based FDF data relies on the
ability to obtain self-sustained oscillations in MICCA with a well-defined standing mode.
The modulation frequency defining flame oscillations in each staging configuration hence
results from the closed-loop interaction between the acoustics of the MICCA combustor
and the flames, and is therefore dependent on the staging pattern. As discussed in Alhaffar
et al. (2024), the self-sustained oscillation frequencies of the seven staging patterns used
for pressure-based FDF determination vary between 774 and 802 Hz. Although this range
of frequency variation is limited, one needs to check that these changes in self-sustained
oscillation frequencies do not lead to differences in the flame response. This is done in the
supplementary material, where the FDF data points are coloured by the frequency value.
There is no visible trend with respect to the relatively small frequency variations and one
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Figure 4. Pressure-based FDF gain (a,b) and phase (c,d) as a function of Π for injectors U (a,c) and S (b,d).
The colours correspond to the ‘PAN’, ‘IAN’ and ‘VAN’ regions, as defined in (e).

may conclude that the frequency differences between the staging patterns do not affect the
collected pressure-based data.

As also pointed out by a reviewer, flame dynamics data are usually presented as a
function of the frequency but this is not the case here. Indeed, in the modelling framework
adopted in this work, it is admitted that the frequency of interest is that of the eigenmode
involved in the combustion/acoustic coupling and that only the dynamics around the
1A1L eigenfrequency is of interest. This is why flame dynamics data are presented at
this frequency only, as in the other investigations of this kind (Ghirardo et al. 2016, 2018,
2021).

The pressure-based FDF gains and phases are plotted as a function of the reduced
amplitude of pressure fluctuations, Π , in figure 4 for injectors U (figure 4a,c) and S
(figure 4b,d). For the interpretation of the results, the points are labelled ‘PAN’ (pressure
anti-node), ‘IAN’ (intensity anti-node) and ‘VAN’ (velocity anti-node), depending on their
position with respect to the nodal line location, as defined in Alhaffar et al. (2024) and
shown in figure 4(e). The data obtained for flames established at various positions with
respect to the nodal line indicate that the flame location does not significantly influence
its response. The corresponding FDF data points follow nearly similar trends and may be
treated independently of their position with respect to the nodal line. The gain values for
injector U are higher than those pertaining to injector S, while the phases are close to 0
for the two injectors. For both injectors, the decrease in the gain of the pressure-based
FDF with the local pressure amplitude Π , corresponding to flame saturation, follows a
nearly linear trend of the form: G p = β − κΠ . At this point, it is worth noting that β and
κ defining the linear and saturation coefficients are dimensionless quantities which differ
from the dimensional coefficients used in the cubic formulation of Noiray et al. (2011).
The coefficients β and κ , that are here deduced from a least squares regression for the two
injectors U and S, define the linear models superimposed on the data points in figure 4.

As indicated by a reviewer, other expressions, such as higher-order polynomial
functions, could be used to fit the experimental FDF data. It is found, however, that the R2

statistical index is only slightly improved when using second-order or cubic polynomials
as it changes from 0.69 to 0.74 for injector U. However, by using higher-order fits (cubic or
fourth-order polynomials), one runs the risk of over-fitting, and some points, which appear
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like ‘outliers’, may weigh in the fit although they should not. This is why the linear fit is
a good compromise in terms of data representation and ease of insertion in an analytical
formulation. This is confirmed in the sensitivity analysis carried out in § 5.6 for the linear
and quadratic fits where one examines effects of errors in the fitting on the predicted
limit-cycle oscillation amplitudes.

To finish, the relatively large dispersion in the FDF gain and phase values observed for
injector S is due to a higher uncertainty in the measurements, since S-injectors are mainly
located close to the pressure nodal line where pressure fluctuations are low. This might
also be linked to differences between injectors, as reported by Nygård, Ghirardo & Worth
(2021), where different responses were observed for flames submitted to a spinning mode
and interpreted as resulting from small symmetry-breaking effects.

4. Investigation of two heat release rate formulations
Before using the pressure-based FDFs obtained in § 3 in an analytical framework (§ 5),
two HRR formulations are examined in a simplified framework to investigate the impact
of the flame response model on the slow-flow variables’ dynamics: the first is the cubic
polynomial formulation, introduced by Noiray et al. (2011), Q̇′ = β∗ p − κ∗

1 p3, and the
second is of the form Q̇′ = g∗(a)p, where the saturation process is a function g∗ of
the slowly varying instability amplitude a of the form g∗(a)= β∗ − κ∗

2 a, as observed
in the experimental data reported in § 3. In the two models investigated, the saturation
coefficients will be denoted κ∗

1 and κ∗
2 , and since they intervene in different formulations,

their dimensions and values are also different.
For simplicity, a single oscillator model is considered in this section. Physically, this

situation corresponds, for example, to a thermoacoustic system with a self-sustained
longitudinal oscillation. The case of azimuthal modes in an annular system will be
considered in § 5.

4.1. Polynomial heat release rate fluctuation formulation: Q̇′ = β∗ p − κ∗
1 p3

The starting point is the non-homogeneous wave equation, derived from the combination
of the mass, momentum and energy equations for low-Mach flows and perfect gases, to
which a damping term is added in the form α(∂p/∂t) to account for the losses in the
system

∂2 p

∂t2 − ρc2∇ · 1
ρ

∇ p = (γ − 1)
∂ q̇ ′

∂t
− α

∂p

∂t
. (4.1)

In this expression, q̇ ′, ρ, c and γ respectively designate the volumetric HRR fluctuations,
the mean density, the mean speed of sound and the specific heat ratio. The steps leading to
the derivation of (4.1) are recalled, for instance, in Nicoud et al. (2007, 2011) or Ghirardo
et al. (2018).

At this stage, it is interesting to discuss the zero-Mach-number assumption used to
write (4.1), which is common to most thermoacoustic investigations of annular systems
(Nicoud et al. 2007, 2011; Ghirardo et al. 2016). In annular combustors that are typically
used in gas turbines, the Mach number is low to ensure that the residence time of
reactants is sufficient for flame stabilization, to allow complete conversion into products
and minimize pressure losses associated with heat addition. The analysis by Nicoud et al.
(2007) indicates that the mean flow terms can be neglected if the characteristic Mach
number is small compared with the ratio of the flame dimension to the typical acoustic
wavelength and this condition is generally fulfilled. There are, however, some more subtle
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effects of the presence of a mean swirling flow on the acoustic modes in an annular system.
If, for example, the azimuthal velocity is high enough, the global rotation of the flow will
suppress the degeneracy of the azimuthal modes and the CW and CCW modes will feature
different eigenfrequencies and growth rates (Bauerheim, Cazalens & Poinsot 2015). It is
also indicated by Faure-Beaulieu et al. (2023) that, when a swirl is imposed in a certain
direction, a statistical preference is observed toward mixed states propagating against the
swirl. However, in the situation at hand, the global rotation velocity is so small that the two
eigenfrequencies cannot be distinguished in the spectral analysis of the microphone signals
and the statistical preference is expected to be small compared with the symmetry-breaking
effects induced by injector staging of the kind investigated in the present work.

A second assumption made in writing (4.1) is that the acoustics may be treated as a linear
process. This is also widely adopted because the levels of relative pressure fluctuations
in typical gas turbine combustion systems remain below a few per cent of the chamber
pressure, in contrast with rocket thrust chambers where relative fluctuation levels may
reach up to 40 % of the chamber pressure. The reader can find further details on the
nonlinear acoustics in rocket engines in Culick (1994). In the case of gas turbines, the level
of oscillation does not exceed a few per cent. In the MICCA experimental set-up, even at
a pressure fluctuations level of 5000 Pa (5 % of the chamber pressure), the microphone
signals remain sinusoidal while the light intensity signal from OH∗ radicals detected by
photomultipliers facing the flames become highly nonlinear (Prieur et al. 2018). One may
then safely assume that the acoustics is linear and that the main source of nonlinearity in
the system is linked to the unsteady HRRs and that this nonlinearity can be represented
with a FDF (Dowling 1997; Noiray et al. 2008).

Finally, it is also worth noting that the α appearing in this expression corresponds to
the damping rate of acoustic energy and is equal to twice the damping rate of pressure.
The value of this damping rate can be obtained in various ways using, for instance, system
identification methods, as proposed in Boujo et al. (2016). Another possibility, used in
this study (see § 5), relies on source term measurements at the limit cycle, as exemplified
in Durox et al. (2009) or Latour et al. (2024b), which will be discussed, along with the
modelling hypothesis, in § 5.

