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Abstract We suggest an analog of the Bass–Quillen conjecture for smooth affinoid algebras over a

complete non-archimedean field. We prove this in the rank-1 case, i.e. for the Picard group. For complete
discretely valued fields and regular affinoid algebras that admit a regular model (automatic if the residue

characteristic is zero) we prove a similar statement for the Grothendieck group of vector bundles K0.
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Introduction

For a ring A let us denote by Vecr (A) the set of isomorphism classes of finitely generated

projective modules of rank r . The Bass–Quillen conjecture predicts that for a regular

noetherian ring A the inclusion into the polynomial ring A[t1, . . . , tn] induces a bijection

Vecr (A)
∼
−→ Vecr (A[t1, . . . , tn])

for all n, r > 0. Based on the work of Quillen and Suslin on Serre’s problem the conjecture

has been shown in case A is a smooth algebra over a field [14].

In this note we discuss a potential extension of this conjecture to affinoid algebras

in the sense of Tate. Let K be a field which is complete with respect to a non-trivial

non-archimedean absolute value and let A/K be a smooth affinoid algebra. In rigid
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geometry a building block is the ring of power series converging on the closed unit disc

A〈t1, . . . , tn〉 =

 f =
∑

k

ck tk
∈ A[[t1, . . . , tn]] | ck

|k|→∞
−−−−→ 0

 ,
which serves as a replacement for the polynomial ring in algebra.

Using these convergent power series the following positive result in analogy with Serre’s

problem is obtained in [15].

Example 1 (Lütkebohmert). All finitely generated projective modules over K 〈t1, . . . , tn〉
are free.

Unfortunately, over more general smooth affinoid algebras one has the following

negative example [8, 4.2].

Example 2 (Gerritzen). Assume the ring of integers K ◦ of K is a discrete valuation ring

with prime element π . For the smooth affinoid K -algebra A = K 〈t1, t2〉/(t2
1 − t3

2 −π) the

map

Pic(A)→ Pic(A〈t〉)

is not bijective.

This example shows that for our purpose the ring of convergent power series A〈t〉
is not entirely appropriate. Let π ∈ K \ {0} be an element with |π | < 1. As an improved

non-archimedean analytic replacement for the polynomial ring over A we are going to use

the pro-system of affinoid algebras ‘ lim
t 7→π t

’ A〈t〉. It represents an affinoid approximation

of the non-quasi-compact rigid analytic space (A1
A)

an since

lim
t 7→π t

A〈t〉 = H0((A1
A)

an,O).

Note that the latter non-affinoid K -algebra is harder to control, compare [9, Ch. 5] and [3].

As a non-archimedean analytic analog of the Bass–Quillen conjecture one might ask:

Question 3. Is the map

Vecr (A)→ ‘ lim
t 7→π t

’ Vecr (A〈t〉)

a pro-isomorphism for A/K a smooth affinoid algebra?

We give a positive answer for r = 1.

Theorem 4. For A/K a smooth affinoid algebra the map

Pic(A)→ ‘ lim
t 7→π t

’ Pic(A〈t〉)

is an isomorphism of pro-abelian groups.

This is stronger than the statement that Pic(A)→ limt 7→π t Pic(A〈t〉) is an isomorphism.

The latter has the following consequence, which we will prove in § 3:
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Non-archimedean Bass–Quillen 1933

Corollary 5. For A/K a smooth affinoid algebra the map

Pic(A)→ Pic((A1
A)

an)

is an isomorphism.

The Picard group Pic(A) of an affinoid algebra A is isomorphic to the cohomology

group H1(Sp(A),O∗).
In case the residue field of K has characteristic zero, one has the exponential

isomorphism exp : O(1) ∼−→ O∗(1), where O(1) ⊂ O is the subsheaf of rigid analytic

functions f with | f |sup < 1 and O∗(1) ⊂ O∗ is the subsheaf of functions f with

|1− f |sup < 1. Based on this isomorphism [8, Satz 4] reduces Theorem 4 in case

of characteristic zero to a vanishing result for the additive rigid cohomology group

H1(Sp(A),O(1)) which is established in [1]. As the articles [1] and [2] are written in

German and are not easy to read, we give a simplified proof of their main results in § 1

based on the cohomology theory of affinoid spaces [17].

However in case ch(K ) > 0 this approach using the exponential isomorphism does not

apply. Instead, in § 2 we explain how to pass from a vanishing result for the additive

cohomology groups to a vanishing result for the multiplicative cohomology groups in

the absence of an exponential isomorphism. Based on the latter vanishing the proof of

Theorem 4 is given in § 3.

In § 4 we prove the following stable version of Question 3. Assume that K is discretely

valued, and hence its valuation ring is noetherian. Let A◦ denote the subring of power

bounded elements in A. By a regular model for a regular affinoid K -algebra A we mean

a proper morphism of schemes X → Spec(A◦) which is an isomorphism over Spec(A) and

such that X is regular.

Theorem 6. Let K be discretely valued, and let A/K be a regular affinoid algebra. Assume

that A admits a regular model; this is automatic if the residue field of K has characteristic

zero. Then

K0(A)→ ‘ lim
t 7→π t

’ K0(A〈t〉)

is a pro-isomorphism.

