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Abstract

We introduce and study a game-theoretic model to understand the spread of an epidemic
in a homogeneous population. A discrete-time stochastic process is considered where,
in each epoch, first, a randomly chosen agent updates their action trying to maximize a
proposed utility function, and then agents who have viral exposures beyond their immu-
nity get infected. Our main results discuss asymptotic limiting distributions of both the
cardinality of the subset of infected agents and the action profile, considered under var-
ious values of two parameters (initial action and immunity profile). We also show that
the theoretical distributions are almost always achieved in the first few epochs.
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1. Introduction

1.1. Overview of the paper

The primary motivation that fuels our work in this paper is the need to understand how an
infectious disease spreads through a homogeneous population comprising intelligent, prag-
matically thinking individuals who decide upon their actions (such as distancing oneself
from possibly infected acquaintances via voluntary confinement to one’s home) on a day-
to-day basis, with the aim of maximizing their respective utility functions. The key novelty
of our work lies in being able to capture, via our model, the fact that the population we con-
sider is made up of rational beings referred to as agents or players. We emphasize here the
need for investigation in understanding the spread of contagion through a population whose
members are not just helpless entities exposed to the infection at the whim of nature alone
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2 S. KARMAKAR ET AL.

(see Section 1.2 for a brief discussion of the existing literature on models devised for studying
the spread and control of epidemics, based on game theory).

Our model is firmly based on the premise of game theory, with a population N =
{1, 2, . . . , n} of n agents, each of whom is allowed to choose from a set A = [0, 1] of avail-
able actions. Choosing action 0 is equivalent to the agent confining themselves to their home
and coming in contact with no other agent, whereas choosing action 1 is tantamount to
the agent going about their day as usual, with no restrictions imposed. An action profile
aN = (a1, . . . , an) is an element of the set An, with ai indicating the most recent action under-
taken by agent i, for each i ∈ N. The agents are represented by the vertices of an undirected
weighted graph, and the interaction between agent i and agent j, for distinct i, j ∈ N, is captured
by the weight gi,j ∈ [0, 1] of the edge connecting the vertices i and j. We further endow agent
i, for each i ∈ N, with an immunity power τ (i) ∈ (0, 1). We consider a discrete-time stochastic
process indexed by N0, the set of all non-negative integers. At the beginning of the tth epoch
of time, for each t ∈N0, an agent vt is chosen uniformly at random out of N and permitted to
update their action. The chosen agent decides upon their action by taking stock of the state the
process is in at the beginning of that epoch, and their own utility function, both of which are
formally defined in Section 2. We mention here that the state St of the process, at the start of
epoch t ∈N0, is made up of two crucial components:

(i) the set I(St) comprising all the agents who are infected at the beginning of epoch t, and

(ii) the action profile aN(St) of the agents at the beginning of epoch t.

Henceforth, the process mentioned above will be referred to as the stochastic virus spread
process (SVSP). In addition, we shall consider, for some of our preliminary investigations
of the SVSP, a deterministic virus spread process (DVSP) (see Section 2 for a more formal
definition) in which the sequence v = (vt:t ∈N0) of agents is specified fully (i.e. the agent vt
chosen to update their action at the start of epoch t, for each t ∈N0, is predetermined, and not
random).

The principal questions we aim to answer in this work are those concerning the limiting
distribution of the infected set I(St) and the limiting distribution of the action profile aN(St)
of all agents concerned, as t → ∞, provided such limits exist. Such questions are pertinent
not just theoretically, but also from a very practical perspective in that, in any country, the
departments under the federal government that are tasked with overseeing the provision of
healthcare for the population must be able to reliably predict the approximate proportion of
citizens to get infected in the long run (i.e. when the epidemic has continued for a fairly long
period). This is necessary because such knowledge can aid in the decision of the amount of
resources (medicines and medical equipment, hospital beds, etc.) to set aside for the treatment
of infected patients in the long run. The investigation of the limiting behavior of the action
profile aN(St) as t → ∞ goes on to reveal how, when such a limit exists, individuals in a
population typically tend to behave once the epidemic has prevailed for a sufficiently long
time.

1.2. A brief review of pertinent literature

The classical compartmental models of epidemiology (see [5] for a comprehensive survey)
date as far back as the early 1900s (see [34]). Some of the most notable ones out of these are the
susceptible–infectious–removed (SIR) model (see [17]), the susceptible–infectious–susceptible
(SIS) model (see [13]), and the susceptible–exposed–infectious–removed (SEIR) model
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(see [1]). In recent years, more attention has been given to network models, in which the ver-
tices or nodes of a network represent the individuals of the population under consideration,
and the edge between any two distinct nodes denotes the relationship or interaction between
the two individuals those nodes represent (for instance, see [4, 6, 9, 10, 16, 23, 26, 30, 33, 36,
38]).

We now begin a discussion of research articles that are closely aligned in flavor with our
work in this paper. We begin with [2], which investigates a game for a continuum of non-
identical players evolving on a finite state space, with their heterogeneous interactions with
other players represented via a graphon (viewed as the limit of a dense random graph). A
player’s transition rates between the states depend on their control and the strength of their
interaction with other players. Sufficient conditions for the existence of Nash equilibria are
studied in [2], and the existence of solutions to a continuum of fully coupled forward–backward
ordinary differential equations characterizing the Nash equilibria is proved. In [39], spectral
properties of graphons are used to study stability and sensitivity to noise of deterministic SIS
epidemics over large networks. In particular, the presence of additive noise in a linearized SIS
model is considered, and a noise index is derived to quantify the deviation from the disease-free
state due to noise.

In the next couple of paragraphs, we focus on citing a few articles out of the vast literature
that concerns itself with applying the theory of mean-field games to the study of the spread of
an epidemic throughout a population. In [3], motivated by models of epidemic control in large
populations, a Stackelberg mean-field game model between a principal and a mean field of
agents evolving on a finite state space is considered, with the agents playing a non-cooperative
game in which they can control their transition rates between states to minimize individual
costs. An application is then proposed to an epidemic model of the SIR type in which the agents
control their interaction rate and the principal is a regulator acting with non-pharmaceutical
interventions. In [24], a mean-field game model for controlling the propagation of epidemics
on a spatial domain is introduced, with the control variable being the spatial velocity (intro-
duced first for the classical disease models, such as SIR), and fast numerical algorithms based
on proximal primal–dual methods are provided. In [25], a mean-field variational problem in a
spatial domain, controlling the propagation of a pandemic by the optimal transportation strat-
egy of vaccine distribution, is investigated. In [32], an agent’s decision as to whether to be
socially active in the midst of an epidemic is modeled as a mean-field game with health-related
costs and activity-related rewards. By considering the fully and partially observed versions of
this problem, the paper highlights the role of information in guiding an agent’s rational deci-
sions. In [31], how the evolution of an infectious disease in a large heterogeneous population is
governed by the self-interested decisions (to be socially active) of individual agents is studied
based on a mean-field-type optimal control model. The model is used to investigate the role of
partial information in an agent’s decision-making, and to study the impact of such decisions
by a large number of agents on the spread of the virus in the population.

In [7], a mean-field game model is proposed in which each of the agents chooses a dynamic
strategy of making contacts, given the trade-off of gaining utility but also risking infection
from additional contacts. Both the mean-field equilibrium strategy, which assumes that each
agent acts selfishly to maximize their own utility, and the socially optimal strategy, which
maximizes the total utility of the population, are computed and compared with each other. In
the computation of the socially optimal strategies, an additional cost is included as an incen-
tive to the agents to change their strategies. The price of anarchy of this system is computed
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to understand the conditions under which large discrepancies between the mean-field equi-
librium strategies and the socially optimal strategies arise, which is when intervening public
policy would be most effective. In [11], a mean-field game model of SIR dynamics is proposed
in which players choose when to get vaccinated. It is shown that this game admits a unique
mean-field equilibrium that consists of vaccinating aggressively at a maximal rate for a certain
amount of time and then not vaccinating, and it is shown that this equilibrium has the same
structure as the vaccination strategy that minimizes the total cost. A very similar problem is
studied in [12] that focuses on virus propagation dynamics in a large population of agents, with
each agent being in one of three possible states (namely, susceptible, infected, and recovered)
and with each agent allowed to choose when to get vaccinated. It is shown that this system
admits a unique symmetric equilibrium when the number of agents goes to infinity, and that
the vaccination strategy that minimizes the social cost has the same threshold structure as the
mean-field equilibrium, though the latter has a shorter threshold. The paper [15] studies new-
born, non-compulsory vaccination in an SIR model with vital dynamics, with the evolution of
each individual modeled as a Markov chain and their decision to vaccinate aimed at optimiz-
ing a criterion that depends on the time-dependent aggregate (societal) vaccination rate and
the future epidemic dynamics. The existence of a Nash mean-field game equilibrium among
all individuals in the population is established. In [18], techniques from the theory of mean-
field games are used to examine whether, in an SIR model, egocentric individuals (i.e. those
whose actions are driven by self-interest when it comes to getting vaccinated) can reach an
equilibrium with the rest of society, and it is shown that an equilibrium exists. The individual
best vaccination strategy (with as well as without discounting) is completely characterized, a
comparison is made with a strategy based only on overall societal optimization, and a situation
with a non-negative price of anarchy is exhibited. In [19], individual optimal vaccination strate-
gies in an SIR model are analyzed. It is assumed that the individuals vaccinate according to a
criterion taking into account the risk of infection, the possible side effects of the vaccine, and
the overall epidemic course; that the vaccination capacity is limited; and that each individual
discounts the future at a given positive rate. Under these assumptions, an equilibrium between
the individual decisions and the evolution of the epidemic is shown to exist. In [37], a model
of an agent-based vaccination campaign against influenza with imperfect vaccine efficacy and
durability of protection is considered. The existence of a Nash equilibrium is proved, and a
novel numerical method is proposed to find said equilibrium. Various aspects of the model
are also discussed, such as the dependence of the optimal policy on the imperfections of the
vaccine, the best vaccination timing, etc.

In [14], a general mathematical formalism is introduced to study the optimal control of an
epidemic via incentives to lockdown and testing, and the interplay between the government
and the population, while an epidemic is spreading according to the dynamics given by a
stochastic SIS model or a stochastic SIR model, is modeled as a principal–agent problem with
moral hazard. Although, to limit the spread of the virus, individuals within a given population
can choose to reduce interactions among themselves, this cannot be perfectly monitored by
the government, and it comes with certain social and monetary costs for the population. One
way to mitigate such costs and encourage social distancing, lockdown, etc. is to put in place
an incentive policy in the form of a tax or subsidy. In addition, the government may also
implement a testing policy in order to know more precisely the spread of the epidemic within
the country, and to isolate infected individuals. It is verified via numerical results that if a
tax policy is implemented, the individuals in the population are encouraged to significantly
reduce interactions among themselves, and if the government also adjusts its testing policy,
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less effort is required on the part of the population to enforce social distancing and lockdown
upon itself; the epidemic is largely contained by the targeted isolation of individuals who test
positive. In [8], a model for the evolution of sociality strategies in the presence of both a
beneficial and a costly contagion is investigated, and a social diLemma is identified in that the
evolutionarily stable sociality strategy is distinct from the collective optimum (i.e. the level of
sociality that would be best for all individuals)—in particular, the level of social interaction
in the former is greater (respectively less) than the social optimum when the good contagion
spreads more (respectively less) readily than the bad contagion. Finally we cite [35], which
provides a state-of-the-art update on recent advances in the mean-field approach that can be
used very effectively in analyzing a dynamical modeling framework, known as a continuous-
time Markov decision process, for epidemic modeling and control.

1.3. Organization of the paper

The model that we investigate in this paper, along with all the pertinent definitions, has been
described formally in Section 2, although we did allude to it briefly in Section 1. Section 2 also
includes some observations and lemmas concerning the the deterministic virus spread process
(also mentioned previously in Section 1). The main results of this paper—namely Theorems 1,
2, 3, 4, 5, 6, 7, 8, 9, and 10—are stated in Section 3, along with relevant discussions regarding
the conclusions drawn from them. Simulations exploring the cardinality of the infected set for
the first several epochs of the process, which yield good approximations to the limit that it
converges to, are given in Section 6. A summary of what we have been able to achieve in this
paper, along with directions of research on this as well as related topics that we wish to pursue
in the future, is provided in Section 7.

We would like to emphasize to our readers that we have included the proofs of Theorem 1,
Theorem 2, and Theorem 7 in the main body of the paper, immediately following their
respective statements in Section 3. We have done so in order to illustrate some of the most
fundamental ideas used in our proof techniques. However, we have deferred the proofs of the
remaining main results to Appendices B and D, to keep the paper as uncluttered as possible for
the reader. Our aim is to ensure that our readers fully understand the key steps of the analysis
carried out to prove our results, without being burdened with technical details every step of
the way.

2. Formal description of the model

Recall, from the second paragraph of Section 1.1, the brief introduction to the model we
consider in this paper. Here, we formalize the model by providing mathematical definitions of
the crucial quantities involved in it.

The process described in Section 1.1 is said to be in the state S = (I, aN) if I ⊆ N denotes
the set of infected agents and aN denotes the action profile at that time. Given a state S, we
denote by I(S) the corresponding set of infected agents, and by aN̂(S) = (ai(S) : i ∈ N̂) the tuple
in which ai(S) represents the action of the ith agent for all i ∈ N̂, for any subset N̂ of N. In
particular, if N̂ = N \ {j}, we abbreviate the notation aN\{j}(S) by a−j(S), and for any a ∈ A, we
denote by (a ∨ a−j(S)) the tuple (a1(S), . . . , aj−1(S), a, aj+1(S), . . . , an(S)). We denote by S
the set of all possible states.

The viral exposure ri(S) that agent i is subjected to, when the process is in state S, is defined
as

ri(S) =
⎧⎨⎩
( ∑

j∈I\{i} gijaj(S)∑
j∈N\{i} gijaj(S)

)
if
∑

j∈N\{i} gijaj(S) �= 0,

0 if
∑

j∈N\{i} gijaj(S) = 0.
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For an intuitive understanding of viral exposure, consider the interpretation that aj(S)
determines how much (say, how many units of time) the jth individual goes out at state S,
and gij represents the amount of interaction i has with j when both are outside. Therefore,
gijaj(S) is the amount of interaction the ith individual will have with the jth individual when
they both are outside. Now, the denominator captures the fact that with more uninfected people
roaming around, the amount of interaction an individual has with an infected person propor-
tionally reduces, and so does their chance of being infected. Also, one can probabilistically
interpret the model by assuming that for any individual j, aj is the probability that they go out,
and gij∑

j∈N\{i} gij
is the probability that individual i interacts with individual j when they both are

out. Then, ri(S) is the probability that individual i interacts with an infected person, conditional
on i going out (that is, ai = 1).

We assume that an individual i gets infected if airi(S) > τ . For a justification of this assump-
tion, note that the viral exposure ri(S) of an individual i does not take care of the precaution
(through staying at home) taken by i. However, the amount of virus individual i receives will
naturally depend on the amount they go out (that is, ai), together with the effective amount
of virus present outside in i’s network (that is, ri(S)). Therefore, the product of ri(S) and ai

measures the total amount of virus that i’s body receives when i chooses ai. One could also
potentially see this product being interpreted as follows: with the maximum possible risk of
exposure being ri(S), if the ith individual does not go out at all (that is, a = 0) then they are
not exposed at all, whereas if they choose to fully go out (that is, a = 1) then they get exposed
to the maximum possible amount, which is ri(S). Now, since the immunity power τ measures
the maximum amount of virus that an individual’s body can withstand, this implies that an
individual i would be infected if airi(S) > τ .

Next, we introduce the utility function of an agent. The utility of an agent i, when the process
is in state S, is defined as

ui(S) =
{

1 + f (ai(S)) if i /∈ I(S) and ai(S)ri(S) � τ (i),

f (ai(S)) if either i ∈ I(S) or ai(S)ri(S) > τ (i),
(1)

where f : [0, 1] → [0, 1] is a strictly increasing function. Intuitively, if agent i is neither already
infected during the current epoch (which is indicated by the condition i /∈ I(S)) nor at risk of
being infected in the next epoch (which is indicated by the condition ai(S)ri(S) � τ (i), i.e.
their action multiplied by the viral exposure they have been subjected to does not exceed their
immunity power), they enjoy a ‘reward’ of amount 1 in addition to the utility f (ai(S)) that they
receive because of their chosen action (note that the strictly increasing nature of f ensures that
the more they go out in society, the more utility they get). Otherwise, they are deprived of such
a reward and must settle for the utility value f (ai(S)). One can interpret the (negative) reward
as the cost of the viral infection.

We now formally describe how agent i responds if they are chosen to update their action at
the beginning of an epoch when the system is in state S. We call this the best response by agent
i at state S, denoted by bi(S), and it is defined as

bi(S) = argmax
a∈[0,1]

ui (I(S), (a ∨ a−i(S))) . (2)

In words, this is the set of actions a by agent i that allow them to maximize their utility function
(note that the utility function, as defined in (1), is a function of the state, and the state here
consists of I(S) as the infected set and (a ∨ a−i(S)) as the action profile).
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The following Lemma summarizes the best response of an agent at a state depending on
whether or not they are infected at that state. In particular, it says that the best response always
exists and is unique.

Lemma 1. Let i ∈ N be an agent and S ∈ S be a state. Then

bi(S) =

⎧⎪⎪⎨⎪⎪⎩
1 if i ∈ I(S),

1 if i /∈ I(S) and ri(S) = 0,

min
{

1,
τ (i)
ri(S)

}
if i /∈ I(S) and ri(S) �= 0.

Proof. We present the proof by distinguishing the three cases that appear in the statement
of the lemma.

Case 1: i ∈ I(S).

By (1), ui (I(S), (ai, a−i(S))) = f (ai). As f is an increasing function, their best response is

bi(S) = argmax
ai∈[0,1]

f (ai) = 1.

Case 2: i /∈ I(S) and ri(S) = 0.

Since ri(S) = 0, ari(S) � τ (i) for all a ∈ [0, 1], and hence by (1), ui (I(S), (a, a−i(S))) = 1 +
f (a) for all a ∈ [0, 1]. As f is an increasing function, this implies bi(S) = 1.

Case 3: i /∈ I(S) and ri(S) > 0.

Consider the quantity τ (i)
ri(S) . It follows from (1) that ui (I(S), (a, a−i(S))) is increasing in

a in both the regions
[
0, min

{
1,

τ (i)
ri(S)

}]
and

(
min

{
1,

τ (i)
ri(S)

}
, 1
]
. The maximum value of

ui (I(S), (a, a−i(S))) when a lies in the region
[
0, min

{
1,

τ (i)
ri(S)

}]
is 1 + f

(
min

{
1,

τ (i)
ri(S)

})
and

that when a lies in the region
[
min

{
1,

τ (i)
ri(S)

}
, 1
]

is f (1). Because τ (i) > 0, we have τ (i)
ri(S) > 0.

This, together with the fact that f is strictly increasing, implies f
(

min
{

1,
τ (i)
ri(S)

})
> 0. Hence,

1 + f
(

min
{

1,
τ (i)
ri(S)

})
> 1. Additionally, as f (1) � 1, we have 1 + f

(
min

{
1,

τ (i)
ri(S)

})
> f (1).

Therefore, ui (I(S), (ai, a−i(S))) will be uniquely maximum at min
{

1,
τ (i)
ri(S)

}
implying bi(S) =

min
{

1,
τ (i)
ri(S)

}
. Combining all these, we have the following form for bi(S):

bi(S) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if i ∈ I(S),

1 if i /∈ I(S) and ri(S) = 0,

min
{

1,
τ (i)
ri(S)

}
if i /∈ I(S) and ri(S) �= 0.

There are two key messages to take away from Lemma 1. The first of these is that the best
response of an agent i at any state S is unique, which is why we henceforth present bi(S) as
an element of A (doing so is more convenient than writing it as a singleton subset of A). The
second is that once an agent is infected or runs no risk of becoming infected (i.e. the viral
exposure is 0), they choose to go out with no restrictions imposed on their movements.

We now summarize the stochastic process we focus on in this paper. We denote by
St = (I(St), aN(St)) the state of the process at the start of epoch t, for t ∈N0. At the beginning
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of epoch t, an agent ṽt is uniformly randomly chosen, and then the chosen agent takes the
best response bṽt (St) as defined in (2) based on the number of agents I(St) and the action pro-
file a−ṽt (St) of all agents except ṽt at epoch t. The action profile is then updated from aN(St)
to (bṽt (St) ∨ a−ṽt (St)). Let us define an intermediate state Ŝt = (

I(St), (bṽt (St) ∨ a−ṽt (St))
)
. As

a consequence, because of the change of the action profile, the viral exposure (ri(St))1≤i≤N

changes accordingly to (ri(Ŝt))1≤i≤N , and therefore those uninfected agents j satisfying
aj(Ŝt)rj(Ŝt) > τ (j) will also be infected and added to the set of infected agents. Thus, the
updated infected set becomes I(St+1) = I(St) ∪ {j : aj(Ŝt)rj(Ŝt) > τ (j)}, and at the beginning of
epoch t + 1, the process is in state St+1 = (

I(St+1), (bṽt (St) ∨ a−ṽt (St))
)

(which tells us that
aN(St+1) = (bṽt (St) ∨ a−ṽt (St))).