In flames that are nearly isobaric, the product ρc2 is nearly constant and may be
introduced in the divergence operator in (4.1). One may also assume that the flame is
compact with respect to the acoustic wavelength and consider that the HRR fluctuations
are concentrated at one point, x f . One may then write q̇ ′ = δ(x − x f )Q̇′, where δ is the
Dirac function and Q̇′ corresponds to the HRR fluctuations integrated over the volume of
the flame. Hence, the wave equation may now be replaced by

∂2 p

∂t2 − ∇ · c2∇ p = (γ − 1)δ(x − x f )
∂ Q̇′

∂t
− α

∂p

∂t
. (4.2)

The normal modes of this equation, in the absence of heat release and damping, are such
that

∇ · c2∇ψn +ω2
nψn = 0, (4.3)

where ωn and ψn represent the modal eigenvalues and eigenfunctions, respectively. The
pressure field can then be expanded on the orthogonal basis formed by the eigenmodes
ψn , solutions of the homogeneous wave equation

p =
∑

n

ηn(t)ψn(x), (4.4)
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where ηn represents the amplitude of the nth mode. For homogeneous boundary
conditions, the normal modes ψn are orthogonal (see for example Nicoud et al. 2007)
and one may write∫

V
ψnψmdV =Λnδmn with δnn = 1 and δmn = 0 when m �= n. (4.5)

Introducing the modal expansion (4.4) in the wave equation (4.2) and projecting the
result on the normal modes, one obtains a set of differential equations for the modal
amplitudes ηn(t)

η̈n + αη̇n +ω2
nηn = γ − 1

Λn

∂ Q̇′

∂t
ψn(x f ) for n = 1, 2 . . . . (4.6)

For the sake of simplicity, it will be assumed in what follows that a single mode,
characterized by an eigenfrequency ω0 and a modal amplitude η, is involved in the
combustion/acoustics coupling. This situation physically corresponds, for instance, to a
coupling by a longitudinal mode in a single-injector set-up. This assumption is made to
analyse the effects of the HRR formulation in the simplest possible framework. In this
case, the pressure field reads

p = η(t)ψ(x). (4.7)

One possibility, introduced by Noiray et al. (2011), consists in writing Q̇′ in the form of
a third-order polynomial of the pressure Q̇′ = β∗ p − κ∗ p3, which, using (4.7), reads

Q̇′ = β∗ηψ f − κ∗
1η

3ψ3
f , (4.8)

where ψ f =ψ(x f ). It is then convenient to define

β = [(γ − 1)/Λ]β∗ψ2
f and κ1 = [(γ − 1)/Λ]κ∗

1ψ
4
f . (4.9)

With these notations, the dynamical equation governing η becomes

η̈+ αη̇+ω2
0η= βη̇− 3κ1η

2η̇. (4.10)

In this expression, β is the linear rate of growth corresponding to small pressure
perturbations and κ1 is positive and governs the saturation process taking place at large
oscillation amplitudes. The damping coefficient α is the rate at which η2 decays as a
function of time when the right-hand side of (4.10) is equal to zero.

Solutions of this nonlinear differential equation may be obtained by making use of the
method of averaging introduced by Krylov & Bogoliubov (1950). This standard method
is used here, as in most previous studies on azimuthal combustion instabilities referenced
in the introduction. As pointed out by a reviewer, this method may not always yield the
best approximation of the slow-flow variables, and other approaches, such as the multiple
time scales method, can be used, as exemplified in Sirignano & Krieg (2016). The reader
is also referred to Cole (1968), Nayfeh & Mook (1979) and Verhulst (1996) for additional
information and the comparison of different approaches for the obtention of slow-flow
variable equations. However, the advantage of the averaging method is that it gives access
to the slow-flow variables with a reasonable amount of calculations and is sufficient to
reveal the effects of the different HRR formulations.

The averaging method is quite standard, but the main steps are nevertheless provided
here to facilitate the understanding of the derivation. The solution is first written in terms
of a slowly varying amplitude a and a phase ϕ

η(t)= a(t) cos[ω0t + ϕ(t)]. (4.11)
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To introduce this expression in (4.10), one needs to calculate the first derivative of η

η̇= ȧ cos(ω0t + ϕ)− aω0 sin(ω0t + ϕ)− aϕ̇ sin(ω0t + ϕ). (4.12)

In the method of averaging, it is standard to impose at this stage

ȧ cos(ω0t + ϕ)− aϕ̇ sin(ω0t + ϕ)= 0, (4.13)

so that η̇= −aω0 sin(ω0t + ϕ), and one may then proceed to calculate the second
derivative of η

η̈= −aω2
0 cos(ω0t + ϕ)− ȧω0 sin(ω0t + ϕ)− aω0ϕ̇ cos(ω0t + ϕ). (4.14)

Inserting the previous expression in (4.10) and noting φ =ω0t + ϕ, one obtains, after some
straightforward calculations,

ȧ sin φ + aϕ̇ cos φ = −αa sin φ + βa sin φ − 3κ1a3 cos2 φ sin φ. (4.15)

This last equation, together with (4.13), form a linear system. The determinant of this
system is 
= 1, and it is a simple matter to obtain

ȧ = −αa sin2 φ + βa sin2 φ − 3κ1a3 cos2 φ sin2 φ, (4.16)

aϕ̇ = −αa sin φ cos φ + βa sin φ cos φ − 3κ1a3 cos3 φ sin φ. (4.17)

These equations may then be averaged over a period of oscillation T = 2π/ω0 by taking
into account that a and ϕ on the right-hand side do not vary over that period. The averages
on the left-hand side are [a(t + T )− a(T )]/T and [ϕ(t + T )− ϕ(T )]/T , which represent
the slow variable derivatives with respect to time

da
dt

= [−α/2 + β/2 − 3κ1a2/8]a, (4.18)

a
dϕ
dt

= 0. (4.19)

According to this model, the phase ϕ remains constant, while the rate of change of the
amplitude a is given by the differential equation (4.18), which may also be written

1
a

da
dt

= (β − α)

2
− 3

8
κ1a2. (4.20)

When β < α, the right-hand side of this equation is negative and the amplitude decays
from its initial value at a rate that is always greater than (β − α)/2. When β > α, the
previous equation has a stationary solution with a finite amplitude corresponding to a limit
cycle

as = [(4/3)(β − α)/(κ1)]1/2. (4.21)

This behaviour is typical of a Van der Pol oscillator and one may ask whether the stationary
solution is stable. This question can be settled by considering the time evolution of a
small perturbation in the amplitude, a = as + ε. Inserting this expression in the dynamical
equation for the amplitude and only retaining first-order terms in ε, one obtains, after some
straightforward calculations,

dε
dt

= −3
4
κ1a2

s ε. (4.22)

The perturbation in amplitude diminishes exponentially if κ1 is positive and one concludes
that the stationary solution corresponds to a stable limit cycle.
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If now the flame response is delayed by a time lag τp, such that Q̇′ = β∗ p(t − τp)−
κ∗ p(t − τp)

3, one gets the following system for the slow-flow variable equations:

1
a

da
dt

= −1
2
[α − (β − 3κ1a2/4) cos(ω0τp)], (4.23)

dϕ
dt

= −1
2
(β − 3κ1a2/4) sin(ω0τp). (4.24)

Compared with (4.18) and (4.19), one can see that the introduction of a time delay in the
flame response induces a drift in the slow-flow variable ϕ and modifies the growth rate
and the amplitude of the limit cycle.

However, the problem is that the model used in this section to represent HRR
fluctuations as a function of pressure does not allow for an easy and flexible adaptation
to experimental flame dynamics data, such as those reported in § 3, figure 4, commonly
expressed in terms of FDFs, as a function of slow-flow variables such as the oscillation
level. In addition, the amplitude of the stationary solution (4.21) is proportional to the
square root of β − α, and we will see later on (§ 6) that experiments do not comply with
this law. For these reason, an alternative HRR model is examined in § 4.2.

4.2. Heat release rate expressed as a function of the oscillation amplitude: Q̇′ = g∗(a)p
One may now consider a second model that is more flexible and easily adaptable to the
experimental data reported in § 3 (figure 4). The choice of this formulation is motivated
by the fact that experimental FDF data available in the literature (and used as input in the
modelling framework of the kind considered here) are commonly presented as a function
of oscillation amplitude level or slow-flow variables (see for instance Ghirardo et al.
(2016) who use experimental FDF data reported as a function of the level of oscillation
or Ghirardo et al. (2021) who consider flame response functions expressed in terms of
slow-flow variables, like the nature angle, χ ). An expression for the HRR as a function of
slow-flow variables is better suited for practical applications and corresponds to the natural
way of presenting flame dynamics data found in the literature. Investigating this kind of
formulation hence enables a simpler comparison between different flame dynamics data.

The central idea is that the ratio between the HRR and pressure fluctuations is a function
of the oscillation amplitude level g∗(a), so that Q̇′ = g∗(a)p. Considering, as in § 4.1, a
coupling by a single mode of modal amplitude η (p = ηψ), the HRR term reads

Q̇′ = g∗(a)ηψ f . (4.25)

To simplify notations, it is convenient to define

g(a)= γ − 1
Λ

g∗(a)ψ2
f , (4.26)

and the dynamical equation for η now becomes

η̈+ αη̇+ω2
0η= g′(a)ȧη+ g(a)η̇. (4.27)

Introducing φ =ω0t + ϕ and noting that η̇= −aω0 sin(ω0t + ϕ), a few calculations
yield

ȧ

[
sin φ + g′(a)a

ω0
cos φ

]
+ aϕ̇ cos φ = −αa sin φ + g(a)a sin φ. (4.28)
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The system of equations now reads[
cos φ − sin φ

sin φ + g′(a)a
ω0

cos φ cos φ

] [
ȧ

aϕ̇

]
=

[
0

−αa sin φ + g(a)a sin φ

]
, (4.29)

and the determinant is


= 1 + g′(a)a
ω0

sin φ cos φ. (4.30)

System 4.29 may then be solved, yielding

ȧ = 1



[−αa + g(a)a] sin2 φ, (4.31)

aϕ̇ = 1



[−αa + g(a)a] sin φ cos φ. (4.32)

Averaging over a period is now complicated because the determinant appears in
the denominator but it is possible to make an approximation by considering that
g′(a)a/ω0 << 1 (see Appendix B, where the order of magnitude of this term is estimated)
and write

1/
� 1 − g′(a)a
ω0

sin φ cos φ. (4.33)

Introducing this expression in (4.31) and (4.32) and integrating over a period yields

da
dt

= 1
2
[−α + g(a)]a, (4.34)

dϕ
dt

= [−α + g(a)] [−g′(a)a]
8ω0

. (4.35)

These equations indicate that both a and ϕ slowly vary with time. An example of resolution
of (4.27) when g(a)= β − κ2a is shown in figure 5(a). The envelope is obtained by
integrating (4.34) for the slow variable a. A steady solution exists if g(a) > α in an
interval of amplitudes and if g(a)− α vanishes for an amplitude as . Here again, one
may ask whether the stationary solution corresponds to a stable limit cycle. For this, one
can consider a small perturbation in amplitude, such that a = as + ε in the vicinity of
the stationary solution (or solutions), defined by g(as)− α = 0. Only retaining first-order
terms with respect to ε, one obtains

dε
dt

= 1
2

g′(as)asε. (4.36)

The perturbation vanishes exponentially if g′(as) < 0 and, in that case, the stationary
solution corresponds to a stable limit cycle. However, if g′(as) > 0, the small perturbation
grows exponentially and the stationary solution is unstable.