The proof of Theorem 6 uses ‘pro-cdh-descent’ [12, 16] for the K -theory spectrum of

schemes and resolution of singularities in the residue characteristic zero case; so it is

rather non-elementary. Of course, in the cases where Theorem 6 applies it comprises

Theorem 4, as there is a surjective determinant map det : K0 → Pic.

Notations

We denote the supremum seminorm [5, § 3.1] of a rigid analytic function f on an affinoid

space X by | f |sup. For a real number r > 0 we denote by OX (r) ⊆ OX the subsheaf of

functions of supremum seminorm < r . We often omit the subscript X if no confusion is

possible. We write O◦ ⊆ O for the subsheaf of functions of supremum norm 6 1.

If 0 < r < 1, functions of the from 1+ f with | f |sup < r are invertible, and we denote

by O∗(r) ⊆ O∗ the subsheaf of invertible functions of this form.
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We use similar notations K (r), K ◦, K ∗(r) for corresponding elements of the field K or

complete valued extensions of K .

If a is an analytic point of an affinoid space [11, § 2.1], we denote the completion of its

residue field by Fa .

For the closed polydisk Sp(K 〈t1, . . . , td〉) of radius 1 and dimension d over K we use

the notation Bd
K or simply Bd .

An affinoid algebra A/K is called smooth if A⊗K K ′ is regular for all finite field

extensions K ⊂ K ′. As a general reference concerning the terminology of rigid spaces

we refer to [5].

1. Vanishing of additive cohomology (after Bartenwerfer)

The aim of this section is to give new, more conceptual proofs of the main results of

[1] and [2]. Our techniques are based on the cohomology theory for affinoid spaces as

developed by van der Put, see [17] and [11]. Let K be a field which is complete with respect

to the non-archimedean absolute value | · | : K → R. We assume that the absolute value

| · | is not trivial. All affinoid spaces we consider in this section are assumed to be integral.

Let M,N be sheaves of O◦-modules on the affinoid space X = Sp(A). We say that M
is weakly trivial if there exists r ∈ (0, 1) with O(r)M = 0. Note that this just means

that there exists f ∈ K ◦ \ {0} with f M = 0. The weakly trivial O◦-modules form a

Serre subcategory of the abelian category of all sheaves of O◦-modules. We say that

an O◦-morphism u :M→ N is a weak isomorphism if coker(u) and ker(u) are weakly

trivial. Note that the weak isomorphisms are exactly those morphisms which are invertible

up to multiplication by elements of K ◦ \ {0}. We say that M is weakly locally free (wlf)

if there is a finite affinoid covering X =
⋃

i∈I Ui and weak isomorphisms (O◦Ui
)ni 'M|Ui

for each i ∈ I .

Note that for M wlf the OX -module sheaf M⊗O◦X OX is coherent and locally free,

i.e. locally free of finite type.

Lemma 7. Let ψ :M→ N be an O◦-morphism of wlf sheaves on X = Sp(A), and let

f ∈ A◦. If

f coker(ψ ⊗ 1 :M⊗O◦ O→ N ⊗O◦ O) = 0,

then there exists r ∈ (0, 1) such that f K (r) coker(ψ) = 0.

Proof. By the definition of weak local freeness, we may assume without loss of generality

that M = (O◦)m and N = (O◦)n . Let C be the cokernel of ψ . By Tate’s acyclicity theorem

[5, Corollary 4.3.11] we get an exact sequence

H0(X,M⊗O◦ O)→ H0(X,N ⊗O◦ O)→ H0(X, C⊗O◦ O),
where the right hand A-module is f -torsion by assumption. Let e1, . . . , en ∈ N (X) be

the canonical basis elements. So we deduce that f e1, . . . , f en have preimages l1, . . . , ln ∈
H0(X,M⊗O◦ O) = Am . Choose r ∈ (0, 1) such that K (r)l1, . . . , K (r)ln ⊂ (A◦)m .

Proposition 8. Let M be an O◦-module sheaf on X = Sp(A) such that M⊗O◦X OX is

coherent and locally free as OX -module sheaf. Then the following are equivalent:
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(i) M is wlf.

(ii) For each finite set of points R ⊂ X there is an injective O◦-linear morphism 9 :

(O◦)n →M and f ∈ O◦(X) with f (x) 6= 0 for all x ∈ R such that f coker(9) = 0.

(iii) For each point x ∈ X there is an injective O◦(X)-linear morphism 9x : (O◦)n →M
and fx ∈ O◦(X) with fx (x) 6= 0 such that fx coker(9) = 0.

Proof. Clearly, (ii) implies (iii). We first prove (iii) implies (i). Choose for each point

x ∈ X a map 9x and fx as in (iii). There is a finite set of points x1, . . . , xk ∈ X such that

we get a Zariski covering

X =
⋃

i∈{1,...,k}

{x ∈ X | fxi (x) 6= 0}.

By [5, Lemma 5.1.8] there exists ε ∈
√
|K×| such that the Ui = {x ∈ X | | fxi (x)| > ε}

cover X . Then the morphisms 9xi |Ui are weak isomorphisms, so M is wlf.