Although we alluded to it in Section 1, we recall here the definition of the deterministic
virus spread process (DVSP). Given a (deterministic) agent sequence v, the DVSP S = (St : t ∈
N0) induced by v = (vt : t ∈N0), with St indicating the state of the process just before epoch
t commences, is defined in a manner identical to the stochastic virus spread process (SVSP)
described above, with the only difference being that, instead of an agent being chosen randomly
at the start of each epoch, the agent vt is chosen at the start of epoch t to update their action,
for each t ∈N0. Whenever the agent sequence v is not clear from the context, we shall denote
the DVSP S (induced by v) by S(v) to emphasize its dependence on v. In this case, St(v) will
denote the state of the process at the start of epoch t.

In what follows, we make a few observations about the DVSP S(v) that we shall use fre-
quently throughout the paper. Recall that Ŝt indicates the intermediate state of the process at
the midpoint of epoch t, for each t ∈N0.

Observation 1. Let S be the DVSP induced by v. Then, for all t ∈N0,

(i) I(St) = I(Ŝt) and aN(Ŝt) = aN(St+1);

(ii) if bvt
(St) = avt

(St), then St = Ŝt = St+1;

(iii) if I(St) = I(St+1), then Ŝt = St+1.

Observation 2. For any fixed i ∈ N, if vt �= i for some t ∈N0, then ai(St) = ai(Ŝt) = ai(St+1). By
repeated applications of this observation, we are able to conclude the following: if vt �= i for
all t ∈ [t′, t′′] with t′ < t′′, then this yields ai(St) = ai(St′ ) for all t ∈ [t′, t′′].

Observation 3. Since the best response of an infected agent is always 1 (see Lemma 1), i ∈
I(S(t)) and vt = i together imply that ai(St′ ) = 1 for all t′ > t.

Observation 4. Since the best response of an uninfected agent i is

bi(S) =
⎧⎨⎩1 if ri(S) = 0,

min
{

1,
τ (i)
ri(S)

}
if ri(S) �= 0,

by Lemma 1, it follows that vt = i and i /∈ I(St) together imply that i /∈ I(St+1) as well.

Recall that our main goal in this paper is to explore the limiting behaviors of both the
cardinality of the infected set of agents and the action profile of all the agents in our population.
We now show that such limits are well-defined, at the very least, for a deterministic sequence
of agents.

Lemma 2. The DVSP S(v) converges for each agent sequence v ∈ NN0 . In other words, both
limt→∞ I(St(v)) and limt→∞ aN(St(v)) exist.
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Proof. Let v be a DVSP. It follows from the definition of S(v) that I(S1(v)) ⊆ I(S2(v)) ⊆
· · · ⊆ I(St(v)) for any t ∈N0. As I(St) ⊆ N for all t, this means limt→∞ I(St(v)) exists. Also, as
|N| is finite, there exists t0 such that I(St0 (v)) = I(St(v)) for all t � t0. Consider t̄ � t0 + 1. In
the next claim, we show that for all i ∈ N, ai(St̄+1) � ai(St̄).

Claim 1. We have ai(St̄+1) � ai(St̄) for all i ∈ N.

Proof of the claim. Let vt̄ = j. By the definition of the process, for any other agent i we have
ai(St̄+1) = ai(St̄), and hence the claim holds for them. We proceed to show that the claim holds
for agent j. Recall that aj(Ŝt̄) = aj(St̄+1) (see Observation 1). If j ∈ I(St̄) then aj(Ŝt̄) = 1 (see
Observation 3), and hence aj(Ŝt̄) � aj(St̄). As aj(Ŝt̄) = aj(St̄+1), this means aj(St̄+1) � aj(St̄). If
j /∈ I(St̄), by the definition of the process, j will choose their action as aj(Ŝt̄) = bj(St̄). If bj(St̄) =
1 then there is nothing to show. Assume bj(St̄) < 1. This implies aj(Ŝt̄) = τ (j)

rj(St̄)
. As j /∈ I(St̄), we

have aj(Ŝt̄−1)rj(Ŝt̄−1) � τ (j). Also, as t̄ � t0 + 1, it follows that I(St̄−1) = I(St̄), which implies
Ŝt̄−1 = St̄ (see (iii) of Observation 1) and hence rj(Ŝt̄−1) = rj(St̄). Combining this with the fact
that aj(St̄) = aj(Ŝt̄−1), we obtain aj(St̄) � τ (j)

rj(St̄)
. Since aj(Ŝt̄) = τ (j)

rj(St̄)
and aj(St̄) � τ (j)

rj(St̄)
, we have

aj(Ŝt̄) � aj(St̄). This completes the proof of the claim.
Since ai(St) � 1 for all i ∈ N, by Claim 1, we have the convergence of aN(St(v)). �
In view of Lemma 2, we set S∞(v) = limt→∞ St(v).
The set NN0 is the set of all agent-sequences indexed by N0. We consider the probability

space (NN0,F , P) where F is the sigma-field generated by the cylindrical sets of NN0 and P is
the uniform probability distribution.

Remark 1. Let N∞ be the subset of NN0 consisting of the agent-sequences where
each agent moves an infinite number of times. In other words, N∞ = {v ∈ NN0 : vt =
i for infinitely many t, for all i ∈ N}. It is straightforward to see that the set N∞ has probability
1 under P, since the probability of the set NN0 \ N∞ is 0.

In view of Remark 1, for the rest of the paper, we shall work with the probability space
(N∞,F , P). With a slight abuse of notation, we keep using the notation F for the induced
σ -field F ∩ N∞ on N∞. Recall that in the stochastic virus spread process (SVSP), before each
epoch commences, an agent is chosen randomly, following the discrete uniform distribution on
the set N, and they are allowed to update their action by playing their best response (see (2)) to
the current state. Consequently, the SVSP is a random variable S supported on the probability
space (N∞,F , P).

For an agent i ∈ N, the random variable ti is defined as follows with respect to (N∞,F , P):
for v ∈ N∞, we set ti(v) = l if l ∈N0 is such that vl = i and vk �= i for all k < l. Note that for any
v ∈ N∞, i ∈ N, and t ∈N0 with t � ti(v), we have ai(S0) = ai(St(v)). Let N1 be the measurable
function on (N∞,F , P) that describes the (random) set of agents who had been chosen before
agent 1 was chosen for the first time; that is, N1(v) = {i ∈ N | ti(v) < t1(v)}.

We now establish that |N1| follows the uniform distribution on {0, 1, . . . , n − 1}, where |S|
denotes the cardinality of the set S. Lemma 3 will be used in the proofs of the main results of
this paper.

Lemma 3. We have P(|N1| = l) = 1
n for all l ∈ {0, 1, . . . , n − 1}.

Proof. Since P is uniform and there are n! possible orderings of the random times t1, . . . , tn,
each ordering of t1, . . . , tn has an equal probability 1

n! of occurring. We can choose m − 1
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random variables from the set {t2, . . . , tn} of n − 1 random times in n−1Cm−1 ways, where
nCr = (n)!/(r!(n − r)!) denotes the number of ways to choose r objects out of n without replace-
ment. Therefore, the number of orderings that correspond to the event |{i ∈ N | ti < t1}| = m − 1
is n−1Cm−1 × (m − 1)! × (n − m)!, and so the probability of said event is

n−1Cm−1 × (m − 1)! × (n − m)!
n! ,

which equals 1
n . This completes the proof of the lemma. �

3. Main results

Before stating our main results, we formally state the assumptions for all the main results
of the paper. As mentioned in Section 1, here we consider a homogeneous population and
study the spread of an epidemic. To be specific, the homogeneity of the population is imposed
through the following assumptions:

• All individuals have the same action at the beginning of the epidemic (that is, before
they started deciding their actions strategically in response to the present state of the
epidemic).

• All individuals have the same immunity power.

• Every pair of individuals has the same level of interaction.

We also intend to study the spread of an epidemic from the very beginning; to capture this,
we assume the following:

• Exactly one individual is infected at the beginning of the epidemic.

Formally, these assumptions are stated as follows (recall that S0 denotes the initial state at
which the process starts, and ai(S0) and I(S0) denote the action of individual i and the set of
infected people, respectively, at the state S0):

(i) ai(S0) = a, τ (i) = τ , and gij = c for all i, j ∈ N with i �= j, for some a ∈ [0, 1], c ∈R+,
τ ∈ (0, 1];

(ii) I(S0) = {1}.
We will adopt the above assumptions throughout the paper, without specifically mentioning

them every time.
A natural discussion is in order as to how realistic these assumptions are. Note that, from

a technical point of view, the possibility that every individual’s initial actions and immunity
profile are potentially different is difficult to characterize. To create more realism, note that if
the action (and immunity) profiles were all random, it would be very natural to assume that
their distribution was identical throughout the population. Our homogeneity assumption can
thus be seen as a special case in which the distributions assume a degenerate value. Also, the
assumption of only one infected individual in the entire population is quite realistic, as that is
exactly how contagious diseases spread. Our intuition says that the presence of more than one
infected individual at the beginning will lead to more infected people with a higher probability,
and such cases can be analyzed using techniques similar to those used in the paper. Since, to
the best of our knowledge, ours is the first paper to look at a stochastic process of this kind,
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we decided to make the above assumptions in order to keep our findings concise and highlight
the most important insights they yield.

We adopt the following notation to state our results. For a ∈R, we let a� = min{k ∈Z : a �
k} and �a� = max{k ∈Z : a � k}. For a, b ∈N0, [a,b] denotes the set {a, a + 1, . . . , b} if a � b,
and denotes the null set if a > b. For m � �τ (n − 1)� + 1, we define the set Am to be the set of
all ordered tuples �x = (x1, . . . , xn) that satisfy the following properties: [label=()]

(1) x1 = 1,

(2) there are precisely m − 1 coordinates i ∈ {2, . . . , n} such that xi = 1, and

(3) each of the remaining coordinates equals τm
(1+τ )m−τ (n−1) < 1. The last inequality follows

since m > τ (n − 1).

A couple of facts follow immediately from the above definition. The first is that An is the
singleton set {�1}, where �1 is the n-dimensional tuple in which each coordinate equals 1. The
second is that |Am| =n−1 Cm−1 for each m for which Am is well-defined, since we need only
choose the m − 1 coordinates out of 2, . . . , n that equal 1.

3.1. Results when a = 0

Here we consider the situation in which the (common) initial action a equals 0. Theorem 1
provides the limiting distribution of the infected set for arbitrary values of τ . Let

α = min

{⌈
1

τ

⌉
, n

}
. (3)

Theorem 1. Suppose a = 0. Then the limiting distribution of the infected set is given by

P(I(S∞) = J) =

⎧⎪⎪⎨⎪⎪⎩
1 − α−1

n if J = {1},
1

n×n−1Cm−1
if 1 ∈ J and |J| = m where m ∈ [2, α],

0 otherwise,

where α is as defined in (3).

Proof. We complete the proof in two steps. In Step 1, we explore how the infection spreads
when agents update their actions according to a fixed agent sequence, and in Step 2 we use this
to explore how infection spreads when agents update their actions randomly.
Step 1. Fix an agent sequence v ∈ N∞ and let S be the DVSP induced by v. To shorten notation,
for all i ∈ N, let us denote ti(v) by ki. The following claim demonstrates how an agent i with
ki < k1 will update their action.

Claim 1. Suppose ki < k1 for some i ∈ N. Then ai(St) = 1 for all t = ki + 1, . . . , k1.

Proof of the claim. By Lemma 7, I(St) = {1} for all t � k1. Since k1 < ∞ and ki < k1, we
have ki < ∞. Consider any time point l such that ki � l < k1. By the definition of the process,
we need to show that the claim holds for l such that vl = i (see Observation 2). Since l < k1, we
have a1(Sl) = a1(S0) = 0. This together with I(Sl) = {1} implies ri(Sl) = 0. Hence, by Lemma 1,
agent i will update their action to 1 at Ŝl. Since ai(Ŝl) = ai(Sl+1), this means ai(Sl+1) = 1. This
completes the proof of the claim. �
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Case 1: |N1(v)|� α.

As |N1(v)|� n − 1, the assumption of the case implies α =
⌈

1
τ

⌉
. Hence, ατ � 1. By Claim

1, ai(Sk1 ) = 1 for all i ∈ N1(v). Also, by the definition of the process, ai(Sk1 ) = 0 for all i /∈
N1(v) ∪ {1}, as these agents have not updated their actions till the time point k1. Recall that
Ŝk1 denotes the intermediate state whose only difference from Sk1 is that agent vk1

has updated

their action to bvk1
(Sk1 ). Since vk1

= 1, we have ai(Sk1 ) = ai(Ŝk1 ) for all i �= 1. Thus, ai(Ŝk1 ) = 1

for all i ∈ N1(v) and ai(Ŝk1 ) = 0 for all i /∈ N1(v) ∪ {1}.
By Remark 1 and the definition of the process, a1(Ŝk1 ) = 1. Consider the time point k1 + 1.

By the definition of the process, an agent i �= 1 will be in I(Sk1+1) if ai(Ŝk1 )ri(Ŝk1 ) > τ . Since
I(Sk1 ) = {1}, ai(Ŝk1 ) = 1 for all i ∈ N1(v) ∪ {1}, ai(Ŝk1 ) = 0 for all i /∈ N1(v) ∪ {1}, and gij = c
for all i �= j, it follows that ri(Ŝk1 ) � 1

α
for all i ∈ N1(v). Because ατ � 1, this implies that no

agent in N1(v) gets infected at the time point k1 + 1. Moreover, since ai(Ŝk1 ) = 0 for each agent
i /∈ N1(v) ∪ {1}, we have ai(Ŝk1 )ri(Ŝk1 ) = 0 � τ . Thus, no new agent gets infected at the time
point k1 + 1, and hence I(Sk1+1) = {1}.

We show that no new agent will get infected after this. We first show that I(Sk1+2) = {1}.
Let vk1+1 = i. If i /∈ I(Sk1+1), then as I(Sk1 ) = I(Sk1+1) by Lemma 6, we have I(Sk1+1) =
I(Sk1+2). If i ∈ I(Sk1+1) then i = 1. Moreover, a1(Sk1+1) = a1(Ŝk1 ) = 1. Hence, by Lemma 6,
I(Sk1+1) = I(Sk1+2). Therefore, I(Sk1+2) = {1}. Using the same arguments repeatedly, it follows
that I(St) = {1} for all t � k1 + 2. Thus, I(S∞) = {1}.
Case 2: |N1(v)|� α − 1.

Using similar arguments as in Case 1, we have ai(Ŝk1 ) = 1 for all i ∈ N1(v) and ai(Ŝk1 ) = 0
for all i /∈ N1(v) ∪ {1}. This, together with gij = c for all i �= j, implies ri(Ŝk1 ) � 1

α−1 for all

i ∈ N1(v). As α = min
{⌈

1
τ

⌉
, n
}

, we have (α − 1)τ < 1. Hence, all agents in N1(v) will get

infected at time point k1 + 1. Moreover, as ai(Ŝk1 ) = 0 for all i /∈ N1(v) ∪ {1}, the agents outside
N1(v) ∪ {1} will not get infected at time point k1 + 1. Thus, we have I(Sk1+1) = N1(v) ∪ {1}.
Because ai(Sk1+1) = ai(Ŝk1 ) = 1 for all i ∈ I(Sk1+1) and ai(Sk1+1) = 0 � τ for all i /∈ I(Sk1+1),
by Lemma 8 it follows that I(Sk1+1) = I(S∞). Hence, I(S∞) = N1(v) ∪ {1}.
Step 2. Consider the probability space (N∞,F , P) and random variables S and t1, . . . , tn. Let
m ∈ {2, . . . , n} be such that m � α. In view of Case 1 and Case 2 in the current proof, we have
(i) |I(S∞)|� α, and (ii) |I(S∞)| = m with 1 ∈ I(S∞) if and only if |{i ∈ N | ti < t1}| = m − 1.
Also, I(S∞) = {1} if and only if |{i ∈ N | ti < t1}|� α. Moreover, as P is uniform, any two
subsets of N with the same cardinality have the same probability. These observations together
yield

P(I(S∞) = J) =

⎧⎪⎪⎨⎪⎪⎩
1 − α−1

n if J = {1},
1

n×n−1Cm−1
if 1 ∈ J and |J| = m where m ∈ [2, α],

0 otherwise .

This completes the proof of the theorem. �

Next we explore the limiting distribution of the action profile, and this is found to be depen-
dent on the value of τ . Accordingly, the statement of Theorem 2 is split into two parts on the
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basis of whether τ exceeds (n − 1)−1 or not. We introduce the quantity

β = min{�(n − 1)τ� + 1, α + 1}. (4)

Theorem 2. Suppose a = 0. For τ � 1
n−1 , the limiting distribution of the action profile is given

by

P(aN(S∞) = �x) =

⎧⎪⎪⎨⎪⎪⎩
1 − α−β+1

n i �x ∈ An, i.e., �x = �1,

1
n×n−1Cm−1

if �x ∈ Am for some m ∈ [β, α],

0 otherwise,

whereas for τ < 1
n−1 , the limiting distribution of the action profile is given by

P(aN(S∞) = �x) =
{

1
n×n−1Cm−1

if �x ∈ Am for some m ∈ [1, n],

0 otherwise,

with α and β as defined in (3) and (4) respectively.

A brief discussion is in order regarding some of the startling findings that may be deduced
from the two theorems of Section 3.1. Theorem 1 reveals that if we consider any two different
subsets J1 and J2 of N, the probabilities P(I(S∞) = J1) and P(I(S∞) = J2) are the same as
long as J1 and J2 have the same cardinality and either both of them contain agent 1 or neither
contains agent 1. We note that the number of subsets J of N with 1 ∈ J and |J| = m is given
by n−1Cm−1, so that summing P(I(S∞) = J) over all such J yields P (|I(S∞)| = m) = n−1 for
each m ∈ [2, α]. These observations suggest a rather close resemblance between the limiting
distribution of the infected set, as well as the limiting distribution of its cardinality, and certain
suitably defined discrete uniform distributions. In fact, for τ � n−1, we have α = n, reducing
the distribution of |I(S∞)| to precisely the discrete uniform distribution on {1, 2, . . . , n}. This
uniform structure is somewhat marred when τ > n−1. For example, when n = 5, a = 0, and
τ = 0.25, we have

P(|I(S∞)| = 1) = 2

5
, P(|I(S∞)| = 2) = 1

5
, P(|I(S∞)| = 3) = 1

5
,

P(|I(S∞)| = 4) = 1

5
, P(|I(S∞)| = 5) = 0, (5)

whereas if τ = 0.4, the probability distribution changes to

P(|I(S∞)| = 1) = 3

5
, P(|I(S∞)| = 2) = 1

5
, P(|I(S∞)| = 3) = 1

5
,

P(|I(S∞)| = 4) = 0, P(|I(S∞)| = 5) = 0. (6)

An intuitive explanation for this phenomenon is that with higher immunity, i.e. higher val-
ues of τ , the disease is less likely to spread to the entire community, instead having a higher
probability of remaining confined to the initial infected set.

Conclusions of a similar flavor can be drawn as a consequence of Theorem 2. For any two
different ordered tuples �x and �y that belong to the same Am, the probabilities P(aN(S∞) = �x) and
P(aN(S∞) = �y) are equal, for both the cases τ � (n − 1)−1 and τ < (n − 1)−1. Moreover, since
|Am| =n−1 Cm−1, we obtain P(aN(S∞) ∈ Am) = n−1 for every m ∈ [β, α] when τ � (n − 1)−1
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and for every m ∈ [1, n] when τ < (n − 1)−1. These are, once again, reminiscent of suitably
defined discrete uniform distributions.

A connection may be established between Theorem 1 and Theorem 2, for the case where
τ � (n − 1)−1, via the following fact, whose justification has been included in the proof of
Theorem 2: for any DVSP S(v), if the limiting infected set has cardinality m ∈ [β, α] (note that
β � 2), the limiting action profile will be a tuple in Am, with all infected agents choosing action
1 and all uninfected agents choosing action τm[(1 + τ )m − τ (n − 1)]−1. On the other hand, if
the limiting infected set for the DVSP S(v) has cardinality strictly less than β, the final action
profile becomes �1, signifying that all agents choose action 1 in the long run.

Proof. First assume τ � 1
n−1 . We first explore the limiting actions for a fixed agent

sequence, and then we use this to find the limiting probability distribution. Let v be an agent
sequence and S the DVSP induced by v. Note that by Remark 1, it is enough to assume v ∈ N∞.
Therefore, by Lemma 10, all the agents outside I(S∞) have the same action limit, and all the
agents in I(S∞) have the action limit 1. Let us denote the common limit for all agents out-
side I(S∞) by γ . We distinguish two cases based on the value of N1(v) (as in the proof of
Theorem 1) to find γ . Note that by the assumption of the theorem α � n − 1.