To fix the ideas, one may consider the case where g(a) is a linearly decreasing function
of the amplitude, f (a)= β − κ2a. In that case

da
dt

= 1
2
(β − α − κ2a)a, (4.37)

dϕ
dt

= (β − α− κ2a)
κ2a

8ω0
. (4.38)
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Figure 5. (a) Typical solution of the second-order oscillator (4.27) when g(a)= β − κ2a. The envelope is
obtained by integrating (4.34) for the slow variable a. (b) Limit-cycle oscillation amplitude as as a function of
β for the polynomial HRR formulation (black curve) and the new formulation of the form Q̇′ = g∗(a)p (red
curve) for different values of the saturation coefficients κ1 and κ2. Here, α designates the damping rate of the
system.

If β > α, the stationary solution has an amplitude as = (β − α)/κ2 and the rate of change
of ϕ is positive when the amplitude a is below as . This situation corresponds to a positive
shift in the frequency of oscillation. We will see later on that the linear relation between
β − α and the limit-cycle amplitude deduced in this case, is much closer to what is
observed experimentally (see the end of § 6 and Appendix E).

It is also instructive to model the situation where the flame response is delayed by a time
lag τp, and in this case, Q̇′ = g∗(a(t − τp))p(t − τp). Since the order of magnitude of the
delay is well below that of a period of oscillation, one may assume that a(t − τp)≈ a(t)
(a is a slow-flow variable assumed constant over a period of oscillation) and write Q̇′ =
g∗(a)p(t − τp). For the pressure field of (4.7), one has

Q̇′ = g∗(a)η(t − τp)ψ f . (4.39)

Introducing g(a)= [(γ − 1)/Λ]g∗(a)ψ2
f and applying the method of averaging, one

obtains the following slow-flow variable equations:

1
a

ȧ = −1
2
[α − g(a) cosω0τp] + g′(a)a

ω0

[
3
8
α sinω0τp − 1

8
g(a) sin 2ω0τp

]
, (4.40)

ϕ̇ = −1
2

g(a) sinω0τp + 1
8

g′(a)a
ω0

[α cosω0τp − g(a) cos 2ω0τp]. (4.41)

One checks that (4.34) and (4.35) are retrieved when τp = 0. Noting, in addition, that
g′(a)a/ω0 << 1, one finds that a non-zero delay induces a change in the gain of the
form +(1/2)g(a) cosω0τp and a shift in frequency 
ω with respect to ω0 such that

ω� −(1/2)g(a) sinω0τp. Using these two expressions, one retrieves the result, verified
experimentally, and quoted in § 2, that the relative shift in frequency is generally quite
small.

At this stage, it is also worth plotting the limit-cycle amplitudes as as a function of β
for the two HRR formulations (Q̇′ = βp − κ1 p3 and Q̇′ = (β − κ2a)p) and for different
values of the saturation constants κ1 and κ2, as shown in figure 5(b). One may note that, in
both cases, the effective growth rate is such that ω′

i (0)= 1/2(β − α). The diagram shown
in figure 5 is also reminiscent of the one plotted in Latour et al. (2024a), (figure 16 of that
reference), where the limit-cycle amplitudes obtained were found to be in a quasi-linear
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relation with the effective linear growth rate. We will see later on that this behaviour can
be theoretically explained with the model derived in what follows.

Finally, it is interesting to note that, by injecting a quadratic expression of the form
g(a)= β − κa2 in (4.40) and (4.41) and remembering that the term associated with
g′(a)a/ω0 is negligible, one retrieves (4.23) and (4.24), obtained for the HRR model
discussed in § 4.1. However, the HRR formulation of the form Q̇′ = g∗(a)p has the
advantage of being flexible and easily adaptable to pressure-based FDF data reported in
terms of slow-flow variables (or velocity based FDFs if an impedance is used).

5. Theoretical framework for investigating injectors’ staging effects
A representation of the HRR as a function of pressure fluctuations is identified in § 4.2
and suitably accounts for the experimentally measured pressure-based FDFs. To use this
description in the analysis of a set of staging patterns obtained by mixing different injectors
in MICCA, it is natural to consider the dynamics of oscillations through a set of slow-flow
variable equations (SFVE). The objective is to see if the new FDF representation, when
inserted in the SFVE, can be used to retrieve the experimental data gathered in MICCA for
the large number of staging patterns reported by Latour et al. (2024a). We specifically wish
to see if it is possible to obtain limit-cycle amplitudes and modal characteristics (like the
spin ratio and the nodal line location) corresponding to the staging configurations shown
in figure 6.

The starting point is the model proposed by Ghirardo et al. (2016), where an annular
combustor with N acoustically compact flames, each modelled with a FDF through an
operator Q, is considered. The main steps leading to the derivation of the equations for
slow-flow variables are recalled. The obtained analytical expressions are then used in a
second step to predict the limit-cycle oscillation amplitude, modal nature and nodal line
location, and these predictions are finally compared with the experimental observations.

5.1. Governing equations
The starting point is the non-homogeneous wave equation derived in § 4.1

∂2 p

∂t2 − ∇ · c2∇ p = S − α
∂p

∂t
. (5.1)

The source term S is now expressed as the sum of the contributions of N acoustically
compact flames behaving like point sources

S =
N∑

j=1

(γ − 1)
∂ q̇ ′

j

∂t
, (5.2)

with q̇ ′
j the HRR fluctuations at flame j , expressed as

q̇ ′
j = Q̇′

jδ(x − x j ), (5.3)

where δ is the Dirac function centred at the position x j of the j th flame and Q̇′
j the HRR

fluctuation integrated over the volume of that flame.
The modal eigenfunctions pertaining to the MICCA annular combustor are discussed in

Appendix C. In what follows, only two eigenmodes will be retained in the expression of
the pressure field of (4.4), both corresponding to the same eigenfrequency

p = η1(t)ψ1(x)+ η2(t)ψ2(x), (5.4)
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Figure 6. Injector configurations investigated.

with ψ1 and ψ2, two orthogonal 1A1L modes, expressed as ψ1(x)= cos(θ)ψ f and
ψ2(x)= sin(θ)ψ f , ψ f representing the 1L axial wave function evaluated at the flame
barycentre position, x f (ψ1L(x f )= cos[πx f /(2l ′)], presented in § 2), and η1 and η2
corresponding to the associated modal amplitudes.

As in § 4 and discussed in the supplementary material, the coupling with the injector
ports is not taken into account: the changes in section induced by the injection units
decouple the chamber and the plenum cavity and there is no plenum mode matching the
eigenfrequency of the 1A1L chamber mode, eliminating the possibility of veering.

Using the orthogonality of the eigenmodes basis and integrating over the volume of the
combustor, one gets the following equation for the amplitude ηn of the nth mode:

η̈n + αη̇n +ω2
nηn = 1

Λn

∫
V

SψndV, (5.5)

where n = 1, 2 and Λn = ∫
V ψnψ

∗
n dV is the normalization factor. It is shown in

Appendix C that, for azimuthal modes having a non-zero azimuthal number n,Λn = V/4,
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where V is the combustor volume. Injecting (5.2) and (5.3) in the right-hand side of (5.5),
one finally obtains

1
Λn

∫
V

SψndV = (γ − 1)
Λn

N∑
j=1

∂ Q̇′
j

∂t
ψn(x j ). (5.6)

5.2. Heat release rate model
One now needs an analytical expression for the HRR response of the flame to acoustic
disturbances. As discussed in § 4.2, the HRR Q̇′

j at the j th flame is now expressed as a
function G of the local amplitude, at the angular frequency of interest ω0 and local pressure
with a time delay

Q̇′
j = G(Π j , ω0)p j (t − τp), (5.7)

where the local amplitude at flame j is the slow-flow variable, Π j = (prms) j/(ρU 2
b ),

which will be expressed later in terms of the variables of interest. It is also shown in
§ 5.3 how G is linked to the pressure based FDF at the frequency ω0 of interest.

The local amplitude Π j being a slow-flow variable assumed constant over a period of
oscillation and, in addition, as the terms associated with the Ġ term were shown to be
negligible in the SFVE in § 4, one may write

∂ Q̇′
j

∂t
= G(Π j , ω0) ṗ j (t − τp), (5.8)

and the governing equations projected on the modes ψ1 and ψ2 read

η̈1 + αη̇1 +ω2
0η1 = γ − 1

Λ

N∑
j=1

G(Π j , ω0)[η̇1(t − τp)ψ1(x j )+ η̇2(t − τp)ψ2(x j )]ψ1(x j )

η̈2 + αη̇2 +ω2
0η2 = γ − 1

Λ

N∑
j=1

G(Π j , ω0)[η̇1(t − τp)ψ1(x j )+ η̇2(t − τp)ψ2(x j )]ψ2(x j ).