We now prove that (i) implies (ii). As M⊗O◦X OX is locally free, there exists a finitely

generated projective A-module M with M∼ =M⊗O◦X OX , [5, § 6.1]. By AR we denote

the semilocal ring which is the localization of A at the finitely many maximal ideals R.

Choose a basis b1, . . . , bn of the free AR-module M ⊗A AR . Without loss of generality

we can assume b1, . . . , bn are induced by elements of M(X). We claim that the latter

elements give rise to a morphism 9 as in (ii). Indeed, by elementary algebra we find

f ′ ∈ A◦ such that f ′(x) 6= 0 for all x ∈ R and such that

f ′ coker(An
→ M) = 0.

We conclude by Lemma 7.

Proposition 9. Let φ : X → Y be a finite étale morphism of affinoid spaces over K and

let M be a wlf O◦X -module. Then φ∗M is a wlf O◦Y -module.

Proof. Let X = Sp(A) and Y = Sp(B). The OY -module sheaf φ∗(M)⊗O◦Y OY =

φ∗(M⊗O◦X OX ) is coherent and locally free. For y ∈ Y let R be the finite set φ−1(y)
and let M ⊂ B be the maximal ideal corresponding to y. From Proposition 8 we deduce

that there is an injective O◦X -linear morphism

9 : (O◦X )
n
→M

whose cokernel is killed by some f ∈ A◦ which does not vanish on R. Then as the

induced homomorphism φ] : B → A is finite the prime ideals of B containing the ideal

I = (φ])−1(A f ) are exactly the preimages of the prime ideals in A which contain f , see

[7, § V.2.1]. So we can find g ∈ I ∩ B◦ which is not contained in M . Then the cokernel of

the injective morphism

φ∗(9) : φ∗(O◦X )
n
→ φ∗(M).

is g-torsion. By Proposition 8 we see that it suffices to show that φ∗(O◦X ) is wlf.

Note that for V ⊂ Y an affinoid subdomain O◦X (φ
−1(V )) is the integral closure of O◦Y (V )

in A⊗B OY (V ) = OX (φ
−1(V )) [5, Theorem 3.1.17]. As the field extension Q(B)→ Q(A)

is separable, it is not hard to bound this integral closure as follows. Let b1, . . . , bd ∈ O◦(X)
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induce a basis of the free BM -module A⊗B BM . This basis induces an injective O◦Y -linear

morphism

9 : (O◦Y )
d
→ φ∗(O◦X ).

Let δ be the discriminant of b1, . . . , bd . Then by [7, Lemma V.1.6.3] the cokernel of 9 is

δ-torsion.

As the point y ∈ Y was arbitrary we conclude from Proposition 8 that φ∗(O◦X ) is wlf.

In the proofs of Theorems 13 and 17 below, we want to apply a base change theorem

of van der Put [11, Theorem 2.7.4] and argue with stalks. The latter work well if one

restricts to overconvergent sheaves and analytic points, see [11, § 2] for the definition and

basic properties. For a sheaf M on X we write Moc for the associated overconvergent

sheaf. The sheaf Moc is given on an affinoid open subdomain U ⊂ X by

Moc(U ) = colimU⊂U ′M(U ′)

where U ′ runs through all wide neighborhoods of U in X (see [11, § 2.3] for a definition).

Note that there is a canonical morphism Moc
→M.

Remark 10. Let X = Sp(A) be an affinoid rigid space over K , and let X an be the Berkovich

spectrum of A. The analytic points of X are in canonical bijection with the points of the

topological space X an, and there is a morphism of topoi (σ∗, σ
∗) : X∼→ X an,∼. The left

adjoint σ ∗ identifies X an,∼ with the full subcategory of X∼ consisting of overconvergent

sheaves, and for any sheaf M on X the counit σ ∗σ∗M→M is identified with the

canonical map Moc
→M. The stalk of σ∗M in a point of X an is precisely the stalk

of M in the corresponding analytic point. Finally, for an overconvergent abelian sheaf

M on X one has a natural isomorphism H∗(X,M) ' H∗(X an, σ∗M) and similarly for

higher direct images. Using this, van der Put’s base change theorem for overconvergent

sheaves can be deduced from the ordinary proper base change theorem in topology. See

[18, 19] for all this.

The following proposition is a simple consequence of Tate’s acyclicity theorem [5,

Corollary 4.3.11].

Proposition 11. Let X = Sp(A) be an affinoid space.

(i) For any finite affinoid covering U of X the Čech cohomology groups H i (U ,O◦) are

weakly trivial (as K ◦-modules) for all i > 0.

(ii) The canonical map

H i (V,OX (r)oc
|V )→ H i (V,OV (r))

is surjective for every affinoid subdomain V ⊂ X , every r > 0 and integer i > 0.

Proof. (i): Note that for each affinoid open subdomain U of X the Čech complex

(C(U ,O), d) consists of complete normed K -vector spaces and the differential is

continuous. To be concrete, we work with the supremum norm. The continuous morphism

d i−1
: C i−1(U ,O)→ Z i (U ,O)
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is surjective by [5, Corollary 4.3.11], so it is open according to [6, Theorem I.3.3.1].