Case 1: |N1(v)|� α.

Recall that for this case the final infected set is {1}. Moreover, by the assumption of the
theorem, τ (n − 1) � 1. Therefore, by Lemma 11, γ = 1. Hence, aN(S∞) = �1.

Case 2: |N1(v)|� α − 1.

Recall that for this case, the final infected set is N1(v) ∪ {1}. Therefore, by Lemma 11, if
(n − 1)τ � |N1(v)| + 1 then aN(S∞) = �1, and if (n − 1)τ < |N1(v)| + 1 then

ai(S∞) =
{

1 if i ∈ I(S∞),
τ (|N1(v)|+1)

(1+τ )(|N1(v)|+1)−τ (n−1) if i /∈ I(S∞).

Recall that β = min{�(n − 1)τ� + 1, α + 1}. Hence, combining Cases 1 and 2, we have the
following:

(i) |N1(v)| + 1 ∈ [β, α] implies

ai(S∞) =
{

1 if i ∈ I(S∞),
τ (|N1(v)|+1)

(1+τ )(|N1(v)|+1)−τ (n−1) if i /∈ I(S∞);

(ii) |N1(v)| + 1 ∈ [1, β − 1] ∪ [α + 1, n] implies aN(S∞) = �1.

Note that (i) implies aN(S∞) ∈ A(|N1(v)|+1) when |N1(v)| + 1 ∈ [β, α]. Also, as P is uniform,
any two vectors in Am, for m ∈ [β, α], have the same probability. Thus, we have the following
distribution:

P(aN(S∞) = �x) =

⎧⎪⎪⎨⎪⎪⎩
1 − α−β+1

n if �x ∈ An, i.e., �x = �1,

1
n×n−1Cm−1

if �x ∈ Am for some m ∈ [β, α],

0 otherwise.

Now assume τ < 1
n−1 . We follow the same structure as in the previous case; that is, we

first explore the limiting actions for a fixed agent sequence, and then we use this to find the
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limiting probability distribution. Let v be an agent sequence and S the DVSP induced by v.
Note that by Remark 1, it is enough to assume v ∈ N∞. Therefore, by Lemma 10, all the
agents outside I(S∞) have the same action limit, and all the agents in I(S∞) have the action
limit 1. Let us denote the common limit by γ . As (n − 1)τ < 1 by the assumption of the theo-
rem, we have α = n, and hence |N1(v)|� α − 1. Moreover, for |N1(v)|� α − 1 (shown in the
proof of Theorem 1), the final infected set is N1(v) ∪ {1}. Thus, |I(S∞)| > (n − 1)τ . Hence, by
Lemma 11, if |N1(v)| + 1 < n, then

ai(S∞) =
{

1 if i ∈ I(S∞),
τ (|N1(v)|+1)

(1+τ )(|N1(v)|+1)−τ (n−1) if i /∈ I(S∞),

and if |N1(v)| + 1 = n, then aN(S∞) = �1. Recall the notation Am. By the above arguments, we
have aN(S∞) ∈ A[|N1(v)|+1] when |N1(v)| + 1 < n. Moreover, as P is uniform, any two vectors in
Am, for m ∈ [1, (n − 1)], have the same probability. Thus, by Theorem 1, we have the following
distribution:

P(aN(S∞) = �x) =

⎧⎪⎪⎨⎪⎪⎩
1
n if �x ∈ An, i.e., �x = �1,

1
n×n−1Cm−1

if �x ∈ Am for some m ∈ [1, n − 1],

0 otherwise.
�

3.2. Results when a = 1

Here we consider the situation where the (common) initial action a equals 1. The following
theorem provides the limiting distribution of the set of infected agents.

Theorem 3. Suppose a = 1. If τ � 1
n−1 , the limiting distribution of the infected set is given by

P(I(S∞) = {1}) = 1,

whereas if τ < 1
n−1 , the limiting distribution is given by

P(I(S∞) = J) =

⎧⎪⎪⎨⎪⎪⎩
1
n2 if 1 ∈ J and |J| = n − 1,

1 − n−1
n2 if |J| = n, i.e., J = N,

0 otherwise.

The proof of this theorem can be found in Appendix B (Subsection B.1). Note that since
there are n − 1 sets J such that 1 ∈ J and |J| = n − 1, the above display exhibits a valid
probability distribution.

Theorem 4. Suppose a = 1. If τ � 1
n−1 , the limiting distribution of the action profile is

given by

P(aN(S∞) = �1) = 1,

whereas if τ < 1
n−1 , the limiting distribution is given by

P(aN(S∞) = �x) =

⎧⎪⎪⎨⎪⎪⎩
1 − n−1

n2 if �x ∈ An, i.e., �x = �1,

1
n2 if �x ∈ An−1,

0 otherwise.
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The proof of this theorem can be found in Appendix D (Subsection D.1). We draw the
reader’s attention to the fact that the results of Section 3.2 differ quite a bit in appearance from
those of Section 3.1. While the limiting distribution of the infected set, for a = 0, is supported
on all subsets of N that contain 1 and that have sizes bounded above by α (Theorem 1), the
infected set, for a = 1, converges to the singleton {1} when τ � (n − 1)−1, and its limiting
distribution is supported on only those subsets of N that contain 1 and have cardinality at least
n − 1 when τ < (n − 1)−1 (Theorem 3). In some sense, for a = 0, the limiting distribution is
‘spread out’ over wider support, while for a = 1 it is more ‘concentrated’.

Likewise, for a = 0, the limiting distribution of the action profile is supported on all Am

with m ∈ {n} ∪ [β, α] when τ � (n − 1)−1, and it is supported on all Am with m ∈ {1, . . . , n}
when τ < (n − 1)−1 (Theorem 2). In contrast, for a = 1, the action profile converges to �1 when
τ � (n − 1)−1, and the limiting distribution of the action profile is supported on just An ∪ An−1
when τ < (n − 1)−1 (Theorem 4).

3.3. Results when 0 < a � τ and a �= 1

In this subsection, we consider the case where the (common) initial action a lies strictly
between 0 and 1, and is bounded above by τ . Let

α̂ = max

{
1,

⌈
1
τ

− (n − 1)a

1 − a

⌉}
. (7)

Theorem 5. Suppose 0 < a � τ and a �= 1. Furthermore, suppose τ � 1
n−1 . Then the limiting

distribution of the infected set is given by

P(I(S∞) = J) =

⎧⎪⎪⎨⎪⎪⎩
1 − α̂−1

n if J = {1},
1

n×n−1Cm−1
if 1 ∈ J and |J| = m where m ∈ [2, α̂],

0 otherwise.

The proof of this theorem can be found in Appendix B (Subsection B.2). Next, we describe
the limiting distribution of the action profile. We introduce the following notation in order to
state our next result:

β̂ = min{�(n − 1)τ� + 1, α̂ + 1}. (8)

Theorem 6. Suppose 0 < a � τ and a �= 1. Furthermore, suppose τ � 1
n−1 . Then the limiting

distribution of the action profile is given by

P(aN(S∞) = �x) =

⎧⎪⎪⎨⎪⎪⎩
1 − α̂−β̂+1

n if �x ∈ An, i.e., �x = �1,

1
n×n−1Cm−1

if �x ∈ Am for some m ∈ [β̂, α̂],

0 otherwise.

The proof of the theorem can be found in Appendix D (Subsection D.2).

Remark 2. If one sets a = 0 in the conclusion of Theorem 5, one gets back the conclusion of
Theorem 1 for τ � (n − 1)−1. However, Theorem 1 is more general in terms of its coverage of
the values of τ . In a similar manner, setting a = 0 in Theorem 6 yields Theorem 2 for the case
of τ � (n − 1)−1.
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Discussions of a flavor similar to those in Section 3.1 can be included here as well. Even if
J1 and J2 are two different subsets of N, Theorem 5 shows that the probabilities P(I(S∞) = J1)
and P(I(S∞) = J2) are the same as long as J1 and J2 have the same cardinality and either both
contain 1 or neither does. Summing over all subsets of N that contain 1 and are of cardinality m,
we obtain P (|I(S∞)| = m) = n−1 for each 2 � m � α̂. Likewise, for any two different ordered
tuples �x and �y, Theorem 6 shows that the probabilities P(aN(S∞) = �x) and P(aN(S∞) = �y) are
the same as long as both �x and �y belong to the same Am. Summing over all members of an Am

yields P(aN(S∞) ∈ Am) = n−1 for every β̂ � m � α̂.

3.4. Results when τ < a < 1

In this subsection, we consider the scenario where the (common) initial action a is strictly
greater than τ . We introduce the following notation to facilitate the presentation of the
subsequent results. Let

α̃ = max

{
1,

⌈
1 − (n − 1)aτ

τ (1 − a)

⌉}
and ᾱ =

⌊
(n − 1)aτ

a − τ (1 − a)

⌋
+ 1. (9)

Note that, in this regime, τ < a < a/(1 − a) and thus a − τ (1 − a) > 0. Now since, (n − 1)
aτ/(a − τ (1 − a)) is increasing in τ , we have, for τ ≥ 1/(n − 1),

(n − 1)aτ

a − τ (1 − a)
≥

(n − 1)a
(

1
n−1

)
a − 1−a

n−1

= a

a − 1−a
n−1

> 1.

This yields ᾱ � 2.

Theorem 7. Suppose 1
n−1 � τ < a < 1. If α̃ + 1 � ᾱ, the limiting distribution of the infected

set is given by

P(I(S∞) = J) =

⎧⎪⎪⎨⎪⎪⎩
1 − α̃−1

n if J = {1},
1

n×n−1Cm−1
if 1 ∈ J and |J| = m where m ∈ [2, α̃],

0 otherwise,

whereas if 2 � ᾱ < α̃ + 1, the limiting distribution is given by

P(I(S∞) = J) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − α̃−1
n if J = {1},

1
n×n−1Cm−1

if 1 ∈ J and |J| = m where m ∈ [2, ᾱ − 1],
η(α̃,ᾱ,n)

n−1 if 1 ∈ J and |J| = n − 1,

α̃−(ᾱ−1)
n − η(α̃, ᾱ, n) if |J| = n, i.e., J = N,

0 otherwise,

where

η(α̃, ᾱ, n) = (n − 1)!
n3

α̃−1∑
w=ᾱ−1

1

(n − w − 2)!
∞∑

t=w+1

({
t−1
w

}
nt−1

)
,

and
{ p

q
}

is the Stirling number of the second kind with parameters p and q.
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Proof. We start with a Lemma that shows that for an agent sequence, the infected set
remains the same till agent 1 appears for the first time. �
Lemma 4. Let v ∈ N∞ and t̂ ∈N0 be such that vt �= 1 for all t < t̂. Then I(St) = {1} for all t � t̂.

Proof. Note that if t̂ = 0 then there is nothing to show. So assume t̂ � 1. We use induction to
prove the statement. As the base case, we show that I(S1) = {1}. Let v0 = i. Since t̂ � 1, i �= 1.
Moreover, as gij = c for all i �= j, ri(S0) = 1

(n−1) . Hence,

bi(S0) = min

{
1,

τ

1
(n−1)

}
= min{1, (n − 1)τ } = 1,

as by our assumption τ � 1
(n−1) . This means agent i will not get infected. For any j /∈ {1, i},

aj(Ŝ0) = aj(S0) = a and rj(Ŝ0) = a
(n−2)a+1 � 1

(n−1) . Thus,

aj(Ŝ0)rj(Ŝ0) = a
a

(n − 2)a + 1
� a

(n − 1)
� 1

(n − 1)
� τ .

So agent j will also not get infected at t = 1. Thus, I(S1) = {1}.
Next, we introduce the following induction hypothesis: Given t̄ ∈N0 with t̂ � t̄ > 1, we have

I(S1) = · · · = I(St̄−1) = {1}.
We now show that I(St̄) = {1}. Let vt̄−1 = i. Since t̂ � t̄, this means i �= 1. Hence, i /∈ I(St̄−1).

As t̄ > 1, we have I(St̄−2) = I(St̄−1). This, together with Lemma 6, implies I(St̄) = I(St̄−1) =
{1}. Thus, by induction, we have I(St̂) = {1}. This completes the proof of the lemma. �

We complete the proof of the theorem in two steps. In Step 1, we explore how the infection
spreads when agents update their actions according to a fixed agent sequence, and in Step 2 we
use this to explore how infection spreads when agents update their actions randomly.
Step 1: Fix an agent sequence v ∈ N∞ and let S be the DVSP induced by v. To shorten notation,
for all i ∈ N, let us denote ti(v) by ki.

Claim 1. For all 0 � t < k1, ai(St+1) = 1 where vt = i.

Proof of the claim. Let v0 = i. As k1 > 0, i �= 1. Since aj(S0) = a > 0 for all j ∈ N, I(S0) =
{1}, and gij = c for all i �= j, we have ri(S0) = 1

(n−1) . This means

bi(S0) = min

{
1,

τ

1
(n−1)

}
= min{1, (n − 1)τ } = 1,

as by our assumption τ � 1
(n−1) . Thus, ai(S1) = ai(Ŝ0) = 1.

Next, we introduce the following induction hypothesis: Given t̄ ∈N0 with t̄ < k1, we have
for all t < t̄, aj(St+1) = 1 where vt = j.

Now, let vt̄ = i′; we show that ai′ (St̄+1) = 1. Note that by Lemma 4, I(St̄) = {1}. Moreover,
by the induction hypothesis, aj(St̄) � a for all j ∈ N \ {1}. Also, as t̄ < k1, we have a1(St̄) = a.
Combining all these observations, we have

1

(n − 1)
� ri′ (St̄) �

a

(n − 1)
. (10)
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Since ri′(St̄) > 0,

bi′ (St̄) = min

{
1,

τ

ri′(St̄)

}
;

see Lemma 1. Therefore, using (10) and the fact that τ � 1
(n−1) , we have bi′ (St̄) = 1. Thus,

ai′ (St̄+1) = ai′ (Ŝt̄) = 1. �
We distinguish some cases based on |N1(v)|.

Case 1: |N1(v)|� α̃.

We show that no new agent will get infected and I(S∞) = {1}. By Claim 1, ai(Sk1 ) = 1 for
all i ∈ N1(v). By the definition of the process, ai(Sk1 ) = a for all i /∈ N1(v) ∪ {1}, as these agents
have not updated their actions till the time point k1. Recall that Ŝk1 denotes the intermediate
state whose only difference from Sk1 is that agent vk1

has updated their action to bvk1
(Sk1 ).

Since vk1
= 1, we have ai(Sk1 ) = ai(Ŝk1 ) for all i �= 1. Thus, ai(Ŝk1 ) = a for all i ∈ |N1(v)| and

ai(Ŝk1 ) = 1 for all i /∈ N1(v) ∪ {1}.
By Lemma 1 and the definition of the process, a1(Ŝk1 ) = 1. Consider the time point k1 + 1.

By the definition of the process, an agent i �= 1 will be in I(Sk1+1) if ai(Ŝk1 )ri(Ŝk1 ) > τ . Since
I(Sk1 ) = {1}, ai(Ŝk1 ) = 1 for all i ∈ N1(v) ∪ {1}, ai(Ŝk1 ) = a for all i /∈ N1(v) ∪ {1}, and gij = c
for all i �= j, it follows that for all i ∈ N1(v),

ri(Ŝk1 ) = 1

|N1(v)| + (n − 1 − |N1(v)|)a
and

ai(Ŝk1 )ri(Ŝk1 ) = 1

|N1(v)| + (n − 1 − |N1(v)|)a
= 1

|N1(v)|(1 − a) + (n − 1)a
. (11)

Recall that by the assumption of the case, |N1(v)|� α̃. This together with the fact that

α̃ = max

{
1,

⌈
1 − (n − 1)aτ

τ (1 − a)

⌉}
implies

|N1(v)|� 1 − (n − 1)aτ

τ (1 − a)
=⇒ τ � 1

|N1(v)|(1 − a) + (n − 1)a
. (12)

Combining (11) and (12), we may conclude that agent i will not be infected at the time point
t + 1. Similar arguments show that any agent j /∈ N1(v) ∪ {1} will not be infected at the time
point t + 1. Hence, I(Sk1+1) = {1}.

We show that no new agent will get infected after this. We first show that I(Sk1+2) = {1}.
Let vk1+1 = i. If i /∈ I(Sk1+1), then as I(Sk1 ) = I(Sk1+1) by Lemma 6, we have I(Sk1+1) =
I(Sk1+2). If i ∈ I(Sk1+1) then i = 1. Moreover, a1(Sk1+1) = a1(Ŝk1 ) = 1. Hence, by Lemma 6,
I(Sk1+1) = I(Sk1+2). Therefore, I(Sk1+2) = {1}. Using the same arguments repeatedly, it follows
that I(St) = {1} for all t � k1 + 2. Thus, I(S∞) = {1}.
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Case 2: |N1(v)|� α̃ − 1.

In the following claim, we show that at time point k1 + 1, the infected set is N1(v) ∪ {1}.
Claim 2. We have I(Sk1+1) = N1(v) ∪ {1}.

Proof of the claim. Recall that α̃ = max
{

1,
⌈

1−(n−1)aτ
τ (1−a)

⌉}
. First assume α̃ �=

⌈
1−(n−1)aτ

τ (1−a)

⌉
,

i.e., α̃ = 1 and 1 − (n − 1)aτ � 0. This, together with the assumption of the case, implies
|N1(v)| = 0. Therefore, k1 = 1. Hence, to prove the claim, it is enough to show that I(S1) = {1}.
Note that by the definition of the process, a1(Ŝ0) = 1, ai(Ŝ0) = a for all i �= 1, and gij = c for all
i �= j. Thus,

ri(Ŝ0) = 1

1 + (n − 2)a

� 1

(n − 1)a

� τ (since 1 − (n − 1)aτ � 0).

This implies I(S1) = {1}. Now assume α̃ =
⌈

1−(n−1)aτ
τ (1−a)

⌉
. Consider an agent i ∈ N1(v). Using

similar arguments as in (11), we may show that

ai(Ŝk1 )ri(Ŝk1 ) = 1

|N1(v)|(1 − a) + (n − 1)a
.

This, together with the fact that α̃ =
⌈

1−(n−1)aτ
τ (1−a)

⌉
and |N1(v)|� α̃ − 1, implies ai(Ŝk1 )ri(Ŝk1 ) >

τ , and hence agent i will get infected at the time point t + 1. For any j /∈ N1(v) ∪ {1},

rj(Ŝk1 ) = 1

|N1(v)| + 1 + (n − 1 − |N1(v)| − 1)a

and

aj(Ŝk1 )rj(Ŝk1 ) = a

|N1(v)| + 1 + (n − 1 − |N1(v)| − 1)a

= a

|N1(v)|(1 − a) + (n − 2)a + 1
.

Hence agent j gets infected at t + 1 if

a

|N1(v)|(1 − a) + (n − 2)a + 1
> τ =⇒ a − τ (n − 1)a

τ (1 − a)
> |N1(v)|.

But this does not hold, as a−τ (n−1)a
τ (1−a) � 0 and |N1(v)|� 0. So agent j does not get infected at

t + 1. Thus, I(Sk1+1) = N1(v) ∪ 1. This completes the proof of the claim. �
We now determine the final infected set. To do so we consider two sub-cases based on the

value of |N1(v)|.
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Case 2.1: |N1(v)| + 1 < ᾱ.

We show that no new agent will get infected after k1 + 1. We first show that I(Sk1+2) =
N1(v) ∪ {1}. Let vk1+1 = i. If i ∈ I(Sk1+1) then i ∈ N1(v) ∪ {1}. Moreover, ai(Sk1+1) =
ai(Ŝk1 ) = 1. Hence, by Lemma 6, I(Sk1+1) = I(Sk1+2). If i /∈ I(Sk1+1) then since

ri(Sk1+1) = |N1(v)| + 1

|N1(v)| + 1 + (n − 1 − |N1(v)| − 1)a
�= 0,

agent i will choose min
{

1, τ
ri(Sk1+1)

}
as their action ai(Ŝk1+1) at Ŝk1+1. This means

ai(Ŝk1+1)ri(Ŝk1+1) � τ and agent i will not get infected at k1 + 2. To show that any agent
j ∈ I(Sk1+1) \ {i} will not get infected at k1 + 2, we first prove a claim.

Claim 3. We have ai(Ŝk1+1) � a.

Proof of the claim. Note that if ai(Ŝk1+1) = 1, then the claim holds, as a � 1. If ai(Ŝk1+1) =
τ

ri(Sk1+1) , then

ai(Ŝk1+1) = τ

ri(Sk1+1)

= τ (1 − a) + τa(n − 1)

|N1(v)| + 1
. (13)

Moreover, by the assumption of the case |N1(v)| + 1 < ᾱ. This together with ᾱ =
⌊

(n−1)aτ
a−τ (1−a)

⌋
+

1 and (13) implies

ai(Ŝk1+1) � τ (1 − a) + [τa(n − 1)](a − τ (1 − a))

(n − 1)aτ

= a.