(5.9)

5.3. Expression of the HRR using the pressure-based FDF
One now seeks to link the time domain expression involving the function G to the pressure-
based FDF, Fp = G p j (Π j , ω)e

iϕp j , as defined in (3.1), where Π j is the reduced pressure
oscillation root-mean-square (r.m.s.) value and G p j and ϕp j are the FDF gain and phase
of the j th flame. It is important to remember at this point that the dynamics of the system
only takes place around the eigenfrequency of the 1A1L mode, identified to be involved
in the combustion/acoustics coupling in MICCA. One hence looks for a solution of the
pressure field in the form

p j = A1 cos(ω0t + ϕ1)ψ1(x j )+ A2 cos(ω0t + ϕ2)ψ2(x j ), (5.10)

where A1, A2, ϕ1 and ϕ2 are slowly varying compared with the oscillation period
T = 2π/ω0. One can also identify from (5.4), η1(t)= A1 cos(ω0t + ϕ1) and η2 =
A2 cos(ω0t + ϕ2).

It is convenient to introduce at this stage the analytic signals p̂ j and ̂̇Q j , such that the
pressure and HRR signals are the real parts of these complex quantities: p j = Re( p̂ j )
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and Q̇′
j = Re(̂̇Q j ). Now, the complex pressure signal may be written in terms of the

eigenmodes ψ1 and ψ2 as

p̂ j = η̂1ψ1(x j )+ η̂2ψ2(x j ), (5.11)

where the complex amplitudes η̂1 and η̂2 are expressed as η̂1 = A1 exp (−iω0t − iϕ1) and
η̂2 = A2 exp (−iω0t − iϕ2).

The complex HRR signal ̂̇Q j at flame j may now be linked to the complex pressure
signal by the describing function Fp, expressed in terms of a gain and a phase and
considered at the angular frequency ω0:

̂̇Q j = G p j (Π j , ω0)e
iϕp j

Q̇0

ρU 2
b

p̂ j . (5.12)

This is just the describing function extension of a standard result of linear system theory
which indicates that, when the input to the system is a complex sinusoidal signal at the
frequency ω0, its complex signal output features the same frequency and is equal to the
product of the transfer function at that frequency by the complex signal input. Injecting
(5.11) in (5.12), one obtains

̂̇Q j = G p j (Π j , ω0)
Q̇0

ρU 2
b

[̂η1eiϕp jψ1(x j )+ η̂2eiϕp jψ2(x j )]. (5.13)

One may now deduce the HRR signal by taking the real part of the complex HRR signal
in (5.13)

Q̇′
j = G p j (Π j , ω0)

Q̇0

ρU 2
b

[A1 cos(ω0t + ϕ1 − ϕp j )ψ1(x j )

+ A2 cos(ω0t + ϕ2 − ϕp j )ψ2(x j )]. (5.14)

It is here convenient to define τp j = ϕp j /ω0 and write the previous expression as

Q̇′
j = G p j (Π j , ω0)

Q̇0

ρU 2
b

[A1 cos(ω0(t − τp j )+ ϕ1)ψ1(x j )

+ A2 cos(ω0(t − τp j )+ ϕ2)ψ2(x j )]. (5.15)

One identifies in this expression the delayed pressure signal p j (t − τp j ) so that one may
write

Q̇′
j = G p j (Π j , ω0)

Q̇0

ρU 2
b

p j (t − τp j ). (5.16)

Slow-flow variables A1, A2, ϕ1, ϕ2 and Π j being assumed constant over a period of
oscillation, the time derivative of the HRR simply involves the rate of change of the
pressure delayed by τp j

∂ Q̇′
j

∂t
= G p j (Π j , ω0)

Q̇0

ρU 2
b

ṗ j (t − τp j ). (5.17)

Comparing (5.8) and (5.17), one finds that

G(Π j , ω0)= G p j (Π j , ω0)
Q̇0

ρU 2
b

(5.18)
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and the dynamical system of (5.5) finally becomes

η̈1 + αη̇1 +ω2
0η1 = γ − 1

Λ

N∑
j=1

G p j

Q̇0

ρU 2
b

[η̇1(t − τp j )ψ1(x j )+ η̇2(t − τp j )ψ2(x j )]ψ1(x j )

η̈2 + αη̇2 +ω2
0η2 = γ − 1

Λ

N∑
j=1

G p j

Q̇0

ρU 2
b

[η̇1(t − τp j )ψ1(x j )+ η̇2(t − τp j )ψ2(x j )]ψ2(x j ),

(5.19)

where G p j = G p j (Π j , ω0) and the local oscillation amplitude Π j , expressed in terms of
the slow-flow variables, reads

Π j = 1

ρU 2
b

√
2

[
A2

1ψ
2
1 + A2

2ψ
2
2 + 2A1 A2ψ1ψ2 cos(ϕ2 − ϕ1)

]1/2
. (5.20)

Using, in addition, the standard hypothesis of the method of averaging, the time
derivative of the amplitude η is

η̇k = −Ak(t)ω0 sin(ω0t + ϕk) for k = 1, 2, (5.21)

and one can express the slow-flow variables as a function of ηk and η̇k

Ak =
[
η2

k +
(
η̇k

ω0

)2
]1/2

, and A j Ak cos(ϕ j − ϕk)= η jηk + 1
ω2

0
η̇ j η̇k . (5.22)

The dynamics can hence be described by two coupled second-order oscillators. The
coupling between the two eigenmodes appears on the right-hand side of these two
equations, corresponding to the projection of the source term S on each eigenmode.
Equations (5.19) can be solved directly, as done, for instance, in Noiray et al. (2011). The
integration is here carried out by making use of the FDF representation obtained in § 3.
Typical examples of the direct integration of 5.19 are provided for staging patterns C0,
C4, L4 and A4 and shown in figure 7 in the form of plots in the (η1, η2) plane. Circular
trajectories in this plane found for C0 or for A4 indicate that the oscillation at the limit
cycle takes the form of a spinning mode. The elongated trajectories characterizing C4 or
L4 are typical of standing mode oscillations reflecting the symmetry breaking induced by
the placement of four S injectors.

5.4. Slow-flow equations
A further understanding of the system’s dynamics may be gained by deriving a set of
equations for the slow-flow variables A1, A2, ϕ1 and ϕ2 using the method of averaging.
Solutions of (5.19) are now sought in the standard form

ηk = Ak(t) cos(ω0t + ϕk)

η̇k = −Ak(t)ω0 sin(ωt + ϕk) for k = 1, 2. (5.23)

Using the same procedure as that described in § 4 and integrating over a period of
oscillation T = 2π/ω0, this system yields the following equations for the slow-flow
variables A1, A2, ϕ1 and ϕ2:
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Figure 7. Direct integration of the ordinary differential system with delay (5.19), for an initial condition
[η1 = 75, η̇1 = 50, η2 = 15, η̇2 = 10], for configurations C0, C4, L4 and A4.

Ȧ1 = −α
2

A1 + γ − 1
2Λ

Q̇0

ρU 2
b

N∑
j=1

G p j

[
A1 cos(ϕp j )ψ1(x j )+ A2 cos(ϕp j

+ ϕ12)ψ2(x j )
]
ψ1(x j )

Ȧ2 = −α
2

A2 + γ − 1
2Λ

Q̇0

ρU 2
b

N∑
j=1

G p j

[
A2 cos(ϕp j )ψ2(x j )+ A1 cos(ϕp j

+ ϕ21)ψ1(x j )
]
ψ2(x j )

A1ϕ̇1 = γ − 1
Λ

Q̇0

ρU 2
b

N∑
j=1

G p j

[ − A1 sin(ϕp j )ψ
2
1 (x j )+ A2 sin(ϕ21 − ϕp j )ψ1(x j )ψ2(x j )

]
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A2ϕ̇2 = γ − 1
Λ

Q̇0

ρU 2
b

N∑
j=1

G p j

[ − A2 sin(ϕp j )ψ
2
2 (x j )+ A1 sin(ϕ12 − ϕp j )ψ1(x j )ψ2(x j )

]
.

(5.24)

In these equations ϕ12 = ϕ1 − ϕ2, ϕ21 = ϕ2 − ϕ1 and the gains and phases, G p j =
G j (Π j , ω0) and ϕp j = ϕp j (Π j , ω0), correspond to the flames established by the different
injectors, with Π j = (prms) j/(ρU 2

b ), the dimensionless pressure amplitude at flame j ,
which is expressed in terms of the slow-flow variables in (5.20).