In other words there exists r ∈ (0, 1) such that Z i (U ,O(r)) is contained in

d i−1(C i−1(U ,O◦)). This means that H i (U ,O◦) is K (r)-torsion.

(ii): In order to show part (ii) of the proposition it suffices to show that for each finite

covering U = (Ul)l∈L of V by rational subdomains of X the map

H i (U ,OX (r)oc)→ H i (U ,O(r)) (1)

is surjective. This is a consequence of

Claim 12.

(i) For i > 0 the image of d i−1
: C i−1(U ,O(r))→ Z i (U ,O(r)) is open.

(ii) The image of Z i (U ,OX (r)oc)→ Z i (U ,O(r)) is dense.

Part (i) of the claim is a consequence of Proposition 11(i). For part (ii) of the claim

note that for each rational subdomain

U = {|g1| 6 |g0|, . . . , |gr | 6 |g0|}

of X the image of Ooc
X (U )→ O(U ) is dense. To see this observe that for ε > 1 and

ε ∈ |K ∗|Q the set U is a Weierstraß domain inside {|g1| 6 ε|g0|, . . . , |gr | 6 ε|g0|}.

For ξ ∈ Z i (U ,O(r)) we find ξ ′ ∈ C i−1(U ,O) with d(ξ ′) = ξ , using again

[5, Corollary 4.3.11]. Find a sequence ξ ′j ∈ C i−1(U ,Ooc
X ) such that its image in C i−1(U ,O)

converges to ξ ′. Then d(ξ ′j ) ∈ Z i (U ,Ooc) is a sequence approximating ξ . By [11,

Lemma 2.3.1] for large j we have d(ξ ′j ) ∈ Z i (U ,OX (r)oc).

Theorem 13 (Bartenwerfer/van der Put). We have

H i (Bd ,O(r)) = 0

for all r > 0 and integers i > 0.

This is proven by Bartenwerfer [2, Theorem] and using different methods by van der

Put [17, Theorem 3.15]. For the convenience of the reader, we sketch van der Put’s proof.

Idea of proof (van der Put). Using Tate’s acyclicity theorem the theorem is equivalent

to the following two statements:

• for all r > 0 and integers i > 0 the cohomology group

H i (Bd ,O/O(r)) = 0,

• H0(Bd ,O)→ H0(Bd ,O/O(r)) is surjective.

The sheaf O/O(r) is overconvergent by [17, Lemma 1.5.2]. So we can apply base change

[11, Theorem 2.7.4] for the linear fibrations φ : Bd
→ Bd−1. Using the fact that for any

fiber φ−1(a) ∼= B1
Fa

over an analytic point a of Bd−1 we have

(OBd /OBd (r))|φ−1(a)
∼= OB1

Fa
/OB1

Fa
(r),
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compare Lemma 25, we reduce the theorem to the case d = 1. In fact, by what is said

and using the one-dimensional case of the theorem we get that

φ∗(OBd /OBd (r)) =
⊕
N

OBd−1/OBd−1(r),

R jφ∗(OBd /OBd (r)) = 0 ( j > 0)

and we conclude by the Leray spectral sequence and by induction on d.

In the one-dimensional case the theorem follows from an explicit computation based

on the Mittag–Leffler decomposition.

Corollary 14. The cohomology group

H i (Bd ,O◦)

is K (1)-torsion for all integers i > 0.

Indeed, for any α ∈ K (1) the multiplication by α on H i (Bd ,O◦) factors through

H i (Bd ,O(1)) which vanishes by Theorem 13.

Remark 15. In fact, in [4, Theorem] Bartenwerfer shows that H i (Bd ,O◦) = 0 for every

i > 0.

Lemma 16. Let X = Sp(A) be an affinoid space such that the cohomology group H i (X,O◦)
is weakly trivial for some i > 0. Then for any wlf O◦-module M the cohomology group

H i (X,M) is weakly trivial.

Proof. Below we are going to construct for every point x ∈ X a function fx ∈ A◦ with

fx (x) 6= 0 and with fx H i (X,M) = 0. As the fx generate the unit ideal in A, there exist

finitely many points x1, . . . , xr ∈ X and c1, . . . , cr ∈ A◦ with

c1 fx1 + · · ·+ cr fxr =: c ∈ K ◦ \ {0}.

Then c H i (X,M) = 0.

In order to construct such fx for given x ∈ X we use Proposition 8 in order to find an

injective O◦X -linear morphism 9 : (O◦)n →M and f ′ ∈ O◦(X) with f ′(x) 6= 0 and such

that f ′ coker(9) = 0. From the long exact cohomology sequence corresponding to the

short exact sequence

0→ (O◦)n 9
−→M→ coker(9)→ 0

it follows that we can take any nonzero fx ∈ K (r) f ′, where r ∈ (0, 1) is chosen such that

K (r) H i (X,O◦) = 0.

Theorem 17. For X/K a smooth affinoid space and for M a wlf O◦X -module the

cohomology groups H i (X,M) are weakly trivial (as K ◦-modules) for all i > 0.