This completes the proof of the claim. �
For any j /∈ I(Sk1+1) \ {i}, aj(Ŝk1+1) = a and

rj(Ŝk1+1) = |N1(v)| + 1

|N1(v)| + 1 + (n − 1 − |N1(v)| − 2)a + ai(Ŝk1+1)
(as gij = c for all i �= j).

Thus,

aj(Ŝk1+1)rj(Ŝk1+1) = a(|N1(v)| + 1)

|N1(v)| + 1 + (n − 1 − |N1(v)| − 2)a + ai(Ŝk1+1)

� a(|N1(v)| + 1)

|N1(v)| + 1 + (n − 1 − |N1(v)| − 1)a
(as, by Claim 3, ai(Ŝk1+1) � a)

= ari(Ŝk1+1)

� τ (as ai(Ŝk1+1)ri(Ŝk1+1) � τ and ai(Ŝk1+1) � a).

Hence agent j will not get infected at k1 + 2. This allows us to conclude that I(Sk1+2) = N1(v) ∪
{1}. Now, using similar logic as in Case 1, we can show that no agent will get infected after
this and I(S∞) = N1(v) ∪ {1}.
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Case 2.2: |N1(v)| + 1 � ᾱ.

First assume that vk1+1 = i where i ∈ N1(v) ∪ {1}. We show that I(S∞) = N. Note that as

i ∈ N1(v) ∪ {1}, ai(Ŝk1+1) = 1. Thus, for any j /∈ N1(v) ∪ {1},

rj(Ŝk1+1) = |N1(v)| + 1

|N1(v)| + 1 + (n − 1 − |N1(v)| − 1)a
(as gij = c for all i �= j),

and hence

aj(Ŝk1+1)rj(Ŝk1+1) = a(|N1(v)| + 1)

|N1(v)| + 1 + (n − 1 − |N1(v)| − 1)a

= a(|N1(v)| + 1)

(|N1(v)| + 1)(1 − a) + (n − 1)a

� aᾱ

ᾱ(1 − a) + (n − 1)a
(as |N1(v)| + 1 � ᾱ)

> τ (as ᾱ >
(n − 1)aτ

a − τ (1 − a)
).

Therefore, I(Sk1+2) = N and I(S∞) = N.
Now assume that vk1+1 = i where i /∈ N1(v) ∪ {1}. We show that I(Sk1+2) = N \ i. Since i /∈

I(Sk1+1) and vk1+1 = i, agent i will not get infected at k1 + 2 (Observation 4). Consider j /∈
N1(v) ∪ 1 with j �= i. We first prove a claim.

Claim 4. We have τ < ai(Ŝk1+1) < a.

Proof of the claim. We show that τ < τ
ri(Sk1+1) < a. This together with a < 1 proves the

claim. As

ri(Sk1+1) = |N1(v)| + 1

|N1(v)| + 1 + (n − 1 − |N1(v)| − 1)a
< 1,

we have τ < τ
ri(Sk1+1) . To see that τ

ri(Sk1+1) < a, recall that by (13),

ai(Ŝk1+1) = τ (1 − a) + τa(n − 1)

|N1(v)| + 1
.

Moreover, by the assumption of the case, |N1(v)| + 1 � ᾱ. This, together with ᾱ >
(n−1)aτ

a−τ (1−a) ,
implies

ai(Ŝk1+1) < τ (1 − a) + [τa(n − 1)](a − τ (1 − a))

(n − 1)aτ

= a.

This completes the proof of the claim. �
For any j /∈ I(Sk1+1) \ {i}, aj(Ŝk1+1) = a and

rj(Ŝk1+1) = |N1(v)| + 1

|N1(v)| + 1 + (n − 1 − |N1(v)| − 2)a + ai(Ŝk1+1)
(as gij = c for all i �= j).
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Thus,

aj(Ŝk1+1)rj(Ŝk1+1) = a(|N1(v)| + 1)

|N1(v)| + 1 + (n − 1 − |N1(v)| − 2)a + ai(Ŝk1+1)

>
a(|N1(v)| + 1)

|N1(v)| + 1 + (n − 1 − |N1(v)| − 1)a
(as by Claim 4, ai(Ŝk1+1)

= a(|N1(v)| + 1)

(|N1(v)| + 1)(1 − a) + (n − 1)a

� aᾱ

ᾱ(1 − a) + (n − 1)a
(as |N1(v)| + 1 � ᾱ)

> τ (as ᾱ >
(n − 1)aτ

a − τ (1 − a)
). < a)

Hence agent j will get infected at k1 + 2. This allows us to conclude that I(Sk1+2) = N \ {i}.
To determine the final infected set, we now distinguish two cases based on whether vk1+2 = i

or not.

Case 2.2.1: vk1+2 = i.

We show that the final infected set will be N \ i. Since by our assumption vk1+2 = i and
i /∈ I(Sk1+2), by Observation 4, i /∈ I(Sk1+3). Hence, I(Sk1+3) = N \ {i}. We now show that agent
i will not get infected after this. At time point k1 + 2,

ri(Ŝk1+2) = (|N1(v)| + 1) + a(n − 1 − |N1(v)| − 1)

(|N1(v)| + 1) + (n − 1 − |N1(v)| − 1)a
= 1.

Therefore, ai(Ŝk1+2) = τ . At k1 + 3, if vk1+3 = i, then agent i will not get infected at k1 + 4

(Observation 4). On the other hand, if vk1+3 �= i, then as ai(Ŝk1+3) = ai(Ŝk1+2) = τ , agent i will
remain uninfected at k1 + 4. Continuing in this manner, we can show that agent i will not get
infected after this. Thus, I(S∞) = N \ {i}.
Case 2.2.2: vk1+2 �= i.

We show that the final infected set will be N. Since I(Sk1+2) = N \ {i}, ri(Ŝk1+2) = 1.
Moreover, as ai(Sk1+2) = ai(Ŝk1+1) > τ (by Claim 4) and vk1+2 �= i, it follows that ai(Ŝk1+2) >

τ . Combining these two facts, we have ai(Ŝk1+2)ri(Ŝk1+2) > τ . Thus, agent i will get infected
at k1 + 3. Hence, I(Sk1+3) = N and I(S∞) = N.
Step 2: To begin with, we claim α̃ � n − 1. To see this, observe that⌈

1 − (n − 1)aτ

τ (1 − a)

⌉
�
⌈

1 − a

τ (1 − a)

⌉
� n − 1,

as (n − 1)τ � 1. Hence, α̃ � n − 1. Moreover, recall that ᾱ � 2. We now find the distribution
of I(S∞). First, assume that α̃ + 1 � ᾱ. Therefore, by the above cases we have the following:

• I(S∞) = {1} if |N1(v)| ∈ {0, α̃, α̃ + 1, . . . , n − 1}, and

• I(S∞) = N1(v) ∪ {1} if |N1(v)| ∈ {1, 2, . . . , α̃ − 1}.
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Moreover, as P is uniform, any two subsets of N with the same cardinality have the same
probability. These observations together with Lemma 3 yield

P(I(S∞) = J) =

⎧⎪⎪⎨⎪⎪⎩
1 − α̃−1

n if J = {1},
1

n×n−1Cm−1
if 1 ∈ J and |J| = m where m ∈ [2, α̃],

0 otherwise.

Now assume that α̃ + 1 > ᾱ � 2. By Case 1 and Case 2, we have the following:

(i) I(S∞) = {1} if |N1(v)| ∈ {0, α̃, α̃ + 1, . . . , n − 1},
(ii) |I(S∞)| = |N1(v)| + 1 with 1 ∈ I(S∞) if |N1(v)| ∈ {1, 2, . . . , ᾱ − 2},

(iii) |I(S∞)| = n if |N1(v)| ∈ {ᾱ − 1, . . . , α̃ − 1} and there is no i ∈ N such that ki = k1 + 1
and vk1+2 = i, and

(iv) |I(S∞)| = n − 1 with 1 ∈ I(S∞) if |N1(v)| ∈ {ᾱ − 1, . . . , α̃ − 1} and there is i ∈ N such
that ki = k1 + 1 and vk1+2 = i.

Since |N1| follows a uniform distribution on {0, 1, . . . , n − 1} and any two subsets of N
with the same cardinality have the same probability, by (i) and (ii) we have

P(I(S∞) = J) =
⎧⎨⎩1 − α̃−1

n if J = {1},
1

n×n−1Cm−1
if 1 ∈ J and |J| = m where m ∈ [2, ᾱ − 1].

We calculate the probability of |I(S∞)| = n − 1. By (iv) we have

P(v | |N1(v)| ∈ {ᾱ − 1, . . . , α̃ − 1} and ∃i �= 1 such that ki = k1 + 1 and vk1+2 = i)

=
α̃−1∑

w=ᾱ−1

P(v | |N1(v)| = w and ∃i �= 1 such that ki = k1 + 1 and vk1+2 = i)

=
α̃−1∑

w=ᾱ−1

∞∑
t=w+1

P(v | |N1(v)| = w and k1 = t and ∃i �= 1 such that ki = t + 1 and vt+2 = i)

=
α̃−1∑

w=ᾱ−1

∞∑
t=w+1

n−1Cw ×
(

w!{ t−1
w

}
nt−1

)
× 1

n
×(n−w−1) C1 × 1

n2

= (n − 1)!
n3

α̃−1∑
w=ᾱ−1

1

(n − w − 2)!
∞∑

t=w+1

( { t−1
w

}
nt−1

)
= η(α̃, ᾱ, n).

Note that by (i)–(iv),

ᾱ−1∑
m=1

P(|I(S∞)| = m) + P(|I(S∞)| = n − 1) + P(|I(S∞)| = n) = 1.
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Therefore,

P(|I(S∞)| = n) = 1 −
ᾱ−1∑
m=1

P(|I(S∞)| = m) − P(|I(S∞)| = n − 1)

= α̃ − (ᾱ − 1)

n
− η(α̃, ᾱ, n).

Since any two subsets of N with the same cardinality have the same probability, combining all
of the above observations yields the following distribution of the infected set:

P(I(S∞) = J) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − α̃−1
n if J = {1},

1
n×n−1Cm−1

if 1 ∈ J and |J| = m where m ∈ [2, ᾱ − 1],
η(α̃,ᾱ,n)

n−1 if 1 ∈ J and |J| = n − 1,

α̃−(ᾱ−1)
n − η(α̃, ᾱ, n) if |J| = n, i.e., J = N,

0 otherwise.

This completes the proof of the theorem.
As in the previous subsections, we now proceed to explore the limiting distribution of the

action profile. The following notation will help us present the results:

β̃ = min{�(n − 1)τ� + 1, α̃ + 1}, β̄ = min{�(n − 1)τ� + 1, ᾱ}. (14)

Theorem 8. Suppose 1
n−1 � τ < a < 1. If α̃ + 1 � ᾱ, the limiting distribution of the action

profile is given by

P(aN(S∞) = �x) =

⎧⎪⎪⎨⎪⎪⎩
1 − α̃−β̃+1

n if �x ∈ An, i.e., �x = �1,

1
n×n−1Cm−1

if �x ∈ Am for some m ∈ [β̃, α̃],

0 otherwise,

whereas if 2 � ᾱ < α̃ + 1, the limiting distribution is given by

P(aN(S∞) = �x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 + β̄−ᾱ
n − η(α̃, ᾱ, n) if �x ∈ An, i.e., �x = �1,

1
n×n−1Cm−1

if �x ∈ Am for some m ∈ [β̄, ᾱ − 1],
η(α̃,ᾱ,n)

n−1 if �x ∈ An−1,

0 otherwise,

where

η(α̃, ᾱ, n) = (n − 1)!
n3

α̃−1∑
w=ᾱ−1

1

(n − w − 2)!
∞∑

t=w+1

( { t−1
w

}
nt−1

)
,

and
{

p
q

}
is the Stirling number of the second kind with parameters p and q.
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The proof of this theorem can be found in Appendix D (Subsection D.3). Once again, obser-
vations similar to those made in Sections 3.1 and 3.3 could be made here for Theorems 7 and
8, but to avoid unnecessary repetition, we do not elaborate upon them.

The next two theorems deal with the situation when τ is less than or equal to a
(n−1) .

Theorem 9 characterizes the limiting distribution of the infected set and Theorem 10
characterizes the limiting distribution of the action profile.

Theorem 9. Suppose τ < a < 1. If τ = a
n−1 , the limiting distribution of the infected set is given

by

P(I(S∞) = N) = 1,

whereas if τ < a
n−1 , the limiting distribution is given by

P(I(S∞) = J) =

⎧⎪⎪⎨⎪⎪⎩
1
n2 if 1 ∈ J and |J| = n − 1,

1 − n−1
n2 if |J| = n, i.e., J = N,

0 otherwise.

The proof of this theorem can be found in Appendix B (Subsection B.3).

Theorem 10. Suppose τ < a < 1. If τ = a
n−1 , the limiting distribution of the action profile is

given by

P(aN(S∞) = �1) = 1,

whereas if τ < a
n−1 , the limiting distribution is given by

P(aN(S∞) = �x) =

⎧⎪⎪⎨⎪⎪⎩
1 − n−1

n2 if �x ∈ An, i.e., �x = �1,

1
n2 if �x ∈ An−1,

0 otherwise.

The proof of this theorem can be found in Appendix D (Subsection D.4). The results in this
final set of theorems are also consistent with our intuition, which says that if τ is small enough,
the eventually infected set is either of size n − 1 or of size n with probability 1.

Remark 3. The connection between the initial action and the limiting distribution is an impor-
tant question that may come to the reader’s mind. In fact, it may intuitively seem that for every
k ≤ n, the probability that k or more people are infected in the long run will be weakly increas-
ing in the initial action a. In other words, a higher value of the initial action a makes it likely
that there will be more infected people in the limit. The intuition is (somewhat) natural, as a
higher value of a at the initial epoch means people are roaming more freely initially, which
would lead to a higher initial risk of spreading the virus, and this could multiply over time.
However, this intuition does not account for the game-theoretical nature of the model. The
reason is that people are strategic, and they will take more precautions (by lowering their a)
at the next epoch when they realize the virus has already spread (more) at the first epoch. For
example, when n = 5, for τ = 0.05 and a = 0.2, the disease spreads completely, i.e., all the
agents are infected in the long run. However, if we keep τ at 0.05, for a = 0.35, the probability
of all the agents being infected is 0.84. Similarly, for τ = 0.35, three or more are infected in
limit with probability 0.2 for a = 0, but for a = 0.8, the same event has a probability of 0. Note
that the counter intuition, that is, that fewer people are infected in the long run as a increases,
is not true either.
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4. Results under recovery

In this section, we consider situations where an infected agent recovers after κ , κ ∈N,
epochs of time since getting the infection, and we analyze the corresponding stochastic pro-
cess. Let the set of agents who recover from the infection at time t be denoted by Rt. Thus,
Rt is the set of agents I(St−κ ) who got the virus at time t − κ . If t − κ is negative, Rt is the
empty set. Furthermore, the agents infected at the beginning (that is, at time t = 0) recover at
time t = κ . To paraphrase, we assume that the agents who are infected at t = 0 actually did
get infected at t = 0, not at some earlier time. We additionally assume that an agent decides
to stay (completely) at home (that is, goes for the action 0) on the day they recover. This is a
simplifying assumption but is not unrealistic.

We now detail the changes in the stochastic process considered before under the current
setup. The infected set at time t + 1 is given by I(St+1) = I(St) ∪ {j:aj(Ŝt)rj(Ŝt) > τ (j)} \ Rt+1,
and the actions at time t + 1 are given by aj(St+1) = 0 for all j ∈ Rt+1, and aj(St+1) = aj(Ŝt) for
all j /∈ Rt+1.

In what follows, we present our results under recovery. Except for the recovery component,
we stick to the assumptions we made in Section 3 for the case of non-recovery. Recall that a
denotes the (common) initial action of the agents. We provide results for the cases for every τ

when a is 0 and 1. For both these extreme cases, we show that the epidemic ends in the long
run (consequently, people roam freely).

We first prove a general Lemma that shows that irrespective of the initial action, if it happens
at some epoch of a(ny) DVSP that all the infected agents have action 1 and no new agent gets
infected at the immediate next epoch, then all agents will eventually recover.

Lemma 5. Consider v ∈ N∞ and let t̂ ∈N0 be such that ai(Ŝt̂) = 1 for all i ∈ I(St̂) and I(St̂) ⊇
I(St̂+1). Then I(S∞) = ∅.

Proof. We prove the Lemma by showing that for all r, s ∈N0 with r < s, I(St̂+1+r) ⊇
I(St̂+1+s). Assume for the sake of contradiction that there exists p ∈N such that I(St̂+1) ⊇ · · · ⊇
I(St̂+p) but I(St̂+p) �⊇ I(St̂+p+1), i.e., after epoch t̂ there was no new infection till t̂ + p, and at
t̂ + p + 1 some new agents are infected. Let i ∈ N be such that i ∈ I(St̂+p+1) but i /∈ I(St̂+p).
This means vt̂+p �= i and

ai(Ŝt̂+p−1)ri(Ŝt̂+p−1) ≤ τ < ai(Ŝt̂+p)ri(Ŝt̂+p).

As vt̂+p �= i, we have ai(Ŝt̂+p−1) = ai(Ŝt̂+p). Thus,

ri(Ŝt̂+p−1) < ri(Ŝt̂+p). (15)

Let vt̂+p = j. As ak(Ŝt̂) = 1 for all k ∈ I(St̂) and I(St̂) ⊇ · · · ⊇ I(St̂+p), (15) and the def-

inition of the process together imply that j /∈ I(St̂+p−1) and aj(Ŝt̂+p−1) > aj(Ŝt̂+p).

Furthermore, as I(St̂+p−1) ⊇ I(St̂+p) and vt̂+p = j, it must be that aj(Ŝt̂+p−1)rj(Ŝt̂+p−1) ≤ τ and

aj(Ŝt̂+p)rj(Ŝt̂+p) = τ . Combining these two observations, we have rj(Ŝt̂+p−1) < rj(Ŝt̂+p). But

this is a contradiction. To see this first note that I(St̂+p−1) ⊇ I(St̂+p) and ah(Ŝt̂+p−1) = 1 for all

h ∈ I(St̂+p−1). Moreover, as vt̂+p = j, we have ak(Ŝt̂+p−1) = ak(Ŝt̂+p) for all k ∈ N \ I(St̂+p−1)

and al(Ŝt̂+p) = 0 for all l ∈ I(St̂+p−1) \ I(St̂+p). Thus, it follows that rj(Ŝt̂+p−1) ≥ rj(Ŝt̂+p). �
We are now ready to present and prove our results for the cases a = 0 and a = 1.
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4.1. Results when a = 0

In this subsection, we consider the situation where the (common) initial action a equals
0. The next theorem describes the limiting distribution of the infected set of agents and their
action profiles. As we stated earlier, it shows that all the agents will recover in the long run,
and the action profile will have a degenerate distribution at �1.

Theorem 11. Suppose a = 0. Then the limiting distribution of the infected set is given by

P(I(S∞) = ∅) = 1,

and the limiting distribution of the action profile is given by

P(aN(S∞) = �1) = 1.

Proof. We first prove the distribution of the infected set. Fix an agent sequence v ∈ N∞ and
let S be the DVSP induced by v. We show that I(S∞) = ∅. Observe that Claim 1 in the proof of
Theorem 1 holds in the setup of this theorem as well. We distinguish two cases based on the
values of k1.

Case 1: k1 � κ .

The assumption of the claim implies that agent 1 will recover before getting a chance to
update their action. As their initial action is 0 and they are the only agent infected at the
beginning, this means that for any other agent i, ri(Ŝt) = 0 for all t with 0 ≤ t ≤ κ . Therefore,
no new agent will be infected till κ . At κ , agent 1 will recover as per the process, and no one
further will get infected.

Case 2: k1 < κ .

Note that the assumption implies that agent 1 gets a chance to update their action before
they recover. Thus, as in Theorem 1, we consider two sub-cases. Recall the definition of α as
defined in (3).

Case 2.1: |N1(v)| ≥ α.

As in Case 1 of Theorem 1, we can show that I(S1) = · · · = I(Sk1+1) = {1} and a1(Ŝk1 ) = 1.
Hence, by Lemma 5, I(S∞) = ∅.

Case 2.2: |N1(v)| ≤ α − 1.