It is also interesting to deduce an evolution equation for the difference ϕ1 − ϕ2. This can
be done by multiplying the third equation in the set (5.24) by A2 and subtracting the fourth
equation in this set after multiplication by A1. This yields

A1 A2(ϕ̇1 − ϕ̇2)= (γ − 1)
Λ

Q̇0

ρU 2
b

N∑
j=1

G p j

{
A1 A2 sin(ϕp j )[ψ2

2 (x j )−ψ2
1 (x j )]

− A2
1 sin(ϕ1 − ϕ2 − ϕp j )ψ1(x j )ψ2(x j )

+ A2
2 sin(ϕ2 − ϕ1 − ϕp j )ψ1(x j )ψ2(x j )

}
. (5.25)

A comprehensive discussion on the theoretical conditions for the stability of fixed
standing and spinning solutions of the system formed by (5.24) can be found in Ghirardo
et al. (2016). Additional terms due to turbulence-induced acoustic forcing were not
considered in the present work, because, as will be seen in § 5.5, the dynamical equations,
in the form proposed in (5.24), enable us to reasonably retrieve the features observed
experimentally, which are mainly dominated by symmetry-breaking effects induced by
injectors’ staging. There is, however, one exception, in the special case were all injectors
are of the same kind: we will see that the dynamical equations predict a limit cycle in the
form of a purely spinning wave, while experiments indicate that the system continuously
switches between spinning modes and mixed modes of various types. In that case, the
stochastic term representing turbulent disturbances might probably be necessary to obtain
a suitable match with observations (on that point see Ghirardo et al. 2018).

5.5. Application to staging patterns in MICCA-spray
The system of ordinary differential equations (ODEs) obtained in § 5.4 is now solved for
different configurations mixing U- and S-injectors in MICCA, shown in figure 6. For all
the staging patterns tested, the instability frequencies lie between 775 and 820 Hz and
the oscillation amplitudes between 100 and 1400 Pa. Further details on the experimental
results may be found in Latour et al. (2024a).

Expressions for G p j (Π j , ω0) and ϕp j (Π j , ω0) are those deduced from experimental
data for the two injection units U and S, collected for a range of frequencies close to the
eigenfrequency of the 1A1L mode of the MICCA combustor and reported in § 3. One can
reasonably model the gain of the pressure-based FDF as G p j = β − κΠ j , as discussed in
§ 3. The coefficients β and κ for injectors U and S are deduced from a linear regression of
the G p = G p(Π) data points. The phases, ϕS and ϕU , are assumed to be constant and equal
to the mean value, as shown by the experimental results reported in figure 4, where the
phases for the two injectors take nearly constant values throughout the range of pressure
amplitudes tested. Noting that the damping rate α describes the rate of change in acoustic
energy (i.e. of pressure squared), the damping rate used for the numerical integration is
assigned a value that is twice that obtained by Latour et al. (2024b), where the damping
rate for the pressure is extracted from direct measurements of the Rayleigh source term
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Pressure-based FDF for injector U GU
p = 0.92 − 0.95Π j ϕU

p = 0.30 rad
Pressure-based FDF for injector S GS

p = 0.28 − 0.19Π j ϕS
p = 0.28 rad

Damping rate α = 950 s−1

Table 2. Pressure-based FDFs and damping rate used in the numerical simulations.
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Figure 8. Damping rate values as a function of the oscillation level A obtained from source term and acoustic
energy estimates in MICCA during self-sustained limit-cycle oscillations for different staging configurations
Latour et al. (2024b). The annular combustor is operated at a thermal power P = 118 kW and an equivalence
ratio φ = 0.9.

while operating the MICCA combustor at limit cycle. It is also assumed that the damping
rate value does not change with the staging pattern and may be represented by a constant
value.

As pointed out by a reviewer, there are cases where the damping depends nonlinearly
on the level of oscillation. For example, damping by Helmholtz resonators is a function of
the level of oscillation, as shown by Zinn & Lores (1972) or Ćosić, Reichel & Paschereit
(2012). The nonlinearity is, in this case, linked to the vortex shedding from the resonator
outlet. The use of perforated liners or quarter wave cavities also introduces nonlinearities
as indicated for example by Schuller et al. (2009). However, MICCA is not equipped with
such devices and the damping nonlinearity is less probable. In addition, the damping rates
of acoustic energy estimated in MICCA from energy balance considerations at various
limit-cycle amplitudes for a range of limit-cycle oscillation levels (670–1400 Pa) by Latour
et al. (2024b) show no amplitude dependence, as can be seen in figure 8. There are only
minor variations in the damping rate for the different oscillation levels and one may safely
conclude that nonlinearities need not be taken into consideration.

Using the parameters gathered in table 2, the differential equations are integrated with
the MATLAB ode45 solver. Typical results shown in figure 9 pertain to the four staging
patterns C0, C4,L4 and A4.

In the C0 case, the amplitudes A1 and A2 grow to the limit cycle in approximately 25 ms
and take the same value, while the phase difference ϕ1 − ϕ2 tends to π/2, indicating that
the mode is a spinning wave. For configurations C4 and L4, the amplitudes reach constant
levels while the phase difference ϕ1 − ϕ2 tends to zero. The oscillation now corresponds
to a standing mode. The anti-nodal line angle θ0 may be deduced from the values of
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Figure 9. Slow-flow variables A1, A2 and ϕ1 − ϕ2 time evolutions for configurations C0, C4, L4 and A4,
obtained from the resolution of the ordinary differential equations for the initial conditions A1 = 50 Pa,
A2 = 75 Pa, ϕ1 − ϕ2 = 0.1 rad.

A1 and A2 at limit cycle, using the expression θ0 = arccos[A1/(A2
1 + A2

2)
1/2]. The nodal

line found analytically is aligned with the diameter joining the two groups of S-injectors in
diametrically opposed locations for L4 and passes at equal distance of the four S injectors
in configuration C4. These analytical results correspond to those found experimentally
(Latour et al. 2024a). Finally, in case A4, the growth in amplitude is less rapid than in the
C0 case and the levels at limit cycle are also lower. Similarly to configuration C0, A1 is
equal to A2 while ϕ1 − ϕ2 tends to π/2, which correspond to a spinning wave.

It is next interesting to examine the predicted limit-cycle amplitudes and compare them
with the values measured experimentally. This comparison may be carried out by making
use of the link between the amplitude A = (A2+ + A2−)1/2 that is used in the experimental
determination of the limit-cycle amplitudes (see § 2, (2.3) and Latour et al. 2024a) and the
amplitudes A1 and A2 of the eigenmodes ψ1 and ψ2, intervening in (5.24). It is shown in
Appendix D that

A = (
A2+ + A2−

)1/2 = 1
21/2

(
A2

1 + A2
2
)1/2

. (5.26)

The predicted limit-cycle oscillation amplitudes A, deduced by solving the slow-flow
equations for A1 and A2 and making use of 5.26, are displayed in figure 10. The amplitude
A decreases when the number of S-injectors is increased and the trends corresponding
to type C arrangements clearly differ from those pertaining to L configurations.
A comparison with the experimental data from Latour et al. (2024a) is carried out in
figure 10(b,c,d) where the C, L and A configurations appear in three separate graphs.
The match obtained between experimental data and model prediction is, despite some
differences, quite satisfactory. The limit-cycle amplitudes cover the same range with
a maximum value of slightly less than 1500 Pa. Configurations C8 and A8, which are
experimentally stable, are suitably predicted by the model as having a low level of
oscillation. The decrease in amplitude observed when the staging patterns is evolving
from C0 to C8 is well retrieved but the calculated amplitudes are slightly higher than those
measured experimentally.
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Figure 10. (a) Limit-cycle oscillation amplitudes obtained by integrating the system of ODEs for the slow-flow
variables for the three types of staging configurations investigated (type C, L and A). (b,c,d) Comparison of the
limit-cycle oscillation amplitudes measured experimentally (Latour et al. 2024a) and obtained by solving the
system of ODEs for the slow-flow variables for type C (b), L (c) and A (d) configurations. Here NS corresponds
to the number of S-injectors.

The trends observed experimentally for the L-type staging patterns, where the limit-
cycle amplitude levels decrease more slowly than for type C configurations as the number
of S-injectors is augmented, are also found with the model, although larger discrepancies
are observed between experimental data and simulation for these configurations. The
greatest differences in limit-cycle amplitudes are found for C4, L4 and A4. This may be
due to a different damping rate value for these staging arrangements (Latour et al. 2024b)
that is not accounted for in the modelling. It is also possible that some adjustment of
the gain GS

p corresponding to the S-injectors might have improved the prediction, but no
attempt was made to go in that direction. As indicated in § 3, the gain and phase values for
S-injectors are less well determined because these units are located in regions where the
oscillation level is low and this influences the measurement precision. Another possibility
could be that the gain G p is influenced to some extent by the nature of the mode as
inferred by Nygård, Ghirardo & Worth (2021) and Ghirardo et al. (2021), and that this
might have to be accounted for in the pressure-based FDF formulation. However, although
some discrepancies exist between experimental data and model predictions, this is perhaps
the first time where calculations are shown to be capable of predicting limit-cycle levels
of oscillation for a large set of experiments.
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Figure 11. Root mean square of the pressure distribution as a function of the azimuthal position θ obtained
from the numerical integration of the ODEs for the slow-flow variables. The red vertical lines correspond to
S-injectors positions.

It is next interesting to examine the distribution of the r.m.s. of the pressure field as a
function of the azimuthal position deduced from the numerical integration of the slow-
flow equations. This distribution is shown in figure 11 for all the staging configurations.
The first row in this figure corresponds to C configurations. For C0, where all injectors are
of the U-type, the r.m.s. pressure distribution is uniform, as expected for a spinning mode.
As S-injectors are being added to replace U-injectors, the r.m.s. pressure distribution
features two maximum and two minimum values. The minimum is reached at the location
of the S-injector (case C1) or on the diameter passing through the centre of the C
configuration as exemplified by C2, C4 and C6. In the last two cases, the minimum r.m.s.
pressure is close to zero, corresponding to a standing mode. In case C8, the calculated
level of oscillation is very low, indicating that the system is stable. The second row shows
the r.m.s. pressure distributions for L and A cases. The minimum values are observed
on the diameter that passes through the S-injectors (case L2) or on the median diameter
of the S-injector configurations (L4, L6, L8). In the last three cases, the minimum value
is close to zero, a clear signature of a standing mode. The cases A4 and A8 feature a
uniform distribution of r.m.s. pressure as the symmetry is not broken by the presence of
the 4 or 8 S-injectors. In case A4, the amplitude is reduced but not to the point observed
experimentally (this configuration is marginally unstable). In A8, the level is quite low and
the system is stable.