Proof. By Lemma 16 we can assume without loss of generality that M = O◦. We use

induction on i > 0. The base case i = 1 is handled in the same way as the induction step,
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so let us assume i > 1 and that we already know weak triviality of H j (U,O◦) for all

0 < j < i and smooth affinoid spaces U/K .

Since X/K is smooth, [13, Satz 1.12] implies that there exists a finite affinoid covering

U = (Ul)l∈L and finite étale morphisms φl : Ul → Bd . From the Čech spectral sequence

E pq
2 = H p(U , Hq(O◦))⇒ H p+q(X,O◦)

we see that H i (X,O◦) has a filtration whose associated graded piece grp is a subquotient

of H p(U , H i−p(O◦)). By Proposition 11(i), gri is weakly trivial. By our induction

assumption, H i−p(O◦)(U ) is weakly trivial for 0 < p < i and for U an intersection of

opens in U , hence gri−p is weakly trivial for these p. It thus suffices to show that gr0 is

weakly trivial or that H i (Ul ,O◦Ul
) is weakly trivial for all l ∈ L.

So in order to show Theorem 17 we can assume without loss of generality that M = O◦X
and that there exists a finite étale morphism φ : X → Bd .

For all j > 0 we get morphisms

R jφ∗(O◦X ) ' R jφ∗(OX (1))← R jφ∗(OX (1)oc). (2)

with a weak isomorphism on the left and a surjective morphism on the right. The

surjectivity follows from Proposition 11(ii). By base change [11, Theorem 2.7.4] the stalk

R jφ∗(OX (1)oc)a ' H j (Xa,OX (1)oc
|Xa ) vanishes for every analytic point a of Bd . Since

R jφ∗(OX (1)oc) is overconvergent [11, Lemma 2.3.2], it follows that R jφ∗(OX (1)oc) = 0
and hence that R jφ∗(O◦X ) is weakly trivial.

Combining this observation with the Leray spectral sequence we see that it suffices to

show that H i (Bd , φ∗(O◦X )) is weakly trivial for i > 0. From Proposition 9 we deduce that

φ∗(O◦X ) is wlf as an O◦Bd -module, so we conclude by using Theorem 13 and Lemma 16.

The following corollary, which we will apply in the next sections, was first shown in [1]

and [2, Folgerung 3].

Corollary 18 (Bartenwerfer). For X/K smooth affinoid there exists s ∈ (0, 1) such that

the map

H i (X,O(sr))→ H i (X,O(r)) (3)

vanishes for all r > 0 and integers i > 0.

Proof. Choose π ∈ K (1) \ {0} and write s′ = |π |. By Theorem 17 we can assume without

loss of generality that π H i (X,O(1)) = 0 for i > 0. Now we claim s = s′2 satisfies the

requested property of the corollary. Indeed, for r > 0 set r ′ = max{|π |n | n ∈ Z, |π |n 6 r}.
Then we get a commutative square

H i (X,O(s′r ′)) //

o

��

H i (X,O(r ′))

o

��

H i (X,O(1)) =0 // H i (X,O(1))

where the lower horizontal map is multiplication by π and the vertical maps are induced

by the isomorphisms O(s′r ′) ∼= O(1) and O(r ′) ∼= O(1) given by multiplying with the
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appropriate powers of π . The morphism (3) is the composition of

H i (X,O(sr))→ H i (X,O(s′r ′)) =0
−→ H i (X,O(r ′))→ H i (X,O(r)).

2. Vanishing of multiplicative cohomology

Given r ′ < r we write O(r, r ′) := O(r)/O(r ′) and, if r ′ < r 6 1, O∗(r, r ′) := O∗(r)/O∗(r ′).

Lemma 19. For r ′ < r 6 1 we have isomorphisms of sheaves of sets O(r) ∼−→ O∗(r)
and O(r, r ′) ∼−→ O∗(r, r ′) given by f 7→ 1+ f . If r ′ > r2, the latter isomorphism is an

isomorphism of abelian sheaves.

Proof. Most of the claims are easy. To see that f 7→ 1+ f induces a map on the quotient

sheaves O(r, r ′)→ O∗(r, r ′) note that if f, g are functions of supremum seminorm < 1,

then | f − g|sup < r ′ if and only if |(1+ f )(1+ g)−1
− 1|sup < r ′. Indeed, this follows from

the computation | f − g|sup = |(1+ f )− (1+ g)|sup = |((1+ f )(1+ g)−1
− 1)(1+ g)|sup =

|(1+ f )(1+ g)−1
− 1|sup, where we used that |1+ g|sup = |(1+ g)−1

|sup = 1.

Given an affinoid space X , we consider the following condition on the real number

0 < s 6 1:

The map H i (X,O(sr))→ H i (X,O(r))
vanishes for all r > 0 and integers i > 0.

(4)

Proposition 20. Let X/K be smooth affinoid. Assume that s satisfies (4). Then the map

H1(X,O∗(sr))→ H1(X,O∗(r))

vanishes for every r ∈ (0, s).