As k1 < κ , using similar arguments as in Case 2 of Theorem 1, we can show that
N1(v) ⊆ I(Sk1+1) ⊆ N1(v) ∪ {1} with ai(Sk1+1) = 1 for all i ∈ I(Sk1+1) and ai(Sk1+1) = 0 for all
i /∈ I(Sk1+1). At epoch k1 + 1, if vk1+1 ∈ I(Sk1+1) then they will choose the the same action
1, and we will have I(Sk1+2) ⊆ I(Sk1+1). If vk1+1 /∈ I(Sk1+1), they will choose their action
bvk1+1

(Sk1+1) = τ , as all the uninfected agents have action 0 and all the infected agents have
action 1. Therefore, no new agent will get infected at k1 + 2, and we have I(Sk1+2) ⊆ I(Sk1+1).
As ai(Ŝk1+1) = 1 for all i ∈ I(Sk1+1), by Lemma 5, it follows that I(S∞) = ∅.

As v is an arbitrary agent sequence in N∞ and the cases are exhaustive, we have
P(I(S∞) = ∅) = 1.

For the second part of the theorem, take any agent sequence v ∈ N∞. Then we have I(S∞) =
∅. This means there exists t̂ such that I(St̂) = I(St̂+1) = · · · = ∅. As there is no infected agent
after epoch t̂, any agent who updates their action after epoch t̂ will choose their best response
as 1. This, together with the fact that at v every agent appears infinitely many times, lets us
conclude that aN(S∞) = �1. Therefore, P(aN(S∞) = �1) = 1.
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4.2. Results when a = 1

This subsection considers the situation where the (common) initial action a equals 1. As was
the case for a = 0, here too we show that in the long run the epidemic vanishes, and people
roam freely.

Theorem 12. Suppose a = 1. Then the limiting distribution of the infected set is given by

P(I(S∞) = ∅) = 1,

and the limiting distribution of the action profile is given by

P(aN(S∞) = �1) = 1.

Proof. We prove the theorem by showing that for any agent sequence v in N∞, I(S∞) = ∅,
where S is the DVSP induced by v. Consider an agent sequence v and the DVSP S induced by
v. First, assume that κ ≥ 2. Because of this assumption, using similar arguments as in the proof
of Theorem 3, we can show the following:

(i) If τ ≥ 1
n−1 , then I(S1) = {1}.

(ii) If τ < 1
n−1 , then one of the following holds:(a) I(S1) = N and aj(S1) = 1 for all j ∈ N,

or
(b) there exists i ∈ N \ 1 with aj(S1) = aj(S2) = 1 for all j ∈ N \ i such that either I(S1) =
I(S2) = N \ i or I(S1) = N \ i and I(S2) = N.

It is easy to see that if either (i) or (ii)-(a) holds, by Lemma 5, we will have I(S∞) = ∅.
Suppose (ii)-(b) holds with I(S1) = I(S2) = N \ i, aj(S1) = aj(S2) = 1 for all j ∈ N \ i. This
means I(S1) = I(S2) = N \ i and aj(Ŝ1) = 1 for all j ∈ N \ i. Thus, by Lemma 5, I(S∞) = ∅.
Now, suppose (ii)-(b) holds with I(S1) = N \ i, I(S2) = N with aj(S1) = aj(S2) = 1 for all
j ∈ N \ i. At epoch κ ≥ 2, agent 1 recovers, i.e., I(Sκ ) = N \ 1. This means ri(Sκ ) = 1. So,
if agent 1 gets a chance to update their action, they will choose a1(Ŝκ ) = τ as their best
response. Otherwise, it would be a1(Ŝκ ) = 0. Thus, agent 1 will not get infected at κ + 1.
Hence I(Sκ+1) = i, as all the agents except i will recover at κ + 1. At epoch κ + 1, all the unin-
fected agents have action less than or equal to τ ; thus, whichever agent updates their action at
κ + 1, no one will get infected at κ + 2. Furthermore, at epoch κ + 2 agent i will get infected.
Therefore, I(Sκ+2) = ∅. No one will get infected after this; hence I(S∞) = ∅. This shows that
if κ ≥ 2, I(S∞) = ∅.

Now, assume that κ = 1. This means agent 1 will recover at epoch 1 and a1(S1) = 0. Suppose
τ ≥ 1

n−1 . Using similar arguments as in the proof of Theorem 3, we can show that at epoch 1,

no new agent will get infected, implying I(S1) = ∅. Therefore, I(S∞) = ∅. Suppose τ < 1
n−1 .

If v0 = 1, then, using similar arguments as in the proof of Theorem 3, it can be shown that
at epoch 1, all the agents other than 1 will get infected. We claim that I(S2) = ∅, yielding
I(S∞) = ∅. To see this, observe that if agent 1 updates their action at epoch 2, they will change
it to τ , as all the other agents are infected and have non-zero actions. Otherwise, their action
will remain the same, i.e., a1(Ŝ1) = 0. Thus, agent 1 will not get further infected at epoch 2.
Also, as κ = 1, all the other agents will recover at epoch 2. Hence, I(S2) = ∅.

If v0 = i ( �= 1), then at epoch 1, all the agents other than agents i and 1 will get infected
(using similar arguments as in Case 2 of Theorem 3). Moreover, agent i will update their action
to (n − 1)τ , i.e., ai(S1) = (n − 1)τ . We consider different possibilities for v1. First, consider
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v1 = i. This means that at epoch 2, agent i will not get infected, and as a1(S1) = 0, agent 1 will
not get infected either. Furthermore, all the other agents recover at epoch 2. Combining these
facts, we have I(S2) = ∅. Now consider v1 = j ( /∈ {1, i}). As j ∈ I(S1) and aj(S1) = 1, this means
aj(Ŝ1) = 1. Thus, at epoch 2, agent i will get infected (see Case 2.2 in the proof of Theorem 3).
Also, as κ = 1, all agents except 1 and i will recover at this epoch. This means ak(S2) = 0 for
all k �= i (recall that a(S1) = 0 and v1 �= 1). Therefore, none of these agents will get infected at
the next epoch, i.e., at epoch 3. In addition, agent i will be recovered, implying I(S3) = ∅.

Finally, consider v1 = 1. As I(S1) = N \ {1, i} with ak(S1) = 1 for all k ∈ I(S1) and ai(S1) =
(n − 1)τ , agent 1 will choose their action as

a1(Ŝ1) = τ
(n − 2) + (n − 1)τ

(n − 2)
.

Also, at epoch 2, agent i will get infected (see Case 2.2 in the proof of Theorem 3), and all the
agents in N \ {1, i} will be recovered. Thus,

a1(S2) = τ
(n − 2) + (n − 1)τ

(n − 2)

and ak(S2) = 0 for all k ∈ N \ {1, i}. If v2 = 1, then as I(S2) = i, ai(S2) > 0, and ak(S2) = 0 for
all k ∈ N \ {1, i}, agent 1 will update their action to τ and will not get infected in the next epoch.
Furthermore, agent i will be recovered at the next epoch, implying that I(S3) = ∅. If v2 = i, as
I(S2) = i, agent i will update their action to 1, and as a result agent 1 will get infected again
at epoch 3. However, as κ = 1, agent i will recover at epoch 3. This means all the uninfected
agents at epoch 3 have action 0. Hence, at epoch 4, no new agent will get infected and agent 1
will recover, implying I(S4) = ∅. If v2 = r ( /∈ {1, i}), agent r will update their action to

τ

br(S2)
= τ ((n − 1)τ + a1(S2))

(n − 1)τ
.

We claim I(S3) = ∅. To see this, note that agent i will be recovered at epoch 3. Among the
other agents, only agents 1 and r have positive actions. So it is enough to show that agents 1
and r will not get infected. As agent r updates their action to ar(Ŝ2) = τ

br(S2) , they will not get

infected. For agent 1, we show that they will not get infected by showing that ar(Ŝ2) > a1(Ŝ2).
Note that a1(Ŝ2) = a1(Ŝ1) and

ar(Ŝ2) = τ ((n − 1)τ + a1(S2))

(n − 1)τ
.

Thus, ar(Ŝ2) > a1(Ŝ2) holds if and only if

τ

( (n − 1)τ + τ
(n−2)+(n−1)τ

(n−2)

(n − 1)τ

)
> τ

(n − 2) + (n − 1)τ

(n − 2)

⇐⇒ 1 + (n − 2) + (n − 1)τ

(n − 2)(n − 1)
>

(n − 2) + (n − 1)τ

(n − 2)

⇐⇒ (n − 2) + (n − 1)τ

(n − 2)(n − 1)
>

(n − 1)τ

(n − 2)

⇐⇒ 1

(n − 1)
> τ .
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Therefore, I(S3) = ∅. This shows that I(S∞) = ∅ for κ = 1 and completes the first part of the
theorem. The second part of the theorem follows from the same arguments used in the proof
of Theorem 11. �

4.3. Evidence from simulation

Although we furnish a thorough simulation study for the model without recovery in
Section 6, here we briefly mention that we also ran a simulation study for this general model
with recovery, and the following are our findings:

• For any 0 < τ < 1 and κ > 0, for both a = 0 and a = 1, the population does indeed
become completely uninfected.

• Consistent with our intuition, the time it takes for the population to become disease-free
is monotonic with κ; that is, with higher recovery time, it takes longer for the disease to
vanish.

• Similar results indicating a disease-free population seem to be true for the 0 < a < 1
cases as well; however, since we leave the proofs for these scenarios of general a to
future work, we do not comment here on the time it takes for the population to become
disease-free, which depends on the value of a.

5. A model under simultaneous response

In our model (as defined in Section 2), exactly one agent is chosen randomly at every epoch,
who then plays their best response to the current state. In this section we discuss another model,
in which agents respond simultaneously at every epoch. Before we proceed to analyze this
model, we point out some notable aspects of it.

While simultaneous response by all players is considered in static games and evolutionary
games, such a model may violate the assumption of common belief in rationality for dynamic
games like ours. Common belief in rationality means that each player is rational (utility-
maximizing), each player believes that every other player is rational, each player believes
that every other player believes that every other player is rational, and so on (see Chapter 4
in [27] for a formal definition). This is because, if all agents are (best-) responding to the cur-
rent state simultaneously, then each agent knows that the state will change at the next epoch,
and whatever is a/the best response for the current state may not continue to be optimal at the
next epoch, during which the action will be executed in practice. One can add one more level
of rationality by assuming that each agent i responds to the state obtained by replacing the
actions of every other agent j with their best responses. However, that will not be consistent
either, as while agent i is responding to the modified state (as defined above), they believe that
every other agent j is responding to the current state. This inconsistency will remain no matter
how many levels of rationality we consider. So playing a/the best response to the current state
is not consistent with common belief in rationality.

One reasonable way to model such a situation is to assume that the players play actions
corresponding to a Nash equilibrium, whenever that exists. A collection of strategies, one for
each player, is a Nash equilibrium of a game if, for each player, the corresponding strategy is
a best response to the strategies of the other players given in the Nash equilibrium. It is worth
noting that players do not play a best response to the ‘current state’ (in fact, there is no such
state in a static game) in a Nash equilibrium; instead, they play a best response to the perceived
equilibrium state. If there is a unique Nash equilibrium of the game at the initial state, then a
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plausible model would be to assume that the players play the corresponding actions. However,
if there are multiple equilibria, different agents may play actions corresponding to different
equilibria, possibly resulting in an action profile that is ‘far’ from any equilibrium. Even if
we assume that agents somehow coordinate to one particular Nash equilibrium, there is no
clear way to identify that equilibrium as a function of the current state. This is particularly
true because a Nash equilibrium may not give equal utility (or even relatively higher utility) to
every player, and there is no clear way to decide whom to favor. This also raises the question
of whether the players will stick to any particular Nash equilibrium forever in the dynamic
situation we are considering. Nevertheless, it is known that playing a Nash equilibrium of a
static game repeatedly constitutes a Nash equilibrium of the corresponding repeated game, and
therefore we compute all the Nash equilibria of the game at the initial state in this section.
Needless to say, we lose the dynamic nature of the problem in this approach.

Before we proceed to characterize the Nash equilibria, we discuss the connection of the
model with evolutionary games. An evolutionary game consists of a class of populations each
of which has a set of actions. A strategy of a population is to choose a distribution of its mass
over its actions. In best-response dynamics, each population plays a best-response strategy
to the current state. Since there need not be a unique best response, utilities are perturbed to
achieve the unique best response at every state. When the utilities are perturbed using a Gumbel
distribution, the corresponding dynamic is called the logit best-response dynamic. One impor-
tant question in evolutionary games is whether playing a/the best response to the previous
state every time leads to convergence to a Nash equilibrium. The paper [22] establishes this
fact under a logit best-response dynamic, and [20] does it for arbitrary lower semicontinu-
ous, strongly convex perturbations (for example, Tsallis and Burg entropy) of the utilities. A
connection between the approach we have taken in this paper and the logit dynamic in evolu-
tionary games can be drawn from [21]. That paper shows that the logit dynamic can be achieved
by starting with populations of finite size, allowing one randomly chosen action to respond at
each time, and then letting the population size go to infinity. Recently, [28, 29] have considered
Bayesian evolutionary games and established the convergence to a Nash equilibrium for finite
and continuum strategies, respectively, under the different perturbed Bayesian best-response
dynamics.

It is worth emphasizing that in evolutionary games, the whole population is considered as
one player, and actions are considered as different species in that population. In particular,
unlike in our model, actions cannot be treated as rational players in evolutionary games; con-
sequently, common belief in rationality does not apply to the actions. Nevertheless, we feel that
a (suitable) evolutionary approach to the virus spread model would be an interesting problem
for future research.

5.1. Nash equilibria of the game at the initial state

We now investigate the Nash equilibria of the game induced at the initial state. Since we
treat it as a static game (in particular, the state is not allowed to change), we consider a general
setup where an arbitrary set of agents S, S ⊆ N, is infected at the initial state. Following the
formulation in Section 2 (and simplifying certain expressions for the present case), the game
at the initial state of the infection is defined as G = 〈N, (Ai)i∈N, (vi)i∈N〉, where

• N = {1, 2, . . . , n} is the set of players;

• Ai = [0, 1] is the set of actions of each player i ∈ N;

• for each action profile �a: = (a1, . . . , an) ∈ [0, 1]n,
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• for i ∈ S, vi(�a) = f (ai), and

• for i ∈ N \ S,

vi(�a) =
{

1 + f (ai) if airi(�a) � τ,

f (ai) if airi(�a) > τ,
(16)

where f : [0, 1] → [0, 1] is a strictly increasing function, and

ri(�a) =
⎧⎨⎩
( ∑

j∈S aj∑
j∈N\{i} aj

)
if
∑

j∈N\{i} aj �= 0,

0 if
∑

j∈N\{i} aj = 0.

We now define the notion of (pure) Nash equilibrium for static games.

Definition 1. An action profile aN = (a1, . . . , an) is a (pure) Nash equilibrium of a game G =
〈N, (Ai)i∈N, (vi)i∈N〉 if, for all i ∈ N and all a′

i ∈ Ai,

vi(aN) ≥ vi(a
′
i, a−i).

The following theorem characterizes all Nash equilibria of the game G.

Theorem 13. For the game G, if τ <
|S|

n−1 , then there is a unique Nash equilibrium where

agents in S play the action 1 and every other agent plays the action τ |S|
|S|−(n−|S|−1)τ . If τ ≥ |S|

n−1 ,
then there is a unique Nash equilibrium where every agent plays the action 1.

Proof. We first show that in any Nash equilibrium of the game G, an uninfected agent
will remain uninfected. Assume for the sake of contradiction that there is a Nash equilibrium
�a = (a1, . . . , an) where the uninfected agent i becomes infected. Since �a is a Nash equilibrium,
we have

ui(�a) ≥ ui(a
′
i, a−i) for all a′

i ∈ [0, 1]. (17)

As, by our assumption, agent i is infected at �a, we have ui(�a) = f (ai). Consider a′
i = τ . This

means agent i will remain uninfected at (a′
i, a−i), and hence ui(a′

i, a−i) = 1 + f (a′
i). But this

contradicts (17), as f : [0, 1] → [0, 1] is a strictly increasing function. Therefore, in any Nash
equilibrium of the game G, all the agents other than agents in S will remain uninfected. Also,
as agents in S have the utility function f , they will always choose the action 1 in a Nash
equilibrium.

Next we show that in any Nash equilibrium of the game G, any two uninfected agents will
have the same action. Assume for the sake of contradiction that there is a Nash equilibrium
of the game �a = (a1, . . . , an) where two uninfected agents i and j have different actions, i.e.,
ai �= aj. Without loss of generality we may assume that ai > aj. We show that uj(�a) < uj(a′

j, a−j)
where a′

j = ai, a contradiction to the fact that �a is a Nash equilibrium. Note that as �a is a
Nash equilibrium, agent j will remain uninfected, and hence uj(�a) = 1 + f (aj). For the profile
(a′

j, a−j),
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a′
jrj((a

′
j, a−j)) = a′

j|S|
|S| +∑

k/∈S∪j ak
= a′

j|S|
1 +∑

k/∈S∪{i,j} ak + ai

<
a′

j

1 +∑
k/∈S∪{i,j} ak + aj

( as ai > aj)

= ai

1 +∑
k/∈S∪{i,j} ak + aj

( as a′
j = ai)

≤ τ ( as agent i is uninfected at �a).

This means agent j will get infected at (a′
j, a−j). Hence, uj(a′

j, a−j) = 1 + f (a′
j) > 1 + f (aj) =

uj(�a). This shows that in any Nash equilibrium of the game G, all the uninfected agents will
have the same action.

We are now ready to complete the proof of the lemma. Let �a be a Nash equilibrium of the
game G. First, assume that τ <

|S|
n−1 . As discussed before, all the agents in S will choose their

action as 1. Therefore, ai = 1 for all i ∈ S. Consider i /∈ S. As agent i will remain uninfected at
�a and ai is their best action given the actions of the others, it must be that

airi(�a) = ai
|S|

|S| +∑
k/∈S∪i ak

= τ .

This together with the fact that aj = al for all j, l ∈ N \ S implies

ai
|S|

|S| +∑
k/∈S∪i ak

= τ =⇒ x
|S|

|S| +∑
k/∈S∪i x

= τ (where aj = x for all j �= 1)

=⇒ x = τ |S|
|S| − (n − |S| − 1)τ

.

Note that as τ <
|S|

n−1 , the following holds:

x = τ |S|
|S| − (n − |S| − 1)τ

≤ τ |S|
|S| − (n − |S| − 1) |S|

n−1

= τ (n − 1)

|S| ≤ 1,

and |S| − (n − |S| − 1)τ ≥ |S| − (n − |S| − 1)
|S|

n − 1
= |S|2

n − 1
≥ 0.

Thus, 0 ≤ x ≤ 1. Now assume that τ ≥ |S|
n−1 . As for the action profile �a = �1, we have

airi(�a) = |S|
n − 1

≤ τ

for all i ∈ N \ S, so no agent in N \ S will get infected if they choose the action 1. As 1 is the
maximum possible action, the unique Nash equilibrium will be �1. �

6. Simulation studies

In this section, we corroborate our theoretical results with some evidence from simulations.
Our focus remains on the following three goals:
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• We completely enumerate the empirical distribution of the number of infected agents for
a small n (total number of agents) up to a few epochs.

• For the same n, we obtain the reported theoretical action profile limits by increasing
the number of epochs. We achieve this by selecting a large number of sequences of the
particular epoch length.

• For large n, using the same approach of random permutations, we explore some special
cases of a and τ and show that we match the reported asymptotic distribution for the
cardinality of the infected set.

6.1. Empirical distribution of the number of infected agents up to a few epochs

In our paper so far, we have provided the asymptotic distribution of the cardinality of the
final infected set, but it remains to understand how fast this distribution or a close approxima-
tion of it is reached. In this section, we provide a very thorough exploration of the cardinality of
the infected set up to a few epochs of time. Note that, for the distribution of the total number of
infected people in the population, we required an exact enumeration of all possible sequences;
thus it becomes difficult to compute this beyond 10 or 11 epochs. So the number we will report
for this case is an exact probability enumeration based on 10 epochs. We set n = 5 and consider
the various values of a and τ listed in Table 1.

In particular, we see that after only 10 epochs for n = 5, we can reach very good approx-
imations of the final distributions. Moreover, the number of epochs needed to get a close
approximation is much smaller. One can see that except for the very first case of a = 0,
τ = 0.12, we have fairly good convergence to the actual distribution in 10 steps. Generally
speaking, for smaller a and τ it takes longer to get close to the asymptotic distribution.

6.2. Empirical distribution of the action profile

A very pertinent question about some simulation evidence for the asymptotic distribution of
the final action set was asked by one reviewer. First we must acknowledge that, even for n = 5,
exactly tabulating all possible empirical distributions of a 5-dimensional vector is a challenging
problem. Moreover, while we did run the simulation, we saw that for most cases the empirical
distribution (with complete enumeration) after 10 or 11 epochs was somewhat far from the
theoretical ones. For this reason, we decided to extend our empirical probability calculation to
a larger number of epochs. As complete enumeration was computationally challenging, even
for n = 5, we decided to randomly sample 50000 sequences of epoch lengths 50, 200, and
400. After a lot of deliberation on how to concisely report the average performance of the
5-dimensional vector after these epoch lengths, we decided to report the following:

• the theoretical distributions in Table 2, and

• the empirical distribution of the sum of the action profiles after 50, 200, and 400 epochs.