The previous calculations already show typical consequences of the breaking of
symmetry in various configurations. These features generally retrieve those found in
experiments. For example, it is known that the presence of a single S-injector in C1
is insufficient to break the symmetry and the pressure distribution only shows weak
undulations. In cases C4 and C6 and in arrangements L4, L6 and L8, symmetry is broken,
giving rise to a standing mode and this agrees well with what is found experimentally (see
Latour et al. 2024b). It is, however, interesting to pursue the examination of the nature of
the unstable mode by computing the spin ratio, initially defined by Bourgouin et al. (2013)
in terms of azimuthal wave amplitudes A+, A− as

sr = A+ − A−
A+ + A−

. (5.27)
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It is worth remembering that the nature angle χ , that is used in many recent studies
of azimuthal instabilities (see for instance Ghirardo & Bothien 2018; Faure-Beaulieu &
Noiray 2020; Indlekofer et al. 2022), is linked to the the spin ratio by χ = tan−1 sr .

Now, sr may be expressed in terms of the amplitudes A1 and A2 of the eigenmodes ψ1
and ψ2 using relations derived in Appendix D. One gets

sr = A1 A2 sin(ϕ1 − ϕ2) cos 2θ0

A2
1 cos2 θ0 − A2

2 sin2 θ0
, (5.28)

where θ0 is the anti-nodal line position, which is also expressed in terms of A1 and A2 in
Appendix D.

Statistics for the experimental nodal line position, spin ratio time series and joint
probability density functions for A+ and A− can be found in Latour et al. (2024a).
The nature of the mode at limit cycle is here represented by placing the limit-cycle
characteristics of the unstable configurations, obtained from the resolution of the ODEs,
in the (|sr |, A) plane, as shown in figure 12. In cases C0 and A4, one finds |sr | = 1,
corresponding to a purely spinning mode. While calculations for symmetric unstable
configurations lead to a spinning mode, experiments indicate that the spin ratio contin-
uously changes between -1 and +1. This difference in behaviour between calculations
and experiments confirms findings by Noiray et al. (2011) and Faure-Beaulieu &
Noiray (2020) and is due, according to these authors, to the absence of a stochastic forcing.
Such a forcing, which idealizes the effect of turbulence, is needed to obtain a variable spin
ratio taking values over the interval [−1,+1].

It is also concluded from figure 12 that:

(i) Weak asymmetry in the staging pattern leads to a mixed mode (C1, C2 and L2).
(ii) Strong asymmetry in the staging pattern gives rise to a standing mode (C4, C6, L4,

L6 and L8), with the nodal line aligned with the S-injectors median diameter. When
standing modes prevail, the nodal line position predicted analytically corresponds to
that observed experimentally.

5.6. Sensitivity analysis
It is natural at this stage to examine the sensitivity of the limit-cycle amplitudes to the
choice of the FDF gain formulation and fitting coefficients. This is done here for the linear
and quadratic fits shown in figure 13 for injectors U and S. The linear fit used in § 5.4 is
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Figure 13. Linear (a,b) and quadratic (c,d) fits for the pressure-based FDF gain experimental data for injector
U (a,c) and injector S (b,d).

first compared with a quadratic FDF gain formulation of the form G p = β − κΠ2. The
predicted limit-cycle amplitudes are shown for the linear and quadratic expressions in
figure 14(a) for type C configurations. One can see that both formulations lead to similar
trends and oscillation amplitude values.

The sensitivity of the calculated amplitudes to the regression coefficients is then tested
by changing by ±5 % the fitted β and κ values for injector U. Results of this analysis are
plotted in figure 14(b,c) for the linear fit, for type C configurations. One can see that the
calculated results are most sensitive to β as a ±5 % change in the value of this parameter
induces a ±200 Pa variation in the limit-cycle amplitude. A ±5 % change in κ has a lesser
impact on the predicted limit-cycle oscillation amplitudes. A similar sensitivity analysis
for the quadratic fit, not reproduced here, leads to the same conclusions.

6. Determination of growth rate and comparison with that deduced from an acoustic
energy balance

The dynamical equations for the slow-flow variables describe the evolution of the system
as a function of time. It is interesting to ask whether these equations can be used to
derive an expression for the instantaneous growth rate and, in a second stage, compare this
expression with that obtained by Latour et al. (2024a) by making use of energy balance
principles. As we will see, this comparison is not straightforward because one has to link
the slow variables A1 and A2, corresponding to the amplitudes of the two perpendicular
standing modes ψ1 and ψ2, to the amplitudes A+ and A−, associated with the azimuthal
waves propagating in the CCW and CW directions. This requires some algebra but allows
a term by term comparison between expressions obtained in two notably different ways.

We specifically consider the evolution of A2
1 + A2

2 and wish to deduce the effective
growth rate, defined as ω′

i =ωi − α/2, from the logarithmic derivative of this quantity
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ω′
i = 1

2
1(

A2
1 + A2

2
) d

dt

(
A2

1 + A2
2
)
. (6.1)

Multiplying the first two equations in the system 5.24 by A1 and A2, respectively, one
obtains

1
2

dA2
1

dt
= −α

2
A2

1 + γ − 1
2Λ

N∑
j=1

Q̇0

ρU 2
b

G p j

[
A2

1 cos ϕp j cos2 θ j

+ A2 A1 cos(ϕp j + ϕ12) sin θ j cos θ j
]

1
2

dA2
2

dt
= −α

2
A2

2 + γ − 1
2Λ

N∑
j=1

Q̇0

ρU 2
b

G p j

[
A2

2 cos ϕp j sin2 θ j

+ A1 A2 cos(ϕp j + ϕ21) sin θ j cos θ j
]
, (6.2)

where ϕ12 = ϕ1 − ϕ2 = −ϕ21. These two equations may be summed and the result, when
divided by A2

1 + A2
2, yields an expression of the effective growth rate. Assuming that

Q̇0/(ρU 2
b ) is the same for all injectors, one finally obtains
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ω′
i = −α

2
+ γ − 1

2Λ
Q̇0

ρU 2
b

N∑
j=1

G p j cos ϕp j

[
1
2

+ 1
2

A2
1 − A2

2

A2
1 + A2

2
cos 2θ j

+ A1 A2

A2
1 + A2

2
sin 2θ j cos(ϕ1 − ϕ2)

]
. (6.3)

This expression may be used to determine the effective growth rate as a function of the
two amplitudes A1 and A2 and of the phase difference ϕ1 − ϕ2. It is interesting, at this
point, to start from (6.3) and obtain a formulation in terms of the wave amplitudes, A+
and A−, and phase angles, φ+ and φ−. This can be done by making use of the following
relations, derived in Appendix D:

A2
1 + A2

2 = 2(A2+ + A2−), (6.4)

A2
1 − A2

2 = 4A+ A− cos(φ− − φ+), (6.5)

A1 A2 cos(ϕ1 − ϕ2)= 2A+ A− sin(φ− − φ+). (6.6)

It is also worth noting that φ− − φ+ = 2θ0, where θ0 designates the anti-nodal line
location. Inserting the previous expressions in (6.3), one finds, after some algebra,
that

ω′
i = −α

2
+ γ − 1

4Λ
Q̇0

ρU 2
b

N∑
j=1

G p j cos ϕp j

[
1 + 2A+ A−

A2+ + A2−
cos 2(θ j − θ0)

]
. (6.7)

One may then isolate the growth rate ωi and insert Λ= (1/4)V so that

ωi = (γ − 1)
Q̇0

ρU 2
b V

N∑
j=1

G p j cos ϕp j

[
1 + 2A+ A−

A2+ + A2−
cos 2(θ j − θ0)

]
. (6.8)

One may now use the relations between the FDFs Fp = G p exp(iϕp) and Fv =
G F exp(iϕF ) gains and phases

G p = 1
γ

G F

MGζ

ρU 2
b

p0
, (6.9)

ϕp = ϕF − ϕζ , (6.10)

where Gζ and ϕζ represent the modulus and phase of the effective impedance at the flame,
which is discussed in Appendix A. Inserting these relations in the growth rate expression
(6.8) and using the notations of Latour et al. (2024a), A+ = |a|, A− = |b|, one obtains

ωi = (γ − 1)
γ

Q̇0

p0V
ψ2

f

N∑
j=1

G F j

MGζ

cos(ϕF j − ϕζ j )

[
1 + 2|a||b|

|a|2 + |b|2 cos 2(θ j − θ0)

]
,

(6.11)
which exactly matches that derived in Latour et al. (2024a) (expression 4.29 of that
reference). It is worth underlining that this growth rate expression has been obtained in
the same form by making use of two notably different methods: that formulated previously
is based on acoustic energy principles, while that derived in the present article relies on
dynamical equations deduced from the wave equation. This is synthesized graphically in
figure 15. This match strengthens the analysis by Latour et al. (2024a) and serves as a
further validation of the present calculations.
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Acoustic energy balance Period average acoustic 

energy balance

p(θ, t) = A1 cos(ωt+ϕ1)  cosθ + A2cos(ωt+ϕ2) sin θ p′(θ, t) = A+ cos(θ – ωt + iφ+) +A_ cos(θ + ωt–φ_ ) 
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Figure 15. Comparison of two approaches for growth rate determination: slow-flow variable dynamical
equations and acoustic energy balance equations.
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Figure 16. Effective growth rate ω′
i as a function of the number NS of S-injectors (a) and limit-cycle

amplitude A(LC) as a function of the effective growth rate (b).