Proof. We first prove:

Lemma 21. Assume that s satisfies (4) for the affinoid space X . For any integer i > 0,

r ∈ (0, s), and ξ ∈ H i (X,O∗(sr)) there exists a decreasing zero sequence (rn) in (0, s) with

r0 = r and a compatible system

(ξ ′n) ∈ lim
n

H i (X,O∗(rn))

such that ξ ′0 ∈ H i (X,O∗(r)) is equal to the image of ξ under H i (X,O∗(sr))→
H i (X,O∗(r)).

Proof. Put r0 = r and inductively rn+1 = r2
n/s. Explicitly, rn = (r/s)2

n
s. Since r < s, the

rn form a decreasing zero sequence.

Put ξ0 = ξ . We will inductively construct elements ξn ∈ H i (X,O∗(srn)) such that the

images of ξn and ξn+1 in H i (X,O∗(rn)) coincide. Denote this common image by ξ ′n . Then

(ξ ′n)n>0 is the desired compatible system.
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Assume that we have already constructed ξn . From the commutative diagram with

exact rows

H i (X,O(srn)) // H i (X,O(srn, s2rn+1)) //

��

H i+1(X,O(s2rn+1))

=0 by (4)
��

H i (X,O(srn)) //

=0 by (4)
��

H i (X,O(srn, srn+1)) //

��

H i+1(X,O(srn+1))

H i (X,O(rn)) // H i (X,O(rn, srn+1)) // H i+1(X,O(srn+1))

we see that H i (X,O(srn, s2rn+1))→ H i (X,O(rn, srn+1)) vanishes for i > 0. Since

srn+1 > r2
n and s2rn+1 = sr2

n > (srn)
2, we may apply Lemma 19 to deduce that also

H i (X,O∗(srn, s2rn+1))→ H i (X,O∗(rn, srn+1)) vanishes. From the commutative diagram

with exact rows

H i (X,O∗(srn))

��

// H i (X,O∗(srn, s2rn+1))

=0
��

H i (X,O∗(srn+1)) // H i (X,O∗(rn)) // H i (X,O∗(rn, srn+1))

we deduce the existence of the desired element ξn+1 ∈ H i (X,O∗(srn+1)) such that the

images of ξn and ξn+1 in H i (X,O∗(rn)) coincide.

Lemma 22. Let X/K be smooth affinoid, and let (ξn) ∈ limn H1(X,O∗(rn)) be a compatible

system where the rn form a decreasing zero sequence in (0, 1). Then there exists a finite

affinoid covering U of X such that (ξn) lies in the image of limn H1(U ,O∗(rn)).

Proof. Let U be a finite affinoid covering of X such that ξ0 lies in the image of

H1(U ,O∗(r0)). We claim that then ξn lies in the image of H1(U ,O∗(rn)) for all n. Recall

that for any abelian sheaf F the map H1(U ,F)→ H1(X,F) is injective, and an element

ξ ∈ H1(X,F) belongs to the image of this map if and only if ξ |U = 0 in H1(U,F |U ) for

every U ∈ U .

Fix U ∈ U . We want to show that ξn|U = 0 in H1(U,O∗(rn)). By Corollary 18 there

exists m > n such that H1(U,O(rm))→ H1(U,O(rn)) vanishes. Under the sequence of

maps

H1(U,O∗(rm))→ H1(U,O∗(rn))→ H1(U,O∗(r0))

we have ξm |U 7→ ξn|U 7→ 0. Hence the element ξm |U lifts to an element ηm in

H0(U,O∗(r0, rm)). We claim that the image of ηm in H0(U,O∗(r0, rn)) has a preimage in

H0(U,O∗(r0)). In view of the commutative diagram with exact rows

H0(U,O∗(r0)) // H0(U,O∗(r0, rn)) // H1(U,O∗(rn))

H0(U,O∗(r0)) // H0(U,O∗(r0, rm)) //

OO

H1(U,O∗(rm))

OO

this will imply that ξn|U = 0.
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To prove the claim, note that Lemma 19 gives bijections H0(U,O∗(r0)) ∼= H0(U,O(r0))

and H0(U,O∗(r0, rn)) ∼= H0(U,O(r0, rn)) and similarly for rn replaced by rm . On the other

hand, by the choice of m, the map H1(U,O(rm))→ H1(U,O(rn)) vanishes. This implies

the existence of the desired lift in view of the commutative diagram with exact rows

H0(U,O(r0)) // H0(U,O(r0, rn)) // H1(U,O(rn))

H0(U,O(r0)) // H0(U,O(r0, rm)) //

OO

H1(U,O(rm)).

=0

OO

We can now finish the proof of Proposition 20. Using the two preceding lemmas, it

suffices to show that limn H1(U ,O∗(rn)) vanishes for every decreasing zero sequence (rn).

Consider an element (ξn)n in this inverse limit, and choose representing Čech 1-cocycles

ζn ∈ Z1(U ,O∗(rn)). Then there exist 0-cochains ηn ∈ C0(U ,O∗(rn)) such that ζn = ζn+1 ·

∂ηn . Since (rn) is a zero sequence, the product
∏
∞

k=0 ηn+k converges in C0(U ,O∗(rn)), and

we get ζn = ∂(
∏
∞

k=0 ηn+k), i.e. ξn = 0.