We choose the following cases:

• a = 0, with τ = 0.1, 0.3, 0.6, and 0.9;

• a = 0.4, with τ = 0.05, 0.3, 0.4, and 0.9;

• a = 0.7, with τ = 0.1, 0.3, 0.6, and 0.9;

• a = 1, with τ = 0.1, 0.5, 0.6, and 0.9.
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TABLE 1. Exact enumeration of empirical distribution after 10 epochs. Here (p1, . . . , p5) denotes
(P(|I(S∞)| = 1), . . . , P(|I(S∞)| = 5)), and ∗ denotes regions that are not covered by our theoretical
results.

a Range of τ τ Theoretical distribution Empirical distribution

0 (0,0.25) 0.12 (0.2,0.2,0.2,0.2,0.2) (0.3340,0.2,0.199,0.181,0.085)
[0.25,0.334) 0.3 (0.4,0.2,0.2,0.2,0) (0.42,0.2,0.199,0.181,0)
[0.334,0.5) 0.4 (0.6,0.2,0.2,0,0) (0.601,0.2,0.199.0,0)
[0.5,1) 0.6 (0.8,0.2,0,0,0) (0.8,0.2,0,0,0)

0.2 (0,0.05) 0.02 (0,0,0,0.16,0.84) (0,0,0,0.16,0.84)
0.05 0.05 (0,0,0,0,1) (0,0,0,0,1)
(0.05,0.25) ∗ ∗ ∗
[0.25,0.3125] 0.3 (0.4,0.2,0.2,0.2,0) (0.42,0.2,0.199,0.181,0)

(0.3125,0.4166] 0.35 (0.6,0.2,0.2,0,0) (0.601,0.2,0.199,0,0)
(0.4166,0.6249] 0.5 (0.8,0.2,0,0,0) (0.8,0.2,0.0,0)
(0.6249,1) 0.7 (1,0,0,0,0) (1,0,0,0,0)

0.35 (0,0.0875) 0.05 (0,0,0,0.16,0.84) (0,0,0,0.16,0.84)
0.0875 0.0875 (0,0,0,0,1) (0,0,0,0,1)
(0.0875,0.25) ∗ ∗ ∗
[0.25-0.2592] 0.255 (0.4,0,0,0.048,0.552) (0.420,0,0.001, 0.086, 0.493)

(0.2592,0.2985] 0.27 (0.4, 0.2,0, 0.024,0.376) (0.420, 0.200, 0.001, 0.062, 0.317)
(0.2985,0.3134] 0.3 (0.6, 0.2,0, 0.016,0.184) (0.601, 0.200, 0.001, 0.017, 0.182)
(0.3134,0.3704) 0.36 (0.5,0.2,0.2,0,0) (0.601,0.2,0.199,0,0)
[0.3704.0.4878] 0.4 (0.8,0.2,0,0,0) (0.8,0.2,0,0,0)

(0.4878,1] 0.5 (1,0,0,0,0) (1,0,0,0,0)
0.45 (0,0.1125) 0.1 (0,0,0,0.16,0.84) (0,0,0,0.16,0.84)

0.1125 0.1125 (0,0,0,0,1) (0,0,0,0,1)
(0.1125,0.25) ∗ ∗ ∗
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TABLE 1. (Continued)

a Range of τ τ Theoretical distribution Empirical distribution

[0.25,0.2898] 0.27 (0.4,0,0,0.048,0.552) (0.420, 0.000, 0.001, 0.086, 0.493)
(0.2898,0.3103] 0.3 (0.6,0,0, 0.04,0.360) (0.601, 0.000, 0.001, 0.041, 0.358)
(0.3103,0.3448] 0.32 (0.6,0.2,0, 0.016,0.184) (0.601, 0.200, 0.001, 0.017, 0.182)
(0.3448,0.4225] 0.4 (0.8,0.2,0,0,0) (0.8,0.2,0,0,0)
(0.4255,1) 0.5 (1,0,0,0,0) (1,0,0,0,0)

0.6 (0,0.15) 0.1 (0,0,0,0.16,0.84) (0,0,0,0.16,0.84)
0.15 0.15 (0,0,0,0,1) (0,0,0,0,1)
(0.15,0.25) ∗ ∗ ∗
[0.25,0.2777] 0.26 (0.4,0,0, 0.048,0.552) (0.420, 0.000, 0.001, 0.086, 0.493)

(0.2777,0.3124] 0.3 (0.6,0,0, 0.04,0.360) (0.601, 0.000, 0.001, 0.041, 0.358)
(0.3124,0.3571] 0.34 (0.8,0,0,0.024,0.176) (0.800, 0.000, 0.000, 0.024, 0.176)
(0.3571,1) 0.4 (1,0,0,0,0) (1,0,0,0,0)

0.8 (0,0.2) 0.1 (0,0,0,0.16,0.84) (0,0,0,0.16,0.84)
0.2 0.2 (0,0,0,0,1) (0,0,0,0,1)
(0.2,0.25) ∗ ∗ ∗
[0.25,0.2631] 0.26 (0.4,0,0, 0.024,0.576) (0.420, 0.000, 0.001, 0.086, 0.493)

(0.2631,0.2777] 0.27 (0.6,0,0, 0.04,0.360) (0.601, 0.000, 0.001, 0.041, 0.358)
(0.2777,0.2941] 0.28 (0.8,0,0,0.024,0.176) (0.800, 0.000, 0.000, 0.024, 0.176)
[0.2941,1) 0.5 (1,0,0,0,0) (1,0,0,0,0)

1 (0,0.25) 0.12 (0,0,0,0.16,0.84) (0,0,0,0.16,0.84)
[0.25,1) 0.5 (1,0,0,0,0) (1,0,0,0,0)
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TABLE 2. Theoretical distributions of action profiles and their sum. Here vectors stand for the class where
the last four entries can be permuted. For example, (1,1,1,0.33,0.33) stands for the class containing the
six vectors (1,1,1,0.33,0.33), (1,1,0.33,0.33,1), (1,0.33,0.33,1,1), (1,1,0.33,1,0.33), (1,0.33,1,0.33,1), and
(1,0.33,1, 1, 0.33).

a τ Distribution: Class (prob) Sum of actions (prob)

0 0.1 (1,0.14,0.14,0.14,0.14) (0.2) 1.56 (0.2)
(1,1,0.11,0.11,0.11) (0.2) 2.33 (0.2)
(1,1,1,0.103,0.103) (0.2) 3.203 (0.2)
(1,1,1,1,0.1) (0.2) 4.1 (0.2)
(1,1,1,1,1) (0.2) 5 (0.2)

0.3 (1,1,0.43,0.43,0.43) (0.2) 3.29 (0.2)
(1,1,1,0.33,0.33) (0.2) 3.66 (0.2)
(1,1,1,1,0.3) (0.2) 4.3 (0.2)
(1,1,1,1,1) (0.4) 5 (0.4)

0.6 (1,1,1,1,1) (1) 5 (1)
0.9 (1,1,1,1,1) (1) 5 (1)

0.4 0.05 (1,1,1,1,0.05) (0.16) 4.05 (0.16)
(1,1,1,1,1) (0.84) 5 (0.84)

0.3 (1,1,0.43,0.43,0.43) (0.2) 3.29 (0.2)
(1,1,1,1,0.3) (0.006) 4.3 (0.006)
(1,1,1,1,1) (0.794) 5 (0.794)

0.4 (1,1,0.67,0.67,0.67) (0.2) 4.01 (0.2)
(1,1,1,1,1) (0.8) 5 (0.8)

0.9 (1,1,1,1,1) (1) 5 (1)
0.7 0.1 (1,1,1,1,0.1) (0.16) 4.1 (0.16)

(1,1,1,1,1) (0.84) 5 (0.84)
0.3 (1,1,1,1,0.3) (0.01) 4.3 (0.01)

(1,1,1,1,1) (0.99) 5 (0.99)
0.6 (1,1,1,1,1) (1) 5 (1)
0.9 (1,1,1,1,1) (1) 5 (1)

1 0.1 (1,1,1,1,0.1) (0.16) 4.1 (0.16)
(1,1,1,1,1) (0.84) 4 (0.84)

0.5 (1,1,1,1,1) (1) 5 (1)
0.6 (1,1,1,1,1) (1) 5 (1)
0.9 (1,1,1,1,1) (1) 5 (1)

Solely for presentation purposes, we have omitted a few cases from Table 2 and presented
them instead in Figures 1, 2, 3, and 4. One can see in Figure 1 that for very small τ the uniform
distribution in the five possible classes was reached after 200 epochs, whereas for larger τ the
theoretical distributions were reached quite quickly. For large a, however, say a = 1, as shown
in Figure 4, the convergence is faster. This is consistent with our findings in Table 1, which
shows the results of a complete enumeration.

Apart from matching the sum of actions in each case, which we present visually, we would
like to draw the attention of the reader to the following cases:
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(a)

(b)

(c)

FIGURE 1. Sum of action profiles for a = 0, for n = 5.

• a = 0.4, τ = 0.3, and

• a = 0.7, τ = 0.3

In each of these cases, the theoretical distribution from Table 2 includes a class with a
negligible theoretical probability (of 0.006 in the first case and 0.01 in the second). One can
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(a)

(b)

(c)

FIGURE 2. Sum of action profiles for a = 0.4, for n = 5.

see that even though these small classes were not prominent after 50 epochs, they became so
after 200 epochs. Such strong empirical evidence bolsters the likelihood that our theoretical
findings are accurate. Moreover, it says that the time needed for the action profile to eventually
reach the limiting distribution depends on the values of a and τ .
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(a)

(b)

(c)

FIGURE 3. Sum of action profiles for a = 0.7, for n = 5.

6.3. Large sample size

Lastly we want to understand how well our results hold empirically for a large population,
and, more importantly, how fast we converge to the theoretical distribution. For this as well, we
have to rely on evaluating a random sample of sequences, as complete enumeration for even
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(a)

= 0.1

= 0.5

(b)

FIGURE 4. Sum of action profiles for a = 1, for n = 5.
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= 0.9

(c)

FIGURE 4. (Continued)

moderately large n, around 20 or 50, is nearly impossible to achieve. That said, we were able
to achieve the theoretical distributions by evaluating a large number (50000) of permutations
of the same length as the corresponding epoch. We choose the scenario a = 0, τ < 1/(n − 1) to
exhibit this dynamics. Our theory in Theorem 1 says that the number of infected agents asymp-
totically converges to Uniform(1, · · · , n). In Figure 5, we choose n = 5, 20, 50 and obtain the
dynamics after 20, 50, and 100 epochs.

One can see that for each n, initially, the infected set remains just 1 with a somewhat signif-
icant probability, whereas the probability of having all agents infected is negligible. However,
as time progresses, the distribution of the number of agents becomes more uniform. While for
small n the distribution becomes almost uniform fairly quickly (e.g., after about 20 epochs),
for larger n it takes significantly longer. This finding is consistent with our intuition and initial
setting. Since we begin with one infected individual, initially the number of infected agents
remains 1 with nontrivial probability, and the chance of the infection’s spreading to every-
one is quite small. We also ran the simulation for different values of n, a, and τ and obtained
similar findings. However, for large n it is very difficult to summarize the results of every
possible case exhaustively as we did for n = 5 in Table 1, and so we skip those discussions
here.

7. Conclusion

In this article, we propose a graph-theoretic model to describe the spread of a contagious
disease, allowing for rational interventions from agents sitting at the nodes of the graph.
The agents act based on a reasonable utility function, and they may (or may not) get infected
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FIGURE 5. Empirical probability distributions of the number of infected agents for a = 0, τ = 0.01, for
sample sizes n = 5, 20, 50 (shown in the first, second, and third row, respectively) at epochs 20, 50, and
100 (shown in the first, second, and third column, respectively). The distribution eventually becomes
uniform for every n, but it does so faster for small n.

if their exposure increases. We obtain the asymptotic distribution of the cardinality of the
infected set as well as that of the action profile. The results reveal several interesting patterns
that exhibit proximity to uniformity, as well as results that are intuitively justifiable (such as
the observation that if everyone’s immunity (τ value) is low to begin with, then eventually the
whole population gets infected). We have given an almost complete picture of how the values
of τ and a affect the final distributions of the infected set and the action profile. We also observe
several fascinating phase transition phenomena in our results. Through exact enumeration of
all possible sequences in which the agents are picked randomly, we also show that the empiri-
cal distributions obtained mimic the corresponding theoretical distributions rather closely after
only around 10 epochs from the start of the process.

A number of questions remain to be addressed that are beyond the scope of this paper. We
now give a brief overview of the questions we intend to pursue for similar or related models in
the future.

First, so far we have been unable to obtain, theoretically at least, the limiting distributions
for the case where a/(n − 1) < τ < 1/(n − 1). The length of this interval, for any given τ ,
is negligible for large n. However, our simulation studies show that there are possibly only two
different distributions that could lie in this space.

Second, we want to relax the restriction that all agents start with the same initial action
a or the same initial immunity τ . Again, our numerical explorations have revealed that
for fixed a and uniform τ , or for fixed τ and uniform a, the contagion tends to spread
throughout the population, yielding a rather interesting phenomenon. However, our current
mathematical tools fail to encompass such levels of randomness; thus, rigorously proving the
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occurrence of the phenomena mentioned above may require completely different mathematical
machinery.

Third, we would also like to explore the situation where gij is allowed to change over
time or have its own model of evolution. That possibility would also significantly affect our
computations and thus is left for future consideration.

Finally, from the model perspective, one could potentially incorporate a cost function for
infected individuals when they go out, which would imply that f ( · ) in the utility function
might not always be monotonic. It would be interesting to examine how such a cost function
would affect the dynamics.

Appendix A. A few important lemmas

Lemma 6. Suppose v ∈ N∞ and let t̄ ∈N0 be such that either

vt̄ ∈ I(St̄) and avt̄
(St̄) = 1

or

vt̄ /∈ I(St̄) and I(St̄−1) = I(St̄).

Then I(St̄) = I(St̄+1).

Proof. First assume that I(St̄−1) = I(St̄) and vt̄ = i with i /∈ I(St̄). Since i /∈ I(St̄), i will choose
their action as

bi(St̄) =
⎧⎨⎩1 if ri(St̄) = 0,

min
{

1,
τ (i)

ri(St̄)

}
if ri(St̄) �= 0.

If ri(St̄) = 0 then ri(Ŝt̄) = ri(St̄) = 0, and agent i will not get infected, as 1 × ri(Ŝt̄) = 0 �
τ (i). Suppose ri(St̄) > 0. Since ai(Ŝt̄) = bi(St̄) and ri(St̄) = ri(Ŝt̄), this means agent i will not
get infected at t̄ + 1. To show that any other agent j /∈ I(St̄) will not get infected at t̄ + 1, we
first claim that ai(Ŝt̄) � ai(St̄). If ai(Ŝt̄) = 1 then there is nothing to show, so assume ai(Ŝt̄) =
τ (i)

ri(St̄)
. As i /∈ I(St̄), we have ai(Ŝt̄−1)ri(Ŝt̄−1) � τ (i). Moreover, as I(St̄−1) = I(St̄), it follows that

Ŝt̄−1 = St̄ (see (iii) of Observation 1) and hence ri(Ŝt̄−1) = ri(St̄). Combining this with the fact
that ai(St̄) = ai(Ŝt̄−1), we get ai(St̄)ri(St̄) � τ (i). So ai(Ŝt̄) � ai(St̄).

Take j /∈ I(St̄) with j �= i. Since j /∈ I(St̄), it follows that aj(Ŝt̄−1)rj(Ŝt̄−1) � τ (j). Additionally,
j �= i implies aj(Ŝt̄−1) = aj(St̄) = aj(Ŝt̄). Therefore, to show that aj(Ŝt̄)rj(Ŝt̄) � τ (j), it is enough
to show that rj(Ŝt̄−1) � rj(Ŝt̄). Note that

rj(Ŝt̄−1) =
∑

k∈I(Ŝt̄−1)\j ak(Ŝt̄−1)gjk∑
k∈N\j ak(Ŝt̄−1)gjk

=
∑

k∈I(Ŝt̄−1)\j ak(Ŝt̄)gjk

ai(Ŝt̄−1)gji +∑
k∈N\{i,j} ak(Ŝt̄)gjk

(as i /∈ I(Ŝt̄−1) and ak(Ŝt̄−1) = ak(Ŝt̄)∀k �= i)
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=
∑

k∈I(Ŝt̄)\j ak(Ŝt̄)gjk

ai(Ŝt̄−1)gji +∑
k∈N\{i,j} ak(Ŝt̄)gjk

(as I(Ŝt̄−1) = I(St̄−1) = I(St̄) = I(Ŝt̄))

�
∑

k∈I(Ŝt̄)\j ak(Ŝt̄)gjk

ai(Ŝt̄)gji +∑
k∈N\{i,j} ak(Ŝt̄)gjk

(as ai(Ŝt̄) � ai(St̄) = ai(Ŝt̄−1))

= rj(Ŝt̄).

So agent j will not get infected at t̄ + 1, and hence I(St̄+1) = I(St̄).
Now assume i ∈ I(St̄) with ai(St̄) = 1. This means ai(Ŝt̄) = bi(St̄) = 1. As bi(St̄) = ai(St̄) and

vt̄ = i, we have St̄ = St̄+1 (see Observation 1). Hence, I(St̄) = I(St̄+1). This completes the proof
of the lemma. �
Lemma 7. Suppose that I(S0) = {1} and ai(S0) � τ (i) for all i ∈ N. Let v ∈ N∞ and t̂ ∈N0 be
such that vt �= 1 for all t < t̂. Then I(St) = {1} for all t � t̂.

Proof. Note that if t̂ = 0 then there is nothing to show. So assume t̂ � 1. We use induction to
prove the statement. As the base case, we show that I(S1) = {1}. Let v0 = i. Since t̂ � 1, i �= 1.
Agent i will choose their action as

bi(S0) =
⎧⎨⎩1 if ri(S0) = 0,

min
{

1,
τ (i)

ri(S0)

}
if ri(S0) �= 0.

If ri(S0) = 0 then ri(Ŝ0) = ri(S0) = 0, and agent i will not get infected, as 1 × ri(Ŝ0) = 0 �
τ (i). Suppose ri(S0) > 0. Since ai(Ŝ0) = bi(S0), ri(Ŝ0) = ri(S0), and bi(S0) � τ (i)

ri(S0) , this means

agent i will not get infected at t = 1. For any j /∈ {1, i}, aj(Ŝ0) = aj(S0) � τ (j), so agent j will
also not get infected at t = 1. Thus, I(S1) = {1}.

Next we introduce the following induction hypothesis: Given t̄ ∈N0 with t̂ � t̄ > 1, we have
I(S1) = · · · = I(St̄−1) = {1}.

We now show that I(St̄) = {1}. Let vt̄−1 = i. Since t̂ � t̄, this means i �= 1. Hence, i /∈ I(St̄−1).
As t̄ > 1, we have I(St̄−2) = I(St̄−1). This together with Lemma 6, implies I(St̄) = I(St̄−1) = {1}.
Thus, by induction, we have I(St̂) = {1}. This completes the proof of the lemma. �
Remark 4. It follows from Lemma 7 that I(St1(v)) = {1} for all v ∈ N∞.

Lemma 8. Consider v ∈ N∞ and let t̂ ∈N0 be such that ai(St̂) = 1 for all i ∈ I(St̂) and ai(St̂) �
τ (i) for all i /∈ I(St̂). Then I(St̂) = I(S∞).

Proof. We first show that I(St̂+1) = I(St̂). Let vt̂ = i. Suppose i ∈ I(St̂). Thus, by Lemma 1,
ai(Ŝt̂) = bi(St̂) = 1. This implies St̂ = St̂+1 (see Observation 1) and hence I(St̂+1) = I(St̂). Now
suppose i /∈ I(St̂). Agent i will choose their action as

bi(St̂) =
⎧⎨⎩1 if ri(St̂) = 0,

min
{

1,
τ (i)

ri(St̂)

}
if ri(St̂) �= 0.

If ri(St̂) = 0 then ri(Ŝt̂) = ri(St̂) = 0, and agent i will not get infected, as ai(Ŝt̂) × ri(Ŝt̂) =
0 � τ (i). Suppose ri(St̂) > 0. Since ai(Ŝt̂) = bi(St̂) and ri(St̂) = ri(Ŝt̂), this means agent i will
not get infected at t̂ + 1. Take j /∈ I(St̂) and j �= i. Note that by the assumption of the lemma,
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aj(St̂) � τ (j). Since j �= i, we have aj(St̂) = aj(Ŝt̂). Combining these two facts, we have aj(Ŝt̂) �
τ (j). As rj(Ŝt̂) � 1, this implies aj(Ŝt̂)rj(Ŝt̂) � τ (j). Thus, agent j will not get infected at t̂ + 1.
Hence, I(St̂+1) = I(St̂)

We now show that for any t ∈N0 with t > t̂ + 1, I(St̂) = I(St) holds. Assume for the sake of
contradiction that there exists t̄ ∈N0 with t̄ > t̂ + 1 such that I(St̂) � I(St̄). Without loss of gen-
erality we can assume that I(St̂) = I(St̂+1) = · · · = I(St̄−1). Let vt̄−1 = i. Suppose i ∈ I(St̄−1).
We first show

ai(St̄−1) = 1. (18)

As i ∈ I(St̄−1) and I(St̄−1) = I(St̂), we have i ∈ I(St̂). Thus, by the assumption of the lemma,
ai(St̂) = 1. Since t̂ � t̄ − 1, this implies ai(St̄−1) = 1; see Observation 3.