The growth rate may now be calculated for an oscillation level A = 350 Pa
(corresponding to the level of fluctuation used for FDF measurements in an externally
modulated single-injector configuration in Latour et al. (2024a)) using (6.8) and the result
is plotted, as a function of the number of S-injectors NS for the different configurations
investigated, in figure 16(a). The trends found match those calculated in Latour et al.
(2024a) using a growth rate expression derived from acoustic energy balance equations,
and FDF data measured in the weakly nonlinear regime as an input. It is also instructive
to plot the limit-cycle oscillation amplitude, A(LC), as a function of the effective growth
rate, ω′

i , calculated in the linear range (for a low level of oscillation). The corresponding
results are shown in figure 16(b). One finds that, the higher the effective growth rate
(in the linear range), the higher the limit-cycle oscillation amplitude, a feature that is
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Figure 17. Comparison between growth rates determined from velocity-based FDF data in Latour et al. (2024a)
(diamonds) and growth rates deduced from the slow-flow equations in the linear range (circles) for type C (a)
and type L (b) configurations.

already present in Latour et al. (2024a) (figure 16b of that reference). A quantitative
comparison between the growth rates calculated from FDF data in Latour et al. (2024a)
and the growth rates calculated for a relatively low amplitude level from the slow-flow
equations using (6.8) is also provided in figure 17. The growth rates obtained from
ODE simulations are higher than those calculated from FDF data, hinting a slight over-
prediction of the source term in the weakly nonlinear range with the linear modelling
adopted for the HRR.

A further examination of the link between the linear growth rate and the amplitude
of oscillation at limit cycle is proposed in Appendix E, where an analytical expression
is derived by assuming that the coupling involves a standing mode. It is shown that this
expression provides limit-cycle amplitudes that follow the trends observed experimentally
and yields reasonable estimates of the measured amplitudes.

7. Conclusion
The analysis carried out in this article combines a new technique for controlling the limit-
cycle oscillation level in an annular combustor with a theoretical representation of the
system’s combustion dynamics in terms of slow-flow variables. This is used to explore the
evolution toward the limit cycle, calculate growth rates, determine the level of oscillation
and the nature of the coupling mode at limit cycle. It is first shown that pressure-based
FDFs may be obtained from well-controlled experiments in an annular combustor by
simultaneously recording the pressure and HRR signals under self-sustained oscillations.
This is done by controlling the nature of the mode and the limit-cycle oscillation amplitude
by mixing two types of injection units leading to different flame dynamics. In particular,
the collected experimental data can be used to describe the saturation in the flame
response with increasing pressure amplitude levels and obtain an experimentally valid
representation of the gain and phase evolution as a function of amplitude. On that
basis, it is possible to revisit the theoretical modelling of the flame response to acoustic
disturbances and replace current models based on a third-order polynomial description of
the HRR fluctuations as a function of the pressure oscillation. In the new model proposed
in this work, the flame response, described in terms of HRR fluctuations, appears as a
linearly decreasing function of the pressure amplitude level. A generic instability analysis
framework is used in a first stage to show that this provides an improved representation of
the saturation leading to the limit cycle. This model is used in a second stage as an input in
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the equations governing the dynamics of an annular combustor as it evolves to a limit cycle.
The theoretically predicted limit-cycle oscillation amplitudes using SFVE are compared
with experimental data collected in a set of staging experiments carried out in a multiple
injector annular combustor MICCA. The model is shown to qualitatively reproduce and
quantitatively retrieve experimental observations, in terms of limit-cycle amplitude levels
and nature of the modes. There are, admittedly, some differences between calculations
and experiments but the general agreement is quite satisfactory. Finally, an expression
of the growth rate is extracted from the SFVE, and compared with another expression
of that quantity obtained previously by starting from acoustic energy balance principles.
The two expressions are found to exactly match, leading to identical growth rate values.
It is also demonstrated, perhaps for the first time, that it is possible to predict limit-cycle
amplitude levels of instabilities coupled by an azimuthal mode in an annular combustor.
This work hence provides a unified framework, bridging results obtained with FDF data
obtained in single-injector experiments in the weakly nonlinear range, and flame response
modelling, derived from pressure-based FDF measurements under controlled limit-cycle
self-sustained oscillations.

Supplementary material. The supplementary material for this article can be found at https://doi.org/
10.1017/jfm.2025.10.

Funding. This work is partially supported as part of the France 2030 programme ANR-22-CE05-0022-02
FlySAFe project.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Link between the FDFs based on relative velocity fluctuation and on
pressure
The standard FDF uses as input variable the relative velocity fluctucation v′/v and may be
defined by

Fv = Q̇′/Q̇0

v′/v
. (A1)

In this article we use an FDF based on pressure defined by

Fp = Q̇′/Q̇0

p′/(ρU 2
b )
. (A2)

The velocity and pressure fluctuations acting on the flame may be linked by an effective
impedance ζ defined by

ζ = p′/(ρcv′). (A3)

Using the previous three expressions one finds that

Fv =FpζM
γ p0

ρU 2
b

, (A4)

where M = v/c is the Mach number at the flame and where γ p0 = ρc2. It is convenient
to introduce the gains and phases of the FDFs and of the effective impedance Fv =
G F eiϕF , Fp = G peiϕp , ζ = Gζ eiϕζ and deduce

G p = G F

MGζ

ρU 2
b

γ p0
(A5)
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and

ϕp = ϕF − ϕζ . (A6)

As pointed out by a reviewer, the impedance used in this derivation is not purely acoustic,
and contains effects, such as shedding and convection of vortical structures. This results
from the method used to determine the FDF Fv , which is obtained in Latour et al. (2024a)
by using velocity fluctuations measured with laser Doppler anemometry (LDA), which
does not distinguish purely acoustic velocity fluctuations and velocity disturbances of a
different type. The impedance ζ simply serves to link Fv and Fp.

Appendix B. Justification of the assumption g′(a)a/ω0 << 1
The easiest way to determine the order of magnitude of g′(a)a/ω0 is to start with the
amplitude equation corresponding to a linearly decreasing function g(a)

1
a

da
dt

= 1
2
(g(a)− α). (B1)

One immediately identifies the rate of change of the amplitude on the left-hand side. This
is the effective growth rate ω′

i (a). When the amplitude is very small the effective growth
rate is ω′

i (0)= (1/2)(g(0)− α) and this expression appears on the right-hand side. Now,
|g(a)− g(0)| ≥ max[g′(a)a], and dividing the previous equation by ω0, one obtains∣∣∣∣ω′

i (a)−ω′
i (0)

ω0

∣∣∣∣ ≥ 1
2

max

[
g′(a)a
ω0

]
. (B2)

Thus

max

[∣∣∣∣g′(a)a
ω0

∣∣∣∣] ≤ 2
|
ω′

i |
ω0

≤ 2
|ω′

i (0)|
ω0

. (B3)

The linear growth rate is typically small compared with the angular frequency
of oscillation. In the present experiments ω′

i (0)� 100 s−1 while ω0 � 2π(800)=
5000 rad s−1 so that

max

[∣∣∣∣g′(a)a
ω0

∣∣∣∣]< 0.04. (B4)

The approximate expression of 1/
 is clearly acceptable.

Appendix C. Normal mode expansion of the pressure field
The derivation of the slow-flow equations relies on an expansion of the pressure field on
the set of normal modes of the combustor. The objective of this appendix is to specify
the modal eigenfunctions that pertain to the annular geometry of the MICCA combustor,
discuss their indexing, determine the value of the normalization constant and briefly
explain the method of projection that yields the set of dynamical equations (5.5).