Corollary 23. For every r ∈ (0, 1) we have H1(Bd ,O∗(r)) = 0.

Proof. By Theorem 13, s = 1 satisfies condition (4) for X = Bd . Hence by Proposition 20,

the identity map on H1(Bd ,O∗(r)) vanishes.

Corollary 24. Let X/K be a smooth affinoid space. Then there exists 0 < r 6 1 such that

H1(X,O∗)→ H1(X,O∗/O∗(r ′))

is injective for every r ′ ∈ (0, r).

Proof. By Corollary 18 there exists 0 < s 6 1 satisfying (4). By Proposition 20 we can

take r = s2.

3. Homotopy invariance of Pic

In this section we prove Theorem 4. Given 0 < r 6 1, we set O∗(∞, r) = O∗/O∗(r). Let

X = Sp(A) be an affinoid space, and let p : X ×B1
→ X be the projection, σ : X →

X ×B1 the zero section.

Lemma 25. For any fiber p−1(a) ∼= B1
Fa

over an analytic point a of X we have

O∗X×B1(∞, r)|p−1(a)
∼= O∗B1

Fa
(∞, r).

Proof. This follows easily from [11, Lemmas 2.7.1, 2.7.2].

Lemma 26. We have R1 p∗O∗X×B1(∞, r) = 0.

Proof. The sheaf O∗X×B1(∞, r) and hence its higher direct images are overconvergent

(see [17, 1.5.3], [11, Lemma 2.3.2]). Hence it suffices to prove that for any analytic point
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a of X the stalk R1 p∗O∗X×B1(∞, r)a vanishes. By base change [11, Theorem 2.7.4] and

Lemma 25, we have

R1 p∗O∗X×B1(∞, r)a ∼= H1(B1
Fa
,O∗B1

Fa
(∞, r)).

In the exact sequence

H1(B1
Fa
,O∗B1

Fa
)→ H1(B1

Fa
,O∗B1

Fa
(∞, r))→ H2(B1

Fa
,O∗B1

Fa
(r))

the group on the left vanishes because the Tate algebra is a unique factorization domain,

the group on the right vanishes by dimension reasons.

Fix π ∈ K \ {0} with |π | < 1. Let t denote the coordinate on B1. Then t 7→ π t induces

a map p∗O∗X×B1(∞, r)→ p∗O∗X×B1(∞, r).

Lemma 27. We have an isomorphism of pro-abelian sheaves

‘ lim
t 7→π t

’ p∗O∗X×B1(∞, r) ∼= O∗X (∞, r)

Proof. Obviously, O∗X (∞, r)
p∗
−→ p∗O∗X×B1(∞, r)

σ ∗

−→ O∗X (∞, r) is the identity. Choose n
big enough such that |πn

| 6 r . We claim that the map

p∗O∗X×B1(∞, r)→ p∗O∗X×B1(∞, r)

induced by t 7→ πn t factors through O∗X (∞, r)
p∗
−→ p∗O∗X×B1(∞, r). By overconvergence

again it is enough to check this on the stalk at any analytic point a of X (consider

the image of the composition of the first map with the projection to coker(p∗)). By base

change and Lemma 25 we have p∗O∗X×B1(∞, r)a ∼= H0(B1
Fa
,O∗B1

Fa
(∞, r)). By Corollary 23

the natural map H0(B1
Fa
,O∗)→ H0(B1

Fa
,O∗B1

Fa
(∞, r)) is surjective. Any element of

H0(B1
Fa
,O∗) is of the form u · f (t) with u ∈ F∗a , f (0) = 1, and | f (t)− 1|sup < 1 (see [5,

Corollary 2.2.4]). But then | f (πn t)− 1|sup < |π
n
| 6 r . This implies that the map

H0(B1
Fa
,O∗B1

Fa
(∞, r))→ H0(B1

Fa
,O∗B1

Fa
(∞, r))

induced by t 7→ πn t factors through F∗a /F∗a (r) ↪→ H0(B1
Fa
,O∗B1

Fa
(∞, r)), concluding the

proof.

Proof of Theorem 4. Note that Pic(A) ∼= H1(X,O∗). Since X = Sp(A) is assumed to be

smooth, Corollary 24 implies that there exists r ∈ (0, 1) such that the map H1(X ×
B1,O∗)→ H1(X ×B1,O∗(∞, r)) is injective. It thus suffices to show that

σ ∗ : ‘ lim
t 7→π t

’ H1(X ×B1,O∗X×B1(∞, r))→ H1(X,O∗X (∞, r))

is a pro-isomorphism.

Using the Leray spectral sequence, Lemma 26 yields an isomorphism

H1(X ×B1,O∗X×B1(∞, r)) ∼= H1(X, p∗O∗X×B1(∞, r)).
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We combine this with the pro-isomorphism

‘ lim
t 7→π t

’ H1(X, p∗O∗X×B1(∞, r)) ∼= H1(X,O∗X (∞, r))

implied by Lemma 27 to finish the proof.