By (18), we have ai(St̄−1) = 1. Since vt̄−1 = i and i ∈ I(St̄−1), this implies ai(Ŝt̄−1) = 1.

Thus, St̄−1 = Ŝt̄−1, and hence I(St̄−1) = I(St̄) (see Observation 1), a contradiction to the fact
that I(St̂) � I(St̄). Hence, I(St̄) = I(St̂).

Now suppose i /∈ I(St̄−1). As t̄ > t̂ + 1, we have I(St̄−1) = I(St̄−2). This together with
Lemma 6 implies I(St̄−1) = I(St̄), a contradiction to the fact that I(St̂) � I(St̄). Hence, I(St̄) =
I(St̂). This completes the proof of the lemma. �

Appendix B. Proofs of Theorem 3, Theorem 5, and Theorem 9

B.1. Proof of Theorem 3

Proof. We follow the same structure that we used in the proof of Theorem 1.
Step 1. Fix an agent sequence v ∈ N∞ and let S be the DVSP induced by v. To shorten notation,
for all i ∈ N, let us denote ti(v) by ki. Recall the set N1(v). We distinguish two cases based on
the value of |N1(v)|.
Case 1: |N1(v)| = 0.

First assume τ � 1
n−1 . We show that no agent will get infected under this assumption, i.e.,

I(S∞) = {1}. Note that by the assumption of the case, v0 = 1. Also, as a = 1, ai(S0) = 1 for
all i ∈ N. Recall that Ŝ0 denotes the intermediate state whose only difference from S0 is that
agent v0 has updated their action to bv0

(S0). Since v0 = 1, we have ai(S0) = ai(Ŝ0) for all i �= 1.

Thus, ai(Ŝ0) = 1 for all i ∈ N \ {1}. Moreover, by Lemma 1 and the definition of the process,
a1(Ŝ0) = 1. Consider the time point 1. By the definition of the process, an agent i �= 1 will be
in I(S1) if ai(Ŝ0)ri(Ŝ0) > τ . Since I(S0) = {1}, ai(Ŝ0) = 1 for all i ∈ N, and gij = c for all i �= j,
it follows that ri(Ŝ0) = 1

n−1 for all i ∈ N \ {1}. Because τ � 1
n−1 , this implies that no agent in

N \ {1} gets infected at the time point 1. Hence, I(S1) = {1}.
We now show that no new agent will get infected after this. We first show that I(S2) =

{1}. Let v1 = i. If i /∈ I(S1), then as I(S0) = I(S1) by Lemma 6, we have I(S1) = I(S2). If i ∈
I(S1) then i = 1. Moreover, a1(S1) = a1(Ŝ0) = 1. Hence, by Lemma 6, I(S1) = I(S2). Therefore,
I(S2) = {1}. Using the same arguments repeatedly, it follows that I(St) = {1} for all t � 2. Thus,
I(S∞) = {1}.

Now assume τ < 1
n−1 . We show that all the agents get infected under this assumption. Using

similar arguments as before, we get ri(Ŝ0) = 1
n−1 for all i ∈ N \ {1}. As τ < 1

n−1 , this means
each i ∈ N \ {1} will get infected at time point 1. Therefore, I(S∞) = N.
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Case 2: |N1(v)|� 1.

This means v0 �= 1. Let v0 = i /∈ {1}. Then, by the definition of the process, agent i will
choose their action as bi(S0) at the intermediate state Ŝ0. As aj(S0) = 1 for all j ∈ N and I(S0) =
{1}, it follows that ri(S0) �= 0. Therefore,

bi(S0) = min

{
1,

τ

ri(S0)

}
= min {1, (n − 1)τ } . (19)

Since by our assumption v0 = i and i /∈ I(S0), by Observation 4, i /∈ I(S1). For any other
uninfected agent j,

rj(Ŝ0) = 1

(n − 2) + bi(S0)
.

This together with the fact that aj(Ŝ0) = 1 implies the following:

(1) if τ � 1
n−1 , then bi(S0) = 1 and hence aj(Ŝ0)rj(Ŝ0) = 1

n−1 � τ ;

(2) if τ < 1
n−1 , then bi(S0) < 1 and hence aj(Ŝ0)rj(Ŝ0) > 1

n−1 > τ .

Combining the above observations, we may conclude that if τ � 1
n−1 then agent j will not

get infected at time point 1, and if τ < 1
n−1 then agent j will get infected at time point 1. Hence,

we have

τ � 1

n − 1
=⇒ I(S1) = {1} and τ <

1

n − 1
=⇒ I(S1) = N \ {i}.

If τ � 1
n−1 , then using similar arguments as in Case 1, we can show that I(S∞) = {1}. If

τ < 1
n−1 , then to identify the final infected set, we distinguish two sub-cases.

Case 2.1: v1 = i.

We show that the final infected set will be N \ i. Since by our assumption v1 = i and i /∈ I(S1),
by Observation 4, i /∈ I(S2). Hence, I(S2) = N \ {i}. We now show that agent i will not get
infected after this. At time point 2,

ri(Ŝ2) = (n − 1)

(n − 1)
= 1.

Therefore, ai(Ŝ2) = τ (see Observation 4). At time point 3, if v3 = i, then agent i will not
get infected at time point 4 (Observation 4). On the other hand, if v3 �= i, then as ai(Ŝ3) =
ai(Ŝ2) = τ , it follows that ai(Ŝ3)ri(Ŝ3) � τ . Hence agent i will remain uninfected at time point
4. Continuing in this manner, we can show that agent i will not get infected after this. Thus,
I(S∞) = N \ {i}.
Case 2.2: v1 �= i.

We show that the final infected set will be N. Since I(S1) = N \ {i}, ri(Ŝ1) = 1. Moreover,
as ai(S1) = ai(Ŝ0) = bi(S0) = (n − 1)τ > τ (see (19)) and v1 �= i, it follows that ai(Ŝ1) > τ .
Combining these two facts, we have ai(Ŝ1)ri(Ŝ1) > τ . Thus, agent i will get infected at time
point 2. Hence, I(S2) = N and I(S∞) = N.
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Step 2. First assume τ � 1
n−1 . Then, in view of Case 1 and Case 2 of the current proof, we

have I(S∞) = {1}.
Now assume τ < 1

n−1 . By Case 1 and Case 2 above, we have the following:

1. |I(S∞)| = n − 1 with 1 ∈ I(S∞) if |N1(v)|� 1 and there is i ∈ N \ {1} such that ki = 0 and
v1 = i;

2. I(S∞) = N if either |N1(v)| = 0 or |N1(v)|� 1 and there is no i ∈ N \ {1} such that ki = 0
and v1 = i.

We calculate the probability of |I(S∞)| = n − 1. By (i) we have

P(v | |N1(v)|� 1 and ∃i �= 1 such that ki = 0 and v1 = i)

=P(v | ∃i �= 1 such that ki = 0 and v1 = i)

=n−1C1 × 1

n2

=n − 1

n2
.

Note that by (i) and (ii),

P(|I(S∞)| = n − 1) + P(I(S∞) = N) = 1.

Therefore,

P(I(S∞) = N) = 1 − P(|I(S∞)| = n − 1)

= 1 − n − 1

n2
.

Since any two subsets of N with cardinality n − 1 have the same probability, combining all of
the above observations yields the following distribution of the infected set:

P(I(S∞) = J) =

⎧⎪⎪⎨⎪⎪⎩
1
n2 if 1 ∈ J and |J| = n − 1,

1 − n−1
n2 if |J| = n, i.e., J = N,

0 otherwise.

This completes the proof of the theorem. �

B.2. Proof of Theorem 5

Proof. Note that[
α̂ �

⌈
1
τ

− (n − 1)a

1 − a

⌉]
⇐⇒

[
τ � 1

α̂ + (n − 1 − α̂)a

]
(20)

and [
α̂ =

⌈
1
τ

− (n − 1)a

1 − a

⌉]
⇐⇒

[
1

α̂ − 1 + (n − α̂)a
> τ � 1

α̂ + (n − 1 − α̂)a

]
. (21)
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Also, as τ � 1
n−1 , we have α̂ � n − 1. We follow the same structure that we used in the proof

of Theorem 1.

Step 1. Fix an agent sequence v ∈ N∞ and let S be the virus spread process induced by v. To
shorten notation, for all i ∈ N, let us denote ti(v) by ki. We first prove a claim similar to Claim
1 from Step 1 of the proof of Theorem 1.

Claim 1. For all 0 � t < k1, ai(St+1) = 1 where vt = i.

Proof of the claim. Let v0 = i. As k1 > 0, i �= 1. Since aj(S0) = a > 0 for all j ∈ N, I(S0) =
{1}, and gij = c for all i �= j, we have ri(S0) = 1

(n−1) . This means

bi(S0) = min

{
1,

τ

1
(n−1)

}
= min{1, (n − 1)τ } = 1,

as by the assumption of the Lemma τ � 1
(n−1) . Thus, ai(S1) = ai(Ŝ0) = 1.

Next we introduce the following induction hypothesis: Given t̄ ∈N0 with t̄ < k1, we have
for all t < t̄, aj(St+1) = 1 where vt = j.

Let vt̄ = i′; we show that ai′ (St̄+1) = 1. Note that by Lemma 7, I(St̄) = {1}. Moreover, by
the induction hypothesis, aj(St̄) � a for all j ∈ N \ {1}. Also, as t̄ < k1, we have a1(St̄) = a.
Combining all these observations, we have

1

(n − 1)
� ri′ (St̄) �

a

(n − 1)
. (22)

Since ri′(St̄) > 0,

bi′ (St̄) = min

{
1,

τ

ri′(St̄)

}
;

see Lemma 1. Therefore, using (22) and the fact that τ � 1
(n−1) , we have bi′ (St̄) = 1. Thus,

ai′ (St̄+1) = ai′ (Ŝt̄) = 1. This completes the proof of the claim. �
We now determine the final infected set. Note that by Claim 1, ai(Sk1 ) = 1 for all i ∈ N1(v).

Also, by the definition of the process, ai(Sk1 ) = a for all i /∈ N1(v) ∪ {1}, as these agents have not
updated their actions till the time point k1. Recall that Ŝk1 denotes the intermediate state whose
only difference from Sk1 is that agent vk1

has updated their action to bvk1
(Sk1 ). Since vk1

= 1,

we have ai(Sk1 ) = ai(Ŝk1 ) for all i �= 1. Thus, ai(Ŝk1 ) = 1 for all i ∈ N1(v) and ai(Ŝk1 ) = a for all
i /∈ N1(v) ∪ {1}.

Moreover, by Remark 1 and the definition of the process, a1(Ŝk1 ) = 1. Consider the
time point k1 + 1. By the definition of the process, an agent i �= 1 will be in I(Sk1+1) if
ai(Ŝk1 )ri(Ŝk1 ) > τ . For any i /∈ N1(v) ∪ 1, ai(Ŝk1 ) = a � τ . Thus, ai(Ŝk1 )ri(Ŝk1 ) � τ and any agent
in N1(v) ∪ {1} will not get infected at k1 + 1. For agents in N1(v), we distinguish two cases.

Case 1: |N1(v)|� α̂.

Since I(Sk1 ) = {1}, ai(Ŝk1 ) = 1 for all i ∈ N1(v) ∪ {1}, ai(Ŝk1 ) = a for all i /∈ N1(v) ∪ {1}, and
gij = c for all i �= j, it follows that
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ri(Ŝk1 ) = 1

|N1(v)| + (n − 1 − |N1(v)|)a
= 1

|N1(v)|(1 − a) + (n − 1)a

� 1

α̂(1 − a) + (n − 1)a
(since |N1(v)|� α̂)

� τ (by (20))

for all i ∈ N1(v). This implies that no agent in N1(v) gets infected at the time point k1 + 1.
We show that no new agent will get infected after this. We first show that I(Sk1+2) = {1}.

Let vk1+1 = i. If i /∈ I(Sk1+1), then as I(Sk1 ) = I(Sk1+1) by Lemma 6, we have I(Sk1+1) =
I(Sk1+2). If i ∈ I(Sk1+1) then i = 1. Moreover, a1(Sk1+1) = a1(Ŝk1 ) = 1. Hence, by Lemma 6,
I(Sk1+1) = I(Sk1+2). Therefore, I(Sk1+2) = {1}. Using the same arguments repeatedly, it follows
that I(St) = {1} for all t � k1 + 2. Thus, I(S∞) = {1}.
Case 2: |N1(v)|� α̂ − 1.

By the assumption of the case, α̂ � 1. First, assume α̂ = 1. This, together with |N1(v)|�
α̂ − 1, implies |N1(v)| = 0. Therefore, k1 = 1. We show that I(S∞) = {1}. Note that by the
definition of the process, ai(Ŝ0) = a for all i �= 1. As a � τ , this means no agent in the set
{2, . . . , n} will get infected at the time point 1. Hence, I(S1) = {1}. Moreover, as I(S1) = {1}
with a1(S1) = 1 and ai(S1) = a � τ for all i �= 1, by Lemma 8 it follows that I(S1) = I(S∞).
Hence, I(S∞) = {1}.

Now assume α̂ � 2. Thus, by the definition of α̂, we have

α̂ =
⌈

1
τ

− (n − 1)a

1 − a

⌉
.

As I(Sk1 ) = 1, ai(Ŝk1 ) = 1 for all i ∈ N1(v) ∪ {1}, ai(Ŝk1 ) = a for all i /∈ N1(v) ∪ {1}, and gij = c
for all i �= j, we have for all i ∈ N1(v)

ri(Ŝk1 ) = 1

|N1(v)| + (n − 1 − |N1(v)|)a
= 1

|N1(v)|(1 − a) + (n − 1)a

� 1

(α̂ − 1)(1 − a) + (n − 1)a
(since |N1(v)|� (α̂ − 1))

= 1

(α̂ − 1) + (n − α̂)a

> τ (by (21)).

This implies that all agents in N1(v) will get infected at time point k1 + 1. Thus, we
have I(Sk1+1) = N1(v) ∪ {1}. Furthermore, as ai(Sk1+1) = ai(Ŝk1 ) = 1 for all i ∈ I(Sk1+1) and
ai(Sk1+1) = a � τ for all i /∈ I(Sk1+1), by Lemma 8 it follows that I(Sk1+1) = I(S∞). Hence,
I(S∞) = N1(v) ∪ {1}.
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Step 2. Consider the probability space (N∞,F , P) and random variables S and t1, . . . , tn.
Let m ∈ {2, . . . , n} be such that m � α̂. In view of Case 1 and Case 2 of the current proof, we
have (i) |I(S∞)|� α̂, and (ii) |I(S∞)| = m with 1 ∈ I(S∞) if and only if |{i ∈ N | ti < t1}| = m −
1. Also, |I(S∞)| = 1 if and only if either {i ∈ N | ti < t1} = ∅ or |{i ∈ N | ti < t1}|� α̂. Moreover,
as P is uniform, any two subsets of N with the same cardinality have the same probability.
These observations together yield

P(I(S∞) = J) =

⎧⎪⎪⎨⎪⎪⎩
1 − α̂−1

n if J = {1},
1

n×n−1Cm−1
if 1 ∈ J and |J| = m where m ∈ [2, α̂],

0 otherwise.

This completes the proof of the theorem. �

B.3. Proof of Theorem 9

Proof. We follow the same structure that we used in the proof of Theorem 1.
Step 1. Fix an agent sequence v ∈ N∞ and let S be the DVSP induced by v. To shorten

notation, for all i ∈ N, let us denote ti(v) by ki. Recall the set N1(v). We distinguish two cases
based on the value of |N1(v)|.
Case 1: |N1(v)| = 0.

We show that, for τ � a
n−1 , all the agents will get infected in this case, i.e., I(S∞) = N. Note

that by the assumption of the case, v0 = 1. Recall that Ŝ0 denotes the intermediate state whose
only difference from S0 is that agent v0 has updated their action to bv0

(S0). Since v0 = 1, we

have ai(S0) = ai(Ŝ0) = a for all i �= 1. Moreover, by Remark 1 and the definition of the process,
a1(Ŝ0) = 1. Consider the time point 1. By the definition of the process, an agent i �= 1 will be
in I(S1) if ai(Ŝ0)ri(Ŝ0) > τ . Since I(S0) = {1}, ai(Ŝ0) = a for all i ∈ N, and gij = c for all i �= j, it
follows that for all i ∈ N \ {1},

ari(Ŝ0) = a

(n − 2)a + 1
>

a

(n − 1)
.

Because τ � a
n−1 , this implies that all the agents in N \ {1} get infected at the time point 1.

Hence I(S1) = N. Therefore, by the definition of the process, I(S∞) = N.

Case 2: |N1(v)|� 1.

This means v0 �= 1. Let v0 = i ∈ N \ 1. Hence, by the definition of the process, agent i will
choose their action as bi(S0) at the intermediate state Ŝ0. As aj(S0) = a > 0 for all j ∈ N and
I(S0) = {1}, it follows that ri(S0) �= 0. Therefore,

bi(S0) = min

{
1,

τ

ri(S0)

}
= min {1, (n − 1)τ } = (n − 1)τ . (23)

Since by our assumption v0 = i and i /∈ I(S0), by Observation 4, i /∈ I(S1). For any other
uninfected agent j,

rj(Ŝ0) = a

(n − 2)a + bi(S0)
= a

(n − 2)a + (n − 1)τ
.
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This together with the fact that aj(Ŝ0) = a implies the following:

(1) if τ = a
n−1 then aj(Ŝ0)rj(Ŝ0) = a

n−1 = τ ;

(2) if τ < a
n−1 then aj(Ŝ0)rj(Ŝ0) > a

n−1 > τ .

Combining the above observations, we may conclude that if τ = 1
n−1 then agent j will not

get infected at time point 1, and if τ < a
n−1 then agent j will get infected at time point 1. Hence,

we have

τ = a

n − 1
=⇒ I(S1) = {1} and τ <

a

n − 1
=⇒ I(S1) = N \ {i}.

To decide the final outcome, we first assume τ = a
n−1 . Note that by (23), bi(S0) = a. This

means ai(S1) = a. Moreover, as v0 = i, we have aj(S1) = a for all j �= i. Using similar argu-
ments, we can show that ak(Sk1 ) = a for all k ∈ N and I(Sk1 ) = {1}. By the definition of the
process, a1(Ŝk1 ) = 1 and ak(Ŝk1 ) = a for all k �= 1. Therefore, for any k �= 1,

ak(Ŝk1 )rk(Ŝk1 ) = a

(n − 2)a + 1
>

a

(n − 1)
= τ .

Thus, all the agents other than agent 1 will get infected at k1 + 1. Hence, I(S∞) = N.
Now assume τ < a

n−1 . We distinguish two sub-cases.

Case 2.1. v1 = i.

We show that the final infected set will be N \ i. Since by our assumption v1 = i and i /∈ I(S1),
by Observation 4, i /∈ I(S2). Hence, I(S2) = N \ {i}. We now show that agent i will not get
infected after this. At time point 2,

ri(Ŝ2) = (n − 1)

(n − 1)
= 1.

Therefore, ai(Ŝ2) = τ (see Observation 4). At time point 3, if v3 = i, then agent i will not
get infected at time point 4 (Observation 4). On the other hand, if v3 �= i, then as ai(Ŝ3) =
ai(Ŝ2) = τ , it follows that ai(Ŝ3)ri(Ŝ3) � τ . Hence agent i will remain uninfected at time point
4. Continuing in this manner, we can show that agent i will not get infected after this. Thus,
I(S∞) = N \ {i}.
Case 2.2: v1 �= i.

We show that the final infected set will be N. Since I(S1) = N \ {i}, ri(Ŝ1) = 1. Moreover,
as ai(S1) = ai(Ŝ0) = bi(S0) = (n − 1)τ > τ (see (23)) and v1 �= i, it follows that ai(Ŝ1) > τ .
Combining these two facts, we have ai(Ŝ1)ri(Ŝ1) > τ . Thus, agent i will get infected at time
point 2. Hence, I(S2) = N and I(S∞) = N.