One assumes in what follows that the combustor is annular and that the distance between
the lateral walls enclosing the chamber is small compared with the mean radius of the
system. In this situation there is no dependence on the radial coordinate and one only
needs to consider the axial and azimuthal coordinates x and θ . One also assumes that the
backplane is rigid like the two sidewalls and that the exhaust is open to the atmosphere.
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Assuming a constant value for the speed of sound, solutions of the wave equation

ρc2∇ · 1
ρ

∇Ψmn +ω2
mnΨmn = 0, (C1)

for the previous boundary conditions may be cast in the form

Ψ (1)
mn (x, θ)=ψ ||

m(x) cos(nθ), (C2)

Ψ (2)
mn (x, θ)=ψ ||

m(x) sin(nθ). (C3)

In these expressions ψ ||
m(x) represent the axial wave function of order m, ψ ||

m(x)=
cos[mπx/(2l)] while cos(nθ) and sin(nθ) designate the azimuthal wave functions of
order n. For a given eigenvalue ωmn , there are two independent modes in the azimuthal
direction that correspond to the cosine and sine functions. It is convenient to use an index
ν = 1, or 2 to distinguish these two functions. The pressure field may be expanded over
this double set of normal modes

p(x, θ, t)=
∑
mn

ηmn
(1)(t)Ψ (1)

mn +
∑
mn

ηmn
(2)(t)Ψ (2)

mn . (C4)

It is a simple matter to show that the normal modes Ψ (ν)
mn form an orthogonal basis and to

determine the normalization constant

Λνmn =
∫

V
[Ψ (ν)

mn ]2dV. (C5)

For modes that have an azimuthal number n that is non-zero, one finds that Λνmn =
(1/4)V and this common value will be designated byΛ. Purely axial modes (n = 0) feature
a normalization constantΛm0 = (1/2)V but these modes are not considered in the present
analysis. The pressure field expansion may be introduced in the wave equation (5.1) which
is then projected on the mode Ψ (ν)

mn . This yields

η̈νmn + αη̇νmn +ω2
mnη

ν
mn = 1

Λνmn

∫
V

SΨ ν
mndV for ν = 1, 2. (C6)

The dynamical equations are here derived by considering the 1A1L mode, i.e. the first
azimuthal n = 1, first longitudinal m = 1 mode. In the analysis we also assume that the
flames act like point sources located at an axial distance x f from the backplane and at
azimuthal angles θ j , j = 1, . . . , N so that the axial eigenfunction is evaluated at that
distance. It is then convenient to set ψ f =ψ

||
1 (x f ) and write the pressure field acting on

the flames in the form

p(x f , θ, t)=ψ f [η(1)11 (t) cos θ + η
(2)
11 (t) sin θ ]. (C7)

The notation can simplified by replacing the previous expression by

p(x f , θ, t)=ψ f [η1(t) cos θ + η2(t) sin θ ]. (C8)

The two modal amplitudes then satisfy the set of differential equations (5.5).

Appendix D. Relation between the standing modes amplitudes A1 and A2 and the
azimuthal wave amplitudes A+ and A−
It is useful to establish links between the present representation of the pressure field

p′(θ, t)= A1 cos(ωt + ϕ1) cos θ + A2 cos((ωt + ϕ2) sin θ (D1)
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and the standard formulation of this field in the form of a sum of two azimuthal waves

p′(θ, t)= Re{A+ exp(iθ − iωt + iφ+)+ A− exp(−iθ − iωt + iφ−)} (D2)

= A+ cos(θ −ωt + φ+)+ A− cos(θ +ωt − φ−). (D3)

By matching these two representations one finds that

A+ cos(ωt − φ+)+ A− cos(ωt − φ−)= A1 cos(ωt + ϕ1), (D4)

A+ sin(ωt − φ+)− A− sin(ωt − φ−)= A2 cos(ωt + ϕ2). (D5)

One may then deduce a complex versions of these two expressions

A+eiφ+ + A−eiφ− = A1e−iϕ1, (D6)

A+eiφ++iπ/2 − A−eiφ−+iπ/2 = A2e−iϕ2 . (D7)

Multiplying these two expressions by their complex conjugates, and multiplying the first
by the complex conjugate of the second one obtains

A2
1 = A2+ + A2− + 2A+ A− cos(φ− − φ+), (D8)

A2
2 = A2+ + A2− − 2A+ A− cos(φ− − φ+), (D9)

A1 A2 cos(ϕ1 − ϕ2)= 2A+ A− sin(φ− − φ+). (D10)

It is then easy to deduce the following set of expressions:

A2
1 + A2

2 = 2(A2+ + A2−), (D11)

A2
1 − A2

2 = 4A+ A− cos(φ− − φ+), (D12)

A1 A2 cos(ϕ1 − ϕ2)= 2A+ A− sin(φ− − φ+), (D13)

A1 A2 sin(ϕ1 − ϕ2)= A2+ − A2−. (D14)

These expressions can then be used to write the growth rate ωi in terms of the azimuthal
wave amplitudes A+, A− and phases φ+, φ− (see § 5). It is also a simple matter to link
ϕ1 − ϕ2 and θ0. Some calculations yield

tan(2θ0)= 2A1 A2

A2
1 − A2

2
cos(ϕ1 − ϕ2). (D15)

Nevertheless, care has to be taken to ensure that the correct value of θ0 is obtained.
Using

sin(2θ0)= 2A1 A2 cos(ϕ1 − ϕ2)

[(A2
1 + A2

2
)2 − 4A2

1 A2
2 sin2(ϕ1 − ϕ2)]1/2

(D16)

and

cos(2θ0)= A2
1 − A2

2

[(A2
1 + A2

2
)2 − 4A2

1 A2
2 sin2(ϕ1 − ϕ2)]1/2

, (D17)

one gets the following expression, ensuring that θ0 is always defined in the [−π/2, π/2]
range:

θ0 = 1
2 sign{sin 2θ0} cos−1[cos 2θ0]. (D18)
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It is also interesting to express the spin ratio as a function of the amplitudes A1, A2 and
phases ϕ1, ϕ2. The spin ratio is defined by sr = (A+ − A−)/(A+ + A−) which may also
be written as sr = (A2+ − A2−)/(A2+ + A2− + 2A+ A−). Using expressions (D11) to (D14)
one may write

sr = A1 A2 sin(ϕ1 − ϕ2)

(1/2)
(

A2
1 + A2

2
) + (1/2)(A2

1 − A2
2)/ cos 2θ0

, (D19)

which becomes after some algebra

sr = A1 A2 sin(ϕ1 − ϕ2) cos 2θ0

(A2
1 cos2 θ0 − A2

2 sin2 θ0)
. (D20)

Appendix E. Analytical expression of the limit-cycle oscillation amplitude
An analytical expression of the limit-cycle amplitude may be derived from the general
expression of the growth rate by making use of some simplifying assumptions. In what
follows we consider two families of injectors designated by U and S and assume that the
gain of the pressure based describing function is a linear function of the reduced r.m.s.
pressure Π j = (p′

j )rms/ρU 2
b so that one can write

GU
p j

= βU − κUΠ j , (E1)

GS
p j

= βS − κ SΠ j . (E2)

It is also assumed, for the sake of simplicity, that the phases of the pressure based
describing function do not change with the amplitude Π j so that one may use constant
values for the phases ϕU

j = ϕU and ϕS
j = ϕS . The present calculations are carried out by

assuming that the coupling is induced by a standing mode. This is the case for example
in configurations C4, C6 and L2,L4,L6,L8. The growth rate may then be written in the
form

ωi = 1
Λ
(γ − 1)

ψ2
f

2
Q̇0

ρU 2
b

⎧⎨⎩cos ϕU
p

Nu∑
j=1

cos2 θ j (β
U − κUΠ j )

+ cos ϕS
p

Ns∑
j=1

cos2 θ j (β
S − κ SΠ j )

⎫⎬⎭ . (E3)

It is possible to identify in this expression the linear growth rate corresponding to low
amplitude levels ωi (0) and another term χ that defines the change in ωi due to the growth
of oscillation amplitude. One may thus write

ωi =ωi (0)− χ, (E4)

where

ωi (0)=ωU
i (0)

{
1 − βU cos ϕU

p − βS cos ϕS
p

βU cos ϕU
p

2
N

Ns∑
j=1

cos2 θ j

}
, (E5)

χ =ωU
i (0)

κU

βU

{ 8
3π

− κU cos ϕU
p − κ S cos ϕS

p

κU cos ϕU
p

2
N

Ns∑
j=1

cos2 θ j | cos θ j |
}
Πmax , (E6)
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Configuration C4 C6 L2 L4 L6 L8

Experimental amplitude A (Pa) 730 510 1127 1418 1225 1120
Theoretical amplitude a/21/2 (Pa) 913 640 1050 1014 926 765

Table 3. Comparison between the experimental limit-cycle amplitudes, A, and the values estimated from the
analytical model.

where

ωU
i (0)= (γ − 1)ψ2

f
Q̇0 N

ρU 2
b V

cos ϕU
p β

U (E7)

designates the linear growth rate when all injectors are of the U-type, and

Πmax = a

21/2
1
ρU 2

b

ψ f (E8)

represents the maximum value of the reduced r.m.s. pressure level. It is convenient to
define a parameter C such that

C =
⎧⎨⎩ 8

3π
− κU cos ϕU

p − κ S cos ϕS
p

κU cos ϕU
p

2
N

Ns∑
j=1

cos2 θ j | cos θ j |
⎫⎬⎭ . (E9)

With these definitions one may now express the growth rate in the following form:

ωi =ωi (0)−ωU
i (0)CΠmax . (E10)

When all injectors are of the U-type, C = 8/(3π). When the number Ns is small and all
S injectors are located near the pressure nodal line C � 8/(3π) and one may also use that
expression. In the more general case, one has to calculate C .

It is now easy to determine the value of Πmax at the limit cycle. This can be done by
noting that at the limit cycle ωi = α so that

Πmax (lc)= ωi (0)− α

C(κU/βU )ωU
i (0)

. (E11)

One obtains

a

21/2 = βU

κU

ωi (0)− α

CωU
i (0)ψ f

ρU 2
b . (E12)

The previous expressions feature a linear dependence of the limit-cycle amplitude with
respect to the effective growth rate ω′

i . They can be used to predict the r.m.s. pressure
level at the limit cycle a/21/2 and compare this value with A determined experimentally.
Table 3 gathers predicted values and experimental data for the injector arrangements
corresponding to a coupling by a standing mode. One can see that the trends (lower
amplitude values for type C than type L configurations) are correctly retrieved. A good
match is observed between the model’s predictions and the experimental data, and, as
for the limit-cycle amplitudes obtained by solving the slow-flow variables ODEs (see § 5),
larger discrepancies are observed between experimental data and model prediction for type
L than for type C configurations.
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