Proof of Corollary 5. Write X for Sp(A), Un for the closed disk of radius |π−n
|, and A1,an

for the analytic affine line over K . Then X ×Un , n = 0, 1, . . . , is an admissible covering of

X ×A1,an. Note that the pro-systems ‘ lim
n

’ Pic(X ×Un) and ‘ lim
t 7→π t

’ Pic(A〈t〉) are naturally

isomorphic. Taking the limit of the isomorphism of pro-abelian groups in Theorem 4 then

gives the isomorphism

Pic(X) ∼= lim
n

Pic(X ×Un).

Hence it suffices to show that the natural map Pic(X ×A1,an)→ limn Pic(X ×Un) is

an isomorphism. The cohomological description of Picard groups yields a short exact

sequence

0→ lim
n

1 O∗(X ×Un)→ Pic(X ×A1,an)→ lim
n

Pic(X ×Un)→ 0.

We have a natural decomposition O∗(X ×Un) ∼= O∗(X)⊕O∗0(X ×Un) where O∗0(X ×Un)

consists of those units that restrict to 1 on X ⊂ X ×Un . Clearly, lim1
n O∗(X) = 0 and it

remains to prove that lim1
n O∗0(X ×Un) vanishes. Note that given f ∈ O∗0(X ×Un+m), its

restriction to X ×Un satisfies | f |X×Un − 1|sup < |π
m
|. Hence, given any sequence (gn)

∞

n=0
with gn ∈ O∗0(X ×Un), the product

fn :=

∞∏
k=n

gk |X×Un ∈ O∗0(X ×Un)

converges. By construction we have gn = fn · ( fn+1|X×Un )
−1 for every n > 0. This shows

the desired vanishing of the lim1-term.

4. K0-invariance

In this section we assume that K is a complete discretely valued field. Then for an affinoid

algebra A/K the ring of power bounded elements A◦ is noetherian, excellent, and of finite

Krull dimension, for excellence see [10, § I.9]. Let π ∈ K ◦ be a prime element.

Let X → Spec(A◦) be a proper morphism of schemes which is an isomorphism over

Spec(A). For an integer n > 0 set Xn = X ⊗K ◦ K ◦/(πn).

Proposition 28. There exists n > 0 such that

K0(X )→ K0(Xn)

is injective.

Proof. Let K (X ,Xn) be the homotopy fiber of the map K (X )→ K (Xn) between

non-connective K -theory spectra [21, § IV.10] and let Ki (X ,Xn) be its homotopy groups.

By ‘pro-cdh-descent’ [12, Theorem A] the natural map

‘ lim
n

’ K0(A◦, A◦/(πn))→ ‘ lim
n

’ K0(X ,Xn)
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is a pro-isomorphism. For each n we have an exact sequence

K1(A◦)→ K1(A◦/(πn))→ K0(A◦, A◦/(πn))→ K0(A◦)
∼
−→ K0(A◦/(πn))

where the left map is surjective [21, Remark III.1.2.3] and the right map is an isomorphism

[21, Lemma II.2.2], since A◦ is π-adically complete. So K0(X ,Xn) vanishes as a pro-system

in n. By the exact sequence

K0(X ,Xn)→ K0(X )→ K0(Xn)

this finishes the proof of the proposition.

Lemma 29. If X is a regular scheme we obtain a natural exact sequence

G0(X1)→ K0(X )→ K0(A)→ 0,

where G0 is the Grothendieck group of coherent sheaves.

Proof of Theorem 6. In case the residue field of K has characteristic zero, A◦ contains

Q and is excellent. Hence there exists a blow-up X → A◦, whose center is (set

theoretically) contained in the closed fiber Spec(A◦/π), such that X is a regular scheme

[20, Theorem 1.1]. So we can now assume in the general case that X → Spec(A◦) is

a regular model of A in the sense of the introduction. Let A◦〈t〉 ⊂ A◦[[t]] be those

formal power series for which the coefficients converge to zero. Note that A◦→ A◦〈t〉
is a regular ring homomorphism, so X ′ = X ⊗A◦ A◦〈t〉 is a regular scheme with generic

fiber Spec(A〈t〉). Set X ′n = X ′⊗K ◦ K ◦/(πn).

Applying Lemma 29 to X and X ′ we get a commutative diagram with exact rows

G0(X1) // K0(X ) // K0(A) // 0

G0(X ′1) //

oσ ∗

OO

K0(X ′) //

σ ∗

OO

K0(A〈t〉)

σ ∗

OO

// 0

where σ is the zero section induced by t 7→ 0. The left vertical arrow is an isomorphism

by homotopy invariance of G-theory [21, Theorem II.6.5] as X ′1 = A1
X1

. In order to prove

Theorem 6 we have to show that

σ ∗ : ‘ lim
t 7→π t

’ K0(A〈t〉)→ K0(A)

is a pro-monomorphism. According to Proposition 28 we find n > 0 such that K0(X ′)→
K0(X ′n) is injective. So by a diagram chase it suffices to show that

σ : ‘ lim
t 7→π t

’ K0(X ′n)→ K0(Xn)

is a pro-monomorphism, which is clear as the morphism X ′n
t 7→πn t
−−−−→ X ′n factors through

Xn .
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