Step 2. First assume τ = a
n−1 . Then, in view of Case 1 and Case 2 of the current proof, we

have I(S∞) = N.
Now assume τ < a

n−1 . By Case 1 and Case 2 above, we have the following:

(i) I(S∞) = N \ i with 1 ∈ I(S∞) if |N1(v)|� 1 and there is i ∈ N \ {1} such that ki = 0 and
v1 = i;

(ii) I(S∞) = N if either |N1(v)| = 0 or |N1(v)|� 1 and there is no i ∈ N \ {1} such that ki = 0
and v1 = i.
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We calculate the probability of |I(S∞)| = n − 1. By (i) we have

P(v | |N1(v)|� 1 and ∃i �= 1 such that ki = 0 and v1 = i)

=P(v | ∃i �= 1 such that ki = 0 and v1 = i)

=n−1C1 × 1

n2

=n − 1

n2
.

Note that by (i) and (ii),

P(|I(S∞)| = n − 1) + P(I(S∞) = N) = 1.

Therefore,

P(I(S∞) = N) = 1 − P(|I(S∞)| = n − 1)

= 1 − n − 1

n2
.

Since any two subsets of N with cardinality n − 1 have the same probability, combining all of
the above observations yields the following distribution of the infected set:

P(I(S∞) = J) =

⎧⎪⎪⎨⎪⎪⎩
1
n2 if 1 ∈ J and |J| = n − 1,

1 − n−1
n2 if |J| = n, i.e., J = N,

0 otherwise.

This completes the proof of the theorem. �

Appendix C. A few important lemmas

Lemma 9. Let v ∈ N∞ and let S be the DVSP induced by v. Suppose t0 is such that I(St0 ) = I(St)
for all t � t0 and ak(St0 ) = 1 for all k ∈ I(St0 ). Then for i /∈ I(St0 ) and t̄ > t0 with vt̄ = i, we have

ai(Ŝt̄) � aj(Ŝt̄) for all j /∈ I(St0 ) with vt = j for some t ∈ (t0, t̄].

Proof. We use induction on t̄ to prove the lemma. Note that for the base case, that is, for
t̄ = t0 + 1, the Lemma holds vacuously.

Next we introduce the following induction hypothesis: Given t̄ ∈N0 with t̄ > t0 + 1, the
Lemma holds for all t with t0 + 1 � t < t̄.

We now show that the statement in the Lemma holds for t̄. Suppose vt̄ = i where i /∈ I(St0 ).
If there is no t ∈ (t0, t̄) such that vt /∈ I(St0 ), the Lemma holds vacuously. So assume that t̂ is
the last time point before t̄ such that vt̂ = j for some j /∈ I(St0 ). This, together with the induction
hypothesis, implies aj(Ŝt̂) � ak(Ŝt̂) for all k /∈ I(S0) with vt = k for some t ∈ (t0, t̂). Also, by the
definition of the process, al(Ŝt̂) = al(Ŝt̄) for all l /∈ I(St0 ) \ i. Therefore, to prove the Lemma it
is enough to show that ai(Ŝt̄) � aj(Ŝt̄). Additionally, as aj(Ŝt̄) � 1, we may assume that ai(Ŝt̄) =
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τ

ri(Ŝt̄)
. Moreover, as j /∈ I(St0 ), aj(Ŝt̂) � τ

rj(Ŝt̂)
. Now,

τ

rj(Ŝt̂)
= τ

|I(St0 )|
|I(St0 )|+∑k/∈I(St0 )\j ak(Ŝt̂)

(as gij = c for all i �= j)

=
τ [|I(St0 )| +∑

k/∈I(St0 )\j ak(Ŝt̂)]

|I(St0 )| (as I(St0 ) = I(St̂) and for k ∈ I(St0 ), ak(St̂) = 1)

=
τ [|I(St0 )| +∑

k/∈I(St0 )\{i,j} ak(Ŝt̂) + ai(Ŝt̂)]

|I(St0 )|

�
τ [|I(St0 )| +∑

k/∈I(St0 )\{i,j} ak(Ŝt̂) + aj(Ŝt̂)]

|I(St0 )| (as aj(Ŝt̂) � ai(Ŝt̂))

=
τ [|I(St0 )| +∑

k/∈I(St0 )\{i,j} ak(Ŝt̄) + aj(Ŝt̄)]

|I(St0 )| (as ak(Ŝt̂) = ak(Ŝt̄) for all k /∈ I(St0 ) \ i)

=
τ [|I(St0 )| +∑

k/∈I(St0 )\i ak(Ŝt̄)]

|I(St0 )|
= τ

|I(St0 )|
|I(St0 )|+∑k/∈I(St0 )\i ak(Ŝt̄)

(as I(St0 ) = I(St̄) and for k ∈ I(St0 ), ak(St̄) = 1)

= τ

ri(Ŝt̄)
(as gij = c for all i �= j). (24)

Equation (24) together with the fact that ai(Ŝt̄) = τ

ri(Ŝt̄)
and aj(Ŝt̂) � τ

rj(Ŝt̂)
implies ai(Ŝt̄) � aj(Ŝt̂).

Hence ai(Ŝt̄) � aj(Ŝt̄). This completes the proof of the lemma. �
The following Lemma provides an important property of the final action limit for both

infected and uninfected agents. It shows that an infected agent will have the action limit 1,
whereas any two uninfected agents will have the same action limit; that is, for i, j /∈ I(S∞),
ai(S∞) = aj(S∞).

Lemma 10. Let v ∈ N∞ and let S be the DVSP induced by v. Then

[k ∈ I(S∞)] =⇒ [ak(S∞) = 1]

and

[i, j /∈ I(S∞)] =⇒ [ai(S∞) = aj(S∞)].

Proof. Let v ∈ N∞ and let S be the DVSP induced by v. Consider k ∈ I(S∞). As v ∈ N∞,
agent k appears infinitely many times in v. Moreover, after getting infected, whenever they
update their action, they will choose it to be 1. Thus, ak(S∞) = 1. Now consider i, j /∈ I(S∞).
Let b = ai(S∞) and consider ε > 0. This means there exists t0 such that ai(St) � b − ε for all
t � t0. Note that as N is a finite set and I(S∞) exists, there exists t̃ ∈N0 such that I(St̃) = I(S∞).
In view of this, we may assume that I(St0 ) = I(S∞). Consider a time point t̂ such that
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(1) t̂ > t0 and vt̂ = j, and

(2) there exists t̄ ∈ [to, t̂] such that vt̄ = i.

Such a time point t̂ exists, since v ∈ N∞. Therefore, by Lemma 9, aj(St̂) � ai(St̂). As t̂ > t0,
this means aj(St̂) � b − ε. Furthermore, as I(St0 ) = I(S∞) and t̂ > t0, by Claim 1 in Lemma 2,
aj(St) � aj(St̂) for all t � t̂. Thus, aj(St) � b − ε for all t � t̂. Since ε is arbitrary, this gives
aj(S∞) � b. Similarly, we can show that ai(S∞) � aj(S∞). Hence, ai(S∞) = aj(S∞).

The next Lemma determines the common action limit of the uninfected agents.

Lemma 11. Let v ∈ N∞ and let S be the DVSP induced by v. Furthermore, let γ be the common
action limit of the uninfected agents. Then

[(n − 1)τ < |I(S∞)|] =⇒
[
γ = τ |I(S∞)|

(1 + τ )|I(S∞)| − τ (n − 1)
< 1

]
and

[(n − 1)τ � |I(S∞)|] =⇒ [γ = 1].

Proof. Let t0 ∈N0 be such that I(St0 ) = I(S∞) and ak(St0 ) = 1 for all k ∈ I(St0 ). First assume
that (n − 1)τ < |I(S∞)|. This implies τ

|I(S∞)| < 1
n−1 . We first show that for any time point t̄ � t0,

if vt̄ /∈ I(S∞) then avt̄
(Ŝt̄) < 1. Let vt̄ = i. Since ai(Ŝt̄) = min{ τ

ri(Ŝt̄)
, 1}, it is enough to show that

τ

ri(Ŝt̄)
< 1. We have

τ

ri(Ŝt̄)
= τ

|I(Ŝt̄)|

⎛⎝|I(Ŝt̄)| +
∑

j/∈I(Ŝt̄)∪{i}
aj(Ŝt̄)

⎞⎠ (as gij = c for all i �= j)

= τ

|I(S∞)|

⎛⎝|I(S∞)| +
∑

j/∈I(S∞)∪{i}
aj(Ŝt̄)

⎞⎠ (as I(St0 ) = I(S∞) and t̄ � t0)

<
1

n − 1

⎛⎝|I(S∞)| +
∑

j/∈I(S∞)∪{i}
aj(Ŝt̄)

⎞⎠ (as
τ

|I(S∞)| <
1

n − 1
)

≤ 1 (as aj(Ŝt̄) � 1. for all j /∈ I(S∞ ∪ {i}).
Since t̄ is arbitrary, it follows that ai(Ŝt) = τ

ri(Ŝt)
for all t � t0 with vt = i. Hence,

ai(Ŝt) = τ

ri(Ŝt)

= τ

|I(Ŝt)|

⎛⎝|I(Ŝt)| +
∑

j/∈I(Ŝt)∪{i}
aj(Ŝt)

⎞⎠ (as gij = c for all i �= j)

= τ

|I(S∞)|

⎛⎝|I(S∞)| +
∑

j/∈I(S∞)∪{i}
aj(Ŝt)

⎞⎠ . (25)

https://doi.org/10.1017/apr.2024.64 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.64


Game-theoretic epidemic model 57

Taking the limit on both sides of (25), we have

γ = τ

|I(S∞)|

⎛⎝|I(S∞)| +
∑

j/∈I(S∞)∪{i}
γ

⎞⎠
=⇒ γ = τ |I(S∞)|

(1 + τ )|I(S∞)| − τ (n − 1)

=⇒ γ <
τ |I(S∞)|

(1 + τ )|I(S∞)| − |I(S∞)| = 1.

Now assume (n − 1)τ � |I(S∞)|. We have to show that γ = 1. Assume γ < 1. Consider
i /∈ I(S∞). Since, by Claim 1 in Lemma 2, ai(St) is an increasing sequence for t > t0, γ < 1
implies ai(St) < 1 for all t > t0. This means ai(Ŝt) = τ

ri(Ŝt)
for t > t0 with vt = i. Therefore, using

similar arguments as before, we have

γ = τ |I(S∞)|
(1 + τ )|I(S∞)| − τ (n − 1)

=⇒ γ � τ |I(S∞)|
(1 + τ )|I(S∞)| − |I(S∞)| = 1.

But this is a contradiction to the fact that γ < 1. Therefore, γ = 1. �

Appendix D. Proofs of Theorem 4, Theorem 6, Theorem 8, and Theorem 10

D.1. Proof of Theorem 4

Proof. We first explore the limiting actions for a fixed agent sequence, and then we use this
to find the limiting probability distribution. Let v be an agent sequence and S the DVSP induced
by v. Note that by Remark 1, it is enough to assume v ∈ N∞. Therefore, by Lemma 10, all the
agents outside I(S∞) have the same action limit, and all the agents in I(S∞) have the action limit
1. Let us denote the common limit by γ . First assume τ � 1

n−1 . By Theorem 3, I(S∞) = {1}.
Therefore, (n − 1)τ � |I(S∞)|, and hence, by Lemma 11, γ = 1. Thus, aN(S∞) = �1.

Now assume that τ < 1
n−1 . We distinguish two cases based on the value of N1(v) (as in the

proof of Theorem 3) to find γ .

Case 1: |N1(v)| = 0.

Recall that for this case the final infected set is N. Hence, aN(S∞) = �1.

Case 2: |N1(v)|� 1.

Recall that for this case the final infected set has cardinality either n or n − 1. If the car-
dinality is n then aN(S∞) = �1. If the cardinality is n − 1, then as (n − 1)τ < 1, by Lemma 11,
γ = τ . Hence

ai(S∞) =
{

1 if i ∈ I(S∞),

τ if i /∈ I(S∞).
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Note that this implies aN(S∞) ∈ An−1. Also, as P is uniform, any two vectors in An−1 have the
same probability. Thus, by Theorem 3, we have the following distribution:

P(aN(S∞) = �x) =

⎧⎪⎪⎨⎪⎪⎩
1 − n−1

n2 if �x ∈ An, i.e., �x = �1,

1
n2 if �x ∈ An−1,

0 otherwise. �

D.2. Proof of Theorem 6

Proof. We first explore the limiting actions for a fixed agent sequence, and then we use
this to find the limiting probability distribution. Let v be an agent sequence and S the DVSP
induced by v. Note that by Remark 1, it is enough to assume v ∈ N∞. Therefore, by Lemma 10,
all the agents outside I(S∞) have the same action limit, and all the agents in I(S∞) have the
action limit 1. Let us denote the common limit by γ . We distinguish two cases based on the
value of N1(v) (as in the proof of Theorem 5) to find γ .

Case 1: |N1(v)|� α̂.

Recall that for this case the final infected set is {1}. Moreover, by the assumption of the
theorem, (n − 1)τ � 1. Therefore, by Lemma 6, γ = 1. Hence, aN(S∞) = �1.

Case 2: |N1(v)|� α̂ − 1.

Recall that for this case the final infected set is N1(v) ∪ {1}. Note that as α̂ � n − 1, N1(v) ∪
{1}� n − 1. Therefore, by Lemma 6, if (n − 1)τ � |N1(v)| + 1 then aN(S∞) = �1, and if (n −
1)τ < |N1(v)| + 1 then

ai(S∞) =
{

1 if i ∈ I(S∞),
τ (|N1(v)|+1)

(1+τ )(|N1(v)|+1)−τ (n−1) if i /∈ I(S∞).

Recall that β̂ = min{�(n − 1)τ� + 1, α̂ + 1}. Thus, combining Cases 1 and 2, we have the
following:

(i) |N1(v)| + 1 ∈ [β̂, α̂] implies

ai(S∞) =
{

1 if i ∈ I(S∞),
τ (|N1(v)|+1)

(1+τ )(|N1(v)|+1)−τ (n−1) if i /∈ I(S∞).

Note that (i) implies aN(S∞) ∈ A[|N1(v)|+1] when |N1(v)| + 1 ∈ [β̂, α̂]. Also, as P is uniform,
any two vectors in Am, for m ∈ [β̂, α̂], have the same probability. Thus, we have the following
distribution:

P(aN(S∞) = �x) =

⎧⎪⎪⎨⎪⎪⎩
1 − α̂−β̂+1

n if �x ∈ An, i.e., �x = �1,

1
n×n−1Cm−1

if �x ∈ Am for some m ∈ [β̂, α̂],

0 otherwise. �

D.3. Proof of Theorem 8

Proof. We first explore the limiting actions for a fixed agent sequence, and then we use
this to find the limiting probability distribution. Let v be an agent sequence and S the DVSP
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induced by v. Note that by Remark 1, it is enough to assume v ∈ N∞. Therefore, by Lemma 10,
all the agents outside I(S∞) have the same action limit, and all the agents in I(S∞) have the
action limit 1. Let us denote the common limit by γ . First assume α̃ + 1 < ᾱ. As shown in the
proof of Theorem 7, the infected set is either {1} or |N1(v)| + 1 where N1(v) ∈ [1, α̃]. Since, by
the assumption of the theorem, (n − 1)τ � 1, we have (n − 1)τ � I(S∞) when the infected set
is {1}. Therefore, by Lemma 11, γ = 1, and hence aN(S∞) = �1. On the other hand, if the final
infected set is N1(v) ∪ {1}, the limiting action depends on |N1(v)|. By Lemma 6, if (n − 1)τ �
|N1(v)| + 1 then aN(S∞) = �1, and if (n − 1)τ < |N1(v)| + 1 then

ai(S∞) =
{

1 if i ∈ I(S∞),
τ (|N1(v)|+1)

(1+τ )(|N1(v)|+1)−τ (n−1) if i /∈ I(S∞).

Recall that the following was shown in the proof of Theorem 7 when α̃ + 1 � ᾱ:

• |I(S∞)| = 1 if |N1(v)| ∈ {0, α̃, α̃ + 1, . . . , n − 1};
• |I(S∞)| = |N1(v)| + 1 if |N1(v)| ∈ {1, 2, . . . , α̃ − 1}.

Recall that β̃ = min{�(n − 1)τ� + 1, α̃ + 1}. Therefore, we have the following: [label=()]

(i) |N1(v)| + 1 ∈ [β̃, α̃] implies

ai(S∞) =
{

1 if i ∈ I(S∞),
τ (|N1(v)|+1)

(1+τ )(|N1(v)|+1)−τ (n−1) if i /∈ I(S∞);

(ii) |N1(v)| + 1 ∈ [1, β̃ − 1] ∪ [α̃ + 1, n] implies aN(S∞) = �1.

Note that (i) implies aN(S∞) ∈ A[|N1(v)|+1] when |N1(v)| + 1 ∈ [β̃, α̃]. Also, as P is uniform,
any two vectors in Am, for m ∈ [β̃, α̃], have the same probability. Thus, we have the following
distribution:

P(aN(S∞) = �x) =

⎧⎪⎪⎨⎪⎪⎩
1 − α̃−β̃+1

n if �x ∈ An, i.e., �x = �1,

1
n×n−1Cm−1

if �x ∈ Am for some m ∈ [β̄, ᾱ],

0 otherwise.

Now assume 2 � ᾱ < α̃ + 1. Recall that the following was shown in the proof of Theorem 7
when 2 � ᾱ < α̃ + 1:

(i) |I(S∞)| = 1 if |N1(v)| ∈ {0, α̃, α̃ + 1, . . . , n − 1},
(ii) |I(S∞)| = |N1(v)| + 1 if |N1(v)| ∈ {1, 2, . . . , ᾱ − 2},

(iii) |I(S∞)| = n if |N1(v)| ∈ {ᾱ − 1, . . . , α̃ − 1} and there is no i ∈ N such that ki = k1 + 1
and vk1+2 = i, and

(iv) |I(S∞)| = n − 1 if |N1(v)| ∈ {ᾱ − 1, . . . , α̃ − 1} and there is i ∈ N such that ki = k1 + 1
and vk1+2 = i.

By the assumption of the theorem, (n − 1)τ � 1 and τ < 1. Thus, if |I(S∞)| = 1 we have
(n − 1)τ � |I(S∞)|, and if |I(S∞)| = (n − 1) we have (n − 1)τ < |I(S∞)|. Recall that β̄ =
min{�(n − 1)τ� + 1, ᾱ}. Combining all these observations, we may write the following:
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(i) |I(S∞)| ∈ [β̄, ᾱ − 1] ∪ {n − 1} implies

ai(S∞) =
{

1 if i ∈ I(S∞),
τ (|I(S∞)|)

(1+τ )(|I(S∞)|)−τ (n−1) if i /∈ I(S∞);

(ii) |I(S∞)| ∈ [1, β̄ − 1] ∪ {n} implies aN(S∞) = �1.

Note that (i) implies aN(S∞) ∈ A(|I(S∞)|) when |I(S∞)| ∈ [β̄, ᾱ − 1] ∪ {n − 1}. Also, as P

is uniform, any two vectors in Am, for m ∈ [β̄, ᾱ − 1] ∪ {n − 1}, have the same probability.
Therefore, using Theorem 7, we have the following distribution:

P(aN(S∞) = �x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 + β̄−ᾱ
n − η(α̃, ᾱ, n) if �x ∈ An, i.e., �x = �1,

1
n×n−1Cm−1

if �x ∈ Am for some m ∈ [β̄, ᾱ − 1],
η(α̃,ᾱ,n)

n−1 if �x ∈ An−1,

0 otherwise. �

D.4. Proof of Theorem 10

Proof. We first explore the limiting actions for a fixed agent sequence and then use this to
find the limiting probability distribution. Let v be an agent sequence and S the DVSP induced
by v. Note that by Remark 1, it is enough to assume v ∈ N∞. Therefore, by Lemma 10, all the
agents outside I(S∞) have the same action limit, and all the agents in I(S∞) have the action
limit 1. Let us denote the common limit by γ . First assume τ = a

n−1 . By Theorem 9, I(S∞) = N.

Therefore, by Lemma 10, aN(S∞) = �1.

Now assume that τ < a
n−1 . We distinguish two cases based on the value of N1(v) (as in the

proof of Theorem 9) to find γ .

Case 1: |N1(v)| = 0.

Recall that for this case the final infected set is N. Hence, aN(S∞) = �1.

Case 2: |N1(v)|� 1.

Recall that for this case, the final infected set has cardinality either n or n − 1. If the car-
dinality is n then aN(S∞) = �1. If the cardinality is n − 1, then as (n − 1)τ < 1, by Lemma 25,
γ = τ . Hence,

ai(S∞) =
{

1 if i ∈ I(S∞),

τ if i /∈ I(S∞).

Note that this implies aN(S∞) ∈ An−1. Also, as P is uniform, any two vectors in An−1 have the
same probability. Thus, by Theorem 9, we have the following distribution:

P(aN(S∞) = �x) =

⎧⎪⎪⎨⎪⎪⎩
1 − n−1

n2 if �x ∈ An, i.e., �x ∈ An, i.e., �x = �1,

1
n2 if �x ∈ An−1,

0 otherwise. �
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